CEEBERT:: Cross-Domain Inference in Early Exit BERT

Divya Jyoti Bajpai and Manjesh Kumar Hanawal
Department of IEOR, IIT Bombay
{divyajyoti.bajpai, mhanawal}@iitb.ac.in

Abstract

Pre-trained Language Models (PLMs), like
BERT, with self-supervision objectives ex-
hibit remarkable performance and generaliza-
tion across various tasks. However, they suf-
fer in inference latency due to their large size.
To address this issue, side branches are at-
tached at intermediate layers, enabling early
inference of samples without requiring them
to pass through all layers. However, the chal-
lenge is to decide which layer to infer and
exit each sample so that the accuracy and la-
tency are balanced. Moreover, the distribu-
tion of the samples to be inferred may differ
from that used for training necessitating cross-
domain adaptation. We propose an online
learning algorithm named Cross-Domain In-
ference in Early Exit BERT (CEEBERT) that
dynamically determines early exits of samples
based on the level of confidence at each exit
point. CEEBERT learns optimal thresholds
from domain-specific confidence observed at
intermediate layers on the fly, eliminating the
need for labeled data. Experimental results
on five distinct datasets with BERT and AL-
BERT models demonstrate CEEBERT’s abil-
ity to improve latency by reducing unneces-
sary computations with minimal drop in per-
formance. By adapting to the threshold values,
CEEBERT can speed up the BERT/ALBERT
models by 2x - 3.5x with minimal drop
in accuracy. The source code is avail-
able at https://github.com/Div290/
CeeBERT.

1 Introduction

In recent years, Pre-trained Language Models
(PLMs) have demonstrated substantial advance-
ments in enhancing Natural Language Processing
(NLP) tasks. These models, such as ELMo (Peters
etal., 1802), BERT (Devlin et al., 2018), ALBERT
(Lan et al., 2019), GPT (Radford et al., 2019), XL-
Net (Yang et al., 2019), and RoBERTa (Liu et al.,

2019), encapsulate extensive knowledge transfer-
able to diverse downstream tasks. Despite their
remarkable efficacy, large-scale PLMs suffer from
inference latencies attributed to their substantial
size. With millions or even billions of parameters,
these models become computationally expensive,
inefficient in terms of memory consumption, and
exhibit latency challenges.

Moreover, past approaches like (Fan et al.,
2019; Michel et al., 2019; Zhou et al., 2020) have
highlighted the concern that PLMs tend to be over-
parameterized, leading to the ‘overthinking’ is-
sue. This problem arises when shallow representa-
tions at early layers are often adequate for accurate
predictions on many input samples, while the fi-
nal layer’s representations may suffer distractions
due to over-complicated or irrelevant features that
lack generalization. Overthinking in PLMs wastes
the computation, degrades model performance and
hinders model generalization.

To circumvent this, many variants of the BERT,
like DeeBERT (Xin et al., 2020a), ElasticBERT
(Liu et al., 2021a), FastBERT (Liu et al., 2020),
PABEE (Zhou et al., 2020), etc. facilitate infer-
ence at the intermediary layers of PLMs through
early exits. In this setup, each sample must as-
certain whether the inference can be completed at
intermediary layers or the last layer. The decisions
of early exit are based on the confidence at the in-
termediary layers being above a threshold. In the
following, we consider the cost quantified as infer-
ence time (latency). However, depending on the
application, the cost can also be present as other
factors like power and computational resources.

The threshold used to compare the confidence
levels significantly impacts the amount of la-
tency and accuracy: with a lower threshold, more
samples exit early, but with a lower confidence
value, leading to lower accuracy and lower latency.
With a higher threshold, fewer samples exit early,
leading to higher latency but improved accuracy.

1736

Findings of the Association for Computational Linguistics: ACL 2024, pages 1736—1748
August 11-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/Div290/CeeBERT
https://github.com/Div290/CeeBERT

Hence, one has to set the threshold that optimally
trades-off between latency and accuracy.

The threshold is often determined using a la-
beled dataset (Xin et al., 2020a; Liu et al., 2021b;
Schuster et al., 2021) or by using some fraction
of training data (Schwartz et al., 2020; Huang
et al., 2017; Yang et al., 2020; Han et al., 2023)
during training and serves as a crucial reference
point for decision-making during inference. How-
ever, a significant challenge arises when deploy-
ing pre-trained models that are later tested on sam-
ples whose latent distribution can be different from
the training samples in a zero-shot setting (Pushp
and Srivastava, 2017; Wang et al., 2023). For in-
stance, a sentiment analysis model pre-trained on
electronic product reviews (source data) to ana-
lyze sentiment in a distinct domain, like movie re-
views (target data), poses a challenge. The lan-
guage and sentiment expressions in movie-related
content may significantly differ from electronic re-
views as illustrated in Fig 1.

PLMs exhibit strong generalization across do-
mains on datasets with similar task types (Wang
et al., 2023). Nevertheless, the distribution of con-
fidence in the prediction of classifiers attached to
the intermediary layers can change when transi-
tioning between domains. This can render early
exit methods less efficient if the thresholds are
not adjusted as per the latent distribution of input
samples. This real-world challenge prompts the
question: How to adapt the threshold in deployed
early exit PLMs to maintain efficiency and robust-
ness to domain shifts in a zero-shot setting? Also,
in post-deployment scenarios, samples are fed se-
quentially, in an online fashion, where inference
for each sample needs to be performed before the
next sample is fed, this leads to the challenge of
learning the optimal threshold in an online and un-
supervised manner. To tackle this issue, we intro-
duce an online learning algorithm using the Multi-
Armed Bandit framework. (Auer et al., 2002b).

Our algorithm, Cross Domain Inference in
Early Exits BERT (CEEBERT), learns a thresh-
old from a set of thresholds that achieves optimal
trade-off between accuracy and latency. We exten-
sively evaluate the performance of CEEBERT on
five datasets viz. IMDB, MRPC, SciTail, SNLI,
Yelp, and QQP cover different classification tasks
—sentiment, entailment, and natural language in-
ference. In our evaluation, we trained the PLM
with exits on a source dataset and assessed its per-
formance on a target dataset which exhibits varia-

Superb product!

Superb Action!

Figure 1: Depiction of cross-domain inference setup
for early exit models. The backbone is trained on the
source dataset. i) Left: Inference on the source dataset.
ii) Right: Inference on target dataset from a differ-
ent domain. The changes in confidence value is due
to change in target domain distribution.

tion in the latent data distribution from the source
dataset but shares a similar task type.

CEEBERT achieves speedup ranging from 2 x
to 3.5 in inference time, while maintaining a
minimal accuracy loss of 0.1% to 3% compared
to the naive BERT classification. Notably, instead
of using pre-fixed thresholds learned on the source
dataset, CeeBERT learns the thresholds on the fly
for incoming samples from the target dataset. This
sets it apart from previous early exit PLMs that
rely on validation datasets representative of the
target dataset to determine threshold values.

Our primary contributions are as follows:

* We introduce cross-domain adaptation in
Early Exit PLMs where the thresholds of exit
classifiers are adapted without requiring any
validation dataset from the target task as used
in the previous baselines (see Section 5.2),
thus making Early Exit PLMs robust to do-
main changes and enhancing their efficiency.

* In Section 4, we introduce CEEBERT, an
upper confidence-based algorithm that relies
solely on confidence scores for learning the
optimal threshold to make exit decisions.

e In Section 5, we evaluate CEEBERT on five
different datasets drawn from diverse tasks to
demonstrate its proficiency in improving in-
ference latency compared to the state-of-the-
art algorithms.

1737

2 Related work

Early exit methods are applied for various tasks
such as image classification, image captioning and
NLP tasks to reduce the computational resources
and inference latency.

Early exits in Image tasks: For image classifi-
cation tasks, BranchyNet (Teerapittayanon et al.,
2016) uses classification entropy at each attached
exit to decide whether to infer the sample at the
side branch based on the entropy of prediction.
Shallow-deep(Kaya et al., 2019) and MSDNet
(Huang et al., 2017) improve upon BranchyNet
by effectively choosing the thresholds based on
the confidence distribution. Similar architectures
(Laskaridis et al., 2020; Pacheco et al., 2021; Dai
et al., 2020) split the NN to be deployed on edge
and cloud. SEE (Wang et al., 2019¢) work in
service outage scenarios. FlexDNN (Fang et al.,
2020) and Edgent (Li et al., 2019) focus mainly on
the most appropriate Neural Network (NN) depth.
Other works such as Dynexit (Wang et al., 2019b)
focus on deploying the multi-exit NN in hard-
ware. It trains and deploys the NN on Field Pro-
grammable Gate Array (FPGA) hardware while
Paul er al. (Kim and Park, 2020) explains that
implementing a multi-exit NN on FPGA board re-
duces inference time and energy consumption. In
a parallel vein, the MuE and DeeCap (Tang et al.,
2023; Fei et al., 2022) model employs a distinctive
approach to apply early exits to the image caption-
ing. DeeCap only applies to to decoder while MuE
applies to the encoder as well as the decoder.
Early Exit in PLMs: Multiple approaches have
been proposed to effectively apply early exits to
PLMs and solve multiple NLP tasks (Bapna et al.,
2020; Elbayad et al., 2020; Liu et al., 2021b; Xin
et al., 2020b; Zhou et al., 2020; He et al., 2021;
Banino et al., 2021; Balagansky and Gavrilov,
2022; Sun et al., 2022; Ji et al., 2023). Dee-
BERT (Xin et al., 2020b), ElasticBERT (Liu et al.,
2021b) and BERxiT (Xin et al., 2021) are based
on the transformer-based (Vaswani et al., 2017)
BERT model. BERxIT proposes an efficient fine-
tuning strategy for the BERT model with attached
exits. DeeBERT is obtained by training the exit
points attached before the last module to the BERT
backbone separately. In contrast, ElasticBERT is
obtained by training all the exit points attached to
the BERT backbone jointly. PABEE (Zhou et al.,
2020) is another multi-exit model that makes the
exit decision based on the stability of the predic-

tions after different exits. LeeBERT (Zhu, 2021)
proposed a self-distillation framework that has
similar exiting criteria as PABEE. ETFEE (Jiet al.,
2023) adds an adapter on top of the transformer
layers and an (Entangled Frame) ETF classifier to
make intermediate exits learn better.

Multi-Armed Bandits in Early Exit NN: LEE
(Juetal.,2021b), DEE (Ju et al., 2021a) and UEE-
UCB (Hanawal et al., 2022) leverage the MAB
framework to learn the optimal exit in early exit
NNs. LEE and DEE mainly focus on learning
optimal depth in image classification tasks, while
UEE-UCSB finds optimal depth for NLP tasks em-
ploying a pre-trained ElasticBERT (Liu et al.,
2021a) model. UEE-UCB does not need any la-
bels but works under the assumption that the pre-
diction of the intermediary layers follows strong
dominance property (Verma et al., 2019). SplitEE
(Bajpai et al., 2023) and I-SplitEE (Bajpai et al.,
2024) utilize MABs to find the optimal splitting
layers in a mobile-cloud co-inference setup.

Our approach differs from past works as 1) Un-
like previous studies, our work is primarily con-
cerned with making unsupervised cross-domain
inference efficient in early exit PLMs. 2) Our work
is focused on adapting the threshold values based
on the underlying distribution of a dataset. 3) We
use the Multi-Armed Bandits framework to solve
the problem of threshold learning. We compare
against different early exiting models in table 2.

3 Problem Setup

We start with a pre-trained PLM like BERT or AL-
BERT and attach exit classifiers at each layer. In
the following, we discuss how the exit layers are
trained and used for early inference.

3.1 Training exits classifers

Let D represent the distribution of the source
dataset with label class C used for backbone train-
ing. For any input sample (z,y) ~ D and the ith
intermediate classifier, the loss is computed as:

Li(0) = Lcr(fi(x,0),y) (1)

Here, f;(x,0) is the output of the classifier at-
tached at the ith layer, where 6 denotes the set
of learnable parameters, and Lop is the cross-
entropy loss. We learn the parameters for all clas-
sifiers simultaneously following the approach out-
lined by Kaya et al. (Kaya et al., 2019), with the

Sk L

Ty

loss function defined as £ = , Where L

1738

is the number of layers in the backbone. This
weighted average considers the relative inference
cost of each internal classifier. Subsequently, the
model is ready for testing on related tasks from
different domains.

3.2 Inference on the Target data

Let D be the distribution of the target dataset.
Consider an intermediary layer 1 < 4 < L. For an
input 2 ~ D, let P;(c) denote the estimated prob-
ability that = belongs to class ¢ € C and C; denote
the confidence in the estimate at the ith layer. We
define C; as maximum of the estimated probabil-
ity class, i.e., C; := maxecc Pi(c). The decision
to exit at the 7th layer is made based on the value of
C;. For a given threshold «, if C; > « the sample
2 will be assigned a label §j = arg max.c¢(P;(c)).
In this case, x is not further processed, and exits
with a label . If C; < «, then the sample is pro-
cessed to the next layer. If the sample’s confidence
is below the threshold for all intermediate classi-
fiers then the sample is inferred at the final layer.
We denote the cost incurred in moving the sam-
ple from the 1st layer to the ith layer as o;. It de-
notes the latency or computational cost of process-
ing the sample between the layers 1 and 7. Since
all the layers of transformer-based PLMs require
the same amount of computation, we assume the
latency cost 0; i.

The confidence can be compared against one
of the k possible thresholds denoted by set A =
{a1,9,...,ap}. The goal is to identify the
threshold which provides the best trade-off be-
tween loss in accuracy and latency cost for the la-
tent distribution of the target task.

3.3 Multi-Armed Bandit (MAB) Setup

In the MAB setup, a decision-maker iteratively
selects actions, adapting to an unknown environ-
ment. Each action represents a specific choice,
and the goal is to learn which actions result in
the most favourable outcomes (highest reward)
over time. This dynamic learning process, inher-
ent to MAB setups, resonates with the sequential
decision-making required in online learning prob-
lems, where choices are made based on incoming
data. MAB frameworks, guided by exploration
and exploitation principles, enable the learning of
optimal actions tailored to the latent distribution.
We treat the set of thresholds A as the set
of actions. Following the terminology of MAB,
we refer to them as arms. We define [L] =

{1,2,...,L}. Forany arm o € A, suppose a sam-
ple is processed till layer ¢ and exits i.e. C; < «
for j € [i — 1] and C; > «, we define the reward
as follows:

r(a) = (Ci = C1) — poi 2

where p models the trade-off between accuracy
and cost and doubles up as a unit converter to bring
both confidence and latency in the same units. If
the sample does not exit till (L — 1)th layer then
it is inferred at the final layer, where the reward is
r(a) = (Cr — Cy) — por.

The reward could be interpreted as follows: The
confidence gained while processing the sample
from 1st layer to ith layer reduced by the cost in-
curred in achieving it (latency). Then mean reward
forarm o € A is

L
E[r(a)] = ZE[AC’i — po;lexit at i) P(i) (3)
i=1

where AC; = C; — C1 and P(i) is the probability
that the sample exits from ¢th layer. Our goal is to
find an arm with the highest mean reward. Since
labels of the target samples are not available, we
depend on the reward of each threshold to learn
their performance. Let o = arg max,ec 4 E[r(«)]
denote the optimal threshold. Consider a policy m
that selects threshold a; € A in round ¢ based on
past observations. We define cumulative regret of
7 over 1" rounds as

T

R(m,T) =Y Elr(a*) —r(as)], (4

t=1

where the expectation is with respect to the ran-
domness in the selection of thresholds induced by
the past samples. A policy 7* is said to be sub-
linear if average cumulative regret vanishes, i.e.,
R(m*,T)/T — 0. Our objective is to develop a
policy learning algorithm with a sub-linear regret
guarantee.

4 Algorithm

We develop an algorithm named Cross Domain In-
ference in Early Exits in BERT (CeeBERT). Its
pseudo-code is given in algorithm 1. The inputs
to the algorithm are exploration constant v and la-
tency factor o; for each layer i. For the first |.A]
samples, the algorithm plays each arm once. In
the subsequent rounds, it plays the arm with the

1739

highest Upper Confidence Bound (UCB) index de-
noted as ;. UCB indices are obtained by taking
the weighted sum of the empirical average of the
rewards (Q;(a) and the confidence bonuses with
v as the weight factor. If C; at the ith layer is
larger than (3; then the sample exits, otherwise, the
sample is passed to the next layer in the backbone
while adding latency. If the sample does not exit at
any intermediate classifier then it is inferred at the
final layer. Finally, the algorithm updates the num-
ber of pulls (N (8;)) and empirical mean (Q(f5;))
of the played arm. Note that the algorithm is ap-
plied directly to the inference (target) dataset.

Algorithm 1 CeeBERT
1: Input: o; Vi,v > 1
2: Initialize: Play each threshold once. Observe
r(a) and set Q(«) < 0, N(a) «+ 1,Va € A.
3 fort = |A|+1,|]A|+2,--- do
fori=1to L do

4: Observe an instance ¢
In(t)
N(«)
6
7: Pass z; till layer ¢
8
9

bl

acA
Apply threshold 3; and observe C;

if C; > B, and i < L then

10 Infer at layer ¢ and exit
11: Tt(oz) «— C; —C1 —o;
12: Nt(a) — Nt_1<0£) +1
t
13: Qt(a) « Zj:”’;;(ﬂg{%:a}
14: break
15: else if i = L then
16: Process and infer at the last layer.
17: ri(a) < (C;— Cp — o)
18: Ni(a) < Ni—q1(a) + 1
t
19: Qula) « = :lTJJ(v?(JSl{aj:a}
20: end if
21: end for
22: end for

Following the analysis of UCB1 (Auer et al.,
2002b), one can show that the regret of CeeBERT
is of O (ZaeAp\a* logg”) where A, = r(a*) —
r(a)) denotes the optimality gap. For complete-
ness, the proof outline is given in the Appendix
(see theorem A.1). Hence, CeeBERT comes with
a sub-linear regret guarantee.

Tgt data | #Samples | Src Data | #Samples
IMDb 25K SST-2 68K

Yelp 560K SST-2 68K
SNLI 550K MNLI 433K
QQP 365K MRPC 4K
SciTail 24K RTE 2.5K

Table 1: This table provides the sizes of the datasets.
Src (Source data) is used to train the model to test on
Tgt (target data) to evaluate its generalization.

5 Experiments

5.1 Datasets

We utilized most of the GLUE (Wang et al.,
2019a) datasets as source datasets and the ELUE
(Liu et al., 2021a) datasets as the target datasets.
We evaluated CeeBERT on five datasets cover-
ing four types of classification tasks. The datasets
used for evaluation are:

1) IMDb and 2) Yelp (Asghar, 2016): IMDb
is a movie review classification dataset and Yelp
consists of reviews from various domains such as
hotels, restaurants etc. The source dataset for these
two datasets is the SST-2 (Stanford-Sentiment
Treebank) dataset which has a sentiment classi-
fication task. 3) SciTail: is an entailment clas-
sification dataset created from multiple questions
from science and exams and web sentences. The
source data used was RTE(Recognizing Textual
Entailment) dataset which is an entailment clas-
sification dataset but with a different context. 4)
SNLI(Stanford Natural Language Inference:)
is a collection of human-written English sentence
pairs manually labelled for balanced classifica-
tion with labels entailment, contradiction and neu-
tral. The source data in this case is MNLI(Multi-
Genre Natural Language Inference) which also
contains sentence pairs as premise and hypothe-
sis, the task is the same as for SNLI but with
more general sentences. 5) QQP(Quora Ques-
tion Pairs) is a semantic equivalence classifica-
tion dataset which contains question pairs from the
community question-answering website Quora. In
this case, the source dataset is MRPC(Microsoft
Research Paraphrase Corpus) dataset which also
has a semantic equivalence task of a sentence pair
extracted from online news sources. Details about
the size of these datasets are in table 1. Observe
from the table that the size of the source dataset is
much smaller as compared to the size of the corre-
sponding target dataset.

1740

5.2 Baselines

We compare our model against three types of base-
lines:

1) Backbone models: We choose BERT-base
and ALBERT-base as the backbone models which
have almost similar performance’.

2) Reducing layers: We directly reduce computa-
tion layers, experimenting with the initial 6 and 9
layers of the original (AL)BERT model, denoted
as (AL)BERT-6L and (AL)BERT-9L. These serve
as baselines, setting the lower limit for techniques
without additional modifications.

3) Early-exit models: DeeBERT (Xin et al.,
2020a) and 2) ElasticBERT (Liu et al., 2021a)
employ fixed confidence thresholds for early ex-
its. 3) FastBERT (Liu et al., 2020) utilizes a
self-distillation framework to train the intermedi-
ate exits. 4) PABEE (Zhou et al., 2020) and 5)
LeeBERT (Zhu, 2021) uses prediction stability
to decide early exits, LeeBERT also distils the
knowledge from deeper layers. 6) MuE (Tang
et al., 2023) relies on hidden representation sim-
ilarity for early exit decisions and is applied to the
BERT-base model for comparative analysis, origi-
nally designed for image captioning tasks. 7) ET-
FEE (Ji et al., 2023) and 8) PALBERT (Balagan-
sky and Gavrilov, 2022), state-of-the-art methods,
face challenges to adapt to different domains due
to bias towards the training dataset. PALBERT
uses Lambda layers as explained on (Banino et al.,
2021), and ETFEE has an adapter on top of inter-
mediate layers, both contributing to strong bias.
Test data must be representative of the training
dataset for these baselines.

All the baselines learn the threshold values to
decide to exit using a validation dataset representa-
tive of the training dataset. Other hyperparameters
for these baseline models remain consistent with
their original implementations, and when applied
to the target dataset, we use the same hyperparam-
eters learned on the source dataset.

5.3 Experimental setup

i) Training of the backbone on source data: Ini-
tially, we train the backbone on the source dataset.
We add a linear output layer after each of the inter-
mediate layers of the pre-trained BERT/ALBERT
model. We run the model for 5 epochs. We per-
form a grid search over batch size of {8, 16,32}
and learning rates of {le-5, 2e-5, 3e-5, 4e-5 Se-

'Our method works on any transformer-based PLMs

5} with Adam (Kingma and Ba, 2014) optimizer.
We apply an early stopping mechanism and select
the model with the best performance on the de-
velopment set. The experiments are conducted on
NVIDIA RTX 2070 GPU with an average runtime
of ~ 3 hours and a maximum run time of ~ 10
hours for the MNLI dataset.
ii) Adapting thresholds using CeeBERT: In this
stage, use the model learnt in step (i) to perform
inference on the target dataset. In this step, Cee-
BERT is utilized to dynamically learn optimal
thresholds in an unsupervised and online manner
for the target dataset. This post-deployment step
allows the model to autonomously adapt threshold
values based on real-time data, enhancing adapt-
ability in inference. This part is also computed on
the same GPU with an average runtime of ~ 1
hour. We run each experiment 5 times where each
run includes an online feed of randomly reshuffied
input samples to CeeBERT.
Choice of the action set: The choice of the action
set depends on the total number of output classes,
denoted as C', within a given dataset. To ensure
efficiency and avoid redundancy, we observe that
any value in the action set below 1/C' is extra-
neous. Consequently, we choose ten equidistant
values ranging from 1/C to 1.0. For instance, in
a binary classification scenario where the worst
confidence value is 0.5, our action set becomes
A ={0.55,0.6,0.65,...,0.95,1.0}.
Latency cost and p: Recall from section 3.2, we
have o; o< 7 i.e. the latency cost for each layer is
directly proportional to the depth of the layer in
the network. Hence we set o, = Ai where) is
the per-layer processing cost. The value of A is
user-defined and we set it to 1/L so that it is di-
rectly comparable to the confidence values. The
parameter 1 used to model the trade-off between
accuracy and latency is set to 0.5. The value of u
should be set between p € [0,1/0r,] based on the
user’s preferences for improved cost or accuracy.
The set of choices of j is made such that the fac-
tor po; in the equation 2 is directly comparable to
confidence gain. We analyse the model behaviour
on changing p in section 6.1.

To maintain consistency with previous methods,
we use the speedup ratio as the metric to asses out
model which could be written as:

Zz'Lzl L x n;
Yy x g

where n; are the number of samples exiting from

1741

Model/Data SST-IMDb SST-Yelp MRPC-SciTail ~ MNLI-SNLI RTE-QQP
Acc Speed Acc Speed Acc Speed Acc Speed Acc Speed
BERT 833 1.00x 77.8 1.00x 79.1 1.00x 80.2 1.00x 71.5 1.00x
BERT-6L -3.1 200x -30 200x -1.6 200x -19 200x -1.5 2.00x
BERT-9L 26 1.33x -28 133x -09 1.33x -13 133x -12 1.33x
DeeBERT 29 231x 35 213x -05 1.21x 25 211x -09 1.35x
ElasticBERT | -2.6 251x -32 295x 0.0 149x -13 232x -03 1.80x
PABEE 24 242x 29 256x 09 1.51x -1.1 239x -02 191x
FastBERT -25 255x 28 2.62x -0.6 1.59x -13 245x -0.5 1.96x
MuE -2.8 258 33 281x -1.1 1.75x -1.6 252x -02 1.88
LeeBERT 23 240x 27 249x -0.1 1.54x -1.0 237x 0.0 1.92x
PALBERT -25 251x 24 239% -07 1.63x -14 254x -0.1 1.85x
ETFEE 2.6 245x 25 254x 0.6 1.67x -1.8 255x -0.3 1.96x
CeeBERT 23 295x 24 315x +0.2 1.78x -0.8 2.63x +0.1 2.15x

Table 2: Experimental results (median of 5 runs) of early exit models with BERT backbone on the target datasets
with 5 random seeds. The format of datasets on top of the table is (source-target) i.e. the dataset before the hyphen
is the source and after the hyphen is the target. The accuracy (Acc) is in % and speed is the Speedup ratio.

tth layer. This metric could be interpreted as the
increase in speed of the model as compared to the
naive (AL)BERT model.

5.4 Results

In Tables 2 and 4, we provide the main results of
this paper. We provide median results over 5 runs.
The results make evident that CeeBERT consis-
tently outperforms all previous methods both in
terms of accuracy and efficiency, due to its ability
to adapt and select different thresholds for tasks
from different domains.

This behaviour aligns with the fact that as the
target dataset is from a different domain, there is
a change in the semantic mapping. This change in
turn differs the confidence distribution at the exit
points. Previous baselines do not adapt the thresh-
old based on the distribution of target data, hence
all the methods get a hit in terms of efficiency. We
observe that models trained with more bias toward
the training dataset get higher hits in performance,
as seen in the current state-of-the-art methods ET-
FEE and PALBERT. They experience significant
performance degradation. This occurs due to the
addition of more complex layers (instead of linear
layers) and classifiers to the output of intermediate
layers, leading to the requirement of the test set to
be representative of the training dataset.

CeeBERT’s dynamic threshold selection dur-
ing inference, without requiring full retraining or
fine-tuning, offers a substantial advantage. This
adaptability speeds up the inference time on aver-
age by 2.5x while preserving accuracy. Notably,
CeeBERT achieves this without relying on labeled
data; instead, it makes real-time threshold deci-
sions based on evolving data distributions. Cee-

BERT converges to optimal thresholds after just a
few thousand samples, as shown in figure 2c.

The gain on QQP and SciTail datasets as com-
pared to the final layer is explained as the effect
of overthinking. Some easy samples get misclas-
sified at the final layer as they suffer from distrac-
tions due to over-complicated features available at
the final layer. More details on the stability of
results i.e. the standard deviation values can be
found in the table 3 in the Appendix.

6 Ablation study and Analysis
6.1 Accuracy vs Speedup

In figure 2a, we analyse the behaviour of perfor-
mance drop over an increase in speedup. Dee-
BERT and MuE make exit decisions based on
confidence values above a pre-defined threshold.
PABEE and LeeBERT both use patience-based ex-
iting. By varying the threshold values, we ob-
serve variation in the accuracy-latency trade-off.
CeeBERT uses the trade-off factor p as given in
equation 2. Increasing p will increase the impact
of cost in the reward hence it will choose lower
thresholds forcing samples to exit early while
decreasing it increases the impact of confidence
hence improving upon accuracy. We vary these
hyperparameters to get the results in figure 2a.
Observe that, adapting thresholds has minimal
impact if the confidence is given higher weight in
eq.2 i.e. u is small since it boils down to the case
in which confidence is maximized hence many
samples are inferred at the final layer similar to
other baselines. However, as the impact of cost in-
creases the efficiency of CeeBERT also increases
as it forces the samples to exit early reducing over-
thinking as well as unnecessary computations. It

1742

Model/Data SST-IMDb SST-Yelp MRPC-SciTail
Acc Speed Acc Speed Acc Speed
BERT 83.3 1.00x 71.8 1.00x 79.1 1.00x
CeeBERT | -23+0.15 2.95x +0.008 -2.4+0.05 3.15x+0.003 +0.2+0.18 1.78x + 0.001
ALBERT 82.7 1.00x 77.1 1.00x 80.4 1.00x
CeeBERT | -21+0.12 2.89x+0.006 -1.9+0.08 2.71x+0.002 -0.1=+0.16 1.81x+ 0.004

Table 3: The median and standard deviation values of CeeBERT over 5 runs.

Yelp

1.0

o
o

82

.

o
o

Accuracy
°
2

Confidence

—e— DeeBERT

-e PABEE)

79 LeeBERT "\b
. MuE

—e— CeeBERT (Ours)

o
Y

05

1500

—— CeeBERT
—— alpha =0.9
alpha = 0.8
Final layer

12501 -

Cumulative Regret
=
u ~ o
o w o
o o o

N
o
=}

!

o

1.0 15 20

SpeedUp

25 SST-2

(a) Speedup vs Accuracy curve

Yelp

(b) Change in Confidence distribution

0 500 1000

#Samples

1500 2000

IMDb

(c) Cumulative regret

Figure 2: Left: We show the trade-off between accuracy and speedup by changing the tunable parameters for
various methods. Center: figure states the change in the distribution of confidence at the intermediate exits
when the dataset distribution changes. The backbone was trained on SST-2 in this case. Right: figure shows the
cumulative regret observed by CeeBERT on the Yelp dataset showing that CeeBERT achieves sub-linear regret.

also states that adapting the threshold values while
considering both cost and confidence can make
early exit models more efficient.

6.2 Change in confidence distribution

In figure 2b, we plot the confidence distribution of
SST-2, IMDb and Yelp datasets when the back-
bone was trained on SST-2. We plot the box-
plots for confidence values for the SST-2 dataset,
IMDb and Yelp datasets. The confidence distribu-
tion evolves with shifts in the latent distribution of
the dataset. Our observations reveal a decrease in
the confidence distribution, rendering the thresh-
old learned on the source data less adaptable to the
target dataset. This diminished adaptability intro-
duces inefficiencies in the threshold application.
The decline in confidence values can be attributed
to the distinct semantic structures present in the
target dataset compared to the source data. De-
spite the generalization capabilities of the BERT
model to accommodate these changes, a reduction
in confidence values becomes evident.

6.3 Regret Performance

In figure 2c, we plot the average cumulative regret
on the Yelp dataset over 5 runs where the sam-
ples were randomly reshuffled and fed to the algo-
rithm. This figure gives an idea about the time it
takes for CeeBERT to converge for a given dataset.
CeeBERT converges to the optimal threshold af-

ter exploring on few thousand samples. The plot
also contains the cumulative regret when all the
samples exited from the final layer and when the
thresholds were not adapted and were fixed (same
as previous methods). For fixed thresholds, we use
a = 0.5,0.8,0.9. This indicates the importance
of learning the threshold values instead of fixing
them. For other datasets regret curves refer to the
Appendix (figure 3).

6.4 Stability of CeeBERT

In table 3, we provide the standard deviation val-
ues of 5 runs of CeeBERT on different datasets.
These results state the stability of the algorithm.
CeeBERT has good stability as it converges fast
within the first thousand samples and then the ex-
ploration phase is over, now it exploits the optimal
threshold to which it has converged. As observed,
CeeBERT’s stability increases with large datasets
as on Yelp the standard deviation values are lower
as compared to other datasets. On larger datasets,
the fraction of samples over which CeeBERT ex-
plores becomes small which in turn increases the
stability of the algorithm. The stability is consis-
tent across different backbone models (BERT and
ALBERT).

7 Conclusion

In this work, we introduced the concept of cross-
domain inference in Early exiting PLMs. We pro-

1743

Model/Data SST-IMDb SST-Yelp
Acc Speed Acc Speed
ALBERT 827 1.00x 773 1.00x
ALBERT-6L | -3.5 2.00x -3.1 2.00x
ALBERT-9L | -2.8 1.33x -24 1.33x
DeeBERT 320 239x 0 29 224x
ElasticBERT | -2.7 247x -2.6 24Ix
PABEE 24 242x 23 235x
FastBERT -23 0 2.55x 0 -25 2.32x
MuE 25 261x -2.8 251Ix
LeeBERT 22 221x 1.9 249x
PALBERT 27 247x 0 26 2.53x
ETFEE 2.8 2.65x 29 2.62x
CeeBERT 21 289% -19 27Ix

Table 4: Experimental results (median of 5 runs) of
early exit models applied to ALBERT backbone.

posed an online learning algorithm, CeeBERT that
enhances the efficiency of early exit PLMs by ad-
justing threshold values as per the latent distribu-
tion of the incoming data. This adaptation ensures
robust performance even in the face of dataset
variations within a specific task but across diverse
domains. The resulting robustness mitigates the
need for any further fine-tuning that reduces time
as well as resources.

8 Limitations

In this work, we have used the same threshold for
each exit point. However, one can extend this to
having different thresholds at different exit points.
However, it comes at the cost of the added com-
plexity of having separate action sets for different
layers. It would be interesting to explore and re-
duce the complexities and further reduce the la-
tency as then the choice of threshold will be made
separately for each exit. CeeBERT could be ap-
plied to any early exit NN with minor modifica-
tions, however, in the experiments, we apply it on
(AL)BERT models as done by previous methods.

Acknowledgements

Divya Jyoti Bajpai is supported by the Prime Min-
ister’s Research Fellowship (PMRF), Govt. of In-
dia. Manjesh K. Hanawal thanks funding support
from SERB, Govt. of India, through the Core Re-
search Grant (CRG/2022/008807) and MATRICS
grant (MTR/2021/000645), and DST-Inria Tar-
geted Programme.

References

Nabiha Asghar. 2016. Yelp dataset challenge: Review
rating prediction. arXiv preprint arXiv:1605.05362.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
2002a. Finite-time analysis of the multiarmed ban-
dit problem. Machine learning, 47(2):235-256.

Peter Auer et al. 2002b. Finite-time analysis of the
multiarmed bandit problem. Machine Learning,
47:235-256.

Divya J Bajpai, Vivek K Trivedi, Sohan L Yadav, and
Manjesh K Hanawal. 2023. Splitee: Early exit in
deep neural networks with split computing. arXiv
preprint arXiv:2309.09195.

Divya Jyoti Bajpai, Aastha Jaiswal, and Manjesh Ku-
mar Hanawal. 2024. I-splitee: Image classifica-
tion in split computing dnns with early exits. arXiv
preprint arXiv:2401.10541.

Nikita Balagansky and Daniil Gavrilov. 2022. Palbert:
Teaching albert to ponder. Advances in Neural In-
Jformation Processing Systems, 35:14002-14012.

Andrea Banino, Jan Balaguer, and Charles Blundell.
2021. Pondernet: Learning to ponder. arXiv
preprint arXiv:2107.05407.

Ankur Bapna, Naveen Arivazhagan, and Orhan Fi-
rat. 2020. Controlling computation versus qual-
ity for neural sequence models. arXiv preprint
arXiv:2002.07106.

Xin Dai, Xiangnan Kong, and Tian Guo. 2020. Epnet:
Learning to exit with flexible multi-branch network.
In Proceedings of the 29th ACM International Con-
ference on Information & Knowledge Management,
pages 235-244.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael
Auli. 2020. Depth-adaptive transformer. In In Proc.
of ICLR.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Biyi Fang, Xiao Zeng, Faen Zhang, Hui Xu, and
Mi Zhang. 2020. Flexdnn: Input-adaptive on-device
deep learning for efficient mobile vision. In 2020
IEEE/ACM Symposium on Edge Computing (SEC),
pages 84-95. IEEE.

Zhengcong Fei, Xu Yan, Shuhui Wang, and Qi Tian.
2022. Deecap: Dynamic early exiting for efficient
image captioning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-

nition, pages 12216-12226.

Yizeng Han, Dongchen Han, Zeyu Liu, Yulin Wang,
Xuran Pan, Yifan Pu, Chao Deng, Junlan Feng,
Shiji Song, and Gao Huang. 2023. Dynamic per-
ceiver for efficient visual recognition. arXiv preprint
arXiv:2306.11248.

1744

Manjesh K Hanawal, Avinash Bhardwaj, et al. 2022.
Unsupervised early exit in dnns with multiple exits.
arXiv preprint arXiv:2209.09480.

Xuanli He, Iman Keivanloo, Yi Xu, Xiang He, Belinda
Zeng, Santosh Rajagopalan, and Trishul Chilimbi.
2021. Magic pyramid: Accelerating inference with
early exiting and token pruning. arXiv preprint
arXiv:2111.00230.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu,
Laurens Van Der Maaten, and Kilian Q Wein-
berger. 2017. Multi-scale dense networks for re-
source efficient image classification. arXiv preprint
arXiv:1703.09844.

Yixin Ji, Jikai Wang, Juntao Li, Qiang Chen, Wenliang
Chen, and Min Zhang. 2023. Early exit with disen-
tangled representation and equiangular tight frame.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 14128-14142.

Weiyu Ju, Wei Bao, Liming Ge, and Dong Yuan.
2021a. Dynamic early exit scheduling for deep neu-
ral network inference through contextual bandits. In
Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management,
pages 823-832.

Weiyu Ju, Wei Bao, Dong Yuan, Liming Ge, and
Bing Bing Zhou. 2021b. Learning early exit for
deep neural network inference on mobile devices
through multi-armed bandits. In 2021 IEEE/ACM
21st International Symposium on Cluster, Cloud and
Internet Computing (CCGrid), pages 11-20. IEEE.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras.
2019. Shallow-deep networks: Understanding and
mitigating network overthinking. In International
conference on machine learning, pages 3301-3310.
PMLR.

Geonho Kim and Jongsun Park. 2020. Low cost
early exit decision unit design for cnn accelera-
tor. In 2020 International SoC Design Conference
(ISOCC), pages 127-128. IEEE.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Stefanos Laskaridis, Stylianos I Venieris, Mario
Almeida, Ilias Leontiadis, and Nicholas D Lane.
2020. Spinn: synergistic progressive inference of
neural networks over device and cloud. In Proceed-
ings of the 26th annual international conference on
mobile computing and networking, pages 1-15.

En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. 2019.
Edge ai: On-demand accelerating deep neural net-
work inference via edge computing. IEEE Transac-
tions on Wireless Communications, 19(1):447-457.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling bert with adaptive inference time. arXiv
preprint arXiv:2004.02178.

Xiangyang Liu, Tianxiang Sun, Junliang He, Lingling
Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing
Huang, and Xipeng Qiu. 2021a. Towards efficient
nlp: A standard evaluation and a strong baseline.
arXiv preprint arXiv:2110.07038.

Xiangyang Liu, Tianxiang Sun, Junliang He, Lingling
Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing
Huang, and Xipeng Qiu. 2021b. Towards efficient
NLP: A standard evaluation and A strong baseline.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in neural information processing systems, 32.

Roberto G Pacheco, Rodrigo S Couto, and Osvaldo
Simeone. 2021. Calibration-aided edge inference
offloading via adaptive model partitioning of deep
neural networks. In ICC 2021-IEEE International
Conference on Communications, pages 1-6. IEEE.

ME Peters, M Neumann, M Iyyer, M Gardner, C Clark,
K Lee, and L Zettlemoyer. 1802. Deep contextual-
ized word representations. arxiv. arXiv.

Pushpankar Kumar Pushp and Muktabh Mayank Sri-
vastava. 2017. Train once, test anywhere: Zero-
shot learning for text classification. arXiv preprint
arXiv:1712.05972.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAl blog, 1(8):9.

Tal Schuster, Adam Fisch, Tommi Jaakkola, and
Regina Barzilay. 2021. Consistent accelerated in-
ference via confident adaptive transformers. arXiv
preprint arXiv:2104.08803.

Roy Schwartz, Gabriel Stanovsky, = Swabha
Swayamdipta, Jesse Dodge, and Noah A Smith.
2020. The right tool for the job: Matching
model and instance complexities. arXiv preprint
arXiv:2004.07453.

Tianxiang Sun, Xiangyang Liu, Wei Zhu, Zhichao
Geng, Lingling Wu, Yilong He, Yuan Ni, Guotong
Xie, Xuanjing Huang, and Xipeng Qiu. 2022. A
simple hash-based early exiting approach for lan-
guage understanding and generation. arXiv preprint
arXiv:2203.01670.

1745

https://arxiv.org/abs/2110.07038
https://arxiv.org/abs/2110.07038

Shengkun Tang, Yaqing Wang, Zhenglun Kong,
Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi Wang,
Yi Liang, and Dongkuan Xu. 2023. You need mul-
tiple exiting: Dynamic early exiting for accelerating
unified vision language model. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10781-10791.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung. 2016. Branchynet: Fast inference via
early exiting from deep neural networks. In 2016
23rd International Conference on Pattern Recogni-
tion (ICPR), pages 2464-2469. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30.

Arun Verma, Manjesh Hanawal, Csaba Szepesvari, and
Venkatesh Saligrama. 2019. Online algorithm for
unsupervised sensor selection. In Proceedings of
the Twenty-Second International Conference on Ar-
tificial Intelligence and Statistics, pages 3168-3176.
PMLR.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019a.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

Meiqi Wang, Jiangiao Mo, Jun Lin, Zhongfeng Wang,
and Li Du. 2019b. Dynexit: A dynamic early-exit
strategy for deep residual networks. In 2019 IEEE
International Workshop on Signal Processing Sys-
tems (SiPS), pages 178—183. IEEE.

Yue Wang, Lijun Wu, Juntao Li, Xiaobo Liang, and
Min Zhang. 2023. Are the bert family zero-shot
learners? a study on their potential and limitations.
Artificial Intelligence, page 103953.

Zizhao Wang, Wei Bao, Dong Yuan, Liming Ge,
Nguyen H Tran, and Albert Y Zomaya. 2019c. See:
Scheduling early exit for mobile dnn inference dur-
ing service outage. In Proceedings of the 22nd In-
ternational ACM Conference on Modeling, Analy-
sis and Simulation of Wireless and Mobile Systems,

pages 279-288.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020a. Deebert: Dynamic early exit-
ing for accelerating bert inference. arXiv preprint
arXiv:2004.12993.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020b. DeeBERT: Dynamic early ex-
iting for accelerating BERT inference. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2246-2251.
Association for Computational Linguistics.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. Berxit: Early exiting for bert with better fine-
tuning and extension to regression. In Proceedings
of the 16th conference of the European chapter of
the association for computational linguistics: Main
Volume, pages 91-104.

Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng
Dai, and Gao Huang. 2020. Resolution adaptive net-
works for efficient inference. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 2369-2378.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. Advances in neural infor-
mation processing systems, 32.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.
Advances in Neural Information Processing Sys-
tems, 33:18330-18341.

Wei Zhu. 2021. Leebert: Learned early exit for bert
with cross-level optimization. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-

ume 1: Long Papers), pages 2968—2980.

1746

A Appendix

A.1 Upper bound on regret of CeeBERT

Theorem A.1. For any v > 1, the regret of Cee-
BERT with K arms in the action set after n rounds
is given as:

R(CeeBERT,n) < 4y 3 log(n)
aFa* @
+(m/34+1) Y Ax (5)
aFta*

where A, = r(a*) — r(a)
Proof: The proof is very similar to the classical

UCBI1 (Auer et al., 2002a) and follows the same
lines with noting the regret in round ¢ as

Ry =r(ay) — r(a™)

r(a) is a bounded quantity by definition and more
specifically r(a) € [-1 — AL, 1], where AL is the
latency cost of the final exit, L is the number of
layers and)\ is the processing cost.

A.2 Regret performance

In the case of online learning algorithms, the re-
gret observed is used to monitor the learning pro-
cess of the algorithm. We observe that across all
the datasets, CeeBERT only requires a few thou-
sand samples to converge and from the figure 3,
we can also observe that the observed regret is sub-
linear as proved on theorem A.1. Since these plots
are the average of 5 random runs of the algorithm,
we also plot the standard deviation observed, how-
ever, the standard deviation plot is barely visible as
it is very small and the range of the y-axis is large.
We also plot cumulative regret observed when we
fix the threshold values as used by previous base-
lines.

1747

1500

1250

1000

750

500

Cumulative Regret

IMDb QQp SciTail SNLI
1500
—— CeeBERT 1200] — CeeBERT . 12001 — ceeBERT
— alpha = 0.9 — alpha = 0.9 — alpha = 0.9 12
---- alpha = 0.8 1000 - alpha=1038 10001 ---- alpha =08 501 . alpha =
Final layer Final layer . Final layer Final layer
1000
750
500
250
0
0 500 1000 1500 2000 0 500 1000 1500 2000 o 500 1000 1500 2000 0 500 1000 1500 2000
#Samples #Samples #Samples #Samples

Figure 3: Cumulative regret curves for different datasets.

1748

