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Abstract

Supervised fine-tuning (SFT) is a critical pro-
cedure for aligning large language models. De-
spite its efficiency, the construction of SFT data
often struggles with issues of quality, diversity,
and scalability. Many existing methods, in-
spired by the SELF-INSTRUCT framework, typi-
cally generate synthetic instructions by prompt-
ing aligned proprietary models like ChatGPT.
However, such process suffers from stale distri-
bution, resulting in instructions that are merely
trivial variations of existing ones. In this paper,
we introduce a novel bootstrapping approach
termed KNN-INSTRUCT, which incorporates
KNN deduction to produce meaningful new
instructions by effectively summarizing and
learning from similar existing ones. We con-
duct an economical controlled experiment to
preliminarily validate its effectiveness. In the
further experiment, we construct a high-quality
SFT dataset named KNN-INST-12K*. Apply-
ing the dataset to Qwen-2-7B, we get a MT-
Bench score of 7.64, which outperforms all 7B
models on the LMSYS leaderboard, including
Starling-LM-7B (7.48), OpenChat-3.5 (7.06)
and Zephyr-7B-beta (6.53). Our code and
data are available at https://github.com/
CrossmodalGroup/KNN-Instruct/.

1 Introduction

Large language models (LLMs) pre-trained on
large volumes of unlabeled corpus have demon-
strated amazing capability in numerous natural lan-
guage processing (NLP) tasks (Devlin et al., 2018;
Brown et al., 2020). The pre-trained models can be
aligned to human intention with the straightforward
supervised fine-tuning (SFT) (Wei et al., 2022;
Victor et al., 2022). For the instruction-following
task, a SFT dataset consists of some conversations
(instruction, response). The SFT model can be
trained with reinforcement learning from human
feedback (RLHF) for further alignment (Ouyang
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et al., 2022), which is very intricate and expensive,
and has been widely applied in strong models such
as ChatGPT (OpenAI, 2022).

Recently, Zhou et al. (2024) show that LLMs
could be well aligned to human intention simply
through SFT, while the scale, quality and diversity
of SFT dataset are key to the performance of SFT
model (Wang et al., 2022). To obtain a large, high-
quality and diverse SFT dataset, previous works
(Ouyang et al., 2022; Zhou et al., 2024) usually em-
ploy human experts to carefully curate meaningful
instructions and corresponding responses, which is
very laborious, costly and thus lacks scalability.

With the development of instruction-following
LLMs, the past few years have witnessed a lot of
works on automatic SFT data construction, which
employ capable LLMs like ChatGPT instead of hu-
man experts to construct meaningful conversations
(Wang et al., 2022; Xu et al., 2023; Taori et al.,
2023; Chiang et al., 2023; Zhao et al., 2024). Nev-
ertheless, we notice that current works still more
or less fall short of quality, diversity or scalability.
For instance, we reproduce SELF-INSTRUCT with
the latest GPT-3.5-Turbo API, and our case study
in Appendix B.1 shows that a number of synthetic
instructions are not so high-quality, which may be
detrimental to the performance of SFT model.

In this paper, we propose an automatic SFT data
construction method named KNN-INSTRUCT. We
analyze the types, pros and cons of several existing
methods, and mainly make two improvements over
the notable work SELF-INSTRUCT:

1. On KNN Deduction Currently many boot-
strapping methods use several random sam-
ples to "prompt" the ChatGPT to write a new
sample (Wang et al., 2022; Taori et al., 2023;
Xu et al., 2023). We abandon the practice of
random sampling. Instead, we sample a sin-
gle instruction first, and involve text embed-
ding to deduce its k nearest neighbors, which
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Figure 1: A high-level overview of KNN-INSTRUCT.

encourages the relevance between sampled
instructions.

2. On Seed Dataset We believe that for boot-
strapping methods, a large, high-quality, and
diverse seed dataset helps to build a SFT
dataset with the same features. According
to this intuition, we carefully construct our
initial seed dataset from a human-annotated
instruction dataset.

To validate the effectiveness of our method, we
carry out two experiments. In the preliminary ex-
periment, we construct KNN-INST-12K, a SFT
dataset of 12,104 single-turn conversations. We se-
lect four competitive methods as baselines, and take
necessary measures to ensure fair comparison. We
apply these five datasets to two capable pre-trained
models, LLaMA-2-7B (Touvron et al., 2023) and
Qwen-7B (Bai et al., 2023), respectively. We then
evaluate all SFT models with AlpacaEval (Li et al.,
2023) and MT-Bench (Zheng et al., 2024a), which
are both widely-recognized LLM benchmarks, for
five times. The evaluation results show that KNN-
INSTRUCT surpasses all baseline methods on both
benchmarks and for both backbones. It is notewor-
thy that we employ GPT-3.5-Turbo for both data
construction and LLM evaluation in the prelimi-
nary experiment to save expenditure.

To further explore the performance of KNN-
INSTRUCT, we conduct our second experiment,
where GPT-3.5-Turbo is replaced with the strong
and expensive GPT-4-Turbo. We apply the new
synthesized dataset, KNN-INST-12K* to the re-
cently released pre-trained model Qwen2-7B, and
evaluate it with MT-Bench, where the rigorous
GPT-4-Turbo serves as a judge. The result is that
our Qwen2-7BKNN-INST-12K* scores 7.64, sur-

passing the top three 7B models on the LMSYS
Leaderboard 1: Starling-LM-7B (Zhu et al., 2023),
OpenChat-3.5 (Wang et al., 2023), and Zephyr-7B-
β (Tunstall et al., 2023). Specifically, it also out-
performs GPT-3.5-Turbo and Qwen2-7B-Instruct
in the first turn of MT-Bench.

In Section 5, we design a number of abla-
tion studies to gain a deeper insight into KNN-
INSTRUCT. We thus demonstrate that our improve-
ments on KNN deduction and seed dataset do help
boost SFT performance, and the performance could
be further improved by scaling up the dataset or
optimize the hyper-parameter K.

Our contributions are summarized as follows:

• We propose KNN-INSTRUCT, a scalable
framework that automatically derives high-
quality and diverse instructions from existing
similar instructions.

• We design a series of controlled experiments
and ablation studies to demonstrate the capa-
bility and validity of KNN-INSTRUCT.

2 Related Work

Automatic SFT Data Construction In recent
years, many works have attempted to take advan-
tage of strong instruction-following LLMs such as
ChatGPT instead of human experts to construct
high-quality, diverse SFT data, which remarkably
reduce the expenditure and have achieved compet-
itive performance (Wang et al., 2022; Kong et al.,
2023; Xu et al., 2023; Taori et al., 2023; Chiang
et al., 2023; Zhao et al., 2024). To some degree,

1https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard
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SFT data construction is just instruction data con-
struct, because with a instruction, we can easily
obtain its response by querying ChatGPT. Accord-
ing to different principles, these automatic methods
can be roughly divided into three categories:

• Bootstrapping This kind of methods uses
several high-quality instructions as an initial
seed dataset, iteratively sample a few instruc-
tions and request ChatGPT to write a mean-
ingful new instruction according to these ex-
amples. SELF-INSTRUCT (Wang et al., 2022),
Alpaca (Taori et al., 2023) and WizardLM (Xu
et al., 2023) are representatives of them. For
this line of works, the selection of demo in-
structions and the design of user prompt are
critical for the final performance.

• User Simulation These methods implement
a user simulator and does not need any seed
dataset. For instance, UltraLM (Ding et al.,
2023) designs a comprehensive and easily-
expandable framework, employing the Chat-
GPT to play the role of human user to chat
with another ChatGPT back and forth to gen-
erate massive multi-turn conversations. Pla-
toLM (Kong et al., 2023) is another example,
which trains a Socratic user simulator with the
ShareGPT (ShareGPT, 2023) dataset to pose
human-like questions.

• Crowdsourcing These methods also use
crowdsourcing, which is similar to the tra-
ditional manual method to some extent. For
example, WildChat (Zhao et al., 2024) offers
free ChatGPT API and collect 1.0M multi-
turn conversations with user consent.

LLM Evaluation In past years, there have been
a lot of benchmarks to evaluate LLM’s capacity
on one or more NLP tasks (Hendrycks et al., 2020;
Cobbe et al., 2021; Chen et al., 2021). Nevertheless,
these benchmarks are mostly based on close-end
questions and simple metrics like BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004) or just pattern
matching are used to automate the evaluation, thus
fail to well measure human preference (Zheng et al.,
2024a) on real-world questions. Nowadays with
the development of LLMs, some strong instruction-
following models, e.g. ChatGPT, are employed as
a judge to evaluate a LLM on a set of open-end
questions, where MT-Bench (Zheng et al., 2024a)
and AlpacaEval (Li et al., 2023) are two of the most
frequently adopted benchmarks.

3 KNN-Instruct

In this section, we introduce our proposed KNN-
INSTRUCT in detail. Section 3.1 briefly describes
the pipeline of KNN-INSTRUCT. Section 3.2, Sec-
tion 3.3 and Section 3.4 respectively elaborate on
the three key improvements we made over SELF-
INSTRUCT. Section 3.5 deals with the actual im-
plementation of KNN-INSTRUCT.

3.1 Overview

As can be seen in Figure 1, KNN-INSTRUCT is
a bootstrapping method. To get an initial seed
dataset, we select some high-quality ones from a
dataset of human-annotated instructions, and call
ChatGPT to generate corresponding responses for
them. After the seed dataset is initialized, we then
iteratively sample a conversation from the seed
dataset, calculate it’s K nearest neighbors, request
ChatGPT to write a new instruction and response
in a (K+1)-shot setting, and put the synthesized
conversation back to the seed dataset.

3.2 KNN Deduction

In each iteration, SELF-INSTRUCT randomly sam-
ple 8 instructions to "prompt" the GPT-3 to write
a new prompt. Nevertheless, our case study in
Appendix B.1 reveals that the randomly sampled
instructions are usually irrelevant with each other,
which puzzles the ChatGPT and it is prone to talk
about general topics like environmental pollution
or climate change, instead of raising a specific and
practical question.

Intuitively, we believe that instructions with
close semantic relations are better demonstrations
to "prompt" the ChatGPT to craft a high-quality
new instruction. Therefore, we abandon the ran-
domly sampling strategy, but take the KNN de-
duction shown below, i.e., a sampling strategy by
deducing K nearest neighbors:

1. Sample a single instruction from the seed
dataset as a core instruction.

2. Select the K nearest neighbors of the core
instruction in the embedding space.

The (K+1) sampled instructions and their corre-
sponding responses would be used in subsequent
few-shot learning. We take advantage of the no-
table SimCSE(Gao et al., 2021) to embed the in-
structions, and adopt cosine similarity for distance
measurement.
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3.3 Improvement of Efficiency

In SELF-INSTRUCT, if the ROUGE-L similarity
between the new instruction and any existing in-
structions is above or equal to 0.7, the new instruc-
tion would not be kept. The purpose of this action
is to encourage instruction diversity. In our re-
production of the vanilla SELF-INSTRUCT (GPT-3
is replaced with GPT-3.5-Turbo), we observe that
nearly 60% (4k out of 7k) synthesized instructions
are discarded for high similarity, which brings more
expense and less efficiency.

Nowadays, with strong instruction-following
LLMs like ChatGPT, we believe that the diversity
of synthetic instructions could be ensured simply
through "prompting". According to this intuition,
we carefully design a brief prompt template for
few-shot learning as follow:

Prompt Used in KNN-INSTRUCT

Position yourself as the user in question,
and craft a new, high-quality instruction.
Keep the following in mind:
1. Relevance: Incorporate your previ-
ous analysis, fully utilize these informa-
tive prior, ensuring that the new instruction
aligns well with this user.
2. Originality: The new instruction
should be distinguished to existing ones
instead of naive imitation or transfer, so
try your best in CREATIVITY;
3. Standalone: The new instruction
should be self-contained and not depend
on prior conversations.
4. Format: You should simply return a
string as the new instruction.

As can be seen, we directly emphasize that the
new instruction must be original, standalone and
relevant to the K+1 examples. Our prompt is rela-
tively brief and no synthetic instructions would be
eliminated, which reduces a lot of expenditure and
improves efficiency. More details of our template
are available in Appendix A.1.

3.4 Seed Dataset

It is noteworthy that SELF-INSTRUCT uses a
dataset of 175 human-written instructions and re-
sponses as the initial seed dataset. We take it that
this dataset is too small, and a large, diverse, high-
quality seed dataset does help to build a large, di-
verse, high-quality SFT dataset.

Based on this assumption, we take advantage of
10k-prompts-ranked 2 to construct our seed dataset,
which is made up of 10,331 human-annotated in-
structions. Each instruction is labeled with one or
more quality scores ranged from 1 to 5. The data
sources include both real-world and synthetic con-
versation datasets, such as ShareGPT (ShareGPT,
2023), Evol-Instruct (Xu et al., 2023), and Ultra-
Chat (Ding et al., 2023).
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Figure 2: The quality distribution of 10k-prompts-
ranked. The last interval is closed while other intervals
are half open, half closed.

We calculate the average quality distribution of
this dataset as shown in Figure 2. In consideration
of quantity and quality, we only use instructions
with a average score above 4.0. There are 3,026
instructions that meet this requirement. We request
the ChatGPT to generate responses for the selected
3,026 instructions, and therefore get a diverse, high-
quality seed dataset of 3,026 single-turn conversa-
tions. We name it Seeds-3k.

3.5 Implementation
In our practical implementation, we make some
trade-offs to improve efficiency. The pseudo-code
of KNN-INSTRUCT is shown in Algorithm 1. We
calculate the embeddings for all instructions in the
seed dataset in advance. We sample the instruc-
tions in order. The synthetic conversation will not
be added to seed dataset immediately, but after all
iterations have completed. More details of imple-
mentation are available in Section A.1.

In this paper, we set the hyper-parameter K = 2.
A full round of KNN-INSTRUCT will double the
seed dataset. With a seed dataset of scale 3,026, we
run the algorithm twice and thus get a SFT dataset

2https://huggingface.co/datasets/DIBT/10k_
prompts_ranked
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Algorithm 1 KNN-INSTRUCT

Input: Seeds, an array of (instruction, response)
1: Calculate embeddings for all instructions in

Seeds
2: for instruction in Seeds do
3: Calculate its K nearest instructions in the

embedding space
4: Format the K+1 conversations in a few-shot

prompt template
5: Request ChatGPT to write a new instruction

according to the examples
6: Request ChatGPT to write a response for

the synthesized instruction
7: end for
8: Add all synthesized conversations to Seeds

Output: Seeds, with double size

of 12,104 single-turn conversations, KNN-INST-
12K. In a single-threaded configuration, it takes
about 4 hours to obtain KNN-INST-12K.

We also estimate the computational overhead
of KNN-INSTRUCT: To synthesize a sample
(instruction, response),

• The average input tokens is 50 + (40 + 60)×
3 = 350

• The average output tokens is 40 + 60 = 100

where 50 is the length of our prompt template
(see in Appendix A.1), 40 is the average length of
instruction, 60 is the average length of response.

In this paper, GPT-3.5-Turbo-0125 (released on
Jan 25 2024) is employed as the teacher model. If
we use the recently released GPT-4o-mini, which
is affordable, intelligent and lightweight, the total
cost to synthesize KNN-INST-12K is about:

9, 026×(350×$0.15/M+100×$0.6/M) ≈ $1.02

3.6 Instances of KNN-INSTRUCT

We provide an instance of KNN-INSTRUCT as
follow. As can be seen, there are three demon-
strations as we adopt K = 2. The first demon-
stration queries the difference between Italian and
Norwegian coffee culture; the second demonstra-
tion focuses on Italian dishes in Norway; the third
demonstration talks about coffee brewing methods.

KNN-INSTRUCT Case 1

demo_1: Can you provide me with a
comparison between traditional Italian

espresso and Norwegian coffee culture,
highlighting the unique aspects of each
and how they contribute to the overall cof-
fee experience in both countries?
demo_2: What are some traditional Italian
dishes that one can enjoy in Norway, and
what makes them stand out compared to
authentic Italian cuisine?
demo_3: Can you provide a comprehen-
sive analysis of the different types of cof-
fee brewing methods, highlighting their
respective strengths and weaknesses?
new_instruction: What are the key cul-
tural differences between Japanese tea cer-
emonies and English afternoon tea tradi-
tions, and how do these rituals reflect and
contribute to the respective societies’ val-
ues and social norms?

Based on the three demonstrations, ChatGPT
is inspired to produce a new instruction, which
deals with the Japanese and English tea culture,
and their impacts on the societies. We think this
instruction is of high quality, and is relevant to all
three demonstrations. More instances of KNN-
INSTRUCT are shown in Appendix B.2.

4 Experiments

To justify the validity of KNN-INSTRUCT, we con-
duct two experiments: a preliminary experiment in
Section 4.1, and a further one in Section 4.2.

4.1 Preliminary Experiment
This experiment aims to preliminarily verify the
effectiveness of KNN-INSTRUCT at a low cost. To
achieve this, we select several representative SFT
data construction methods as baselines, use them to
create 12k scale SFT datasets, conduct SFT on one
or more pre-trained models, evaluate these SFT
models with widely-accepted LLM benchmarks
and make comparison.

Baselines We select four competitive baselines
belonging to three different categories: Alpaca
(Taori et al., 2023), Evol-Instruct (Xu et al., 2023),
ShareGPT (ShareGPT, 2023) and UltraChat (Ding
et al., 2023). Notably, we have taken necessary
measures to ensure fair comparison:

• For bootstrapping methods Alpaca and Evol-
Instruct, their seed datasets and ChatGPT
APIs are different from ours. Therefore, we re-
produce them with our Seeds-3k and the latest
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Model Alignment MT-Bench AlpacaEval(%)

Qwen-7BAlpaca-12k SFT 6.93±0.03 70.08±0.61
Qwen-7BShareGPT-12k SFT 7.15±0.05 74.00±0.35
Qwen-7BUltraChat-12k SFT 7.20±0.06 71.64±0.44
Qwen-7BEvol-Inst-12k SFT 7.20±0.05 74.98±0.48
Qwen-7BKNN-INST-12K SFT 7.38±0.03 75.86±0.09
Qwen-7B-Chat SFT+RLHF 7.33±0.01 74.78±0.57

LLaMA-2-7BAlpaca-12k SFT 6.25±0.04 53.67±0.39
LLaMA-2-7BShareGPT-12k SFT 5.66±0.08 55.68±0.79
LLaMA-2-7BUltraChat-12k SFT 6.15±0.02 50.26±0.51
LLaMA-2-7BEvol-Inst-12k SFT 6.39±0.06 59.07±0.51
LLaMA-2-7BKNN-INST-12K SFT 6.45±0.06 59.22±0.60
LLaMA-2-7B-Chat SFT+RLHF 7.23±0.04 88.50±0.45

Table 1: Performance of KNN-INSTRUCT and baseline models on MT-Bench and AlpacaEval. We evaluate each
model for 5 times and report the mean and standard deviation. The best results achieved by SFT-only models are
bolded, while the global best results are underlined. NOTE: In this table, GPT-3.5-Turbo-0125 serves as a judge.

GPT-3.5-Turbo. The two synthetic baseline
datasets would be referred to as Alpaca-12k
and Evol-Inst-12k.

• Vicuna is a crowdsourcing method, while Ul-
traChat is based on user simulation. We can-
not not reproduce them, so we directly ran-
domly sample 12k conversations from their
publicly released data. The two sampled base-
line datasets are named after ShareGPT-12k
and UltraChat-12k.

Backbones We conduct SFT experiments on
LLaMA-2-7B (Touvron et al., 2023) and Qwen-7B
(Bai et al., 2023), which are both high-performance
7B pre-trained models.

Benchmarks Given that traditional LLM bench-
marks like MMLU (Hendrycks et al., 2020) fail
to be consistent with human users (Zheng et al.,
2024a), we select two benchmarks based on open-
end questions, which employ the rigorous GPT-4
as a judge and have received wide recognition:

• AlpacaEval (Taori et al., 2023) consists of
805 single-turn questions. The GPT-4 serves
as a judge to compare the LLM and the base-
line model text-davinci-003 on their responses.
The average win rate will be reported as eval-
uation result.

• MT-Bench (Zheng et al., 2024a) consists of
80 high-quality 2-turn questions across 8 cate-
gories. For each question, the GPT-4 is used

to give a score from 1 to 10. The average
score will be reported as evaluation result.

In consideration of evaluation expenditure, we
substitute GPT-3.5-Turbo (released on Jan 25,
2024) for GPT-4. All evaluations are repeated 5
times to ensure stability, and their mean and stan-
dard deviation will also be reported.

Training Details We conduct full-parameter SFT
on four NVIDIA A800 80G GPUs for three epochs.
We adopt an initial learning rate of 1 × 10−5, a
maximum sequence length of 2048 tokens, and a
total train batch size of 128. The training takes
about 1.5 hours. More training details are available
at Appendix A.1.

Results Table 1 reveals that for both LLaMA-2-
7B and Qwen-7B, KNN-INSTRUCT surpasses all
baselines on both MT-Bench and AlpacaEval. In
addition, we incorporate two strong models trained
by RLHF, Qwen-7B-Chat and LLaMA-2-7B-Chat
in the table. We can see that for Qwen-7B, KNN-
INSTRUCT has an edge over Qwen-7B-Chat on
both benchmarks. These empirical results prelimi-
narily prove the effectiveness of KNN-INSTRUCT.

Data Analysis We also explore several statistics
of KNN-INST-12K and the four baseline datasets:
the vocabulary size, the average turns, the average
length of instructions and turns, and the lexical
diversity. We use the QwenTokenizer (Bai et al.,
2023) for tokenization, and the MTLD (McCarthy
and Jarvis, 2010) to compute lexical diversity. We
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present the results in Table 2, where our KNN-
INST-12K scores 4th, 3th, 3th, 2nd, 2nd on the five
metrics, respectively.

4.2 Further Experiment
We employ the intelligent but expensive GPT-4-
Turbo (released on Apr 9 2024) to construct a high-
quality dataset, KNN-INST-12K*, and apply it to
Qwen2-7B with all hyper-parameters consistent
with before.

Baselines We select five competitive baseline
models: 1) The state-of-the-art 7B model Starling-
LM-7B (Zhu et al., 2023) 2) OpenChat-3.5
(Wang et al., 2023) 3) Zephyr-7B-β (Tunstall
et al., 2023) 4) Qwen2-7B-Instruct 5) GPT-
3.5-Turbo-0125, where 1) 2) 3) are the top three
7B models in LMSYS Leaderboard.

Benchmark We use MT-Bench to do evaluation,
where GPT-4-Turbo-2024-04-09 serves as a judge.

Results As can be seen from Table 3, or model
scores 7.64 on MT-Bench (8.23 in the first turn,
7.05 in the second turn), which outperforms all 7B
models. More impressively, our model surpasses
Qwen2-7B-Instruct (8.20 in the first turn, 7.31 in
the second turn) and GPT-3.5-Turbo-0125 (7.96 in
the first turn, 7.75 in the second turn) in the first
turn. However, our model struggles to maintain the
advantage in the first turn, lagging 0.12 and 0.22 in
the total score, respectively. A possible explanation
is that KNN-INSTRUCT only produces single-turn
conversations.

5 Ablation Study

We conduct a few ablation studies: on selection
of hyper-parameter K, on the procedure of KNN
deduction, on different seeds, on the scalability of
our method, and on the embedding similarity fil-
ter, which helps to gain a deeper understanding of
KNN-INSTRUCT. In this section, we use GPT-3.5-
Turbo-0125 as a judge for MT-Bench and AlpacaE-
val, and LLaMA-Factory (Zheng et al., 2024b) to
evaluate LLMs on MMLU.

5.1 On Selection of K
Intuitively, a larger hyper-parameter K brings more
demo samples, encourages the quality of synthetic
data, and meanwhile adds the costs of ChatGPT
API (with more input tokens). In this paper, we
select K = 2 (i.e., 3-shot) for simplicity and eco-
nomic reasons.

In this section, we employ a strong open-source
LLM, Qwen2-1.5B-Instruct as the teacher model
to help explore the impact of K on model perfor-
mance. We adopt K = 2, 3, 4, 5, 6 to construct
five 12k-scale SFT datasets. We conduct SFT with
them on Qwen2-1.5B, and evaluate the fine-tuned
models with MT-Bench.
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Figure 3: Model performance with different K.

Results As shown in Figure 3, there is an upward
trend of model performance with the K increases.
We have not observed a downward trend, and larger
K still remains to be explored.

5.2 On KNN Deduction
KNN deduction is a key improvement that we make
to the vanilla SELF-INSTRUCT. To verify its signifi-
cance, we remove this procedure, and use three ran-
dom samples to do few-shot learning instead. The
corresponding method is called RAND-INSTRUCT.
We construct a dataset RAND-INST-12K in the
same setting with KNN-INST-12K. Applying the
two datasets to Qwen-7B and LLaMA-2-7B, we
make evaluation with MMLU, MT-Bench and Al-
pacaEval. For MMLU, we use the notable project
LLaMA-Factory (Zheng et al., 2024b).

Results In Table 4, KNN-INSTRUCT outper-
forms RAND-INSTRUCT in five of six situations,
which strongly demonstrates the significance of
KNN deduction.

5.3 On Different Seeds
In previous section, we assume that for bootstrap-
ping methods, a large, diverse, high-quality seed
dataset helps to build a dataset with the same char-
acteristics. Here, we select two different datasets
to explore the impact of seed dataset:
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Dataset Vocab. Size Avg Turns Avg. Inst. Len. Avg. Turn Len. Lex. Diversity

Alpaca-12k 49312 1.0 79.10 240.58 67.81
Evol-Inst-12k 58907 1.0 105.41 427.86 82.58
ShareGPT-12k 106339 3.42 65.17 316.84 70.42
UltraChat-12k 62528 3.16 76.66 366.05 94.81
KNN-INST-12K 54648 1.0 78.79 421.57 86.58

Table 2: Several statistic of KNN-INST-12K and the four baseline datasets. For each colomn, the highest value is
bolded, while the second highest value is underlined.

Model Alignment First Turn Second Turn Average

Starling-LM-7B SFT+RLAIF 7.69 7.26 7.48
OpenChat-3.5 SFT 7.41 6.72 7.07
Zephyr-7B-β SFT+DPO 7.03 6.04 6.53
Qwen2-7BKNN-INST-12K* SFT 8.23 7.05 7.64
Qwen2-7B-Instruct SFT+RLHF 8.20 7.31 7.76
GPT-3.5-Turbo-0125 / 7.96 7.75 7.86

Table 3: Performance of KNN-INSTRUCT and five strong baselines on MT-Bench. We additionally present detailed
scores for the first and second turns of MT-Bench. For each colomn, the highest value is bolded, while the second
highest value is underlined. NOTE: In this table, GPT-4-Turbo-2024-04-09 serves as a judge.

• Manual-175 is the seed dataset of SELF-
INSTRUCT. It consists of 175 care-
fully curated conversations by human ex-
perts. The instances of Manual-175 contains
three keys: instruction,input,output,
while our instances contain two keys:
instruction,response. To bridge this gap,
we concatenate the instruction and input
of vanilla Manual-175 with a "\n".

• ShareGPT-en is filtered from ShareGPT, a re-
alistic human-AI conversation dataset shared
by users. We only select single-turn conver-
sations from the publicly available ShareGPT
dataset. To ensure quality, we design some
rules to eliminate low-quality ones of the
publicly available ShareGPT dataset. We
also discard conversations whose instructions
contain non-English characters. The fil-
tered ShareGPT-en dataset consists of 13,460
single-turn conversations.

We replace our Seeds-3k with Manual-175,
ShareGPT-en, reproduce KNN-INSTRUCT, and
thus obtain two synthetic datasets: KNN-INST-
MA-12K, KNN-INST-SG-12K, respectively. We
apply them to Qwen-7B, evaluate the fine-tuned
models with MT-Bench, and make comparison
with Qwen-7BKNN-INST-12K.

Results Table 5 reveals that despite Manual-
175’s high-quality, Qwen-7BKNN-INST-MA-12K

does lag a lot compared with other models. Qwen-
7BKNN-INST-SG-12K ranks second, we think it’s
the scale and diversity of KNN-INST-SG-12K that
contributes to its good performance. Finally, our
Seeds-3k consists of both real-world and synthetic
data, and incorporates human annotation to ensure
quality, so Qwen-7BKNN-INST-12K ranks first. This
comparison demonstrates that, for bootstrapping
methods, a large, diverse and high-quality seed
dataset will significantly contributes to the high
performance of SFT model.

5.4 On Scalability

Our previous experiments in Section 4.1 limit the
scale of SFT dataset to 12k. In this section, we em-
ploy Qwen2-1.5B-Instruct to successively derive
6 datasets of 6k, 12k, 18k, 24k, 30k, 36k scale.We
apply these datasets to Qwen2-1.5B and conduct
evaluation on the SFT models with MT-Bench.

Results Figure 4 shows that with a larger SFT
dataset, the model performance increases at first
and then decreases. This empirical result reveals
that for teacher model Qwen2-1.5B-Instruct, initial
dataset Seeds-3k and K = 2, the optimal data
scale for KNN-INSTRUCT is 30k, which is about
ten times the original scale.
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Model MT-Bench AlpacaEval(%) MMLU

Qwen-7BKNN-INST-12K 7.38 75.86 56.61
Qwen-7BRAND-INST-12K 7.10 74.47 54.63

LLaMA-2-7BKNN-INST-12K 6.45 59.22 43.46
LLaMA-2-7BRAND-INST-12K 6.13 55.20 44.36

Table 4: Impact of KNN deduction. For each pre-trained model, the higher score on a benchmark is bolded.

Model Seed Seed Size MT-Bench

Qwen-7BKNN-INST-MA-12K Manual-175 175 6.72
Qwen-7BKNN-INST-SG-12K ShareGPT-en 13,460 7.21
Qwen-7BKNN-INST-12K Seeds-3k 3,026 7.38

Table 5: Model performance with different seed datasets.

6k 12k 18k 24k 30k 36k

6.9

7.0

7.1

7.2

7.3

7.4

7.5

7.6

Sc
or

e

7.06

6.88

7.24

7.14

7.06

7.23

7.32

7.24

7.4
7.37

7.58

7.17

7.39

7.17

7.61

7.28
7.33

7.24

MT Bench
First Turn
Second Turn

Figure 4: Model performance with different data scale.

5.5 On Embedding Similarity Filter
We explore our method on the embedding simi-
larity. During the process of KNN-INSTRUCT,
for each selected sample n, we collect its simi-
larity with its 2 nearest neighbors n1, n2 and plot
the distribution. As shown in Figure 5, the me-
dian of (n, n1) is over 0.8, while that of (n, n2)
is about 0.77, both are very high. To control this,
we add a similarity filter during iteration: If the
similarity (n, n1) surpasses 0.7, continue.

Method MT-Bench MMLU

KNN-INSTRUCT 7.14 55.23
KNN-INSTRUCT (+FILTER) 7.42 55.37

Table 6: Model performance with / without filter.

With Qwen2-1.5B-Instruct, we obtain two
12k datasets by KNN-INSTRUCT and KNN-
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Figure 5: The similarity distribution of (n, n1), (n, n2).

INSTRUCT (+FILTER), apply them to Qwen2-1.5B,
and use MT-Bench, MMLU to make evaluation.

Results As shown in Figure 6, the model perfor-
mance increases with a similarity filter. The thresh-
old 0.7 is arbitrarily set and more explorations are
need on the selection of threshold.

6 Conclusion

In this paper, we introduce an automatic instruction
construction framework named KNN-INSTRUCT.
We make improvements on the sampling strat-
egy and seed dataset over current bootstrapping
methods. Moreover, we remove the redundant
instruction elimination procedure to improve ef-
ficiency. We conduct a lot of controlled experi-
ments to demonstrate the significance of KNN-
INSTRUCT, where our strongest model Qwen2-
7BKNN-INST-12K* surpasses all current 7B models
on MT-Bench. We hope this work would contribute
to the research of LLM alignment.
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Limitations

In this section, we discuss some limitations and
potential research directions of this work.

Multi-turn Conversations As shown in Ap-
pendix B.2, our KNN-INSTRUCT construct only
single-turn conversations. The second experiment
has revealed that our model does well in the first-
turn question, but fail to perform as well as GPT-
3.5-Turbo-0125 in the second-turn. In the future,
we would like to upgrade KNN-INSTRUCT to con-
struct multi-turn conversations, which might help
strengthen the multi-turn conversational capability
of SFT-only LLMs.

Larger Scale Dataset In this work, our data size
is limited to 12k for the sake of saving time and
cost, which is smaller than many previous works
like Alpaca (52k), Vicuna (70k), and WizardLM
(1.5M). We also explore the scalability of KNN-
INSTRUCT in Section 5.4, which is around 10×
the original scale. Nowadays, with stronger and
cheaper LLMs like GPT-4o-mini, we believe the
scalability of KNN-INSTRUCT could be further
improved.
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A Implementation Details

In this section, we report details for our method
KNN-INSTRUCT, and the SFT procedure.

A.1 KNN-INSTRUCT

We employ sup-simcse-roberta-large (Gao
et al., 2021) for tokenization and embedding, and (1
- cosine similarity) for distance measurement. Our
seed dataset is organized in the ShareGPT format
(multi-turn conversation) format. A full round of
KNN-INSTRUCT doubles the seed dataset.

With the Seeds-3k, we run KNN-INSTRUCT

twice and get KNN-INST-12K. The system prompt
and few-shot prompt template of KNN-INSTRUCT

are shown as follows:

System Prompt

You are a helpful assistant designed to in-
terpret and analyze user queries that have
actually been proposed to AI assistant
ChatGPT. Based on your analysis, you are
capable of further crafting new queries.

Few-Shot Prompt Template

[Exemplar Dialog 1]
[Human User]: {Q1} [AI Assistant] {A1}
[Exemplar Dialog 1 Ends]
[Exemplar Dialog 2]
[Human User]: {Q2} [AI Assistant] {A2}
[Exemplar Dialog 2 Ends]
[Exemplar Dialog 3]
[Human User]: {Q3} [AI Assistant] {A3}
[Exemplar Dialog 3 Ends]
The passage above showcases several di-
alogs between a human user and the AI
assistant, ChatGPT. As can be seen, real-
world user queries are usually meaningful,
diversified and grounded, reflecting prac-
tical needs, critical thinking or intriguing
ideas. Now perform the following task.
### Task: Position yourself as the user
in question, and craft a new, high-quality
instruction. Keep the following in mind:
1. Relevance: Incorporate your previ-
ous analysis, fully utilize these informa-
tive prior, ensuring that the new instruction
aligns well with this user.
2. Originality: The new instruction
should be distinguished to existing ones
instead of naive imitation or transfer, so

try your best in CREATIVITY;
3. Standalone: The new instruction
should be self-contained and not depend
on prior conversations.
4. Format: You should simply return a
string as the new instruction.

A.2 Supervised Fine-Tuning
We conduct full-parameter SFT with open source
repositories:

• For LLaMA-2-7B, we use FastChat (Zheng
et al., 2024a), which is the repo for Vicuna
and MT-Bench;

• For Qwen-7B, we use its official repo (Bai
et al., 2023);

• For Qwen2-7B, we use the notable repository
LLaMA-Factory.

Our operating system, CPU, GPU, Pytorch ver-
sion and CUDA version are listed in Table 7. Ta-
ble 8 shows the hyper-parameters we set in SFT.
Parameters not listed would be set to the default
value of its corresponding repo.

B Case Study

This section present instances for SELF-INSTRUCT

and our KNN-INSTRUCT.

B.1 Instances of SELF-INSTRUCT

We reproduce SELF-INSTRUCT (3-shot) with GPT-
3.5-Turbo API, and observe some low-quality ex-
amples as follows:

SELF-INSTRUCT Case 1

demo_1: A one-hour color video in
YUV format has a frame resolution
of 1920x1080 with a 4:2:2 color sub-
sampling format, 8 bits for each compo-
nent, and a frame rate of 30 frames/s. De-
termine the storage requirement for the
video in Gbytes (3 sig. fig.).
demo_2: How has the city of Cape Town
changed and evolved over the years, par-
ticularly in relation to urban development
and socioeconomic factors?
demo_3: I’m a medical student and I want
to practice my medical spanish. Can you
pretend to be a patient and, in Spanish, we
can pretend to do a patient encounter (I’ll
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OS CPU GPU Pytorch CUDA(Runtime)

Ubuntu
20.04.6 LTS

Intel Xeon Platinum
8358P@2.60GHz

8 * NVIDIA
A800-SXM4-80G

2.3.0+cu121 12.1.66

Table 7: Experimental environment.

Hype-Param Value Hype-Param Value

Num of Epochs 3 Per Device Batch Size 2
Gradient Accu. Steps 16 Learning Rate 1e-5
Max Seq Length 2048 LR Scheduler Type cosine
BF16 True Weight Decay 0.1
Warmup Ratio 0.01 Gradient Checkpointing True

Table 8: SFT Hyper-parameters.

be the doctor and we’ll speak spanish).
new_prompt: Can you provide an
overview of the impact of climate change
on coral reefs, particularly focusing on
changes in ocean temperature and acidity
levels?

SELF-INSTRUCT Case 2

demo_1: Can you take up a more elab-
orate culinary challenge? Create a three-
course meal that highlights the unique fla-
vors of your region and is composed of
locally-sourced ingredients that are in sea-
son. However, in addition to using each
ingredient only once throughout the meal,
you must also ensure that at least one
course is vegan or gluten-free. Push your
culinary skills to the limit and showcase
your adaptability and creativity in design-
ing a delicious menu!
demo_2: How has the music of Bob Mar-
ley influenced reggae in Jamaica and be-
yond?
demo_3: Extract the dates from the
following paragraph: The 20th (twenti-
eth) century began on January 1, 1901
(MCMI), and ended on December 31,
2000 (MM).[1] The 20th century was dom-
inated by significant events that defined the
modern era: sixth mass extinction, Span-
ish flu pandemic, World War I and World
War II, nuclear weapons, nuclear power
and space exploration, nationalism and de-
colonization, the Cold War and post-Cold

War conflicts, and technological advances.
These reshaped the political and social
structure of the globe.
new_prompt: Can you provide a de-
tailed explanation of the impact of climate
change on the biodiversity of coral reefs
worldwide, including specific examples
of how rising sea temperatures and ocean
acidification have affected coral ecosys-
tems?

B.2 Instances of KNN-INSTRUCT

KNN-INSTRUCT Case 2

demo_1: What is Gaussian noise?
demo_2: What are the various applica-
tions of Gaussian noise in image process-
ing beyond denoising tasks?
demo_3: What are the key differences and
similarities between the Gaussian elimina-
tion method and the method of substitution
when solving a system of linear equations?
new_prompt: What are the advantages
and limitations of using Gaussian noise as
a steganographic method for hiding secret
information within digital images?

KNN-INSTRUCT Case 3

demo_1: Create a weird conversation with
old people about some popular topic where
they are using modern colloquialisms in
the wrong way.
demo_2: an you provide some humorous
examples of misinterpreted idioms or say-
ings that could confuse non-native English

10349



speakers?
demo_3: What are some common phrases
or expressions that people often use incor-
rectly because they are based on literal in-
terpretations rather than their intended fig-
urative meanings?
new_prompt: What are some clever ways
to incorporate modern slang and technol-
ogy references into conversations with
older adults without confusing them or
making it seem forced?
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