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Abstract

This study explores replacing Transformers in
Visual Language Models (VLMs) with Mamba,
a recent structured state space model (SSM)
that demonstrates promising performance in
sequence modeling. We test models up to
3B parameters under controlled conditions,
showing that Mamba-based VLMs outperforms
Transformers-based VLMs in captioning, ques-
tion answering, and reading comprehension.
However, we find that Transformers achieve
greater performance in visual grounding and
the performance gap widens with scale. We
explore two hypotheses to explain this phe-
nomenon: 1) the effect of task-agnostic vi-
sual encoding on the updates of the hidden
states, and 2) the difficulty in performing visual
grounding from the perspective of in-context
multimodal retrieval. Our results indicate that
a task-aware encoding yields minimal perfor-
mance gains on grounding, however, Trans-
formers significantly outperform Mamba at in-
context multimodal retrieval. Overall, Mamba
shows promising performance on tasks where
the correct output relies on a summary of the
image but struggles when retrieval of explicit
information from the context is required1.

1 Introduction

Modern Visual Language Models (VLMs) (Bai
et al., 2023a; Li et al., 2024; Alayrac et al., 2022)
typically treat patch representations from vision
encoders (Radford et al., 2021; Fang et al., 2023;
Zhai et al., 2023) as tokens that are mapped to the
embedding space of a Transformer-based Large
Language Model (LLM). This patch-as-token ap-
proach has fostered the development of VLMs that
have achieved unprecedented performance on es-
tablished Vision & Language (VL) on many coarse-
grained tasks, for example, image captioning (Lin
et al., 2014) or visual question answering (Goyal

1Code available here.

et al., 2017; Hudson and Manning, 2019). How-
ever, fine-grained tasks such as localizing regions
within an image (Peng et al., 2023b; Kazemzadeh
et al., 2014), or reading text (Sidorov et al., 2020;
Mathew et al., 2021) from the image are signifi-
cantly more challenging for these models. These
tasks require the model to grasp nuances within the
image beyond summarizing the visual context in a
few words as in conventional image captioning.

A straightforward countermeasure is to scale up
the resolution of images, allowing the VLM to
“see greater details”. (Liu et al., 2023b; Karam-
cheti et al., 2024; McKinzie et al., 2024). On the
other hand, increasing the context length requires
substantial overhead as Transformer-based VLMs
have quadratic complexity with respect to the input.
Structured state space models (SSMs) (Gu et al.,
2022; Poli et al., 2023) have recently emerged, pro-
viding competitive performance against Transform-
ers. Mamba (Gu and Dao, 2023) is a recent SSM
that promises computational efficiency as well as
performance that surpasses Transformer-based lan-
guage models of similar size.

In this paper, we investigate whether a Mamba
LLM is a competitive alternative to a Transformer
across established multimodal tasks including both
fine-grained and coarse-grained multimodal tasks.
The choice of the LLM plays a crucial role for
modern VLMs, as recent work (Laurençon et al.,
2024b) has shown that for a fixed number of total
parameters, the quality of the language backbone
has a higher impact than that of the vision back-
bone. More specifically, we train three Mamba-VL
variants and compare them against Pythia-VL, a
series of equally sized models that follow the estab-
lished paradigm to train VLMs with a state-of-the-
art Transformer-based LLM backbone (Biderman
et al., 2023). Notably, the performance of Pythia-
VL is comparable with that of existing VLMs, thus
establishing it as a robust baseline model. We em-
phasize that both models are trained on the exact
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same data presented in the same order, and with
identical training hyperparameters, allowing us to
provide precise indications of the strengths and
weaknesses of the two approaches.

We find that Mamba-VL outperforms Pythia-
VL in captioning, question answering, and reading
comprehension, but Pythia-VL models consistently
achieve greater performance in grounding tasks,
and this gap widens in larger models. To identify
the issue of the difference in performance, we ex-
plore the impact of task-agnostic visual encoding,
where the model produces embeddings for image
representations without information about the task.
While task-aware image encoding provides a mod-
est improvement in Mamba-VL’s grounding capa-
bilities, it remains inferior to the performance of
the Transformer-based VLMs. We investigate this
further by casting visual grounding as an in-context
multimodal retrieval task, where the model has to
retrieve the correct token from the sequence asso-
ciated with the query. Our results show that Trans-
formers are notably more sample efficient, indicat-
ing an inherent limitation of Mamba in retrieval-
oriented tasks, despite the promising results in se-
quence modeling. All in all, these experiments
showcase that Mamba can be quite effective when
the downstream task requires a summary of the
image but struggles in tasks where it has to retrieve
fine-grained details from the image.

2 Related Work

2.1 VLMs

Early works showcase the capabilities of LLMs
combined with pretrained vision encoders, in VL
tasks (Tsimpoukelli et al., 2021). Consequently,
current VLMs (Bai et al., 2023b; Dai et al., 2024;
Alayrac et al., 2022; Laurençon et al., 2024b; Liu
et al., 2024a; Chen et al., 2023b) are based on the
same foundational formula: a visual expert (Zhai
et al., 2023; Fang et al., 2023), a language backbone
(Touvron et al., 2023; Jiang et al., 2023; Bai et al.,
2023a; Team et al., 2024), and a connector between
the two modules. The vast majority of these models
are based on highly capable Transformer-based
LLMs. In this work, while we do not modify this
formula, we investigate the effect of replacing the
Transformer LLM with Mamba.

2.2 Structured State Space Models

Structured state space sequence models (S4) are a
family of models of sequence models using princi-

ples from RNNs, CNNs, and classical state space
models that attempt to combat the limitations of
Transformers in modeling long sequences (Fu et al.,
2023; Poli et al., 2023; Gu et al., 2022; Smith et al.,
2023). These models showcase convincing results
in modeling long-range dependencies across sev-
eral synthetic tasks (Tay et al., 2021). Previous
research shows, in a controlled study of moder-
ately sized models, that Transformers outperform
S4 models in terms of language modeling (Arora
et al., 2024). However, Mamba (Gu and Dao, 2023)
builds upon previous S4 models by introducing a
selective scan operation (Section 3.1) showing com-
petitive performance against Transformers.

Mamba applications Inspired by its results in
sequence modeling, recent work applies Mamba
to computer vision tasks, by introducing induc-
tive biases that better match the domain of image
encoding (Zhu et al., 2024a; Huang et al., 2024;
Ruan and Xiang, 2024; Liu et al., 2024b). Within
NLP, Jamba (Lieber et al., 2024) is a hybrid archi-
tecture with interleaved Transformer and Mamba
blocks, while MambaByte (Wang et al., 2024), is a
language model operating on bytes instead of sub-
words. To the best of our knowledge, there is not
yet a comprehensive study showcasing the effec-
tiveness of Mamba in multimodal settings. Con-
current work has applied Mamba in multimodal
tasks (Zhao et al., 2024a; Qiao et al., 2024). How-
ever, these studies offer limited insights, because 1)
they do not facilitate a fair comparison under con-
trolled conditions, and 2) they do not investigate
multimodal tasks that require both high-level and
fine-grained information, such as visual grounding.

Transformers vs SSMs The development of
SSMs and similar RNNs (Katharopoulos et al.,
2020; Fu et al., 2023; Peng et al., 2023a; Poli
et al., 2023) with competitive performance, has
motivated comparisons with Transformers. Re-
cent studies (Park et al., 2024; Grazzi et al., 2024)
show that SSMs can match the in-context learn-
ing performance of Transformers on certain tasks,
but Akyürek et al. (2024) demonstrate that Trans-
formers retain an advantage for in-context language
learning. Moreover, Merrill et al. (2024) provide
theoretical and empirical evidence contrary to pre-
vious claims (Gu et al., 2021), showing that SSMs
and Transformers have limited expressivity mak-
ing them unsuitable for state-tracking problems. In
terms of the in-context retrieval (e.g., copying) ca-
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EVA- 02 (Large 336 px /14)

Tokenizer

Mamba Language Model

Provide a one-sentence caption for the 
provided image.

A group of stormtrooper toys in various poses looking 
over another star wars figurine falling from a skateboard.

V&L Connector

## && && ##

Figure 1: Overview of Mamba-VL. We embed images using EVA-02 and use an MLP as V&L connector to align the
image with text embeddings before the Mamba backbone. Because Mamba does not encode positional information,
we introduce custom tokens that delineate the beginning and the end position of the image in the sequence. We also
use custom tokens that act as row separators within the image. The vision encoder is kept frozen during training.

pabilities of selective SSMs, Gu and Dao (2023)
show that Mamba is capable of performing associa-
tive recall, as formulated by the Induction Heads
(Olsson et al., 2022) task. However, follow-up
work (Jelassi et al., 2024; Wen et al., 2024) pro-
vides evidence that SSMs fall behind Transformers
when the copying task requires precise retrieval
from the context. We leverage these insights from
previous work to draw parallels with VL tasks. In
particular, we formulate a synthetic task for multi-
modal in-context retrieval to explain the limitation
of Mamba in visual grounding.

3 VLM Approach

3.1 Preliminaries: The Mamba model
S4 models (Gu et al., 2022) take inspiration from
Linear Time-Invariant (LTI) models that map a se-
quence x(t) ∈ R ↣ y(t) ∈ R through a hidden
state h(t) ∈ RN . The output of an LTI model is
computed in a two-stage format:

h′(t) = Ah(t) +Bx(t), (1a)

y(t) = Ch(t) (1b)

S4 models first transform the continuous param-
eters (A, B) with a discretization step with ∆ pa-
rameters, into discrete parameters (Ā, B̄). Given
the discrete parameters Ā, B̄ the discrete update is
defined in recurrent form Equation (2a), or via the
convolution form Equation (3a):

ht = Āht−1 + B̄xt (2a)

yt = Cht (2b)

K̄ = (CB̄,CĀB̄, . . . ,CĀkB̄) (3a)

y = x ∗ K̄ (3b)

However, for language modeling S4 models un-
derperform attention-based models (Arora et al.,
2023). Gu and Dao (2023) empirically show that
the time-independent parameters of an S4 model
are not sufficient to select the correct information
from their context as it is not straightforward how
to reset the hidden state at each timestep. For this
purpose, certain parameters of the Mamba model
(∆,B,C) are allowed to be functions of the input.
With this change, hidden states can be updated in a
selective fashion over the input – though due to vio-
lation of the convolution view (Equation (3a)), this
requires a hardware-aware implementation to com-
pute the hidden states efficiently. For additional
implementation details of Mamba please see the
original paper (Gu and Dao, 2023).

3.2 Model Architecture

Figure 1 shows an overview of our model. We
built our approach using the standard paradigm for
VLMs that combine unimodal experts (Liu et al.,
2024a; Alayrac et al., 2022; Dai et al., 2024). More
specifically, our model consists of three individ-
ual components, a vision encoder, the Vision &
Language connector, and the language backbone.

Vision Encoder We use EVA-02-L336px/14
(Fang et al., 2023) to obtain high-quality visual rep-
resentations. While previous work usually adopts
CLIP models (Bai et al., 2023b; Liu et al., 2024a),
the EVA series outperforms the existing open CLIP
models. We also provide results in Appendix C,
showcasing a comparison between the two vision
encoders using preliminary checkpoints. Further-
more, based on previous work (Karamcheti et al.,
2024), we opted for higher resolution images, as it
has been shown that it leads to performance gains.
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(Grounded) Image 
Captioning

Visual Question 
Answering

Reading 
ComprehensionVisual Grounding Misc

What color is the toy the 
dog is holding? Yellow.

VQAv2

Visual7W (P)

Which clock is a heart?
A. [0.64, 0.08, 0.72, 0.22]
B. [0.78, 0.48, 0.88, 0.71]
C. [0.55, 0.53, 0.61, 0.76]
D. [0.61, 0.51, 0.76, 0.99]
A.

What color is the head 
of cabbage?
A. Green. B. Red.
C. Purple D. White.
C.

Visual7W (T)

COCO

A number of elephants 
in a field near trees.

GRIT POPE* (Object 
Hallucinations)

Is there a traffic light in 
the image? No.

The cat is in the 
umbrella. True.

VSR 
(Spatial Reasoning)

Two brown ducks [0.28, 
0.32, 0.46, 0.71][0.72, 0.22, 

0.63, 0.59].

TextCaps

A floral arrangement says 
"60 years" as a question.

RefCOCO/+/g

Book with three teddy 
bears on the cover. 
[0.0, 0.54, 0.32, 0.79]

TextVQA*

What is the name of a 
food blog cookbook? 

The foodista.

Figure 2: Overview of task categorization and format. We leverage a collection of datasets for coarse-grained (e.g.,
image captioning, visual question answering) and fine-grained (e.g., visual grounding, reading comprehension)
multimodal tasks. Text in purple indicates the outputs of a model for each task. ∗ denotes held-out datasets.

Vision & Language Connector We follow
LLaVA-1.5 (Liu et al., 2023b) and use a two-layer
MLP that projects the visual tokens to the dimen-
sionality expected by the LLM, leaving more so-
phisticated architectural choices (Dai et al., 2024;
Bai et al., 2023b; You et al., 2023) for future work.

Language Backbone We use Mamba or Pythia
(Biderman et al., 2023) as the language backbone
that accepts the visual features from the connector
module, and the tokenized text containing the task
instruction and any sample text. We select Pythia
as the baseline Transformer-based language model
because it enables direct comparison as it 1) follows
the state-of-the-art Transformer recipe (Su et al.,
2024; Dao, 2023), 2) is trained on the same dataset
as Mamba (Gao et al., 2020), 3) provides model
variants with a similar number of parameters.

A key difference between the two models is that
Mamba does not allocate parameters to model po-
sitional information. This inductive bias has been
identified by concurrent work (Liu et al., 2024c;
Zhu et al., 2024a), applying Mamba to computer vi-
sion tasks, since positional embeddings capture the
structure of the image. Inspired by Fuyu (Rohan
et al., 2023), we overcome this issue by introducing
a separator token (“##”) that signals the beginning
and the end of the image sequence, as well as an
image-newline character (“&&”) that depicts the
end of a row of patches.

4 Datasets

We use a collection of open-source datasets to allow
a fully reproducible comparison. For pretraining,
we leverage the dataset from Liu et al. (2024a), a
subset of 595K captions from Conceptual Captions
3M (Sharma et al., 2018). For instruction tuning,
we use a collection of established coarse and fine-
grained vision-language tasks (e.g., captioning, vi-
sual question answering, and referring expression).
Figure 2 shows examples for all tasks in our train-
ing and evaluation. We provide details for our
dataset, filtering approach, and task instructions in
Appendix A. Notably, we pack the examples from
the same image and task into one sequence.

5 Experiments

5.1 Experimental Setup

Similar to previous work (Liu et al., 2024a; Li et al.,
2024) we employ a two-step training regime. First,
we perform a warmup stage where we train only
the connector component on the pretraining dataset.
Next, we unfreeze the language model parameters
and train on the instruction-tuning dataset. All
models are trained using the same data, in the same
order, and with identical training hyperparameters
(see Appendix B for further details). Unless stated
otherwise, we report the evaluation performance
without task-specific fine-tuning.
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Image Captioning General VQA Misc
Model LLM COCO NoCaps∗ Sum VQAv2 GQA V7W Sum VSR POPE∗

Param test val val test-dev test-T test test

Pythia-VL 1B 132.89 97.61 230.50 72.26 53.79 81.96 208.81 72.43 86.77
Mamba-VL 790M 133.81 99.00 232.81 (+2.31) 71.67 54.95 81.82 208.44 (-0.37) 75.39 86.77

Pythia-VL 1.4B 134.06 100.72 234.78 73.57 57.05 83.06 213.68 77.72 86.40
Mamba-VL 1.4B 134.76 100.56 235.32 (+0.54) 74.46 58.44 83.78 216.67 (+2.99) 80.18 85.32

Pythia-VL 2.8B 134.97 101.27 236.24 75.08 59.76 84.34 219.18 80.86 86.87
Mamba-VL 2.8B 135.53 102.00 237.53 (+1.29) 76.08 60.41 85.31 221.80 (+2.62) 81.45 87.33

Table 1: Results on image captioning, general VQA, and misc benchmarks. ∗ denotes zero-shot performance.

Visual Grounding Reading Comprehension
Model LLM RefCOCO RefCOCO+ RefCOCOg V7W Sum TextCaps TextVQA† AI2D Sum

Param test-A test-B test-A test-B test test-P val val test

Pythia-VL 1B 76.00 62.48 45.36 47.44 67.58 83.78 382.64 92.73 35.22 77.62 205.57
Mamba-VL 790M 67.84 56.35 57.97 41.43 59.16 74.01 356.76 (-25.88) 94.30 40.72 79.27 214.29 (+8.72)

Pythia-VL 1.4B 82.43 68.39 72.35 55.16 72.56 86.13 437.02 94.60 37.54 79.27 211.41
Mamba-VL 1.4B 76.60 63.48 68.40 52.11 68.82 80.18 409.59 (-27.43) 98.68 41.30 80.86 220.84 (+9.43)

Pythia-VL 2.8B 85.39 70.82 75.39 58.62 76.24 86.61 453.07 99.74 39.14 81.57 220.45
Mamba-VL 2.8B 79.29 64.97 71.64 53.94 71.27 82.50 423.61 (-29.45) 100.47 42.14 83.71 226.32 (+5.87)

Table 2: Results on visual grounding, and text-oriented, benchmarks. † denotes a task not in the training mixture.
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Figure 3: Results of finetuned 1.4B models with in-
creased resolution on VQAv2 (top), RefCOCOg (mid-
dle), and TextVQA (bottom). Increasing the resolution
to 480×480 pixels results better performance for both
models, however, Pythia benefits significantly more than
Mamba in the grounding task.

5.2 Results

Pythia vs Mamba Table 1 and Table 2 illustrate
the comparison between Pythia-VL and Mamba-
VL across three model sizes. We provide results for
each benchmark individually, along with a summa-
tion score as an indication of overall performance
for a task group. We observe that Mamba vari-
ants match or surpass the performance of models
with Pythia as an LLM across all three sizes in
most tasks. Specifically, the smallest Mamba-VL

achieves competitive performance with Pythia-VL
even though it has approximately 200M fewer pa-
rameters but also outperforms Pythia-VL on zero-
shot image captioning (NoCaps) and on spatial
understanding (VSR). However, the performance
gap decreases proportionally to the size of the com-
pared models. The largest performance difference
is observed in the reading comprehension tasks. We
hypothesize that textual information within an im-
age provides a strong signal for Mamba to maintain
this information in the hidden state. Surprisingly,
Pythia-VL models consistently outperform Mamba-
VL on grounding tasks across all scales, but also
this gap is further widened in larger models.

Finetuning with Higher Resolution It is widely
known that increasing the image resolution yields
benefits in Transformer-based VLMs (Karamcheti
et al., 2024; Laurençon et al., 2024b). We explore
whether the benefits of higher image resolution
translate to Mamba given its strong long sequence
modeling capabilities (Gu and Dao, 2023). Figure 3
shows the performance of 1.4B models on VQAv2,
RefCOCOg, and TextVQA after finetuning on each
task with higher-resolution images. As expected,
both models benefit from higher-resolution images,
and the differences are more evident in RefCOCOg,
possibly due to the granularity of the task. Com-
paring Pythia-VL and Mamba-VL, both models
exhibit a similarly small improvement in VQAv2
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Model LLM NoCaps∗ VQA GQA RefCOCOg V7W (P) TextVQA AI2D POPE∗

val test-dev test-dev test test val val test

LLaVA-1.5 (2024a) Vicuna-7B - 78.5 62.0 - - 58.2 - 85.8
InstructBLIP (2024) Vicuna-7B 123.1 - 49.2 - - 50.1 - 83.7
Shikra (2023a) Vicuna-7B - 77.4 - 82.19 85.33 - - 83.9
Ferret-v2-7B (2024) Vicuna-7B - 81.5 64.7 89.27 - 61.7 - 87.8
Qwen-VL-Chat (2023b) Qwen-7B 120.2 78.2 57.5 86.32 61.5 62.3 -
IDEFICS2 (2024b) Mistral-7B-v0.1 - 81.2 - - - 73.0 - -

LLaVA-Phi (2024b) Phi2-2.7B - 71.4 - - - 48.6 - 85.0
TinyLLaVA (2024) Phi2-2.7B - 79.9 62.0 - - 59.1 - 86.4
Cobra (2024a) Mamba-2.8B - 75.9 58.5 - - 46.0 - 88.0
VL-Mamba (2024c) Mamba-2.8B - 76.6 56.2 - - 48.9 - 84.4

Pythia-VL Pythia-2.8B 100.72 77.0 59.8 76.24 86.61 39.1 81.6 86.9
Mamba-VL Mamba-2.8B 100.56 78.0 60.4 71.27 82.50 42.1 87.3 87.3

Table 3: Results against state-of-the-art models. ∗ denotes zero-shot performance.

and TextVQA, but Pythia-VL benefits substantially
more than Mamba-VL in RefCOCOg. This pro-
vides further evidence regarding the limitations of
Mamba on grounding tasks, on which we further
elaborate in Section 5.3.

Comparison with SOTA models For complete-
ness, we provide a comparison against state-of-the-
art 3B and 7B parameter models (Table 3). We
observe that our largest models are competitive
even against the largest VLM models. Our model
performs on par with other Mamba-based VLMs
(Cobra and VL-Mamba) with a small advantage in
general VQA benchmarks (VQA, GQA). Impor-
tantly, we want to note that our base LLMs have not
been instruction-tuned, which could have a major
impact, particularly in multimodal language model-
ing tasks (Laurençon et al., 2024b). Furthermore, it
is hard to draw definite conclusions between differ-
ent models as they have been trained using different
datasets and training regimes.

5.3 Why is Grounding Difficult for Mamba?
We observed that Mamba models are quite effective
in multimodal language modeling tasks (e.g., cap-
tioning, visual question answering). However, they
underperform compared to Transformers of equal
capacity in visual grounding tasks. What is the
underlying reason for this weakness? We explore
two possible explanations using the 1.4B parameter
models by 1) examining the effect of task-agnostic
visual encoding, and 2) framing visual grounding
as an in-context multimodal retrieval task.

5.3.1 Task-agnostic Visual Encoding
Both Transformer causal models and SSMs operate
unidirectionally, i.e. the representation at a given
timestep is a function of only the previous and

1 0 1 2 3
Relative Scores (%)

+1.10
RefCOCOg

test

-1.31
RefCOCO+

test-B

-0.84
RefCOCO+

test-A

+0.73
RefCOCO

test-B

+0.42
RefCOCO

test-A

+0.02Average

+1.73

-0.61

-0.22

+2.95

+1.53

+1.08

Effect of Task-Aware Visual Encoding on Grounding Benchmarks

Pythia VL
Mamba VL

Figure 4: Relative performance difference on visual
grounding benchmarks between task-aware and task-
agnostic visual encoding. On average, task-aware en-
coding yields a marginal performance boost on Mamba-
VL while it has almost no effect on Pythia-VL.

current tokens. However, SSMs enforce a stricter
update rule, where the hidden state can only be
updated with information from the previous hidden
state and the current input (Equation (2a)). Con-
sequently, when the image precedes the instruc-
tion, patch representations are encoded in a task-
agnostic manner. Intuitively, this might lead the
model to store “generic” information in its hid-
den state, which is useful for multimodal language
modeling tasks but ineffective in explicit visual
grounding, where the model has to remember the
spatial positions of any entity in the image. On
the other hand, in Transformer models, the hidden
state of each timestep has direct access to all previ-
ous timesteps and, therefore, can retrieve relevant
information in later hidden states.

We investigate the impact of task-aware visual
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ExamplesSynthetic Grounding 

Input: Unique Token IDs 

…<s42> <out>

O

<s21><s17><s14> <s42>

“x” “y” “z”

Output Token IDs

<s42><s17><s14> “y”<s17><out>

<s42><s17><s14> “x”<s14><out>

<s42><s17><s14> “z”<s42><out>

<s14><s17><s42> “z”<s14><out>

Query

Model

Output: Masked Targets Position ID
“z”

Figure 5: Overview of the synthetic visual grounding
task. The model accepts as input a sequence of unique
special tokens, followed by an output token and a special
token id that appears in the context as a query. The
model needs to predict the token id corresponding to the
position of the queried token.

encoding by placing the task instruction before the
image during the instruction-tuning stage. In prin-
ciple, this simple modification favors Mamba as
the model may choose to store or ignore inputs that
are not relevant to the task. Figure 4 shows the
gain of both models using task-aware encoding on
visual grounding benchmarks. We observe that on
average the task-aware encoding leads to a small
relative improvement for Mamba-VL, but that even
in this setup, Pythia-VL achieves higher perfor-
mance (see Table 11 for full results). Furthermore,
the results vary across different grounding bench-
marks, but also across other tasks suggesting that
the task-aware encoding is not always beneficial.

Perhaps the performance of Mamba-based
VLMs on grounding, as well as on other tasks,
can be further improved by incorporating the task
instruction, and the query (e.g., question, referring
expression) before the image. This is in line with re-
cent work (Jelassi et al., 2024) showing that, when
the query is available at the beginning of the in-
put, SSMs can perform on par with Transformers
on toy associative recall tasks. However, this is at
odds with the common practice of data packing in
current VLM training (Bai et al., 2023a; Li et al.,
2024). We anticipate that naively separating the
queries and outputs with image tokens can nega-
tively affect the capabilities of a model.

5.3.2 Grounding as Multimodal Retrieval
We can view visual grounding as an in-context
multimodal retrieval task. In a standard in-context
retrieval task, the model is provided with a context
(a text paragraph) and a query (a relevant question),
and it needs to extract and copy the part of the

input corresponding to the question. Similarly, in a
visual grounding task, the model is provided with
a series of patch tokens as context and a prompt
and needs to reference the area that matches the
prompt. The core difference is that the space of
the token embeddings is different. In the standard
retrieval task, the inputs and outputs of the model
are both in text form, whereas in visual grounding
the VLM performs a two-hop step by matching
the text prompt to the visual modality and then
providing a textual response.

For this purpose, motivated by concurrent work
(Jelassi et al., 2024; Merrill et al., 2024), we intro-
duce a synthetic task (Figure 5) that frames visual
grounding as a retrieval objective and facilitates an
interpretable model comparison. We provide a pre-
trained model with a context of unique special to-
kens (<s14><s17><s42>. . . ), followed by a query
(<out><s42>). To incorporate the two-hop step be-
tween two modalities, we ask the model to return
the token id from the vocabulary that matches the
position of the special token in the sequence (“z”).
This setup resembles how the language model of a
VLM adapts to two modalities. We resize the em-
bedding layer of the pretrained models to accom-
modate the new special tokens (the patch tokens
in the VLMs2), and task the model to learn a map-
ping between the textual and the new embedding
space. Finally, visual grounding is an instantiation
of this synthetic task, where the input sequence is
composed of the patch representations, the query
token is the prompt, and the outputs are the pixels
that match the prompt in the image.

We experiment with varying the sequence length
(50/100/200, see Appendix C.4 for details). For
each sequence, we use three different learning rates
and train each model with three initializations of
the embeddings of the special tokens (9 runs in total
per sequence length). We track the performance on
a held-out set and terminate training whenever the
model achieves ≥ 95% accuracy.

Figure 6 shows the results of both models. We
observe that Pythia learns to solve the task con-
sistently using approximately 10% of the training
data. On the other hand, Mamba is less sample-
efficient requiring nearly double the amount of
training when increasing the sequence length, and
even fails to reach the accuracy threshold for some
runs with longer sequences. These results show

2In practice, VLMs do not resize the embedding layer of
the LLM, but accept the embeddings from the visual encoder.
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Figure 6: Performance curves for Pythia-1.4B and Mamba-1.4B variants on the synthetic grounding task with
varying sequence length. Pythia learns the task significantly faster compared to Mamba.
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Figure 7: Accuracy per position on the held-out set
during training on sequences of 200 tokens.

that in tasks requiring access to the whole context,
Mamba struggles to retrieve information from its
fixed-size hidden state. Transformers do not en-
counter this challenge as the representation of a
token is informed by all preceding tokens.

Finally, we discuss how Transformers and
Mamba learn to perform in-context retrieval. Fig-
ure 7 illustrates the performance per target token
of both models on the synthetic grounding task
with sequences of 200 tokens. Pythia learns the
correct target position uniformly. On the other
hand, Mamba exhibits a different pattern: at the

early stages of training it performs adequately in
sequences where the target token is located at the
end, gradually learns to retrieve the correct token
in sequences where the target is at the beginning,
and finally, at the end of training learns the task
with a target token in between the sequence.

6 Conclusion

Implications of Findings In this work, we com-
pare Transformer and SSM-based language model
backbones for VLMs. We show that Mamba consis-
tently outperforms Transformers in tasks where the
output depends on a summary of the visual infor-
mation. Transformers, on the other hand, maintain
the lead in visual grounding tasks, which we link to
their ability to learn more accurately and efficiently
to retrieve dense information from the context.
Regardless, Mamba and SSMs, in general, have
memory and computational advantages that could
be especially critical for tasks that require model-
ing long sequences, such as high-resolution images,
videos, or multimodal documents. Developing hy-
brid architectures that integrate an attention-like
mechanism into SSMs (Dao and Gu, 2024; Wal-
effe et al., 2024) is therefore an exciting avenue for
future work. Such architectures could lead to effi-
cient VLMs that are also able to effectively retrieve
relevant information from the context.

Feature or Bug? Additionally, we experiment
with the effect of placing the instruction before and
after the visual input. While task-aware image en-
coding provides a marginal performance boost for
Mamba on visual grounding, the results fluctuate
across other tasks. Ultimately, we want multimodal
models that can seamlessly encode different modal-
ities without forcing a strict order on how they are
presented to the model. From this perspective, per-
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formance differences due to the input structure are
a strong signal that the current iteration of VLMs
is only partially addressing this issue.

Limitations

Data Ablations We have not investigated any im-
pact of the data and task distribution. We have not
covered any ablations regarding how the examples
are packed into sequences. Recent work has shown
that this might affect downstream performance in
LLMs (Zhao et al., 2024b). Based on our analysis
in Section 5.3, and the conclusions from concurrent
work (Jelassi et al., 2024; Merrill et al., 2024), we
expect that Transformer and Mamba models might
behave differently with different packing strategies.
However, we want to emphasize that both models
are trained on the same data thereby ensuring a fair
comparison between them, and also the distribution
of the data is heavily skewed towards grounding
tasks due to the inclusion of the GRIT dataset.

Ethics statement

The Cost of Training Large Scale VLMs It has
been increasingly transparent that the cost of train-
ing large-scale models, including VLMs, raises
compute barriers (Strubell et al., 2019; Thomp-
son et al., 2020; Luccioni et al., 2024). While
patch representations have become the standard
approach for encoding images, these representa-
tions substantially increase the context window
and, consequently, the computational cost of train-
ing. To improve efficiency, we have employed
sequence packing during training, which results
to fewer padding tokens within the batch. Addi-
tionally, more sophisticated V&L connectors that
downsample the visual sequence (Alayrac et al.,
2022; Dai et al., 2024; Laurençon et al., 2024a)
can, in principle, accelerate training and inference.
We leave comparisons of more efficient V&L con-
nectors in combination with SSMs as future work.

Hallucinations & Reliability A widely acknowl-
edged limitation for LLMs and VLMs is the fac-
tuality of the generated content (Ji et al., 2023).
The impact of this property can vary depending
on the downstream task (e.g., answering a ques-
tion accurately versus creating novel images with
text prompts). Furthermore, prior work (Panta-
zopoulos et al., 2024), has shown that the visual
instruction tuning stage imposes a forgetting effect
on the safety guardrails of the backbone LLM lead-
ing to more vulnerable VLMs. In this work, we

use POPE (Li et al., 2023), a benchmark specifi-
cally designed to evaluate object hallucinations in
VLMs. However, further investigation is needed
to evaluate model hallucinations and improve the
reliability of VLMs.
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lar Sağnak. 2023. Fuyu-8b: A multimodal architec-
ture for ai agents.

Jiacheng Ruan and Suncheng Xiang. 2024. Vm-unet:
Vision mamba unet for medical image segmentation.
arXiv preprint arXiv:2402.02491.

Dustin Schwenk, Apoorv Khandelwal, Christopher
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022.
A-okvqa: A benchmark for visual question answer-
ing using world knowledge. In European Conference
on Computer Vision, pages 146–162. Springer.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic im-
age captioning. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2556–2565.

Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and
Amanpreet Singh. 2020. Textcaps: a dataset for im-
age captioning with reading comprehension. In Com-
puter Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part II 16, pages 742–758. Springer.

Jimmy T.H. Smith, Andrew Warrington, and Scott Lin-
derman. 2023. Simplified state space layers for se-
quence modeling. In The Eleventh International Con-
ference on Learning Representations.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. 2021. Long
range arena : A benchmark for efficient transformers.
In International Conference on Learning Representa-
tions.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Neil C Thompson, Kristjan Greenewald, Keeheon
Lee, and Gabriel F Manso. 2020. The compu-
tational limits of deep learning. arXiv preprint
arXiv:2007.05558.

14329

https://aclanthology.org/2023.emnlp-main.50
https://aclanthology.org/2023.emnlp-main.50
https://aclanthology.org/2023.emnlp-main.50
https://aclanthology.org/2024.safety4convai-1.5/
https://aclanthology.org/2024.safety4convai-1.5/
https://aclanthology.org/2024.safety4convai-1.5/
https://openreview.net/forum?id=xvr0Hctddy
https://openreview.net/forum?id=xvr0Hctddy
https://openreview.net/forum?id=xvr0Hctddy
https://aclanthology.org/2023.findings-emnlp.936/
https://aclanthology.org/2023.findings-emnlp.936/
https://arxiv.org/abs/2306.14824
https://arxiv.org/abs/2306.14824
https://proceedings.mlr.press/v202/poli23a.html
https://proceedings.mlr.press/v202/poli23a.html
https://arxiv.org/abs/2403.13600
https://arxiv.org/abs/2403.13600
https://proceedings.mlr.press/v139/radford21a
https://proceedings.mlr.press/v139/radford21a
https://www.jmlr.org/papers/v21/20-074.html
https://www.jmlr.org/papers/v21/20-074.html
https://www.jmlr.org/papers/v21/20-074.html
https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b
https://arxiv.org/abs/2402.02491
https://arxiv.org/abs/2402.02491
https://link.springer.com/chapter/10.1007/978-3-031-20074-8_9
https://link.springer.com/chapter/10.1007/978-3-031-20074-8_9
https://aclanthology.org/P18-1238/
https://aclanthology.org/P18-1238/
https://aclanthology.org/P18-1238/
https://link.springer.com/chapter/10.1007/978-3-030-58536-5_44
https://link.springer.com/chapter/10.1007/978-3-030-58536-5_44
https://openreview.net/forum?id=Ai8Hw3AXqks
https://openreview.net/forum?id=Ai8Hw3AXqks
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://www.sciencedirect.com/science/article/abs/pii/S0925231223011864
https://www.sciencedirect.com/science/article/abs/pii/S0925231223011864
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2007.05558
https://arxiv.org/abs/2007.05558


Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi,
SM Eslami, Oriol Vinyals, and Felix Hill. 2021. Mul-
timodal few-shot learning with frozen language mod-
els. Advances in Neural Information Processing Sys-
tems, 34:200–212.

Ahmet Üstün, Viraat Aryabumi, Zheng-Xin Yong, Wei-
Yin Ko, Daniel D’souza, Gbemileke Onilude, Neel
Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid,
et al. 2024. Aya model: An instruction finetuned
open-access multilingual language model. arXiv
preprint arXiv:2402.07827.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Bran-
don Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak
Narayanan, Garvit Kulshreshtha, Vartika Singh, Jared
Casper, Jan Kautz, Mohammad Shoeybi, and Bryan
Catanzaro. 2024. An empirical study of mamba-
based language models.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan
Yan, and Alexander M Rush. 2024. Mambabyte:
Token-free selective state space model. arXiv
preprint arXiv:2401.13660.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. 2022. Ofa: Unifying ar-
chitectures, tasks, and modalities through a simple
sequence-to-sequence learning framework. In Inter-
national Conference on Machine Learning, pages
23318–23340. PMLR.

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. 2024.
Rnns are not transformers (yet): The key bot-
tleneck on in-context retrieval. arXiv preprint
arXiv:2402.18510.

Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei
Hu, Faisal Ahmed, Zicheng Liu, Yumao Lu, and
Lijuan Wang. 2022. Unitab: Unifying text and box
outputs for grounded vision-language modeling. In
European Conference on Computer Vision, pages
521–539. Springer.

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du,
Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-Fu
Chang, and Yinfei Yang. 2023. Ferret: Refer and
ground anything anywhere at any granularity. In
The Twelfth International Conference on Learning
Representations.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,
and Lucas Beyer. 2023. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
11975–11986.

Haotian Zhang, Haoxuan You, Philipp Dufter, Bowen
Zhang, Chen Chen, Hong-You Chen, Tsu-Jui Fu,
William Yang Wang, Shih-Fu Chang, Zhe Gan, et al.
2024. Ferret-v2: An improved baseline for referring
and grounding with large language models. arXiv
preprint arXiv:2404.07973.

Han Zhao, Min Zhang, Wei Zhao, Pengxiang Ding,
Siteng Huang, and Donglin Wang. 2024a. Co-
bra: Extending mamba to multi-modal large lan-
guage model for efficient inference. arXiv preprint
arXiv:2403.14520.

Yu Zhao, Yuanbin Qu, Konrad Staniszewski, Szymon
Tworkowski, Wei Liu, Piotr Miłoś, Yuxiang Wu, and
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Figure 8: Filtered and unfiltered distribution of noun
phrases in GRIT. By applying minimal filtering, we can
reduce the dataset size while at the same time maintain
object coverage.

A Datasets

A.1 Data Mixture
Table 4 shows the datasets used for instruction tun-
ing. Table 5 shows a detailed breakdown regarding
the number of examples for each task.

Filtering Visual Genome We follow OFA (Wang
et al., 2022) by preprocessing region descriptions.
Specifically, we use only image-region pairs from
Visual Genome where the area of the region is
smaller than 16, 384 pixels to encourage more fine-
grained alignments between vision and language.

Filtering GRIT The original version of GRIT
(Peng et al., 2023b) contains 20.5M image-
grounded caption pairs. Simply including this
benchmark bears the risk of task imbalance, and
therefore overfitting on a given task at very early
stages of training (Raffel et al., 2020). Furthermore,
previous work (Abbas et al., 2023) has shown that
semantic deduplication of a large-scale corpus from
the web, can significantly reduce the training cost
while at the same time maintain performance.

Therefore, to accelerate training without sacrific-
ing diversity we filter GRIT by trying to maximize
the number of concepts in the corpus. An easy ap-
proach would be to rank the image-text pairs using
CLIPScore (Hessel et al., 2021) and then select
the top-N images as the filtered corpus. However,
this approach may result in selecting images of the
most frequent concepts and thus do not expose the
model to a variety of examples. For this purpose,
we filter the dataset using the noun phrases from
each caption. First, we discard all images with

width or height less than 100 pixels. With regards
to the text descriptions, we begin by removing any
articles from the noun phrase and then counting
all phrases for each image. Next, starting from the
rarest noun phrases: 1) if the frequency is between
a min and a max threshold we add all images to
our filtered corpus that contain the phrase in their
caption, 2) else if the frequency is higher than the
maximum threshold we randomly select max im-
ages. As shown in Figure 8, by setting min = 3, and
max = 8, we can obtain a smaller corpus that covers
all noun phrases.

Filtering OCRVQA We filter out images with
a width or height of less than 350 pixels. Addi-
tionally, we have observed that some image URLs
contain blank images (i.e., images with only a sin-
gle color). We performed rudimentary filtering by
removing all images that have more than 85% pix-
els from the same color. Finally, we removed all
questions associated with the category of the book
(e.g, “Is this a sociopolitical book?”) as we iden-
tified from manual inspection that answering this
question based solely from the cover of the book
can be particularly challenging.

Multiple Choice VQA For the multiple choice
VQA datasets used in instruction tuning (e.g, AI2D
(Kembhavi et al., 2016), Visual7W (Zhu et al.,
2016), and A-OKVQA (Schwenk et al., 2022)),
we have augmented the training data by assigning
the correct option to all possible character options.
For example, if the question has four candidate an-
swers (A, B, C, D) and the correct answer is A, we
created four data points from this question alone
by rotating the labels clockwise until the correct
answer is in all positions.

A.2 Response Formatting

Table 6 shows the instructions used in our
models. Across all experiments, including the
first training stage, we mask the instruction
prompts and predict only the response. The full se-
quence given to the model has the following format:
##p11, p12, . . . , p1N&& . . . , pN1, pN2, . . . , pNN##
<Task Instruction> <Prompt> <Response>,
where the tokens pij are the embeddings for each
patch.

Representing Coordinates in Images We fol-
low previous VLMs that choose to represent co-
ordinates in images using decimal values (Chen
et al., 2023a; Bai et al., 2023b). Other works (Chen
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Task # Packed Samples Dataset

Captioning 588K COCO, TexCaps
Chat 157K LLaVA-Instruct
Dense Captioning 467K RefCOCO, RefCOCO+, RefCOCOg, Visual Genome
Grounded Captioning 4.2M GRIT
Image-Text Matching 8k VSR
Multiple-Choice VQA 127K AI2D, Visual7W

VQA 352K
VQAv2, GQA, OCR-VQA, VG-QA,
DocVQA, InfographicVQA

Visual Grounding 467K RefCOCO, RefCOCO+, RefCOCOg, Visual Genome

Total 6.2M

Table 4: Dataset statistics for instruction-tuning. We pack examples from the image into the sequences.

et al., 2022; Wang et al., 2022; Yang et al., 2022;
Peng et al., 2023b) introduce special tokens that
represent image coordinates in a discrete format.
This approach increases the size of the model by
adding extra rows to the embedding matrix corre-
sponding to the new special tokens. Furthermore,
Shikra (Chen et al., 2023a) has shown preliminary
results on the benefits of decimal representation.
While there is yet a comprehensive comparison,
we believe that the advantage of the decimal repre-
sentation is due to the fact that the LLM has often
already trained embeddings for the decimal tokens,
i.e, the model roughly knows what “0.5” refers
to and therefore starts from an advantageous point
during the visual instruction tuning stage. However,
decimal representation introduces longer sequences
which prolongs training and inference. Future work
could further explore this trade-off.

A.3 Dataset Packing
A significant component during our model develop-
ment is how we pack the examples into sequences
in a meaningful way. The benefits of this dataset
packing are two-fold: 1) we ensure efficiency in
training by minimizing unnecessary computations
due to the padding tokens in a batch (Krell et al.,
2021), and 2) by packing examples we facilitate
chat capabilities of our models to some degree. In
this work, we pack examples from the same image
into a sequence of input-output pairs. As already
mentioned, we apply packing for all (multiple-
choice) VQA, Visual Grounding, and Dense Cap-
tioning examples. We refrain from packing cap-
tioning examples because the target captions can
be repetitive, therefore the model may rely on pre-
vious captions without paying attention to the im-
age. We aimed for a maximum sequence length of
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Figure 9: Loss curves for all models during pretraining.

1024 tokens including the patch embeddings and
the special image tokens. For this purpose packed
examples from VQAv2 (Goyal et al., 2017) are lim-
ited to 20 qa pairs. Similarly, we limit the number
of qa-pairs to 10 and 5 for the telling, and pointing
task in Visual 7W (Zhu et al., 2016). Finally, for
all tasks in Visual Genome (Krishna et al., 2017),
all packed examples are limited to 10 input-output
responses.

B Training Details

Training Hyperparameters We use the same
hyperparameters as LLaVA-1.5 for pretraining /
instruction tuning. We decided to increase the num-
ber of epochs in the pretraining stage as we ob-
served significant performance differences after
zero-shot evaluation on COCO captioning with pre-
liminary experiments. Additionally, we obtain vi-
sual features from the last layer of the EVA model.
We have not conducted any ablations considering
the layer from which to obtain visual representa-
tions. All experiments were conducted using 4x
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Dataset Tasks # Images # Packed Samples

AI2D (Kembhavi et al., 2016) Multiple Choice VQA 3K 44K

A-OKVQA (Schwenk et al., 2022) Multiple Choice VQA 16K 68K

COCO (Lin et al., 2014) Captioning 113K 566K

DocVQA (Mathew et al., 2021) VQA 10K 20K

GQA (Hudson and Manning, 2019) VQA 87K 72K

GRIT (Peng et al., 2023b) Grounded Captioning 4M 4M

InfographicVQA (Mathew et al., 2022) VQA 4K 12K

LLaVA-Instruct (Liu et al., 2024a) Chat 81K 157K

OCR-VQA (Mishra et al., 2019) VQA 66K 66K

RefCOCO (Kazemzadeh et al., 2014)
Dense Captioning
Visual Grounding

16K
16K

16K
16K

RefCOCOg (Kazemzadeh et al., 2014)
Dense Captioning
Visual Grounding

21K
21K

21K
21K

RefCOCO+ (Kazemzadeh et al., 2014)
Dense Captioning
Visual Grounding

16K
16K

16K
16K

TextCaps (Sidorov et al., 2020) Captioning 109K 21K

VQAv2 (Goyal et al., 2017) VQA 84K 82K

VSR (Liu et al., 2023a) Image Text Matching 5k 8K

Visual Genome
(Krishna et al., 2017)

Dense Captioning
Visual Grounding
VQA

411K
411K
184K

105K
105K
97K

Visual7W (Zhu et al., 2016) Multiple Choice VQA 27K 255K

Total 5.7M

Table 5: Dataset statistics for instruction-tuning. We pack image-text examples from the same dataset into the same
sequence.

A100 (40GB / 80GB) or 2x H100 GPUs. For the
small models (≤ 1.4B) we set the maximum se-
quence length to 1024. For the larger models (2.8B)
we set the maximum sequence length to 800 to
maintain a large batch size during training. Note
that this results in a small loss of within-sequence
examples. We pretrain each model for 10k steps.
We train each model for 100k during the instruction
tuning phase, where we evaluate each checkpoint
after 10k steps. However, we found that the latest
checkpoint resulted in greater performance across
both models, despite the higher validation loss.

Model Training Strategy We employ a ‘mixed
batches’ approach, where a batch contains exam-
ples from any instruction tuning task. However, we
have not used any form of custom sampling e.g ad-

justing the sampling weight based on the size of the
dataset (Raffel et al., 2020). Additionally, we note
that the target length can vary significantly per task,
for example the correct response to multiple choice
VQA is a single token (e.g, the character from the
given options), while for captioning examples the
target sequence is longer. Therefore, similar to
previous work (Üstün et al., 2024; Pantazopoulos
et al., 2023), we normalize the cross-entropy loss
over the target tokens per sequence first and then
average over all the sequences in the batch to weigh
all samples equally during finetuning.

Training Logs All training logs regarding pre-
training and instruction turing are available here.
We also provide here the training curves for the
pretraining (Figure 9) and instruction tuning for all

14333

https://wandb.ai/gpantaz/vl_mamba?nw=nwusergpantaz


Task Instruction

Captioning Provide a one-sentence caption for the provided image
Dense Captioning Provide a short description of the region
Grounded Captioning Provide a one-sentence caption for the image and mention each entity.
Image Text Match Determine if the image matches the description
Multiple Choice VQA Answer with the option’s letter from the given choices directly
Visual Grounding Locate the region that is described by
Visual Question Answering Answer the question using a single word or phrase

Table 6: Instructions for all tasks.
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Figure 10: Performance curves for all models during finetuning.

models (Figure 10). In all of our cases the latest
model achieved the best performance despite the
trend in the validation loss.

Finetuning on Downstream Tasks In Sec-
tion 5.2 we also report the results of Pythia-VL
and Mamba-VL with 1.4B parameters on VQAv2
and RefCOCOg. For this purpose, we apply a
small grid search for each task by using three val-
ues for the learning rate (1e−5, 5e−5, 1e−4) and
a batch size of 64. We finetune each checkpoint
from the instruction tuning stage for 1 and 3 epochs
on VQAv2 and RefCOCOg, respectively, by keep-
ing the examples packed into larger sequences. To
increase the resolution of images we simply inter-
polated the positional embeddings of the vision
encoder. We did not scale the rotary embeddings
of Pythia, as even in the highest resolution images
(560) the sequence length does not exceed the max-
imum sequence length of the pretrained language
model. The models with higher resolution (560)
are not using the checkpoint from the finetuning
of the previous lower resolution (448). We report
the best performing model on the validation split
of VQAv2 and test split of RefCOCOg.

C Experiments

C.1 Benchmarks & Metrics

Table 9 shows the benchmarks used for our evalua-
tion with their respective metrics.

C.2 Comparison between EVA-02 and CLIP

We evaluate a Mamba-790M checkpoint after the
first training stage using EVA-02 Large 336px/14
(Fang et al., 2023) and CLIP-Large 336px/14 (Rad-
ford et al., 2021). We use the same training pa-
rameters across both runs. Table 10 illustrates the
results on COCO without any fine-tuning. We ob-
serve that using visual representations from EVA
leads to greater performance.

C.3 Task-agnostic Visual Encoding

We provide the full results showcasing a compar-
ison between task-agnostic and task-aware visual
encoding, where the task identity is known to the
model before encoding images. Table 11 illustrates
the performance for each model with and without
task-agnostic visual encoding for all held-in bench-
marks. We would like to highlight that a similar
comparison has been conducted for Transformer-
based VLMs in InstructBLIP (Dai et al., 2024),
showcasing that the task-aware visual encoding
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DC

Provide a short description of the region
[0.50, 0.72, 0.87, 0.89]

A rusted junk car with a white R painted on the door

[0.24, 0.69, 0.51, 0.87]

A rusted truck with ’13’ spray painted on it.

[0.23, 0.68, 0.50, 0.88]

The pick-up marked 13

M-VQA

Answer with the option’s letter from the given choices directly
Question: What color is the closest tent?
A: Orange and blue. B: White. C: Black. D: Purple.
Answer: A
Question: Why is the sand darker at the edge of the ocean?
A: It is dirty. B: It is wet. C: It’s dark out. D: There’s a shadow on it.
Answer: B
Question: When was this picture taken?
A: During the night. B: In daytime. C: At dawn. D: At dusk.
Answer: B

VG

Locate the region that is described by
Dog’s eye is black
[0.39, 0.24, 0.41 , 0.27]

Black collar on dog
[0.45 , 0.24, 0.52 , 0.42]

Dog’s tail pointing upwards
[0.48 , 0.00, 0.56, 0.25]

Dog’s paw off the ground
[0.42 , 0.54, 0.50 , 0.67]

VQA

Answer the question using a single word or phrase
Question: Are all the items in the bowl fruits?
Answer: Yes
Question: What is the light green item?
Answer: Apple

Question: What is the biggest fruit here
Answer: Cantaloupe

Table 7: Illustration of packing examples for each task. Text are the targets for the model for each example.

is beneficial in held-in as well as held-out bench-
marks. However, InstructBLIP opts for a specific
architectural choice, where the task-aware encod-
ing is conducted at the connector module between
the LLM and the vision encoder. The connector
(i.e the QFormer), is creating a multimodal prompt
that is then prepended to the instruction at the input
of the LLM. This means that in practice the LLM
sees first the visual prompt and then the instruc-
tion. This architectural choice might justify the
need for more suitable and versatile multimodal
fusion architectures.

C.4 Synthetic Grounding

For the task of synthetic grounding, we create se-
quences of varying lengths (50/100/200). For each
sequence, we created in total 1M training exam-
ples and evaluated each model on 100k held-out
samples. To eliminate any biases regarding the
distribution of the targets, we equally distributed
the target token evenly within the sequence. For
example, for sequences with 100 tokens, 1% of
the training examples (1000) have the 1st token as
target. All models are trained using a global batch
size of 64 for 78K steps. We evaluated every model
after 1% of training steps to capture precisely the
timestep where each model learns the task.
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Hyperparameter Pretraining Instruction Tuning

global batch size 256 128
lr 1e-3 2e-5
lr schedule cosine decay
lr warmup 0.03
number of epochs 5 2
optimizer AdamW
DeepSpeed Stage 2 3

Table 8: Hyperparameters during both training stages.
The same hyperparameters are used for Pythia-VL, and
Mamba-VL across all three different scales.

Benchmark Zero-shot Metrics

COCO ✗ CIDEr (C), BLEU-4 (B4), METEOR (M),
ROUGE (S), Spice (S)

NoCaps ✓ CIDEr

VQAv2 ✗ VQAv2 score
GQA ✗ Accuracy
Visual7W (T) ✗ Accuracy (Multiple Choice)

VSR ✗ Accuracy
POPE ✓ Accuracy

RefCOCO /g/+ ✓ Accuracy@IoU≥ 0.5

TextCaps ✓ CIDEr
TextVQA ✓ Accuracy
AI2D ✓ Accuracy (Multiple Choice)

Table 9: Evaluation metrics for each benchmark.

Model C B4 M R S

Mamba-CLIP 79.9 21.8 22.2 47.9 16.5
Mamba-EVA02 87.1 23.7 23.2 48.8 17.9

Table 10: Performance of Mamba-790M on COCO test
after the first training stage using similar sized CLIP
and EVA02 models. Across the board, Mamba achieves
greater performance when paired with EVA.

Relation to Induction Heads Our task is closely
related to the Induction Heads (Olsson et al., 2022),
which requires models to perform associative recall
by retrieving relevant information from the mem-
ory. More specifically, if the model has already
observed the pattern AB in a sequence of tokens,
then it should be able to infer that A is followed by
B some time within the same sequence.

The results of Mamba (Gu and Dao, 2023) on In-
duction Heads show that a two-layer model trained
on short sequences maintains high performance
across varying sequence lengths compared to other
SSMs and Transformer recipes. A key difference
between this setup and how we framed our syn-

thetic grounding task is that in the Induction Heads
benchmark there exists a single special token in a
sequence and the model always needs to predict
the follow-up token (e.g, Input: a b c d e ⊢ f g h
i . . . x y z ⊢, Output: f (Fu et al., 2023)). On the
other hand, in our task every token in the sequence
is a “special token”, and the model needs to be able
to recall every element in order but also perform a
two-hop reasoning between two embedding spaces.

C.4.1 Prefix Variation
Additionally, motivated by the improvements of
the task-aware encoding on visual grounding, we
experiment with a prefix variant of our synthetic
task. The key difference is that the query precedes
the input sequence, and therefore, Mamba has di-
rect access to the required information from the
beginning. We experiment with the same sequence
lengths for Pythia and Mamba. Figure 12 illustrates
the performance of both models. Compared to the
suffix variant (Figure 7) we can see that Mamba
learns the task significantly faster. For example, in
the suffix version of the task and for sequences of
200 tokens, Mamba is not able to reach 95% accu-
racy in the training window. On the other hand, in
the prefix setting and for the same sequence length,
we observe that Mamba learns the task within the
first half of the training. Nevertheless, even on this
setup, Pythia is more efficient as it learns the task
within only 10% of the training steps.
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Image Captioning General VQA Misc Visual Grounding Reading Comprehension
Model Task COCO VQAv2 GQA V7W VSR RefCOCO RefCOCO+ RefCOCOg V7W (P) TextCaps AI2D

Agnostic test val test-dev test-T test testA test B testA testB test-P test val test

Pythia-VL ✓ 134.06 73.57 57.05 83.06 77.72 82.43 68.39 72.35 55.16 72.56 86.13 94.60 79.27
Pythia-VL ✗ 133.87 73.15 58.12 79.30 76.94 82.78 68.89 71.74 54.44 73.76 85.41 95.03 79.83

Mamba-VL ✓ 134.76 74.46 58.44 83.78 80.18 76.60 63.48 68.40 52.11 68.82 80.18 98.68 80.20
Mamba-VL ✗ 135.45 74.58 58.32 83.19 79.54 77.77 65.35 68.25 51.79 70.01 77.04 100.2 80.86

Relative Performance Gain Per Task

Pythia-VL - -0.14 -0.57 +1.88 -4.53 -1.00 +0.42 +0.73 -0.84 -1.31 +1.10 -0.84 -0.45 -0.70
Mamba-VL - +0.51 +0.16 -0.21 -0.70 -0.80 +1.53 +2.95 -0.22 -0.61 +1.73 +3.92 +1.54 -0.82

Table 11: Comparison of Pythia-VL & Mamba-VL with task-agnostic and task-aware visual encoding.
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(b) Sequence length = 100.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n 
Ac

cu
ra

cy

95%

Pythia & Mamba on Synthetic Grounding with 200 tokens

Pythia-lr 1e-5 Mamba-lr 1e-5

(c) Sequence length = 200.

Figure 11: Performance curves for Pythia-1.4B and Mamba-1.4B variants on the synthetic grounding task with
varying sequence length and the prefix modification.
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