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Abstract

This paper describes our 3"¢ place submis-
sion in the AVeriTeC shared task in which
we attempted to address the challenge of fact-
checking with evidence retrieved in the wild
using a simple scheme of Retrieval-Augmented
Generation (RAG) designed for the task, lever-
aging the predictive power of Large Language
Models. We release our codebase’, and ex-
plain its two modules — the Retriever and the
Evidence & Label generator — in detail, justify-
ing their features such as MMR-reranking and
Likert-scale confidence estimation. We evalu-
ate our solution on AVeriTeC dev and test set
and interpret the results, picking the GPT-40 as
the most appropriate model for our pipeline at
the time of our publication, with Llama 3.1 70B
being a promising open-source alternative. We
perform an empirical error analysis to see that
faults in our predictions often coincide with
noise in the data or ambiguous fact-checks, pro-
voking further research and data augmentation.

1 Introduction

We release a pipeline for fact-checking claims us-
ing evidence retrieved from the web consisting
of two modules — a retriever, which picks the
most relevant sources among the available knowl-
edge store’ and an evidence & label generator
which generates evidence for the claim using these
sources, as well as its veracity label.

Our pipeline is a variant of the popular Retrieval-
augmented Generation (RAG) scheme (Lewis et al.,
2020), making it easy to re-implement using estab-
lished frameworks such as Langchain, Haystack, or
our attached Python codebase for future research
or to use as a baseline.

1https ://github.com/aic-factcheck/aic_
averitec

2Due to the pre-retrieval step that was used to generate
knowledge stores, our “retriever” module could more conven-
tionally be referred to as a “reranker”, which we refrain from,
to avoid confusion with reranking steps it uses as a subroutine.
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This paper describes our pipeline and the de-
cisions taken at each module, achieving a simple
yet efficient RAG scheme that improves dramat-
ically across the board over the baseline system
from (Schlichtkrull et al., 2024), and scores third in
the AVeriTeC leaderboard as of August 2024, with
an AVeriTeC test set score of 50.4%.
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Figure 1: Our pipeline

2 Related work

1. AVeriTeC shared task (Schlichtkrull et al.,
2024) releases the dataset of real-world fact-
checked claims, annotated with evidence avail-
able at the date the claim was made.

It proposes the AVeriTeC Score — a method
of unsupervised scoring of fact-checking
pipeline against this gold data using Hungar-
ian METEOR score, matching the evidence
questions (Q) or the whole evidence (Q+A).
The score is then calculated as the proportion
of claims with accurate label and sound ev-

137

Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER), pages 137-150
November 15, 2024 ©2024 Association for Computational Linguistics


https://github.com/aic-factcheck/aic_averitec
https://github.com/aic-factcheck/aic_averitec

idence (using a threshold for Hu-METEOR
such as 0.25) among all claims in the dataset,
giving an estimate on “how often the whole
fact-checking pipeline succeeds end to end”.

The provided baseline is a pipeline of
search query generation, API search (pro-
ducing a knowledge store), sentence re-
trieval, Question-and-answer (QA) generation,
QA reranking, QA-wise claim classification
and label aggregation, achieving an overall
AVeriTeC test set score of 11%.

2. FEVER Shared Task (Thorne et al., 2018b),
a predecessor to the AVeriTeC, worked with
a similar dataset engineered on top of the
enclosed domain Wikipedic data rather than
real-world fact-checks. Its top-ranking solu-
tions used a simpler pipeline of Document
Retrieval, Sentence Reranking and Natural
Language Inference, improving its modules
in a decoupled manner and scoring well
above 60% in a similarly computed FEVER
score (Thorne et al., 2018a) on this data.

3. Our previous research on fact-checking
pipelines (Ullrich et al., 2023; Drchal et al.,
2023) using data similar to FEVER and
AVeriTeC shows significant superiority of fact-
checking pipelines that retrieve the whole
documents for the inference step, rather than
retrieving out-of-context sentences.

4. Retrieval-Augmented Generation (RAG)
for Knowledge-Intensive Tasks (Lewis et al.,
2020) takes this a step further, leveraging
Large Language Model (LLM) for the task,
providing it the whole text of retrieved docu-
ments (each a chunk of Wikipedia) and simply
instructing it to predict the evidence and la-
bel on top of it, achieving results within 4.3%
from the FEVER state of the art by the time
of its publication (December 2020) without
engineering a custom pipeline for the task.

3 System description

Our system design prioritizes simplicity, and its
core idea is using a straightforward RAG pipeline
without engineering extra steps, customizing only
the retrieval step and LLM prompting (Listing 1 in
Appendix A). Despite that, this section describes
and justifies our decisions taken at each step, our
additions to the naive version of RAG modules to

tune them for the specific task of fact-checking,
and their impact on the system performance.

3.1 Retrieval module

To ease comparison with the baseline and other
systems designed for the task, our system does not
use direct internet/search-engine access for its re-
trieval, but an AVeriTeC knowledge store provided
alongside each claim.

To use our pipeline in the wild, our retrieval mod-
ule is decoupled from the rest of the pipeline and
can be swapped out in favour of an internet search
module such as SerpApi® as a whole, or it can be
used on top of a knowledge store emulated using
large crawled corpora such as CommonCrawl* and
a pre-retrieval module.

3.1.1 Knowledge stores

Each claim’s knowledge store contains pre-scraped
results for various search queries that can be de-
rived from the claim using human annotation or
generative models. The knowledge stores used
with ours as well as the baseline system can be
downloaded from the AVeriTeC dataset page’, con-
taining about 1000 pre-scraped documents®, each
consisting of 28 sentences at median®, albeit vary-
ing wildly between documents. The methods used
for generating the knowledge stores are explained
in more detail by Schlichtkrull et al. (2024).

Our retrieval module then focuses on picking
a set of k£ (k = 10 in the examples below, as
well as in our submitted system) most appropri-
ate document chunks to fact-check the provided
claim within this knowledge store.

3.1.2 Angle-optimized embedding search

Despite each article in any knowledge store only
needing to be compared once with its one specific
claim, which should be the use-case for CrossEn-
coder reranking (Déjean et al., 2024), our empirical
preliminary experiments made us favour a cosine-
similarity search based on vector embeddings in-
stead. It takes less time to embed the whole knowl-
edge store into vectors than to match each docu-
ment against a claim using crossencoder, and the
produced embeddings can be re-used across exper-
iments.

3https: //serpapi.com/

4https: //commoncrawl.org/

5https: //fever.ai/dataset/averitec.html

®The numbers are orientational and were computed on
knowledge stores provided for the AVeriTeC dev set.
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For our proof of concept, we explore the
MTEB (Muennighoff et al., 2023) benchmark
leaderboard, looking for a reasonably-sized open-
source embedding model, ultimately picking
Mixedbread’s mxbai-large-v1 (Li and Li, 2024;
Lee et al., 2024) optimized for the cosine objec-
tive fitting our inteded use.

To reduce querying time at a reasonable exact-
ness tradeoff, we use Faiss index (Douze et al.,
2024; Johnson et al., 2019) to store our vectors, al-
lowing us to only precompute semantical represen-
tation once, making the retriever respond rapidly
in empirical experiments, allowing a very agile
prototyping of novel methods to be used.

3.1.3 Chunking with added context

Our initial experiments with the whole AVeriTeC
documents for the Document Retrieval step have
revealed a significant weakness — while most doc-
uments fit within the input size of the embedding
model, outliers are common, often with hundreds
of thousands characters, exceeding the 512 input
tokens with little to no coverage of their content.

Upon further examination, these are typically
PDF documents of legislature, documentation and
communication transcription — highly relevant
sources real fact-checker would scroll through to
find the relevant part to refer.

This workflow inspires the use of document
chunk retrieval as used in (Lewis et al., 2020),
commonly paired with RAG. We partition each
document into sets of its sentences of combined
length of N characters at most. To take advan-
tage of the full input size of the vector embedding
model we use for semantical search, we arbitrarily
set our bound N = 512 x 4 = 2048, where 512 is
the input dimension of common embedding mod-
els, 4 often being used as a rule-of-thumb number
of characters per token for US English in modern
tokenizers (OpenAl, 2023).

Importantly, each chunk is assigned metadata
— the source URL, as well as the full text of the
next and previous chunk within the same document.
This way, chunks can be presented to the LLM
along with their original context in the generation
module, where the length constraint is much less
of an issue than in vector embedding. As shown
in (Drchal et al., 2023), fact-checking models bene-
fit from being exposed to larger pieces of text such
as paragraphs or entire documents rather than out-
of-context sentences. Splitting our data into the
maximum chunks that fit our retrieval model and

providing them with additional context may help
down the line, preventing the RAG sources from
being semantically incomplete.

3.1.4 Pruning the chunks

While the chunking of long articles prevents their
information from getting lost to retriever, it makes
its search domain too large to embed on demand.
As each of the thousands of claims has its own
knowledge store, each of possibly tens of thousands
of chunks, we seek to omit the chunks having little
to no common tokens with our claim using an effi-
cient BM25 (Robertson et al., 1995) search for the
nearest w chunks, setting the w to 6000 for dev and
2000 for test claims. This yields a reasonably-sized
document store for embedding each chunk into a
vector, taking an average of 40 s to compute and
store using the method described in Section 3.1.2
for each dev-claim using our Tesla V100 GPU.

This allows a quick and agile production of vec-
torstores for further querying and experimentation,
motivated by the AVeriTeC test data being pub-
lished just several days before the announced sub-
mission deadline. The pruning also keeps the re-
source intensity moderate for real-world applica-
tions. However, if time is not of the essence, the
step can be omitted.

3.1.5 Diversifying sources: MMR

Our choice of embedding search based on the entire
claim rather than generating “search queries” intro-
duces less noise and captures the semantics of the
whole claim. It is, however, prone to redundancy
among search results, which we address using a
reranking by the results’ Maximal Marginal Rele-
vance (MMR) (Carbonell and Goldstein, 1998), a
metric popular for the RAG task, which maximizes
the search results’ score computed as (for D; € P)

A-Sim(D;, Q) — (1 —A) - g;%)é Sim(D;, Dj)

Sim denoting the cosine-similarity between em-
beddings, () being the search query, and P the pre-
fetched set of documents (by a search which simply
maximizes their Sim to Q)), forming S as the final
search result, by adding each D; as MMR-argmax
one by one, until reaching its desired size.

In our system, we set A = 0.75 to favour rele-
vancy rather than diversity, |.S| = 10 and | P| = 40,
obtaining a set of diverse sources relevant to each
claim at a fraction of cost and complexity of a
query-generation driven retrieval, such as that used
in (Schlichtkrull et al., 2024).
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3.2 Evidence & label generator

The second and the last module on our proposed
pipeline for automated fact checking is the Evi-
dence & Label Generator, which receives a claim
and k sources (document chunks), and returns [
(in our case, [ = 10) question-answer pairs of evi-
dence abstracted from the sources, along with the
veracity verdict —in AVeriTeC dataset, a claim may
be classified as Supported, Refuted, Not Enough
Evidence, or Conflicting Evidence/Cherrypicking
with respect to its evidence.

Our approach leverages a Large Language
Model (LLM), instructing it to output both evi-
dence and the label in a single step, as a chain of
thought. We rely on JSON-structured output gen-
eration with source referencing using a numeric
identifier, we estimate the label confidences using
Likert-scale ratings. The full system prompt can
be examined in Listing 1 in Appendix A, and this
section further explains the choices behind it.

3.2.1 JSON generation

To be able to collect LLM’s results programmati-
cally, we exploit their capability to produce struc-
tured outputs, which is on the rise, with datasets
available for tuning (Tang et al., 2024) and by the
time of writing of this paper (August 2024), sys-
tems for strictly structured prediction are beginning
to be launched by major providers (OpenAl, 2024).

Despite not having access to such structured-
prediction API by the time of AVeriTeC shared
task, the current generation of models examined
for the task (section 3.2.6) rarely strays from the
desired format if properly explained within a sys-
tem prompt — we instruct our models to output a
JSON of pre-defined properties (see prompt List-
ing 1 in Appendix A) featuring both evidence and
the veracity verdict for a given claims.

Although we implement fallbacks, less than
0.5% of our predictions threw a parsing exception
throughout experimentation, and could be easily
recovered using the same prompting again, exploit-
ing the intrinsic randomness of LLM predictions.

3.2.2 Chain-of-thought prompting

While JSON dictionary should be order-invariant,
we can actually exploit the order of outputs in our
output structure to make LLMS like GPT-40 output
better results (Wei et al., 2024). This is commonly
referred to as the “chain-of-thought” prompting —
if we instruct the autoregressive LLM to first out-
put the evidence (question, then answer), then a

set of all labels with their confidence ratings (see
section 3.2.5) and only then the final verdict, its pre-
diction is both cheaper as opposed to implementing
an extra module, as well as more reliable, as it must
attend to all of the intermediate steps as well.

3.2.3 Source referring

To be able to backtrack the generated evidence to
the urls of the used sources, we simply augment
each question-answer pair with a source field. We
assign a 1-based index’ to each of the sources to
facilitate tokenization and prompt the LLM to refer
it as the source ID with each evidence it generates.
While hallucination can not be fully prevented, it is
less common than it may appear — with RAG gain-
ing popularity, the models are being trained to cite
their sources using special citation tokens (Menick
et al., 2022), not dissimilarly to our proposal.

3.2.4 Dynamic few-shot learning

To utilise the few-shot learning framework (Brown
et al., 2020) shown to increase quality of model
output, we provide our LLMs with examples of
what we expect the model to do. To obtain such
examples, our evidence generator looks up the
AVeriTeC train set using BM25 to get the 10 most
similar claims, providing them as the few-shot ex-
amples, along their gold evidence and veracity ver-
dicts. Experimentally, we also few-shot our models
to output an answer type (Extractive, Abstractive,
Boolean,. ..) as the answer type is listed with each
sample anyways, and we have observed its integra-
tion into the generation task to slightly boost our
model performance.

3.2.5 Likert-scale label confidences

Despite modern LLMs being well capable of pre-
dicting the label in a “pick one” fashion, research
applications such as ours may prefer them to out-
put a probability distribution over all labels for two
reasons.

Firstly, it measures the confidence in each la-
bel, pinpointing the edge-cases, secondly, it allows
ensembling the LLM classification with any other
model, such as Encoders with classification head
finetuned on the task of Natural Language Infer-
ence (NLI) (see section 4.3).

As the LLMs and other token prediction schemes
struggle with the prediction of continuous numbers

"We chose the 1-based source indexing to exploit the
source-referring data in LLM train set such as Wikipedia,
where source numbers start with 1. The improvement in qual-
ity over O-based indexing was not experimentally tested.
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which are notoriously hard to tokenize appropri-
ately (Golkar et al., 2023), we come up with a sim-
ple alternative: instructing the model to print each
of the 4 possible labels, along with their Likert-
scale rating: 1 for “strongly disagree”, 2 for “dis-
agree”, 3 for “neutral”, 4 for “agree” and 5 for
“strongly agree” (Likert, 1932).

On top of the ease of tokenization, Likert scale’s
popularity in psychology and other fields such as
software testing (Joshi et al., 2015) adds another
benefit — both the scale itself and its appropriate us-
age were likely demonstrated many times to LLMs
during their unsupervised training phase.

To convert the ratings such as {“Supported”: 2,
“Refuted”:5, “Cherrypicking”:4, “NEE”:2}
to a probability distribution, we simply use soft-
max (Bridle, 1989). While the label probabilities
are only emulated (and may only take a limited,
discrete set of values) and the system may produce
ties, it gets the job done until further research is
carried out.

3.2.6 Choosing LLM

In our experiments, we have tested the full set of
techniques introduced in this section, computing
the text completion requests with:

1. GPT-40 (version 2024-05-13)

2. Claude-3.5-Sonnet (2024-06-20), using the
Google’s Vertex API

3. LLaMA 3.1 70B, in the final experimets to
see if the pipeline can be re-produced using
open-source models

Their comparison can be seen in tables 1 and 2;
for our submission in the AVeriTeC shared task,
GPT-40 was used.

4 Other examined approaches

In this section, we also describe a third, optional
module we call the veracity classifier, which takes
the claim and its evidence generated by our evi-
dence & label generator (section 3.2) and predicts
the veracity label independently, based on the sug-
gested evidence, using a fine-tuned NLI model. We
also describe the options of its ensembling with
veracity labels predicted in the generative step (sec-
tion 3.2.5).

The absence of a dedicated veracity classifier has
not been shown to decrease the performance of our
pipeline significantly (as shown, e.g., in tables 2

and 1) so we suggest to omit this step altogether and
we proceed to participate in the AVeriTeC shared
task without it, proposing a clean and simple RAG
pipeline without the extra step (Figure 1) for the
fact-checking task.

4.1 Single-evidence classification with label
aggregation

In the earliest stages of experimenting, we utilized
the baseline classifier provided by AVeriTeC au-
thors® (Schlichtkrull et al., 2024). It is based on the
BERT (Devlin et al., 2019) and was further fine-
tuned on the AVeriTeC dataset (Schlichtkrull et al.,
2024). It takes one claim and one question-answer
evidence as input — each claim therefore has mul-
tiple classifications, one for each evidence. The
classifications are then aggregated using a heuristic
of several if-clauses to determine the final label.

We experiment with altering this heuristic (e.g.
by making not enough evidence the final label only
when no other labels are present at any evidence),
and training NLI models that could work better
with it, such as 3-way DeBERTaV3 (He et al.,,
2023) without a breakthrough result, motivating
a radically different approach.

4.2 Multi-evidence classification

The multi-evidence approach is to fine-tune a 4-
way Natural Language Inference (NLI) classifier,
using the full scope of evidence directly at once,
without heuristics. For that, we concatenate all of
the evidence together using a separator [SEP] to-
ken. This allows the model to know exact question-
answer borders, albeit using a space has turned out
to be just as accurate as the experiments went on.
As the veracity verdict should be independent of
the evidence ordering, we also experiment with
sampling different permutations in the fine-tuning
step to increase the size of our data.

We carry out the fine-tuning using the AVeriTeC
train split with gold evidence and labels on
DeBERTaV3 (He et al., 2023) in two variants: the
original large one” and one pre-finetuned on NLI
tasks'Y, and also Mistral-7B-v0.3 model'! with a
classification head (MistralForSequenceClassifica-
tion) provided by the Huggingface Transformers

8https://huggingface.co/chenxwh/AVeriTeC
9https://huggingface.co/microsoft/
deberta-v3-large
Ohttps://huggingface.co/cross-encoder/
nli-deberta-v3-large
"https://huggingface.co/mistralai/
Mistral-7B-v@.3
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library (Wolf et al., 2020) that utilizes the last to-
ken. In the preliminary testing phase, the original
DeBERTaV3 Large performed the best and was
used in all other experimental settings.

From the approaches described above, we
achieved the best results for the development split
with gold evidence and labels with a model without
permuting the evidence, achieving 0.71 macro F}
score using a space-separation. The [SEP] model
achieved a comparable 0.70 macro F} score, and
the random order model performed worse with a
0.67 macro F} score, all improving significantly
upon baseline, yet falling behind the capabilities of
generating the labels alongside evidence in a single
chain-of-thought. We provide our best DeBER-
TaV3 finetuned model publicly in a Huggingface
repository 2.

4.3 Ensembling classifiers

Encouraged by the promising results of our multi-
evidence classifiers, we go on to try to ensemble the
models with LLM predictions from section 3.2.5,
using a weighted average of the class probabilities
of our models. We have experimented with multi-
ple weight settings: 0.5:0.5 for even votes, 0.3:0.7
in favour of the LLM to exploit its accuracy while
tipping its scales in cases of a more spread-out la-
bel probability distribution, as well as 0.1:0.9 to
use the fine-tuned classifier only for tie-breaking,
listing the results in Table 1.

We also tried tuning our ensemble weights based
on a subset of the dev split, without a breakthrough
in accuracy on the rest of dev samples.

The last method we tried was stacking using lo-
gistic regression. However, this setup classified no
labels from Not Enough Evidence and Conflicting
Evidence/Cherrypicking, and we could not achieve
reasonable results. For logistic regression, we used
the scikit-learn library (Pedregosa et al., 2011).

We conclude that the augmentation of the
pipeline from Figure 1 with a classification mod-
ule using a single NLI model or an ensemble with
LLM is unneccessary, as it adds complexity and
computational cost without paying off on the full
pipeline performance (Table 2).

4.4 Conflicting Evidence/Cherrypicking
detection

During the experiments, we discovered that classi-
fying the Conflicting Evidence/Cherrypicking class

Zhttps://huggingface.co/ctu-aic/
deberta-v3-large-AVeriTeC-nli

is the most challenging task, achieving a near-zero
F-score across our various prototype pipelines. To
overcome this problem, we tried to build a binary
classifier with cherrypicking as positive class. We
tried to use the DeBERTaV3 Large model with both
basic and weighted cross-entropy loss (other exper-
imental settings were the same as in section 4.2),
but it could not pick up the training task due to the
Conflicting Evidence/Cherrypicking underrepresen-
tation in train set — less than 7% of the samples
carry the label.

Even after exploring various other methods, we
did not get a reliable detection scheme for this
task, perhaps motivating a future collection of data
that represents the class better. While writing this
system description paper, we found an interesting
research by Jaradat et al. (2024) that uses a radi-
cally different approach to detect cherrypicking in
newspaper articles.

5 Results and analysis

We examine our pipeline results using two sets of
metrics — firstly, we measure the prediction accu-
racy and Fj over predict labels without any abla-
tion, that is obtaining predicted labels using the
predicted evidence generated on top the predicted
retrieval results. While the retrieval module is fixed
throughout the experiment (a full scheme described
in section 3.1), various Evidence & Label genera-
tors and classifiers are compared in Table 1, show-
casing their performance on the same sources. The
results show that if we disregard the quality of ev-
idence, models are more or less interchangeable,
without a clear winner across the board — an ensem-
ble of DeBERTA and Claude-3.5-Sonnet gives the
best F score, while GPT-40 scores 72% accuracy.

In real world, however, the evidence quality is
critical for the fact-checking task. We therefore
proceed to estimate it using the hu-METEOR ev-
idence question score, QA score and AVeriTeC
score benchmarks briefly explained in Section 2
and in greater detail in (Schlichtkrull et al., 2024).
We use the provided AVeriTeC scoring script to
calculate the values for Table 2, using its EvalAl
blackbox to obtain the test scores without seeing
the gold test data.

The latter experiments shown in Table 2 suggests
the superiority of GPT-4o to predict the results for
our pipeline with a margin. Even if we simplify the
evidence & label generation step by omitting the

142


https://huggingface.co/ctu-aic/deberta-v3-large-AVeriTeC-nli
https://huggingface.co/ctu-aic/deberta-v3-large-AVeriTeC-nli

Ace Fj

0.72 0.46
0.64 0.49

Recall

0.47
0.52
0.41
0.44
0.45
0.49
0.46
0.53
0.43
0.54

0.46

Prec.

0.48
0.50
0.40
0.41
0.41
0.50
0.45
0.51
0.46
0.50

0.43

Classifier

GPT4o0

Claude 3.5 Sonnet
DeBERTa 0.63 0.39
DeBERTa - random@ 10 0.65 0.41
0.5 - DeBERTa + 0.5 - GPT40 0.70 0.43
0.5 - DeBERTa + 0.5 - Claude 0.68 0.47
0.3 - DeBERTa + 0.7 - GPT40 0.72 0.45
0.3 - DeBERTa + 0.7 - Claude 0.66 0.50
0.1 - DeBERTa + 0.9 - GPT40 0.72 0.39
0.1 - DeBERTa + 0.9 - Claude 0.64 0.49

Llama 3.1 0.73 0.44

Table 1: Evalution of the label generators, classifier
models and their ensembles on the AVeriTeCdevelop-
ment set. Fp, Precision and Recall are computed as
macro-averages. The random@ 10 suffix indicates that
the classifier used average of 10 different random or-
ders of QA pairs for each claim. GPT4o stands for the
Likert classifier based on GPT-40, Claude 3.5 Sonnet
is the Likert classifier based on Claude 3.5 Sonnet, and
DeBERTa is classifier based on DeBERTaV3 Large fine-
tuned on AVeriTeC gold evidence and labels.

dynamic few-shot learning (section 3.2), answer-
type tuning and Likert-scale confidence emulation,
it still scores above others, also showing that our
pipeline can be further simplified when needed.
Regardless of the LLM in use, the results of our
pipeline improve upon the AVeriTeC baseline dra-
matically.

Posterior to the original experiments and to the
AVeriTeC submission deadline, we also compute
the pipeline results using an open-source model —
the Llama 3.1 70B'? (Dubey et al., 2024) obtaining
encouraging scores, signifying our pipeline being
adaptable to work well without the need to use a
blackboxed proprietary LLM.

5.1 API costs

During our experimentation July 2024, we
have made around 9000 requests to OpenAl’s
gpt-40-2024-05-13 batch API, at a total cost of
$363. This gives a mean cost estimate of $0.04 per
a single fact-check (or $0.08 using the API without
the batch discount) that can be further reduced us-
ing cheaper models, such as gpt-40-2024-08-06.

We argue that such costs make our model suit-
able for further experiments alongside human fact-
checkers, whose time spent reading through each
source and proposing each evidence by themselves

Bhttps://huggingface.co/hugging-quants/
Meta-Llama-3.1-70B-Instruct-AWQ-INT4

would certainly come at a higher price.

Our successive experiments with Llama
3.1 (Dubey et al., 2024) show promising results as
well, nearly achieving parity with GPT. The use
of open-source models such as LLL.aMa or Mistral
allows running our pipeline on premise, without
leaking data to a third party and billing anything
else than the computational resources. For further
experiments, we are looking to integrate them into
the attached Python library using VLLM (Kwon
et al., 2023).

5.2 Error analysis

In this section, we provide the results of an explo-
rative analysis of 20 randomly selected samples
from the development set. We divide our descrip-
tion of the analysis into the pipeline and dataset
erTors.

5.2.1 Pipeline errors

Our pipeline tends to rely on unofficial (often
newspaper) sources rather than official government
sources, e.g., with a domain ending or containing
gov. On the other hand, it seems that the annotators
prefer those sources. This could be remedied by
implementing a different source selection strategy,
preferring those official sources. For an example,
see Listing 2 in Appendix B.

Another thing that could be recognised as an
error is that our pipeline usually generates all
ten allowed questions (upper bound given by the
task (Schlichtkrull et al., 2024)). The analysis of
the samples shows that the last questions are often
unrelated or redundant to the claim and do not con-
tribute directly to better veracity evaluation. How-
ever, since the classification step of our pipeline is
not dependent on the number of question-answer
pairs, this is not a critical error. Listing 3 in Ap-
pendix B shows an example of a data point with
some unrelated questions.

When the pipeline generates extractive answers,
it sometimes happens that the answer is not pre-
cisely extracted from the source text but slightly
modified. An example of this error can be seen in
Listing 4 in Appendix B. This error is not critical,
but it could be improved in future works, e.g. using
post-processing via string matching.

Individual errors were also caused by the fact
that we do not use the claim date in our pipeline
and because our pipeline cannot analyse PDFs with
tables properly. The last erroneous behaviour we
have noticed is that the majority of questions and
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Dev Set Scores Test Set Scores

Pipeline Name Qonly Q+A AvVeriTeC | Qonly Q+A AVeriTeC
GPT-40 (full-featured pipeline) 0.46 0.29 0.42 0.46 0.32 0.50
GPT-4o (simplified pipeline) 0.45 0.28 0.38 0.45 0.30 0.47
Claude-3.5-Sonnet (full-featured) 0.43 0.28 0.35 0.42 0.30 0.46
GPT-40 (with DeBERTa classification) | 0.45 0.28 0.36 - - -
AVeriTeC baseline 0.24 0.19 0.09 0.24 0.20 0.11
Llama 3.1 70B (full-featured) 0.46 0.27 0.36 0.47 0.29 0.42

Table 2: Comparison of Pipeline Scores on Dev and Test Sets. Q, Q+A are Hu-METEOR scores against gold data,
AVeriTeC scores are calculated as referred in section 2 thresholded at 0.25. “Full-featured” pipelines use the all the
improvement techniques introduced in section 3, while the simplified pipeline omits the dynamic few-shot learning,
answer-type-tuning and Likert-scale confidence emulation described in section 3.2

answers are often generated from a single source.
This should not be viewed as an error, but by in-
troducing diversity into the sources, the pipeline
would be more reliable when deployed in real-
world scenarios.

5.2.2 Dataset errors

During the error analysis of our pipeline, we also
found some errors in the AVeriTeC dataset that
we would like to mention. In some cases, there
is a leakage of PolitiFact or Factcheck.org fact-
checking articles where the claim is already fact-
checked. This leads to a situation where our
pipeline gives a correct verdict using the leaked
evidence. However, annotators gave a different la-
bel (often Not Enough Evidence). An example of
this error is shown in Listing 5 in Appendix B.

Another issue we have noticed is the inconsis-
tency in the questions and answers given by annota-
tors. Sometimes, they tend to be longer, including
non-relevant information, while some are much
shorter, as seen in Listing 6 in Appendix B. The
questions are often too general, or the annotators
seem to use outside knowledge. This inconsistency
in the dataset leads to a decreased performance of
any models evaluated on this dataset.

5.2.3 Summary

Despite the abovementioned errors, the explorative
analysis revealed that our pipeline consistently
gives reasonable questions and answers for the
claims. Most misclassified samples in those 20
data points were due to dataset errors.

6 Conclusion

In this paper, we describe the use and development
of a RAG pipeline over real world claims and data
scraped from the web for the AVeriTeC shared task.

Its main advantage are its simplicity, consisting
of just two decoupled modules — Retriever and an
Evidence & Label Generator — and leveraging the
trainable parameters of a LLM rather than on com-
plex pipeline engineering. The LL.Ms capabilities
may further improve in future, making the upgrades
of our system trivial.

In section 3, we describe the process of adding
features to both modules well in an iterative fash-
ion, describing real problems we have encountered
and the justifications of their solution, hoping to
share our experience on how to make such sys-
tems robust and well-performing. We publish our
failed approaches in section 4 and the metrics we
observed to benchmark our systems in section 5.
We release our Python codebase to facilitate further
research and applications of our system, either as a
baseline for future research, or for experimenting
alongside human fact-checkers.

6.1 Future works

1. Integrating a search API for use in real-world
applications

2. Re-examine the Likert-scale rating (sec-
tion 3.2.5) to establish a more appropriate
and fine-grained means of tokenizing the label
probabilities

3. Generating evidence in the form of declarative
sentences rather than Question-Answer pairs
should be explored to see if it leads for better
or worse fact-checking performance

4. RAG-tuned LLMs such as those introduced
in (Menick et al., 2022) could be explored to
see if they offer a more reliable source citing
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Limitations

The evaluation of our fact-checking pipeline is lim-
ited to the English language and the AVeriTeC
dataset (Schlichtkrull et al., 2024). This is a se-
vere limitation as the pipeline when deployed in a
real-world application, would encounter other lan-
guages and forms of claims not covered by the used
dataset.

Another limitation is that we are using a large
language model. Because of that, future usage is
limited to using an API of a provider of LLMs or
having access to a large amount of computational
resources, which comes at significant costs. Using
APIs also brings the disadvantage of sending data
to a third party, which might be a security risk in
some critical applications. LLM usage also has an
undeniable environmental impact because of the
vast amount of electricity and resources used.

The reliability of the generated text is a limita-
tion that is often linked to LLMs. LLMs some-
times hallucinate (in our case, it would mean us-
ing sources other than those given in the system
prompt), and they can be biased based on their ex-
tensive training data. Moreover, because of the
dataset size, it is impossible to validate each output
of the LLM, and thus, we are not able to 100%
guarantee the quality of the results.

Ethics statement

It is essential to note that our pipeline is not a real
fact-checker that could do a human job but rather
a study of future possibilities in automatic fact-
checking and a showcase of the current capabilities
of state-of-the-art language models. The pipeline
in its current state should only be used with human
supervision because of the potential biases and er-
rors that could harm the consumers of the output
information or persons mentioned in the claims.
The pipeline could be misused to spread misinfor-
mation by directly using misinformation sources
or by intentionally modifying the pipeline in a way
that will generate wrong outputs.

Another important statement is that our pipeline
was in its current form explicitly built for the
AVeriTeC shared task, and thus, the evaluation re-
sults reflect the bias of the annotators. For more
information, see the relevant section of the original
paper (Schlichtkrull et al., 2024).

The carbon costs of the training and running of
our pipeline are considerable and should be taken
into account given the urgency of climate change.

At the time of deployment, the pipeline should be
run on the smallest possible model that can still
provide reliable results, and the latest hardware and
software optimisations should be used to minimise
the carbon footprint.
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A System prompt

You are a professional fact checker, formulate up to 10 questions that cover all
the facts needed to validate whether the factual statement (in User message) is
true, false, uncertain or a matter of opinion. Each question has one of four
answer types: Boolean, Extractive, Abstractive and Unanswerable using the
provided sources.

After formulating Your questions and their answers using the provided sources, You
evaluate the possible veracity verdicts (Supported claim, Refuted claim, Not
enough evidence, or Conflicting evidence/Cherrypicking) given your claim and
evidence on a Likert scale (1 - Strongly disagree, 2 - Disagree, 3 - Neutral, 4 -
Agree, 5 - Strongly agree). Ultimately, you note the single likeliest veracity
verdict according to your best knowledge.

The facts must be coming from these sources, please refer them using assigned IDs:

## Source ID: 1 [url]

[context before]

[page content]

[context after]

## Output formatting
Please, you MUST only print the output in the following output format:

json
{
"questions”:
L

{"question": "<Your first question>", "answer"”: "<The answer to the Your
first question>", "source": "<Single numeric source ID backing the
answer for Your first question>", "answer_type":"<The type of first
answer>"},

{"question”: "<Your second question>", "answer": "<The answer to the Your
second question>", "source": "<Single numeric Source ID backing the
answer for Your second question>", "answer_type":"<The type of second
answer >"}

1,
"claim_veracity": {
"Supported”: "<Likert-scale rating of how much You agree with the 'Supported'
veracity classification>",
"Refuted"”: "<Likert-scale rating of how much You agree with the 'Refuted’
veracity classification>",
"Not Enough Evidence”: "<Likert-scale rating of how much You agree with the
"Not Enough Evidence' veracity classification>",
"Conflicting Evidence/Cherrypicking”: "<Likert-scale rating of how much You
agree with the 'Conflicting Evidence/Cherrypicking' veracity classification>"
}’
"veracity_verdict"”: "<The suggested veracity classification for the claim>"

## Few-shot learning
You have access to the following few-shot learning examples for questions and
answers.:

### Question examples for claim "{example["claim"]3}" (verdict
{example["gold_label”]})
"question": "{question}", "answer”: "{answer}", "answer_type"”: "{answer_typel}"”

Listing 1: System prompt for the LLMs, AVeriTeC claim is to be entered into the user prompt. Three dots represent
omitted repeating parts of the prompt.
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B Examples of errors

Claim 479: Donald Trump said "When the
anarchists started ripping down our statues
and monuments, right outside, I signed an
order immediately, 10 years in prison.”

gold evidence example:

question: What was the law signed by Trump
regarding damaging federal property?

answer: Trump signed an executive order that
authorizes a penalty of up to 10 years in
prison for damaging federal property. It
does not say that it will automatically be
a 10 year prison sentence.,

source_url: https://web.archive.org/web
/20210224033536/https://www.whitehouse.gov/
presidential-actions/executive-order-
protecting-american-monuments-memorials-
statues-combating-recent-criminal-violence/

pipeline evidence example:

question: Did Trump sign an order related to
vandalism of statues and monuments?,

answer: Yes, Trump signed an executive order
to prosecute those who damage national
monuments, making it a punishable offense
with up to 10 years in jail.,

url: https://m.economictimes.com/news/
international/world-news/trump-makes-
vandalising-national-monuments-punishable-
offence-with-up-to-10-yrs-jail/articleshow
/76658610.cms

quetion 9: What reason did Biden give for not
releasing a list of potential Supreme Court
nominees?,

question 10: Did Biden pledge to nominate a
Black woman to the Supreme Court?

Listing 3: Example of a claim and questions showing
that the last tends to be unrelated or redundant to fact-
checking of the claim.

Claim #155 - Trump said 'there were fine people
on both side' in far-right protests.

answer: "You had some very bad people in that
group, but you also had people that were very
fine people, on both sides.”,

answer_type: Extractive

url: https://www.theatlantic.com/politics/
archive/2017/08/trump-defends-white-
nationalist-protesters-some-very-fine-people-
on-both-sides/537012/

scraped text: . "You also had some very fine
people on both sides,” he said. The Unite the
Right rally that sparked the violence in
Charlottesville featured several leading names

in the white-nationalist alt-right movement,

and also attracted people displaying Nazi
symbols.

Listing 2: Example of a claim where our pipeline
uses newspaper sources instead of official government
sources.

Claim 295: Trump campaign asked Joe Biden to
release a list of potential Supreme Court
picks only after Ginsburg's passing

question 1: Did Joe Biden claim that the Trump
campaign asked him to release a list of
potential Supreme Court picks only after
Ginsburg's passing?

question 2: Did the Trump campaign ask Joe Biden

to release a list of potential Supreme Court
picks before Ginsburg's passing?

question 3: When did Trump release his latest
list of potential Supreme Court nominees?

question 4: Did Trump personally demand that
Biden release a list of potential Supreme
Court nominees before Ginsburg's death?

question 5: What did Trump say about Biden
releasing a list of potential Supreme Court
nominees during the Republican National
Convention?

question 6: Did the Trump campaign issue a
statement on September 17, 2020, regarding
Biden releasing a list of potential Supreme
Court nominees?

question 7: What did the Trump campaign's
statement on September 9, 2020, say about
Biden releasing a list of potential Supreme
Court nominees?

question 8: Did Biden indicate in June 2020 that

he might release a list of potential Supreme
Court picks?

Listing 4: Example of a claim where our pipeline did
not exactly extract the answer.

Claim #483 - Donald Trump said "We have spent
nearly $2.5 trillion on completely rebuilding
our military, which was very badly depleted
when I took office.”

Gold Label: Not Enough Evidence

Predicted Label: Refuted

pipeline evidence example:

question: What is the total defense budget
for the last four fiscal years under Trump?

url: https://www.politifact.com/factchecks
/2020/jan/10/donald-trump/trump-exaggerates
-spending-us-military-rebuild/

question: Did Trump spend $2.5 trillion
specifically on rebuilding the military?

url: https://www.factcheck.org/2020/07/trumps
-false-military-equipment-claim/

Listing 5: An example of a claim where the evidence
consists mainly of evidence from PolitiFact and
Factcheck.org fact-checking articles leading to different
predicted label than in the gold dataset
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Claim #0 - In a letter to Steve Jobs, Sean
Connery refused to appear in an apple
commercial.

Gold Evidence:

question: Where was the claim first published

answer: It was first published on Sccopertino

question: What kind of website is Scoopertino

answer: Scoopertino is an imaginary news
organization devoted to ferreting out the
most relevant stories in the world of Apple
, whether or not they actually occurred -
says their about page

Claim #315 - The fastest Supreme Court justice
ever confirmed in the U.S. was 47 days.
Gold Evidence:
question: What is the quickest time a Supreme
Court justice nomination has been
confirmed in the United States?
answer: John Paul Stevens waited the fewest
number of days (19)-followed by the most
recent nominee to the Court, Amy Coney
Barrett (27).61
question: What is the average number of days
between a nomination for a Supreme Court
justice and the final Senate vote?
answer: Overall, the average number of days
from nomination to final Senate vote is
68.2 days (or approximately 2.2 months),
while the median is 69.0 days.62 Of the 9
Justices currently serving on the Court,
the average number of days from nomination
to final Senate vote is 72.1 days (or
approximately 2.4 months), while the median
is 73.0 days. Among the current Justices,
Amy Coney Barrett waited the fewest number
of days from nomination to confirmation
(27), while Clarence Thomas waited the
greatest number of days (99).

Listing 6: An example of a claims which differs in
length.
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