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Abstract

We present a light-weight approach for de-
tecting nonfactual outputs from retrieval-
augmented generation (RAG). Given a context
and putative output, we compute a factuality
score that can be thresholded to yield a binary
decision to check the results of LLM-based
question-answering, summarization, or other
systems. Unlike factuality checkers that them-
selves rely on LLMs, we use compact, open-
source natural language inference (NLI) mod-
els that yield a freely accessible solution with
low latency and low cost at run-time, and no
need for LLM fine-tuning. The approach also
enables downstream mitigation and correction
of hallucinations, by tracing them back to spe-
cific context chunks. Our experiments show
high area under the ROC curve (AUC) across
a wide range of relevant open source datasets,
indicating the effectiveness of our method for
fact-checking RAG output.

1 Introduction

With natural language understanding applications
increasingly relying on large language models
(LLMs) to answer questions, summarize texts, and
perform other tasks, detecting nonfactual claims
in the generated text has become critical from
an ethical and compliance standpoint. LLMs,
while powerful, are prone to generate nonfactual
or “hallucinated” information that can lead to
misinformation and introduce errors in business
processes. To address this problem, we present
Provenance, a fact-checking method for output
generated by LLMs, with respect to a given context
that provides the factual basis for the output.

Provenance leverages compact cross-encoder
models that offer substantial advantages over con-
ventional LLM-based methods. These advantages
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include accessibility, low latency/high throughput,
and interpretable judgments.

Provenance is evaluated on diverse open-source
datasets, including the TRUE dataset (Honovich
et al., 2022), MSMarco (Nguyen et al., 2016),
TruthfulQA (Lin et al., 2022), HotpotQA (Yang
et al., 2018), HaluEval (Li et al., 2023) and
HaluBench (Ravi et al., 2024). These datasets en-
compass a variety of question-answering contexts,
providing a robust testbed for our methods. We as-
sess performance using standard detection metrics
to demonstrate our method’s efficacy as a factuality
checker for LLM-generated content.

Our findings show that Provenance achieves
competitive hallucination detection performance
(as measured by AUC) across different datasets,
thus contributing to improved trustworthiness and
utility of LLMs in real-world applications.

2 Related Work

In prior work, three main approaches to factual-
ity evaluation have been used: 1. LLM ablation,
2. LLM introspection, and 3. NLI methods.

LLM ablation refers to approaches such as Self-
CheckGPT (Manakul et al., 2023) and Agrawal
et al. (2024) that measure the consistency of multi-
ple candidate generations for a given prompt. Meth-
ods such as Varshney et al. (2023) that gauge factu-
ality based on the language model’s output distri-
butions also fall in this category.

LLM introspection refers to techniques that use
the reasoning ability of modern language models
to evaluate their own or another model’s output.
Work by Kadavath et al. (2022), Es et al. (2024)
and Muller et al. (2023) are examples of this.

Natural language inference (NLI) methods ex-
ploit special-purpose cross-encoder models that
indicate whether a claim is supported by a premise.
This approach usually involves breaking down the
context into a list of premises (context items), and
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Figure 1: Typical Context vs. Answer length scenarios
in which fact-checking is performed.

the generation into a list of claims. Laban et al.
(2022) is a representative method that chunks the
generation and context at the sentence level and
computes pair-wise entailment judgments, which
are then aggregated. However, this approach has
some shortcomings: 1. the original prompt/query
is ignored when evaluating entailment, and 2. con-
text and generation chunking is overly simplistic.
Our method falls into the NLI-based category, but
addresses these shortcomings.

Broadly speaking, there are four scenarios
(Fig. 1) in which a fact-checker may operate:
1. short context/short answer, 2. short context/short
answer, 3. short context/long answer, and 4. long
context/long answer. When the answer or context
are long, we need a mechanism to break them into
smaller units. We narrow our focus based on the fol-
lowing observations and practical considerations:

1. Reliable semantic chunking is an as yet evolv-
ing field in NLP (Yang et al., 2020; Zhai et al.,
2017; Johnson and Zhang, 2005).

2. When it comes to chunking long contexts we
can reuse the chunks that the RAG retriever
returned. Retrievers need to chunk text due
to input sequence length limitations in their
embedder.

3. Lack of open-source datasets for long-answer
benchmarking.

While we have a straightforward way to break
down the contexts, it is still hard to chunk generated

answers meaningfully. The chunking of informa-
tion is an area for further research, since context
and answers come in many forms, such as text, con-
versations, and tables. We limit the scope of this
paper to text source for scenarios in the first row of
Figure 1, namely, short context/short answer and
long context/short answer. We also need to ensure
that the chunk length chosen is viable for all the
models in the system.

3 System Description

Contemporary fact-checking systems employ ap-
proaches based on LLMs as a judge (Zhu et al.,
2023) to validate the generations of other LLMs.
By virtue of being auto-regressive, the judge-LLMs
themselves are prone to hallucinate. By contrast,
Provenance (Figure 2) uses two cross-encoder
based models that do not suffer from this tendency.
As input, Provenance expects

1. a list of context items used by the generating
LLM in the upstream RAG,

2. the user’s original question or query, and

3. the generated text to fact-check.

The first cross-encoder model determines which
of the context items are relevant to the given query
and generates a score. This score is then used to
select context items to build a smaller and more
focused context, which we refer to as the sources.
The selection process also produces a weight asso-
ciated with each source. In parallel. we construct
the claim by inserting the query and generation
into a claim prompt. The claim and sources are
then passed to the second cross-encoder model for
validation, generating a factuality score for each
claim/source pair. These scores are then aggre-
gated using the source weights generated earlier to
produce a single score for the LLM’s output. This
score can be thresholded to produce a binary fac-
tuality decision, with the threshold being tuned for
a target dataset and task. Here we used threshold-
invariant evaluation methods, such as receiver oper-
ator characteristics (ROC) and area under the curve
(AUC).

3.1 Relevancy Scorer
To assess the relevance of context items to the
query, we use a cross-encoder model to generate
relevance scores for each context item. This pro-
cess is similar to the re-ranking of search results
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Figure 2: Provenance system architecture.

w.r.t. queries in a RAG system, except that we do
not perform the top_k sampling step. We leave this
to a downstream component.
Given a query Q and a context item D, the rele-
vance score S is calculated as

S = Cross-Encoder(Q,D) (1)

Here, S is a real number in (−∞,∞), but empiri-
cally scors range within (−10, 10).

The cross-encoder used is a RoBERTa-based
model1 trained by Mixedbread.

3.2 Context Item Selection

To select the sources among the scored contexts,
we employ one of two strategies. TopK is similar
to the one used in the RAG retrieval and rerank-
ing steps. TopP is adapted from nucleus sampling
(Holtzman et al., 2019), a commonly used method
to sample from an LLM’s output distribution. For
both strategies, the relevance scores of all context
items are normalized to be interpretable as proba-
bilities, i.e., to have range (0, 1) and sum to one.

The TopK selector simply retains the top_k con-
texts with highest relevance scores. The TopP se-
lector retains a minimal set of contexts in order of
decreasing relevance scores, such that their cumu-
lative probability is at least top_p, where top_k and
top_p respectively are hyperparameters.

Following the selection of the sources, we re-
normalize their relevance scores again, which then
serve as the weights to be placed on each source
later in fact-checking.

1Available on huggingface as mixedbread-ai/mxbai-rerank-
base-v1

We have not carried out a systematic optimiza-
tion of top_k and top_p values for this paper. For
top_p we chose 0.9, which selected an average of
3 to 4 sources on our datasets. For top_k we chose
5, which is half the maximum of possible sources
defined in the datasets used here (see Section 5).

Anecdotally, on real-world production datasets,
we found that better results are achieved by choos-
ing a single top_p value rather than setting top_k.

3.3 Fact Checker
Provenance uses cross-encoder NLI models to eval-
uate the factual consistency of the LLM’s output,
given a source and the user’s query. The model we
use is a specialized hallucination detection model2

trained by Vectara.
The steps to compute factuality scores are

1. Input preparation: we insert the query and
answer into a prompt that claims “The answer
to question <QUERY> is <ANSWER>.” This
prepared claim prompt is then paired off with
each source.

2. Scoring: The cross-encoder is used to com-
pute a score indicating how well the answer
is supported by the context in the light of
the query. Here, the scoring function is
FScore = nli-model(S,C), where S is one
of the sources and C is the prepared claim
prompt.

3. Aggregation of the scores and weights for all
the sources using one of the following func-

2Available on Huggingface as vec-
tara/hallucination_evaluation_model
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tions: (a) min, (b) max, or (c) weighted aver-
age.

The final factuality score can be normalized to in-
dicate the probability of the claim being supported
by the sources.

4 Data

We utilize several open-source datasets to evaluate
the effectiveness of our approach in detecting non-
factual texts generated by LLMs. These datasets
provide a diverse range of question-answering con-
texts and candidate answers, ensuring a comprehen-
sive assessment. Table 2 provides an overview of
datasets showing the counts of Hallucination and
Entailment (=Factual) labels. As shown, most data
sources have a roughly balanced label distribution,
though some (like the HaluEval GENERAL subset)
are skewed toward one class.

4.1 TRUE
The TRUE dataset (Honovich et al., 2022) is com-
prised of eleven different subsets, each with ques-
tions, answers, and contexts. It is designed to test
the factual accuracy of LLM outputs across various
domains and question types.

4.2 MSMarco
MSMarco (Microsoft MAchine Reading COmpre-
hension) (Nguyen et al., 2016) is a large-scale
dataset created for machine reading comprehen-
sion tasks. The dataset is particularly useful for
evaluating our method in the context of web-based
information retrieval and answering user queries
accurately.

4.3 Truthful QA
TruthfulQA (Lin et al., 2022) is a dataset specif-
ically designed to test the truthfulness of LLM-
generated responses. This dataset is crucial for
assessing our approach’s capability to handle tricky
or potentially deceptive questions.

4.4 HotpotQA
HotpotQA (Yang et al., 2018) is a multi-hop
question-answering dataset that requires the model
to retrieve and reason over multiple pieces of ev-
idence to generate a correct answer. The dataset
includes questions, supporting facts, and distractor
contexts, making it a complex and rigorous test for
our method. The multi-hop nature of HotpotQA
ensures that our approach can handle intricate rea-
soning and context synthesis tasks effectively.

4.5 HaluEval
Hallucination Evaluation Benchmark for Large
Language Models (HaluEval) (Li et al., 2023) is a
large collection of generated and human-annotated
hallucinated samples for evaluating the perfor-
mance of LLMs in recognizing hallucination.

4.6 HaluBench
HaluBench (Ravi et al., 2024) is a hallucination
evaluation benchmark of 15k samples that consists
of context-question-answer triplets annotated for
whether the examples contain hallucinations. Com-
pared to prior datasets, HaluBench is the first open-
source benchmark containing hallucination tasks
sourced from real-world domains that include fi-
nance and medicine.

5 Data Preparation

The MSMarco and HotpotQA datasets each con-
tain 10 sources per question, with one relevant
source per question in MSMarco and multiple
relevantsources per question in HotpotQA. Other
datasets have a single source paragraph given for
each question. All sources were split into indi-
vidual sentences, and all datasets were converted
into triplets with the query and answer as strings,
and the sources as a list of strings.Our framework
processes these triplets and returns a score, which,
combined with a set threshold, classifies the gener-
ated answer as hallucinated or factual. To calculate
AUC, we ensured representation of the two classes
by generating hallucinated answers for datasets
lacking them.

For the MSMarco dataset (Nguyen et al., 2016),
we randomly selected 252 out of 100,000 data-
points and generated hallucinated answers using
the GPT-3.5-turbo model, which were verified man-
ually.

For HotpotQA (Yang et al., 2018), we appended
the QA data from HaluEval (Li et al., 2023), which
includes 10K hallucinated samples based on Hot-
potQA.

6 Experiments

6.1 Preliminary Experiments
Before developing our final Provenance framework,
we also experimented with a BERT-based Rele-
vancy Scorer using TopP selection and a DeBERTa-
based NLI model for computing factuality scores.
These preliminary experiments showed the im-
portance of (1) sorting of selected sources into
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Data Type Dataset Sample Count AUC
(Provenance)

AUC
(TRUE paper)

Model size
(TRUE paper)

Paraphrase
Detection

PAWS 8000 94* 89.7Q2

11B

Dialogue
Generation

BEGIN 836 80 87.9BERT _SCORE 750M

DialFact 8689 92* 86.1Q2

11B

Q2 1088 86* 80.9Q2

11B

Abstractive
Summarization

FRANK 671 89 89.4ANLI 11.5B

MNBM 2500 79* 77.9ANLI 11.5B

QAGS_CNNDM 235 76.3 83.5Q2

11B

QAGS_XSUM 239 80.4 83.8ANLI 11.5B

Summ_Eval 1600 70.1 81.7SC_ZS 58.7M

Fact Verification
VITAMIN C 63054 95.8* 88.3ANLI 11.5B

FEVER 18209 92 93.2ANLI 11.5B

Table 1: Comparison of AUC scores and model sizes from the TRUE paper with our Provenance framework; we
report AUC scores*100 for better readability, as in the TRUE paper (Honovich et al., 2022). Results from FEVER,
PAWS, and VITAMIN C (reported above, but crossed-out) are not comparable to the TRUE results since our NLI
model has seen samples from these datasets. The highest score for our method is in bold with an asterisk, while the
highest score from the TRUE paper methods is in bold. The size of the Provenance model is ≈ 300M parameters.

Dataset Name Sub Dataset Name Label 0
(Hallucination)

Label 1
(Entailment)

Total Samples

TRUE

VITC 31570 31484 63054

BEGIN 554 282 836

DIALFACT 5348 3341 8689

FEVER 11816 6393 18209

FRANK 448 223 671

MNBM 2245 255 2500

PAWS 4461 3539 8000

Q2 460 628 1088

QAGS_CNNDM 122 113 235

QAGS_XSUM 123 116 239

SUMMEVAL 294 1306 1600

MS MARCO 252 252 504

HOTPOTQA 10000 100447 110447

HALUBENCH 7170 7730 14900

TRUTHFUL_QA 1716 1260 2976

HALUEVAL

DIALOGUE 10000 10000 20000

QA 10000 10000 20000

SUMMARIZATION 10000 10000 20000

GENERAL 815 3692 4507

TOTAL 107394 191061 298455

Table 2: Overview of Datasets and Sub-Datasets Categorized by Hallucination and Entailment Labels, including
Total Sample Counts. (Entailment corresponds to Factual for our purposes.)

their original temporal order and (2) cosine scoring
(length normalization) of similarity scores; detailed
results can be found in the Appendices A.2 and A.3.

6.2 Experiment 1: Provenance framework

The experimental setup follows the methodology
described in Section 3. The pipeline consists of
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Dataset Type Dataset AUC
Paraphrase De-
tection

PAWS 0.94

Dialogue Genera-
tion

BEGIN 0.80

DIALFACT 0.92

Q2 0.86

HaluEval Dialogue 0.69

Abstractive Sum-
marization

FRANK 0.89

MNBM 0.79

QAGS_CNNDM 0.76

QAGS_XSUM 0.80

Summ_Eval 0.70

HaluEval Summa-
rization

0.66

Fact Verification

VITAMIN C 0.96

FEVER 0.92

Truthful_QA 0.59

MS_MARCO 0.84

HaluBench 0.71

HaluEval QA 0.74

Open Domain HaluEval General 0.54

Table 3: Results for Experiment 1: Provenance

three main components: Relevancy Scorer, Context
Item Selector, and Fact Checker. The Relevancy
Scorer uses cross-encoder based models to rank
context items based on their relevance to the given
query. The Context Item Selector then selects top
documents using either the TopK or TopP strategy.
Finally, the Fact Checker evaluates the combined
context to detect hallucinated content and returns a
score. Results are presented in Table 3.

6.3 Experiment 2: Long context and
multi-hop scenarios

The experimental setup aligns with that of Sec-
tion 6.2. In scenarios involving longer contexts and
multi-hop scenarios, where answers span multiple
context claims, as seen in HotpotQA (Yang et al.,
2018) and for some samples in HaluBench (Ravi
et al., 2024), we aggregate the scores from the Fact
Checker and weights from the Context Item Selec-
tor for each filtered source. Results are presented
in Table 5.

7 Results

We report the ROC AUC of our system for all
datasets mentioned in Section 4. The ROC curves
in Figures 3 and 4 show the trade-off between false
versus missed hallucination detections for the least

Models HaluBench Model Size
GPT-4o 87.9 1.7T

GPT-4-Turbo 86.0 1.7T

GPT-3.5-Turbo 62.2 175B

Claude-3-Sonnet 84.5 70B

Claude-3-Haiku 68.9 20B

RAGAS Faithfulness 70.6 100B

Mistral-Instruct-7B 78.3 7B

Llama-3-Instruct-8B 83.1 8B

Llama-3-Instruct-70B 87.0 70B

LYNX (8B) 85.7 8B

LYNX (70B) 88.4 70B

Provenance 65.6 300M

Table 4: Comparison of accuracies of different LLM-
based methods in HaluBench (Ravi et al., 2024) with
Provenance. The reported accuracy for Provenance
corresponds to Experiment 2, utilizing top_k = 5 and
the maximum aggregation logic.

Figure 3: ROC curve for VITC task

Figure 4: ROC curve for HALUEVAL-GENERAL task
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Dataset
Selection
Strategy

TopP 0.9 TopK 5

Aggregation AUC AUC

HotpotQA

min 0.227 0.440

max 0.809 0.688

weighted av-
erage

0.252 0.372

HaluBench

min 0.645 0.644

max 0.680 0.714

weighted av-
erage

0.664 0.676

Table 5: Results from Experiment 2: Long context and
multi-hop scenarios

Models QA Dia
logue

Summa
rization

General Model
Size

ChatGPT 62.59 72.40 58.53 79.44 175B

Claude 2 69.78 64.73 57.75 75.00 135B

Claude 67.60 64.83 53.76 73.88 130B

Davinci002 60.05 60.81 47.77 80.42 6B

Davinci003 49.65 68.37 48.07 80.40 175B

GPT-3 49.21 50.02 51.23 72.72 13B

Llama 2 49.60 43.99 49.55 20.46 7B

ChatGLM 47.93 44.41 48.57 30.92 7B

Falcon 39.66 29.08 42.71 18.98 7B

Vicuna 60.34 46.35 45.62 19.48 7B

Alpaca 6.68 17.55 20.63 9.54 7B

Provenance 67.48 62.97 62.27* 56.70 300M

Table 6: Comparison of Provenance accuracy to differ-
ent models across various tasks presented in HaluEval
(Li et al., 2023).

and the most difficult of the test sets, respectively.
Note that we did not reproduce the evaluations of
the LLM-based methods listed in Tables 4 and 6,
and simply copied the results reported in the re-
spective references.

7.1 AUC Analysis

Comparing our AUC scores with the TRUE dataset
paper (Honovich et al., 2022) in Table 1, our frame-
work achieves the best AUC for 3 out of 7 datasets
(DialFact, MNBM, and Q2). Notably, the ANLI
method (Honovich et al., 2022), which uses a
11B-parameter model, slightly outperforms ours
on some datasets. Still, our model with ≈ 300M
parameters shows competitive results with mini-
mal differences: 0.4% for FRANK and 3.4% for
QAGS_XSUM, while performing better by 2.9%
for MNBM.

7.2 Accuracy comparison
Comparing accuracy scores from the HaluEval
benchmark (Li et al., 2023) in Table 6, Prove-
nance achieves the best accuracy on the summariza-
tion task, surpassing ChatGPT by 3.74%, and is
only 2.3% behind Claude2 on the QA task, despite
Claude 2 having 135B parameters.

Comparing accuracy scores from the HaluBench
benchmark (Ravi et al., 2024) in Table 4, Prove-
nance is surpassing GPT-3.5-Turbo by 3.38%,
and is only 3.32% behind Claude-3-Haiku, despite
Claude-3-Haiku having two orders of magnitude
more (20B) parameters.

8 Conclusion

We have presented Provenance, a practical ap-
proach to fact-checking of LLM output in RAG sce-
narios, based on light-weight cross-encoder models
for relevance scoring and natural language infer-
ence. The factuality scoring takes the query into
account when judging a generated answer against
the retrieved information sources. Evaluation on a
variety of open-source datasets shows our method
to be effective for hallucination detection across a
variety of tasks, at a model size that is a fraction of
that of LLMs that are commonly used for this task.
We expect our method to make the fact-checking
of LLM output more accessible and scalable, con-
tributing to the reliability and trustworthiness of
LLM-based applications.
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Data Type Dataset Sample Count EXP-0.1 AUC EXP-0.2 AUC EXP-0.3 AUC
Paraphrase
Detection

PAWS 8000 0.678 0.777 0.805

Dialogue
Generation

BEGIN 836 0.632 0.749 0.749

DialFact 8689 0.653 0.853 0.859

Q2 1088 0.637 0.735 0.737

Abstractive
Summarization

FRANK 671 0.452 0.720 0.790

MNBM 2500 0.594 0.747 0.752

QAGS_CNNDM 235 0.375 0.507 0.576

QAGS_XSUM 239 0.533 0.743 0.798

Summ_Eval 1600 0.447 0.546 0.639

Fact
Verification

VITAMIN C 63054 0.607 0.813 0.825

FEVER 18209 0.678 0.817 0.928

TRUTHFUL_QA 2976 0.557 0.607 0.595

MS_MARCO 504 0.853 0.853 0.820

Table 7: Baseline results from preliminary experiments on dot-product relevance scoring (Appendix A.1), sources
in temporal order (Appendix A.2), and cosine similarity (Appendix A.3).

A.1 Experiment 0.1: Dot-product scoring

Our framework involved three main components:
a sentence-tokenizer, a context filter, and a detec-
tor. The Spacy sentencizer3 tokenized the context
paragraphs into sentences. These tokenized sen-
tences, along with a formatted string combining
the query and the answer ("The answer to the ques-
tion {query} is {answer}."), are vectorized using
a BERT-based model.4 A dot product is computed
between each context sentence and the formatted
string, selecting the most relevant context sentences
based on the TopP selection strategy. These filtered
context sentences and the formatted string are then
passed to the NLI model5 to obtain the entailment
scores. The ROC AUC score and ROC curve are
derived from these entailment scores and ground-
truth labels (0 for hallucination and 1 for correct
answers). Results are presented in Table 7.

A.2 Experiment 0.2: Temporal ordering of
sources

The experimental setup mirrors that of Ap-
pendix A.1, with a minor modification in the con-
text filter. Previously, the TopP selection strategy
returned a list of relevant indices, which were di-
rectly mapped to context claims. In this updated
approach, the filtered indices are sorted before map-
ping to ensure temporal order, so the context claim

3https://spacy.io/api/sentencizer
4Available on huggingface as WhereIsAI/UAE-Large-V1
5Available on huggingface as microsoft/deberta-v2-

xxlarge-mnli

at index n precedes the context claim at index n+1.
The results are presented in Table 7.

A.3 Experiment 0.3: Scoring with cosine
similarity

The experimental setup mirrors that of Ap-
pendix A.2, but with a minor modification in the
context filter. The vectorized context sentences and
the formatted string are normalized to recreate co-
sine similarity for the dot product calculation. The
results are presented in Table 7.

Columns 4 and 5 in Table 7 show that maintain-
ing the temporal order of filtered context claims
enhances NLI model accuracy, especially for
conversation-based use cases, yielding a 24.95%
overall improvement in AUC scores.

Columns 5 and 6 in Table 7 show that using
cosine similarity results in a better threshold for the
NLI model, with an overall 4.79% improvement in
AUC scores.

Column 6 in Table 7 and Column 3 in Table 4
demonstrate that the Relevancy Scorer with the
Context Item Selector outperforms simple cosine
similarity between context and query, leading to a
9.63% overall improvement in AUC scores.
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