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Abstract

Aspect Sentiment Triplet Extraction (ASTE)
aims to extract the triplets of aspect terms,
their associated sentiments and opinion terms.
Previous works based on different modeling
paradigms have achieved promising results.
However, these methods struggle to compre-
hensively explore the various specific relations
between sentiment elements in multi-view lin-
guistic features, which is the prior indication
effect for facilitating sentiment triplets extrac-
tion, requiring to align and aggregate them to
capture the complementary higher-order inter-
actions. In this paper, we propose Multi-view
Linguistic Features Enhancement (MvLFE) to
explore the aforementioned prior indication ef-
fect in the "Refine, Align, and Aggregate" learn-
ing process. Specifically, we first introduce the
relational graph attention network to encode
the word-pair relations represented by each lin-
guistic feature and refine them to pay more
attention to the aspect-opinion pairs. Next, we
employ the multi-view contrastive learning to
align them at a fine-grained level in the contex-
tual semantic space to maintain semantic con-
sistency. Finally, we utilize the multi-semantic
cross attention to capture and aggregate the
complementary higher-order interactions be-
tween diverse linguistic features to enhance the
aspect-opinion relations. Experimental results
on several benchmark datasets show the effec-
tiveness and robustness of our model, which
achieves state-of-the-art performance.

1 Introduction

Aspect Sentiment Triplet Extraction (ASTE) is a
new variant of Aspect-Based Sentiment Analysis
(ABSA) (Pontiki et al., 2014), which is an informa-
tion extraction style task to identify all sentiment
triplets from a review to explain WHAT the tar-
geted aspects are, HOW their sentiment polarities
are and WHY they have such polarities (i.e., opin-
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Figure 1: The prior indication effect of multi-view lin-
guistic features for ASTE. It reveals various specific
relations between matched aspect and opinion terms,
also within the terms themselves in different views of
linguistic features, which facilitate the extraction of sen-
timent triplets from input sentences. In the above triplet
set, aspect and opinion terms are marked in red and blue,
with positive sentiment in green and negative in brown.
"sdd/rpd:n" denotes distance between two words is n.

ion terms). A sentence with triplets marking in
Figure 1 illustrates the definition of the ASTE task.

Early work adopts the straightforward solution
to decompose the ASTE task into several ABSA
subtasks to separately extract sentiment elements of
triplets with a two-stage pipeline approach (Peng
et al., 2020). To exploit the association among
multiple subtasks, Mao et al. (2021); Chen et al.
(2021a); Liu et al. (2022) transform the ASTE task
into the machine reading comprehension (MRC)
paradigm with diverse task-specific queries, which
jointly train multiple subtasks but pipeline infer-
ence. Obviously, these methods potentially lead to
the well-known error propagation problem.

To alleviate this problem, most of recent studies
focus on jointly extracting the sentiment triplets in
an end-to-end fashion (Xu et al., 2020, 2021; Chen
et al., 2022b; Yu et al., 2023). Some efforts formu-
late the ASTE task as a text generation problem
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to generate the sentiment triplets in one shot (Yan
et al., 2021; Gao et al., 2022; Gou et al., 2023).
However, these approaches are constrained in cap-
turing reciprocity among the sentiment elements.

Therefore, Jing et al. (2021); Zhang et al. (2022);
Liang et al. (2023) construct the word-pair relations
by designing a novel grid tagging scheme (Wu
et al., 2020a) to capture such association. Chen
et al. (2021b); Fei et al. (2022); Chen et al. (2022a)
further leverage the syntax dependency or addi-
tional linguistic features to enrich the word-pair
representations. Nevertheless, these methods pri-
marily fuse the linguistic features and the contex-
tual features at a shallow level, which neglect to
align and aggregate them to capture the comple-
mentary higher-order interactions. Consequently,
they fail to exploit the prior indication effect of
multi-view linguistic features for ASTE.

Naturally, two questions arise regarding the prior
indication effect by our observations.

Q1: What is the prior indication effect for
ASTE? We interpret it as there exist various spe-
cific relations between matched aspect-opinion
pairs, also within aspect or opinion terms them-
selves in different views of linguistic features,
which facilitate the sentiment triplets extraction.
Take Figure 1 as an example. First, in the view of
syntactic dependency type, we observe that the as-
pect term is the nominal subject of the opinion term
due to the “nsubj” type. Besides, “cheese” and

“pizza” comprise an aspect term by the “compound”
type, while “indeed” is the adverbial modifier of

“dull” so they combine as an opinion term. Thus,
these dependency types facilitate not only the ex-
traction of aspect and opinion terms but also their
pairing. Second, in the view of part-of-speech
relation, we find that aspect terms are nouns while
opinion terms are adjectives. Hence, the word
pair with the “NN-JJ” part-of-speech combina-
tion tends to form an aspect-opinion pair. In addi-
tion, we notice that the matched aspect and opinion
terms are closer in terms of the distance of syntac-
tic dependency and relative position.

Q2: How to effectively exploit the prior indi-
cation effect to help ASTE? We argue that explor-
ing it requires the "Refine, Align, and Aggregate"
learning process. First, there exist numerous irrele-
vant word-pair relations represented by multi-view
linguistic features to ASTE (e.g., relations between
commas and other words). Therefore, we need
to refine the multi-view linguistic features to fo-
cus on the relations of the matched aspect-opinion

pairs. Second, different views of linguistic fea-
tures represent various relation types for the same
aspect-opinion pairs, so they require to be aligned
to maintain semantic consistency. Finally, since the
prior indication effect of a single linguistic feature
is one-sided for ASTE, it is crucial to capture and
aggregate the complementary higher-order interac-
tions between diverse linguistic features.

Motivated by the above observations, we pro-
pose Multi-view Linguistic Features Enhancement
(MvLFE) to explore the prior indication effect to
enhance the word-pair relations. Firstly, we in-
troduce the relational graph attention network to
encode the word-pair relations represented by each
linguistic feature as multi-channel edge features,
which are normalized as doubly stochastic ma-
trices to facilitate the aggregation and updating
of word nodes, preventing over-smoothing across
multi-layer learning. Moreover, edge features are
updated by the edge refining strategy which consid-
ers the implicit results of aspect and opinion terms
extraction to support their matching. Secondly, in-
spired by Image-Text Matching for cross-modal
alignment, we employ the multi-view contrastive
learning to align diverse aspect-opinion relations
represented by different linguistic features in the
semantic space which obtained by the biaffine trans-
formation of contexts to maintain semantic consis-
tency. Finally, we utilize the multi-semantic cross
attention to aggregate the complementary higher-
order interactions between diverse linguistic fea-
tures to enhance aspect-opinion relations.

In summary, the key contributions are as follows:

• We propose a novel MvLFE model that effec-
tively exploits the prior indication effect of
multi-view linguistic features in the "Refine,
Align, and Aggregate" learning process.

• We present the relational graph attention net-
work to refine the relation-aware word-pair
representations of multi-view linguistic fea-
tures to attend the aspect-opinion pairs.

• We employ the multi-view contrastive learn-
ing and the multi-semantic cross attention to
align and aggregate diverse linguistic features
to enhance the aspect-opinion relations.

2 Related Works

Aspect-Based Sentiment Analysis (ABSA) (Pon-
tiki et al., 2014) has received wide attention in
recent years. Early works focus on identifying the
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Figure 2: The overall architecture of our MvLFE model.

single sentiment element, i.e., Aspect Term Extrac-
tion (ATE) (Ma et al., 2019; Li et al., 2020; Wang
et al., 2021), Opinion Term Extraction (OTE) (Dai
and Song, 2019; Fan et al., 2019; Wu et al., 2020b)
and Aspect Sentiment Classification (ASC) (Tang
et al., 2022; Ma et al., 2023; Zhang et al., 2023). To
further explore the interactions among sentiment
elements, some efforts are devoted to coupling the
individual subtasks, i.e., Aspect-Opinion Pair Ex-
traction (AOPE) (Zhao et al., 2020; Chen et al.,
2020b; Gao et al., 2021) and Aspect Extraction and
Sentiment Classification (AESC) (He et al., 2019;
Chen and Qian, 2020).

Based on their works, Peng et al. (2020) intro-
duces the more challenging ASTE task to present
a near-complete solution for ABSA. Subsequent
works address ASTE task by different modeling
paradigms: Sequence tagging (Xu et al., 2020;
Zhang et al., 2020), Grid tagging (also known as
table-filling) (Wu et al., 2020a; Chen et al., 2021b;
Jing et al., 2021; Fei et al., 2022; Chen et al.,
2022a; Zhao et al., 2022; Zhang et al., 2022; Liang
et al., 2023), MRC-based methods with diverse
task-specific queries (Mao et al., 2021; Chen et al.,
2021a; Liu et al., 2022; Zhai et al., 2022) and Gener-
ative methods (Yan et al., 2021; Zhang et al., 2021;
Gao et al., 2022; Mao et al., 2022; Lv et al., 2023;
Mukherjee et al., 2023; Gou et al., 2023). How-
ever, these approaches generally ignore the prior
indication effect of multi-view linguistic features
for ASTE, which facilitates the triplet extraction.

3 Methodology

In this section, we first introduce the task defini-
tion and the adopted tagging scheme. Then we
elaborate on the details of our MvLFE model and
the training objective. The overall architecture is
illustrated in Figure 2.

3.1 Task Definition and Tagging Scheme

Given an input sentence X = {w1, w2, · · · , wn}
with n words, the objective of the ASTE task is to
extract a sentiment triplets set T = {(a, o, s)k}

|T |
k=1

from sentence X , where triplet (a, o, s) refers to
(aspect term, opinion term, sentiment polarity) and
s ∈ {Positive,Neutral,Negative}.

Following by Grid Tagging Scheme (Wu et al.,
2020a), we formulate the ASTE task as a unified
tagging task by labeling the relations of all word
pairs. Take Figure 3 as an example, the left side
shows the tagging results for the sentence, while
the right side explains the meaning of all tags of
word-pair relations we used for ASTE. Specifically,
we utilize tags {B-A, I-A, B-O, I-O} to determine
the beginning and inside of aspect and opinion
terms in the main diagonal of the grid. And we
employ tags {A, O} to combine two words that
belong to the same aspect term or opinion term in
the non-diagonal region of the grid. Meanwhile,
the sentiment tags {POS, NEU, NEG} are used not
only to match the valid aspect-opinion pairs but
also to judge their sentiment polarities.
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Figure 3: Grid tagging for triplet extraction in a sentence
is illustrated, with each cell representing a word-pair
relation. The meanings of all tags of word-pair relations
are detailed on the right side.

3.2 Input and Encoding Layer

Pre-trained models have demonstrated their effec-
tiveness in Natural Language Understanding (NLU)
tasks (Qiu et al., 2020). In this work we utilize
BERT (Devlin et al., 2019) as the context encoder.
For a given sentence X = {w1, w2, · · · , wn} with
n words, the encoding layer outputs the hidden
contextual representationsH = {h1, h2, · · · , hn}
at the last Transformer block.

3.3 Relational Graph Attention Network

3.3.1 Word-Pair Relation Graph Construction
Multi-view linguistic features of a sentence mani-
fest various relations of each word pair. Therefore,
it is intuitive to construct each view of linguistic
feature as a word-pair relation graph.

Specifically, we utilize off-the-shelf CoreNLP
toolkit (Manning et al., 2014) to parse sentences
to obtain the different views of linguistic features
for word-pair relations, including syntactic depen-
dency type, part-of-speech relation, syntactic de-
pendency distance and relative position distance.
For each linguistic feature, we construct it as
an undirected heterogeneous graph G = {V, E},
where V and E are sets of nodes and edges. Each
word in the sentence is regarded as a node, while
word-pair relations represented by the linguistic
feature are considered edges. Figure 4 illustrates
an example of the word-pair relation graph con-
struction for multi-view linguistic features. For
syntactic dependency type, we add a “self ” depen-
dency type to represent self-loop edge for each
word node. For part-of-speech relation, we com-
bine the part-of-speech tags as word-pair relation
between two words. Besides, we further consider
the distances between two words within the syntac-
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Figure 4: Word-pair relation graph construction of multi-
view linguistic features. In each graph, the dashed edge
is the self-loop for a word, and the solid edge is the
relation between two words. "sdd/rpd:n" denotes the
relational edge with distance n between two words.

tic dependency tree and the sentence sequence as
word-pair relations respectively. We initialize the
node features with the hidden contextual represen-
tations of words and maintain different trainable
embedding look-up tables to represent the edge
features of various word-pair relation graphs.

3.3.2 Linguistic Features Refinement
Next, we introduce relational graph attention net-
work (RGAT) to refine the word-pair relations rep-
resented by each linguistic feature, denoise the ir-
relevant word-pair relations to the ASTE and pay
more attention to the valid aspect-opinion pairs.

Specifically, for each word-pair relation graph
constructed by diverse linguistic features, we de-
note the node features of wi and wj as hi ∈ Rdh

and hj ∈ Rdh respectively, where dh is the di-
mension of hidden contextual representation. And
eij ∈ RP is defined as the relational edge feature
represented by the word-pair (wi,wj), where P sig-
nifies the channels of edge feature to quantify the
association degree of the word-pair relation to each
pre-defined tag. Features of each node will be up-
dated by aggregating the features of neighboring
nodes and simultaneously incorporating the corre-
sponding edge features. The operation at the l-th
RGAT layer is defined as follows:

hli =
P

∥
p=1

σ(
∑n

j=1
αl
ijpW

lhl−1
j ) (1)
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where ∥ denotes the concatenation operator, σ is
the ELU activation function, and W l is the weight
matrix for the linear transformation of the inputs at
the l-th layer. Notably, αl

ijp denotes the attention
coefficients between word nodes hl−1

i and hl−1
j on

the p-th channel of edge features. For a specific
channel of edge features, the attention function is
calculated by:

α̂l
ijp = exp

{
L(aT [W lhl−1

i ||W lhl−1
j ])

}
el−1
ijp (2)

αl
ijp = DSN(α̂l

ijp) (3)

where L is the LeakyReLU activation function, and
aT ∈ R2dh denotes the weight vector. DSN is the
doubly stochastic normalization formulated as:

α̃l
ijp =

α̂l
ijp

Σn
t=1α̂

l
itp

, αl
ijp =

n∑

t=1

α̃l
itpα̃

l
jtp

Σn
s=1α̃

l
stp

(4)

Unlike the row normalization used in vanilla graph
attention network (Velickovic et al., 2018), DSN
normalizes the attention coefficients guided by
edge features into the doubly stochastic matrices,
which possess properties of symmetric, positive
semi-definite and the largest eigenvalue 1. These
properties contribute to preventing the edge ma-
trix from exploding or shrinking to zero to stabi-
lize the diffusion process, also mitigating the over-
smoothing problem across multi-layer RGAT learn-
ing (Wang et al., 2018; Chen et al., 2020a).

Subsequently, we update edge features using an
edge refining strategy, leveraging the implicit re-
sults of aspect and opinion term extraction to refine
word-pair relation representations. For example, if
wi is an aspect term and wj an opinion term, their
pair (wi,wj) is more likely to denote a sentiment
relation. The strategy is represented as:

elij = f(el−1
ij ⊕ el−1

ii ⊕ el−1
jj ⊕ hli ⊕ hlj) (5)

where f is the multi-layer perceptron with softplus
activation function, and ⊕ denotes concatenation.

3.3.3 Relation Constraint
In order to more precisely steer RGAT to refine the
word-pair relations, at the last layer, we conduct
constraint on the refined word-pair relationsRv =
{rv11, rv12, · · · , rvnn} represented by each linguistic
feature:

Lrc = −
∑

v∈V

n∑

i

n∑

j

∑

c∈C
I(yij = c) log(rvij|c) (6)

where V denotes multi-view linguistic features, I(·)
is the indicator function, yij is the ground truth of
word pair (wi,wj), and C signifies pre-defined tags.

3.4 Multi-View Contrastive Learning

Although different views of linguistic features rep-
resent various relation types for the same word
pairs, they typically harbor analogous semantic im-
plications, such as jointly reflecting the matching of
aspect and opinion terms or the composition of sen-
timent terms. To ensure that multi-view linguistic
features complement and reinforce each other at se-
mantic level, it is vital to align them into the shared
semantic space to maintain semantic consistency.

Specifically, we utilize the biaffine mechanism
to transform the hidden contextual representa-
tions H to construct the semantic space Rba =
{rba11, rba12, · · · , rbann} for word-pair relations, due to
its proven expressive power in modeling the com-
plex semantics between words (Dozat and Man-
ning, 2017). The process is formulated as:

rbaij = hTi U1hj + (hi ⊕ hj)
T U2 + b (7)

where rbaij ∈ RP denotes semantic features of the
word pair (wi,wj) with P dimensions. U1, U2 and
b are trainable weights and bias.

Inspired by Image-Text Matching for aligning
text words and image regions at a fine-grained level
(Lee et al., 2018; Diao et al., 2021; Pan et al., 2023),
we project each linguistic feature into the seman-
tic space and align them at the level of word-pair
relations. First, we compute the cosine similarity
matrix for all word pairs between each linguistic
featureRv and semantic featureRba, i.e.,

svijk =
(rvij)

T rbaik
||rvij ||||rbaik ||

, i, j, k ∈ [1, n] (8)

where svijk denotes the similarity between word pair
(wi,wj) in linguistic feature and word pair (wi,wk)
in semantic feature. Then we integrate the attended
semantic feature to obtain the projection of the
linguistic feature in the semantic space:

avij =

n∑

k=1

exp(svijk/τ)∑n
m=1 exp(s

v
ijm/τ)

rbaik (9)

where τ is the temperature hyperparameter.
Subsequently, we further calculate the cosine

similarity between each word pair relation repre-
sented by the linguistic feature and its projection
in the semantic space to measure the degree of
alignment between them, i.e.,

Q(rvij , avij) =
(rvij)

Tavij
||rvij ||||avij ||

(10)

Finally, we evaluate the overall degree of align-
ment of the linguistic feature in the semantic space
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by LogSumExp pooling, i.e.,

S(Rv,Rba) =
1

λ
log

n∑

i=1

exp(λQ(rvij , avij)) (11)

where λ is the scaling factor.
We align multi-view linguistic features into the

shared semantic space as described above and min-
imize the hinge-based triplet loss with margin γ as
the alignment objective, i.e.,

Lcl =
∑

v∈V
[γ−S(Rv,Rba)+S(Rv, R̂ba)]+ (12)

where [x]+ ≡ max(x, 0). We select the linguistic
feature Rv and semantic feature Rba of the same
sentence as the positive pair, and take the semantic
feature R̂ba of other sentences within a mini-batch
as negative pairs with linguistic featureRv. In this
study, we focus on the hardest negative pair in a
mini-batch following by Faghri et al. (2017), which
is given by R̂ba = argmaxd̸=RbaS(Rv, d).

3.5 Multi-Semantic Cross Attention

Since the prior indication effect of a single linguis-
tic feature is one-sided for ASTE, such as the noun-
adjective part-of-speech combination commonly
observed in matched or invalid aspect-opinion
pairs, it is necessary to capture and aggregate the
complementary higher-order interactions between
diverse linguistic features to comprehensively en-
hance representations of word-pair relations.

Specifically, we employ multi-head cross atten-
tion (Vaswani et al., 2017) to capture the unique
semantic representations of each linguistic fea-
ture. For the h-th attention head, we take RQ

h =

WQ
h Rba, RK

h = WK
h Rv and RV a

h = W V a
h Rv as

query, key and value. The process is defined as:

Rv→ba =
H

∥
h=1

softmax

(
RQ

h (RK
h )T√

dk

)
RV a

h (13)

where dk is the dimension of key. Then we adopt
residual connection and layer normalization to ag-
gregate the semantic featureRba and each view’s
unique semantic representationsRv→ba, i.e.,

R̃ba = LayerNorm(Rba +
∑

v∈V
Rv→ba) (14)

Finally, we obtain the enhanced representations
of word-pair relations Rp = {rp11, rp12, · · · , rpnn}
as logits for prediction by:

Rp = fp(R̃ba +
∑

v∈V
Rv) (15)

where fp is the fully connected network.

3.6 Training Objective

Our objective is to minimize the training loss as:

L = Lp + βLrc + µLcl (16)

where hyperparameters β and µ are for adjusting
the impact of corresponding relation constraint loss
and contrastive learning loss. The standard cross-
entropy loss Lp is used for the ASTE task, i.e.,

Lp = −
n∑

i

n∑

j

∑

c∈C
I(yij = c) log(rpij|c) (17)

The triplets decoding is detailed in Appendix A.1.

4 Experiments

4.1 Datasets

We evaluate our proposed MvLFE model on four
benchmark ASTE datasets (ASTE-Data-V21) re-
leased by Xu et al. (2020), which is a refined ver-
sion of the ASTE-Data-V1 (Peng et al., 2020) to
consider cases where one opinion is associated with
multiple aspects. Those datasets are derived from
Pontiki et al. (2014, 2015, 2016) with one in the
laptop domain and three in the restaurant domain.
Detailed statistics are shown in Appendix A.2.

4.2 Baselines

We compare our MvLFE model with the following
four types of previous state-of-the-art methods: 1)
Sequence tagging: Peng-two-stage (Peng et al.,
2020), OTE-MTL (Zhang et al., 2020) and JET
(Xu et al., 2020). 2) Grid tagging: GTS-BERT
(Wu et al., 2020a), EMC-GCN (Chen et al., 2022a)
and STAGE-3D (Liang et al., 2023). 3) MRC-
based: BMRC (Chen et al., 2021a), COM-MRC
(Zhai et al., 2022) and RoBMRC (Liu et al., 2022).
4) Generative: BARTABSA (Yan et al., 2021),
LEGO-ABSA (Gao et al., 2022), EHG-Para (Lv
et al., 2023) and CONTRASTE (Mukherjee et al.,
2023). In addition, we investigate how well can
ChatGPT (OpenAI, 2023) solve ASTE task with
diverse experimental settings. More details are
shown in Appendix B.

4.3 Implementation Details

We adopt the bert-base-uncased2 as the sen-
tence encoder. RGAT is stacked in 3 layers with
300 dimensions of nodes and 10 channels of edges.
The hyperparameters τ , λ and γ of multi-view con-
trastive learning module are set to 0.05, 6 and 0.2.

1https://github.com/xuuuluuu/SemEval-Triplet-data
2https://github.com/huggingface/transformers
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Category Model Res14 Lap14 Res15 Res16
P R F1 P R F1 P R F1 P R F1

Seq tagging
Peng-tow-stage♯ 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21

OTE-MTL♮ 62.00 55.97 58.71 49.53 39.22 43.42 56.37 40.94 47.13 62.88 52.10 56.96
JET-BERT 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83

Grid tagging
GTS-BERT♮ 68.09 69.54 68.81 59.40 51.94 55.42 59.28 57.93 58.60 68.32 66.86 67.58
EMC-GCN 71.21 72.39 71.78 61.70 56.26 58.81 61.54 62.47 61.93 65.62 71.30 68.33
STAGE-3D 78.58 69.58 73.76 71.98 53.86 61.58 73.63 57.90 64.79 76.67 70.12 73.24

MRC-based
BMRC♮ 75.61 61.77 67.99 70.55 48.98 57.82 68.51 53.40 60.02 71.20 61.08 65.75

COM-MRC 75.46 68.91 72.01 62.35 58.16 60.17 68.35 61.24 64.53 71.55 71.59 71.57
RoBMRC 72.51 72.73 72.62 68.13 57.09 62.12 65.90 65.36 65.63 69.98 76.65 73.16

Generative

ChatGPT† 47.18 53.62 50.19 34.22 47.91 39.92 42.83 57.94 49.25 43.75 57.09 49.54
BARTABSA 65.52 64.99 65.25 61.41 56.19 58.69 61.54 62.47 61.93 65.62 71.30 68.33

LEGO-ABSA - - 73.70 - - 62.20 - - 64.40 - - 69.90
EHG-Para - - 71.82 - - 61.53 - - 63.58 - - 72.35

CONTRASTE 73.60 74.40 74.00 64.20 61.70 62.90 65.30 66.70 66.10 72.20 76.30 74.20
Ours MvLFE 76.37 74.46 75.40 66.12 62.33 64.17 69.97 64.14 66.93 77.02 73.41 75.17

Table 1: Experimental results on ASTE-Data-V2 dataset (Xu et al., 2020). The best results are in bold and the second
best are underlined. The "♯" and "♮" mean that results are retrieved from Xu et al. (2020) and Chen et al. (2022a).
The "†" denotes that ChatGPT results are obtained using 5-shot In Context Learning prompts with multi-view
linguistic features by our setting. Other baseline results are derived from original papers.

For the joint training loss, the ratios β and µ are set
to 0.01 and 0.1. During training, AdamW optimizer
(Loshchilov and Hutter, 2017) is used with a learn-
ing rate of 2e-5 for BERT fine-tuning and 1e-3 for
the other trainable parameters. The model is trained
for 100 epochs with dropout rate of 0.5 and batch
size of 16. For each dataset, we select the model
with the best F1 scores on the development set and
report the average results of five runs with different
random seeds. Our model contains around 112M
trainable parameters which are trained on a single
NVIDIA A100-PCIE-40GB GPU with CUDA 11.0
and PyTorch 1.7.1. The average runtime for Res15
and other datasets is about 9 and 11 sec/epoch.

4.4 Main Results

The main results are reported in Table 1. Overall,
our MvLFE model outperforms all baselines un-
der the F1 metric and achieves superior precision
and recall in most cases. The specific observations
are that: (1) Methods based on other modeling
paradigms outperform sequence tagging models, as
the former considers the situation where one aspect
or opinion term is associated with multiple opin-
ion or aspect terms. (2) Compared with RoBMRC,
MvLFE significantly improves F1 scores by 2.04%
on average, overcoming the error propagation prob-
lem from pipeline inference in MRC-based models.
(3) Our MvLFE model exceeds generative methods
by an average of 1.18%~6.96% F1 scores, as the lat-
ter overlooks the reciprocity among the sentiment
elements. Additionally, experiments on ChatGPT
(see more details in Appendix B) reveal its limited

Task Model Res14 Lap14 Res15 Res16

ATE

GTS-BERT 82.76 80.44 78.27 81.13
EMC-GCN 84.68 81.67 77.62 80.57
STAGE-3D 84.99 82.62 81.21 83.86

MvLFE 86.84 84.71 83.44 87.46

OTE

GTS-BERT 84.85 77.82 77.53 84.36
EMC-GCN 85.62 78.85 78.97 85.33
STAGE-3D 85.70 80.39 80.03 85.72

MvLFE 87.56 82.63 81.97 88.03

AOPE

GTS-BERT 74.63 66.46 67.52 74.20
EMC-GCN 76.33 67.94 67.26 74.15
STAGE-3D 77.87 69.70 70.60 79.98

MvLFE 79.86 71.57 73.61 82.17

Table 2: Test F1 scores on ATE, OTE and AOPE tasks.
The baseline results are derived from Liang et al. (2023).

ability to capture complex associations between
multiple aspect and opinion terms. (4) Our MvLFE
also modeled on grid tagging surpasses GTS-BERT
and STAGE-3D by an average of 7.82% and 2.08%
F1 scores, as it explores the prior indication effect
of multi-view linguistic features for ASTE. Note
that MvLFE outperforms EMC-GCN by large mar-
gins, while EMC-GCN also considers diverse lin-
guistic features. We reckon MvLFE can capture
the multi-hop interactions between matched aspect
and opinion terms and focus on them with multi-
layer RGAT but EMC-GCN only considers the
one-hop association using a single layer GCN. Fur-
thermore, different from EMC-GCN simply con-
catenates multi-view linguistic features, MvLFE
employs multi-view contrastive learning and multi-
semantic cross attention to align and aggregate
them to maintain semantic consistency and capture
the complementary higher-order interactions. More
experimental analyses are shown in Appendix A.3.
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Mode Ablation Res14 Lap14 Res15 Res16
Full MvLFE 75.40 64.17 66.93 75.17

Module
Ablation

w/o RGAT 74.16 62.86 65.49 73.81
w/o MVCL 74.39 62.98 65.67 73.94
w/o MSCA 74.81 63.52 66.21 74.53

RGAT
Ablation

w/o DSN 75.02 63.88 66.59 74.77
ERS-concat 75.19 63.93 66.77 74.95

ERS-add 75.03 63.87 66.81 74.89
w/o RC 75.13 63.92 66.71 74.96

Linguistic
Features
Ablation

w/o RPD 74.31 63.29 66.08 74.40
w/o SDD 74.26 63.18 66.01 74.26
w/o POS 73.91 62.93 65.84 73.89
w/o SDT 73.61 62.44 65.37 73.60

w/o SDD+RPD 73.85 62.87 65.82 74.03
w/o POS+RPD 73.02 62.14 65.20 73.24
w/o POS+SDD 72.87 61.82 64.93 72.89
w/o SDT+RPD 72.04 60.97 64.09 72.10
w/o SDT+SDD 71.83 60.70 63.75 71.91
w/o SDT+POS 70.64 59.81 62.59 71.42

w/o POS+SDD+RPD 70.80 59.96 62.88 71.93
w/o SDT+SDD+RPD 70.64 59.73 62.64 71.69
w/o SDT+POS+RPD 69.83 58.90 62.06 71.08
w/o SDT+POS+SDD 69.71 58.83 61.62 70.50

w/o ALL 67.47 56.38 59.61 68.01

Table 3: Ablation study (average F1 reported).

4.5 Experiments on subtasks

To further demonstrate the effectiveness of our
MvLFE model, we compare it with three state-
of-the-art grid tagging baselines on ATE, OTE and
AOPE subtasks. The results are shown in Table
2. Note that our method can directly address these
subtasks without additional modifications. Specifi-
cally, we observe that our MvLFE model achieves
significant improvements over baselines on ATE
and OTE task, which suggests that MvLFE can ef-
fectively explore the prior indication effect of multi-
view linguistic features to extract the aspect and
opinion terms. In addition, our MvLFE model also
exceeds the compared models by a large margin on
AOPE task. It further proves that MvLFE can cap-
ture reciprocity among the sentiment elements not
only for extraction of aspect and opinion terms but
also for matching the valid aspect-opinion pairs.

4.6 Ablation Study

To verify the rationality of our MvLFE, we con-
duct an ablation study with diverse settings and the
experimental results are shown in Table 3.

Firstly, we conduct module ablation to investi-
gate the effectiveness of different modules in our
MvLFE model. Specifically, w/o RGAT denotes
we directly use the initialized multi-view linguis-
tic features for semantic alignment and feature fu-
sion, which slightly decreases F1 scores by 1.34%
on average, suggesting RGAT can refine multi-
view linguistic features to attend matched aspect-
opinion pairs. w/o MVCL means we remove multi-

Gold: The cheese pizza is crispy and tasty , but the ambience is indeed dull .

Positive

Positive

Negative

JET: The cheese pizza is crispy and tasty , but the ambience is indeed dull .

Positive

EMC-GCN: The cheese pizza is crispy and tasty , but the ambience is indeed dull .

NegativePositive

ChatGPT: The cheese pizza is crispy and tasty , but the ambience is indeed dull .

Positive Negative

MvLFE: The cheese pizza is crispy and tasty , but the ambience is indeed dull .

Positive

Positive

Negative

Figure 5: Case study. Aspect and opinion terms are
highlighted in red and blue. The positive sentiment
polarity is marked in green, while the negative in brown.

view contrastive learning for semantic alignment
of multi-view linguistic features, resulting in an av-
erage decline of 1.17% on F1 scores, which shows
MVCL can align the same word pairs represented
by diverse linguistic features to maintain seman-
tic consistency. w/o MSCA indicates we simply
concatenate multi-view linguistic features without
using multi-semantic cross attention. Thus, it fails
to aggregate the complementary higher-order in-
teractions between diverse linguistic features and
achieves the dropping performance. Overall, each
MvLFE module contributes to the entire perfor-
mance on ASTE task.

Additionally, we conduct RGAT ablation to inter-
pret intrinsic mechanism of RGAT module. Specifi-
cally, w/o DSN means we utilize row normalization
instead of doubly stochastic normalization (DSN)
to calculate attention coefficients, which decreases
F1 scores by 0.35% on average, verifying DSN can
mitigate the over-smoothing issue in multi-layer
RGAT learning. ERS-concat denotes that we use
the node features hi and hj and the corresponding
edge feature eij for concatenation as edge feature
update and adding for ERS-add. The ablation
results show the edge refinement strategy (ERS)
improves by 0.21% and 0.27% on average, which
indicates the ERS can consider the implicit results
of aspect and opinion term extraction with enhanc-
ing the semantic connection of edge features eii and
ejj . w/o RC signifies that we remove relation con-
straint loss, and the degraded performance shows
that it can precisely steer RGAT to refine the word-
pair relations. Overall, it shows the rationality of
intrinsic mechanism for RGAT module.

Lastly, we conduct linguistic features ablation
to verify the role of each linguistic feature. Specif-
ically, ablating one, two and three linguistic fea-
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tures results in an average performance decrease of
1.21%, 2.73% and 4.62% across all datasets, respec-
tively. Completely removing all linguistic features
(w/o ALL) causes a more significant performance
decline by 7.55% on average. The experimental
results suggest that incorporating more linguistic
features leads to a more substantial improvement,
likely due to the complementary role of linguistic
features as the prior indication effect. Overall, it re-
veals that each linguistic feature is indispensable as
the prior indication effect for the ASTE task can be
maximized when considering all linguistic features
comprehensively.

4.7 Case Study

A case study is given in Figure 5. Specifically, JET
only extracts a triplet (cheese pizza, tasty, posi-
tive), as it cannot consider the one-to-many case.
For ChatGPT, it struggles to extract aspect “cheese
pizza” and opinion “indeed dull” that consist of
multiple words. Moreover, it incorrectly combines
two opinion terms “crispy” and “tasty” into a single
opinion term. We reckon ChatGPT fails to under-
stand the composition of sentiment elements and
their association, even when given the appropri-
ate prompts. For EMC-GCN, it ignores the triplet
(cheese pizza, tasty, positive) as it only captures
one-hop neighborhood information, while there
are multi-hop connections between aspect “cheese
pizza” and opinion “tasty” in syntactic dependency
type. In contrast, our MvLFE model can explore
the prior indication effect of multi-view linguistic
features to precisely extract all sentiment triplets.

5 Conclusion

In this paper, we propose a MvLFE architecture
to explore the prior indication effect of multi-view
linguistic features for ASTE task in the "Refine,
Align, and Aggregate" learning process. We first
devise relational graph attention network to en-
code and refine diverse linguistic features to attend
the aspect-opinion pairs. Then we employ multi-
view contrastive learning for semantic alignment.
Moreover, we utilize multi-semantic cross attention
to aggregate them to capture the complementary
higher-order interactions. Extensive experiments
on benchmark datasets show the effectiveness and
robustness of our MvLFE model, which consis-
tently outperforms all baselines on ASTE task as
well as several subtasks. In the future, we plan to
extend our model for information extraction.

Limitations

Despite obtaining state-of-the-art performance, our
proposed approach still has some following limita-
tions to consider for potential future directions.

• Our MvLFE model is constructed using the
grid tagging paradigm. Although grid tagging
methods can effectively capture the associ-
ation among sentiment elements, they com-
monly suffer from a limitation, i.e., most of
the relation labels between two words are
irrelevant to sentiment elements (an exam-
ple shown in Figure 3), which leads to the
class imbalance problem of word-pair rela-
tions. Thus, when most irrelevant labels
are predicted correctly but few for sentiment-
related labels, it causes the phenomenon that
the overall loss is low but limited F1 scores
of sentiment triplet extraction, which poten-
tially misguides the parameter optimization.
Additionally, the requirement to construct a
word-pair relations table takes up more mem-
ory compared to the models that only consider
sequence representations.

• Experiments only verified the consistent im-
provement on ASTE task, while we intuitively
reckon the idea of MvLFE that exploits the
prior indication effect of multi-view linguistic
features in the "Refine, Align, and Aggregate"
learning process can be expanded to some
triplet extraction tasks, such as Relation Ex-
traction and Event Extraction.

• The performance of our MvLFE model is still
somewhat affected by the parsing quality of
the CoreNLP toolkit. The good news is that
the CoreNLP toolkit has demonstrated its ef-
fectiveness in syntactic dependency analysis
and part-of-speech tagging. Thus, despite this
limitation, we can still utilize the CoreNLP
toolkit to support our research.
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A Additional Details

A.1 Triplets Decoding

The details of sentiment triplets decoding are
shown in Algorithm 1. Specifically, we first ob-
tain the set of diagonal tags D from the prediction
results. Each tag in D represents the relation be-
tween a word and itself. Then we extract each
aspect term or opinion term based on consecutive
occurrences of "B-A" and "I-A" labels or "B-O"
and "I-O" labels in the diagonal tags set D, thereby
forming the aspects set A and the opinions set O.
Finally, we identify the sentiment polarities be-
tween the matched aspect and opinion terms based
on their predicted relations, thus yielding the senti-
ment triplets set T .

A.2 Dataset Statistics

Table 4 shows details about the experiment dataset.
We have counted the number of sentences, senti-
ment triplets for each sentiment polarity, aspect
terms and opinion terms within each dataset.

A.3 Additional Experiments and Analyses

A.3.1 Visualization of Linguistic Features
To intuitively reflect the prior indication effect for
the ASTE task, we further visualize word-pair rela-
tions represented by multi-view linguistic features
after refining with different RGAT layers, by uti-
lizing l2 norm to normalize the edge features into
relevance coefficients of the corresponding word
pairs.

As shown in Figure 6, the sampled sentence
"Tasty food but poor service" contains two sen-
timent triplets (food, tasty, positive) and (service,
poor, negative), we can conclude by specific ob-

Dataset #S #T #POS #NEU #NEG #A #O

Res14
Train 1266 2337 1691 166 480 2051 2061
Dev 310 577 404 54 119 500 497
Test 492 994 773 66 155 844 994

Lap14
Train 906 1460 817 126 517 1254 1460
Dev 219 345 169 36 140 302 346
Test 328 541 364 63 114 466 543

Res15
Train 605 1013 783 25 205 935 1013
Dev 148 249 185 11 53 236 249
Test 322 485 317 25 143 460 485

Res16
Train 857 1394 1015 50 329 1300 1394
Dev 210 339 252 11 76 319 339
Test 326 514 407 29 78 474 514

Table 4: Statistics for ASTE-Data-V2 dataset. #S and #T
mean the total number of sentences and triplets. #POS,
#NEU and #NEG denote the number of positive, neutral,
and negative sentiment triplets respectively. #A and #O
represent the number of aspect and opinion terms.

Algorithm 1 Triplet Decoding for ASTE

Input: The predictions P = {p11, p12, · · · , pnn}
of the sentence X with n words. pij denotes
the tag label of the word pair (wi,wj).

Output: Triplets set T of the given sentence.
1: Initialize aspects set A = {}, opinions set
O = {}, diagonal tags of predictions D = {}
and triplets set T = {}.

2: # Get diagonal tags of predictions
3: while i ≤ n do
4: D.append(pii), i← i+ 1
5: end while
6: # Get aspects
7: for pii in D do
8: if pii =="B-A" then
9: while (i+ 1) ≤ n do

10: if pi+1,i+1! ="I-A" then j ← i
11: end if
12: end while
13: A.append([wi, wi+1, · · · , wj ])
14: end if
15: end for
16: # Get opinions
17: for pii in D do
18: if pii =="B-O" then
19: while (i+ 1) ≤ n do
20: if pi+1,i+1! ="I-O" then j ← i
21: end if
22: end while
23: O.append([wi, wi+1, · · · , wj ])
24: end if
25: end for
26: # Get sentiment triplets
27: while a ∈ A and o ∈ O do
28: S = {}
29: while wi ∈ a and wj ∈ o do
30: if i < j then tag = pij
31: else tag = pij
32: end if
33: if tag ∈ {POS,NEU,NEG} then
34: S ← S ∪ (tag)
35: end if
36: end while
37: if S ≠ {} then
38: s = argmax(S), T ← T ∪{(a, o, s)}
39: end if
40: end while
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Syntactic dependency type

Relative position distance

Part-of-speech relation

Syntactic dependency distance

Figure 6: Visualization of multi-view linguistic features
after refining with different RGAT layers.

servations from the visualization: (1) From the
visualization of syntactic dependency type, our
MvLFE model pays more attention to word-pair
relations with "nsubj" syntactic type across multi-
layer RGAT refinement, because aspect terms are
typically the nominal subject of opinion terms. (2)
From the visualization of part-of-speech relation,
the correlation coefficients between nouns and ad-
jectives are higher when RGAT deepens, as nouns
and adjectives are more likely to form matching
aspect-opinion pairs. (3) From the visualization of
syntactic dependency distance and relative position
distance, the connections between matched aspect-
opinion pairs are tighter after multi-layer RGAT
learning, as valid aspect-opinion pairs are closer in
syntactic and relative distance.

In summary, each view of linguistic feature con-
tributes to the unique prior indication effect for the
ASTE task, which is indispensable and effective.

A.3.2 Hyperparameters Analysis
To investigate the impact of some major hyperpa-
rameters, we conduct sensitivity analysis as illus-
trated in Figure 7.

Specifically, our MvLFE model achieves opti-
mal performance when RGAT is three layers with
a range from single to five layers, where multi-
ple layers indicate that MvLFE can capture multi-
hop neighborhood information between words. We
reckon that 3-hop interaction between words helps
to match the valid aspect and opinion terms with
vast distance. Note that the performance declines
as the RGAT goes deeper, which may be due to the
model matching the invalid aspects and opinions.
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Figure 7: Sensitivity analysis of hyperparameters.

Model PLM Res14 Lap14 Res15 Res16

MvLFE

BERT 75.40 64.17 66.93 75.17
RoBERTa 75.36 64.31 66.87 75.42

XLNet 75.61 64.32 66.82 75.49
ALBERT 75.19 64.21 66.79 75.24

Table 5: Comparison results with different backbones.

For other hyperparameters, margin γ is a thresh-
old that ensures the minimum semantic distance
between positive and negative sample pairs to prop-
erly align linguistic features with semantic features.
β and µ are weights used to adjust relation con-
straint loss and contrastive learning loss to measure
the impact on the training objective. As they grad-
ually increase, the performance initially improves
and then decreases, and we finally set γ, β and µ
to 0.2, 0.01 and 0.1 as optimal selection.

A.3.3 Experiments on Different Backbones
We conduct additional experiments to analyze the
sensitivity of our MvLFE model using different
pre-trained language models as sentence encoders.
The experimental results in Table 5 demonstrate
that the performance of our model does not ex-
hibit significant variations when employing differ-
ent pre-trained language models, which suggests
the robustness of our model. To ensure fairness, we
adopt BERT as the sentence encoder the same as
most of the related studies.

A.3.4 Potential Practical Applications
Time complexity: Our MvLFE model is quadratic
relative to the input data. The primary source of
complexity in this quadratic time complexity is the
attention operations within the transformer.

Space complexity: Our MvLFE model takes up an
additional parameter space occupation amounts to
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Model Res14 Lap14 Res15 Res16
P R F1 P R F1 P R F1 P R F1

zero-shot w/o task instruction 13.96 18.42 15.88 11.28 13.59 12.33 12.36 14.84 13.49 14.37 16.33 15.29
zero-shot w/ task instruction 21.07 24.16 22.51 18.74 21.92 20.21 20.78 23.69 22.14 22.65 24.94 23.74

1-shot ICL 25.54 29.37 27.32 21.29 24.79 22.91 24.91 28.85 26.74 26.23 30.08 28.02
1-shot ICL w/ MvLF 31.24 33.98 32.55 26.38 29.49 27.85 30.72 31.92 31.31 32.47 33.81 33.13

3-shot ICL 30.82 33.71 32.20 27.01 29.43 28.17 30.69 31.97 31.32 31.45 33.01 32.21
3-shot ICL w/ MvLF 40.72 45.63 43.04 31.09 37.24 33.89 37.81 45.96 41.49 39.23 47.81 43.10

5-shot ICL 41.27 46.09 43.55 31.16 37.33 33.97 37.98 46.83 41.94 39.55 48.49 43.57
5-shot ICL w/ MvLF 47.18 53.62 50.19 34.22 47.91 39.92 42.83 57.94 49.25 43.75 57.09 49.54

Table 6: Comparing ASTE results obtained using ChatGPT with different prompt settings. ICL means in-context
learning and MvLF denotes multi-view linguistic features.

2M derived from constructing the word-pair rela-
tions table, which is notably minor when compared
to the parameter size of the BERT model (110M).

B Experiments with ChatGPT

Recently, Large Language Models (LLMs) such as
ChatGPT have sparked a revolutionary change in
natural language processing technology. They are
capable of achieving impressive in-context learning
(ICL) (Brown et al., 2020) results with zero-shot
and few-shot prompts for unseen tasks, without the
need for any parameter updates.

In this paper, we carried out some experiments
on four benchmark datasets to investigate how well
can ChatGPT solve ASTE task with diverse prompt
settings. The experimental results are shown in Ta-
ble 6. Moreover, we list some examples of prompts
for the experimental settings in Table 7. Note that
we only list the zero-shot and one-shot prompts
due to the limited length of the table. The only
difference between few-shot prompts and one-shot
prompts is the presence of more data samples.

Specifically, we employ the following experi-
mental settings to verify the performance of Chat-
GPT on the ASTE task: (1) zero-shot without task
instruction, (2) zero-shot with task instruction, (3)
one-shot ICL, (4) one-shot ICL with multi-view lin-
guistic features, (5) 3-shot ICL, (6) 3-shot ICL with
multi-view linguistic features, (7) 5-shot ICL and
(8) 5-shot ICL with multi-view linguistic features.
From the experimental results, we first observe that
using the task instruction significantly improves
the average F1 scores by 7.90%, which suggests it
is effective in enabling ChatGPT to understand the
purpose of the ASTE task. Second, prompting with
training samples further improves the performance.
We suppose the reason is that ChatGPT is able to
learn from more training samples to extract senti-
ment triplets from different situations. Note that
we also conduct additional experiments for each

ICL setting by incorporating multi-view linguistic
features of the given samples. The experimental
results show that ChatGPT improves by a large
margin with the addition of multi-view linguistic
features, suggesting the effectiveness of the prior
indication effect of multi-view linguistic features
for ASTE.

While ChatGPT has achieved promising results,
there is still a gap between ChatGPT and SOTA
methods on ASTE task. Based on our observa-
tion of the output results, ChatGPT has several
limitations to solving ASTE task: (1) It tends to
extract incomplete aspect and opinion terms. (2)
It often merges multiple juxtaposed opinion terms
into a single opinion term. (3) It is prone to under-
extracting in situations where multiple sentiment
triplets exist.

3227



Setting Prompt

zero-shot w/o task instruction
Given the review: extract all the sentiment triplets in the review and return the result in JSON format.
Remember that no explanation is required and there should be no irrelevant text replies!
Review: The cheese pizza is crispy and tasty, but the ambience is indeed dull.

zero-shot w/ task instruction

Given the review for ASTE task: please follow the task instruction and return the result in JSON
format. Remember that no explanation is required and there should be no irrelevant text replies!
Task instruction: ASTE aims to extract all sentiment triplets from the review, and each triplet contains
three elements, namely aspect term, opinion term and their associated sentiment. The sentiment polarity
belongs to the set {positive, neutral, negative}.
Review: The cheese pizza is crispy and tasty, but the ambience is indeed dull.

one-shot ICL

Given the review and several extraction samples for ASTE task: please follow the task instruction
and several extraction samples, then return the result in JSON format. Remember that no explanation is
required and there should be no irrelevant text replies!
Task instruction: ASTE aims to extract all sentiment triplets from the review, and each triplet contains
three elements, namely aspect term, opinion term and their associated sentiment. The sentiment polarity
belongs to the set {positive, neutral, negative}.
Sample1: The food was just OK, at least for what food was available.
Result of sample1: Sentiment triplets: (food, ok, positive)
Review: The cheese pizza is crispy and tasty, but the ambience is indeed dull.

one-shot ICL w/ MvLF

Given the review and several extraction samples with multi-view linguistic features for ASTE
task: please follow the task instruction and several extraction samples with multi-view linguistic
features, then return the result in JSON format. Remember that no explanation is required and there
should be no irrelevant text replies!
Task instruction: ASTE aims to extract all sentiment triplets from the review, and each triplet contains
three elements, namely aspect term, opinion term and their associated sentiment. The sentiment polarity
belongs to the set {positive, neutral, negative}.
The prior indication effect of multi-view linguistic features for ASTE: (1) in the view of syntactic
dependency type, the aspect term is the nominal subject (“nsubj”) of the opinion term, also the opinion
term is adjectival modifier (“amod”) of the the aspect term. (2) in the view of part-of-speech relation,
aspect terms are nouns while opinion terms are adjectives. Hence, the word pair with the “NN-JJ” part-
of-speech combination tends to form an aspect-opinion pair. (3) in the view of syntactic dependency
distance, the matched aspect and opinion terms are closer. (4) in the view of relative position distance,
the matched aspect and opinion terms are closer.
Sample1: The food was just OK, at least for what food was available.
Multi-view linguistic features for sample1: We provide part-of-speech tagging labels for each word
in the review, as well as syntactic dependency type between each word and its parent word. The "Head"
indicates the position of the parent word in the review (starting from 1, with 0 representing the root
node). Based on this information, you need to calculate the syntactic dependency type, part-of-speech
relation, syntactic dependency distance, and relative position distance between words to obtain the
multi-view linguistic features of the given comment.
Part-of-speech tagging labels: ["DT", "NN", "VBD", "RB", "JJ", ",", "RB", "RBS", "IN", "WDT",
"NN", "VBD", "JJ", "."]
Syntactic dependency type: ["det", "nsubj", "cop", "advmod", "root", "punct", "advmod", "fixed",
"mark", "det", "nsubj", "cop", "advcl", "punct"]
Head: [2, 5, 5, 5, 0, 5, 13, 7, 13, 11, 13, 13, 5, 5]
Result of sample1: Sentiment triplets: (food, ok, positive)
Review: The cheese pizza is crispy and tasty, but the ambience is indeed dull.

Table 7: Some prompts for ChatGPT.
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