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Abstract

In e-commerce, high consideration search mis-
sions typically require careful and elaborate
decision making, and involve a substantial re-
search investment from customers. We con-
sider the task of automatically identifying such
High Consideration (HC) queries. Detecting
such missions or searches enables e-commerce
sites to better serve user needs through targeted
experiences such as curated QA widgets that
help users reach purchase decisions. We ex-
plore the task by proposing an Engagement-
based Query Ranking (EQR) approach, focus-
ing on query ranking to indicate potential en-
gagement levels with query-related shopping
knowledge content during product search. Un-
like previous studies on predicting trends, EQR
prioritizes query-level features related to cus-
tomer behavior, financial indicators, and cat-
alog information rather than popularity sig-
nals. We introduce an accurate and scalable
method for EQR and present experimental re-
sults demonstrating its effectiveness. Offline
experiments show strong ranking performance.
Human evaluation shows a precision of 96%
for HC queries identified by our model. The
model was commercially deployed, and shown
to outperform human-selected queries in terms
of downstream customer impact, as measured
through engagement.

1 Introduction

The integration of information content in on-
line shopping is increasingly gaining importance
(Vedula et al., 2024; Kuzi and Malmasi, 2024), but
such content may be more useful for certain search
missions than others. The effective identification
of specific subsets of keywords (Zhao et al., 2019;
Yuan et al., 2022; Ryali et al., 2023) is essential
not only for driving organic traffic and revenue
in e-commerce, but also for enhancing the over-
all customer experience. Related to the tasks of
keyword selection and targeting (Shu et al., 2020;
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Figure 1: An end-to-end demonstration of how the
question-answer pairs of a widget is curated.

Zheng et al., 2020), creating or serving customized
content for specific queries helps provide relevant
content for the right population. For example, when
customers search for “prime day deals” on Ama-
zon, a dedicated widget will appear above product
search results. Clicking on this widget will direct
customers to a specialized page with customized
information, thus enhancing their shopping experi-
ence for specific deals. Identifying such queries is
usually the initial step prior to content creation and
targeting. Rather than directing customers to a ded-
icated web page, such targeted content could also
be co-displayed with product search results when
customers are looking for products. For example, a
Question-Answer (QA) widget with relevant shop-
ping knowledge could be rendered to match the
customer’s query, as shown in Figure 1a.
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Such tailored content is generally most useful
for purchases requiring exploration, comparison,
and deep decision making (Sondhi et al., 2018).
We refer to such searches as High-Consideration
(HC) Queries since consumers require additional
information to consider their decision, or refine
their search (Branco et al., 2012). However, cu-
rating customized content is an expensive manual
process, and not feasible for all shopping queries
as the query space is in the hundreds of millions. In
Figure 1b, we illustrate the end-to-end process of
creating curated content. Initially, HC queries are
selected, typically through a manual process guided
by heuristics. This often involves human annota-
tors reviewing the top queries ranked by search fre-
quency and identifying potential HC queries based
on subjective criteria. Next, customized content is
manually curated for each selected query. To serve
a QA widget, corresponding question-answer pairs
are then created. Finally, these customized QA
pairs are ingested into a database and retrieved for
specific queries (Chen et al., 2023) as in Figure 1a.

Manual keyword selection by humans is the most
straightforward approach. However, even with
frequency-ranked query lists this is an expensive
and low-yield process as most queries are judged
to be of low consideration (e.g., consumables and
minor purchases). Therefore, a lot of human efforts
can be wasted using the conventional method. To
address this, our work focuses on the task of auto-
matically identifying the small subset of such HC
queries in this large space. Identifying the most
valuable queries (i.e., step 1 in Figure 1b) is crucial
for maximizing the Return on Investment (ROI) of
human efforts dedicated to content curation (i.e.,
step 2 in Figure 1b). As discussed later, the cost
associated with content creation (and other factors),
is an important consideration in framing this as a
ranking task rather than a classification task.

We hypothesize that HC queries can be identified
by a combination of behavioral cues, financial sig-
nals, and catalog features. To identify HC queries,
we propose the novel task of Engagement-based
Query Ranking (EQR) to train a model leveraging
these signals. To learn this ranking function, our
approach relies on engagement with informational
shopping content in search results (e.g. a QA ele-
ment) as a proxy target for HC query labels (which
are expensive to define). This engagement can be
measured as the Click-Through Rate (CTR) of the
content displayed for a set of seed queries. As we
will show, these targets can then be used to create

a generalizable model to predict HC queries across
all search traffic. This approach also allows for con-
tinuous learning by using engagement from new
content created for queries selected by our model.

Our key contributions are summarized below:

• We introduce a novel task called Engagement-
based Query Ranking (EQR), aimed at ranking
HC queries based on their engagement metrics.

• We propose a simple and effective method
for EQR, which could effective identify novel
queries that may result in prospective future en-
gagement.

• Our offline experiments show our proposed
method outperforms all baselines for EQR across
all metrics. And a human evaluation measured
the model’s precision at 96% in terms of HC
queries selection.

• Finally, commercial deployment of the model
showed that the downstream customer impact
from its selected HC queries is higher than those
selected by human annotators.

2 Related Work

Query Understanding in E-commerce Query
understanding is important to optimize search re-
sults for e-commerce platforms. To improve the
relevance of search results while preserving the re-
call, embedding-based methods (Lin et al., 2018)
have been proposed to map a query into a target
product category. The first empirical study on e-
commerce queries was conducted by Sondhi et al.
(2018) and they categorized e-commerce queries
into five categories based on different search be-
haviors. Chen et al. (2023) introduced an intent
classifier to determine whether to display an FAQ
entry for a given query. Our work can be consid-
ered as an extension to Chen et al. (2023) and fo-
cuses on identifying new queries where customers
could benefit from the associated content from a
QA component. Once those queries are identified,
we could expand the QA database accordingly to
increase its coverage.

Query Performance Prediction In information
retrieval, the task of query performance prediction
(QPP) (Carmel and Kurland, 2012) aims to predict
the effectiveness of a query given a retrieval sys-
tem without using human-labeled relevance judg-
ments. QPP methods can generally be categorized
into pre-retrieval and post-retrieval methods (Hauff
et al., 2008). Pre-retrieval methods are designed
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to estimate query performance before the retrieval
stage is reached, and they utilize various features
such as query term characteristics and collection
statistics to make their predictions (Mothe and Tan-
guy, 2005). On the other hand, post-retrieval tech-
niques (Cronen-Townsend et al., 2002; Roitman
and Kurland, 2019) focus on deriving predictions
from the ranked list of results obtained through
the retrieval process. Unlike pre-retrieval methods,
post-retrieval predictors have access to the actual
search outcomes, which can provide valuable addi-
tional information for analysis. For example, Query
Clarity (Cronen-Townsend et al., 2002) evaluates
the quality of search results by measuring the KL
divergence between language models derived from
the search results and those from the corpus. For
the first time, Kumar et al. (2018) performed query
performance prediction in e-commerce domain.

Our method for identifying high consideration
queries shares commonalities with QPP methods,
which provide insights for a query without relying
on human judgments. Instead of focusing on re-
trieval quality for a given query, we care about the
downstream business impact (e.g., click-through
rate) of curated content for a selected query. We
also model the task as a regression task to predict
a target measure of queries (Zamani et al., 2018;
Hashemi et al., 2019; Arabzadeh et al., 2021; Khod-
abakhsh and Bagheri, 2023).

Trending Queries Detection Our work is also
related to detection of trending queries. Giummolè
et al. (2013) analyzed on real data and showed
that a topic trending on Twitter may subsequently
emerge as a popular search query on Google. Lee
et al. (2014) proposed to predict trending queries
with a classifier trained on features derived from
the historical frequencies of queries. More recently,
trending prediction has also been explored in e-
commerce scenario. Yuan et al. (2022) introduced a
method to mine fashion trends represented by prod-
uct attributes on e-commerce platforms. TrendSpot-
ter was proposed by Ryali et al. (2023) to forecast
trending products. Different from prior work, our
goal is to identify high-consideration queries that
could encourage user engagement with related con-
tent, rather than focusing on the queries themselves.
A trending query may not necessarily fall into the
high-consideration category due to specific busi-
ness considerations. Additionally, our method does
not rely on surface features of queries and we aim
to discover new HC queries.

Feature Description

B1 The average number of add-to-cart actions attributed to the query.
B2 Average daily search count in last 30 days.
B3 Average number of add-to-cart actions after a search (100-minute

window).
B4 Average number of clicks after a search (100-minute window).
B5 Average ranking of the first result clicked in the search.
B6 The average 30 days add-to-cart rate of the search query.
B7 Time elapsed from the search to the first add-to-cart action.
B8 The average count of viewed products in search results.

F1 Daily average product sales of the search query.
F2 The average product sales within a 100-minute window after the

first search of the query in the same session.
F3 The average product sales value from all purchases made following

a search occurs on the same day.
F4 The average product sales value attributed to the query.
F5 Average product sales value from purchases of products that were

sponsored on the search results of the query.

C1 The average number of results found for a query.
C2 The average number of results displayed for a query.
C3 The average number of products shown that are sponsored.

Table 1: Description of our proposed features for EQR.

3 Method

3.1 Classification and Ranking Approaches
Since we aim to predict a subset of queries ac-
cording to our criteria, this task could be framed
as either classification or ranking. However, the
classification approach is overly simplistic, and we
model the task of HC queries identification as a
ranking task instead of classification task for the
following considerations.

Shortcomings of Binary Classification Ideally,
we want to create tailored content for every targeted
query. However, not all queries will have content
engagement. User needs for informational content
are subjective and depend on factors such as knowl-
edge level. By taking a ranking approach we can
identify HC queries with higher engagement and
prioritize them, which is an important aspect given
the constrained human resources required for con-
tent creation and validation. A simple classification
approach would not allow us to maximize the im-
pact of our efforts in production by addressing the
most promising queries first. Additionally, using
a classification approach would require additional
steps for threshold selection, as well as ensuring
that probability outputs from the model are well
calibrated, both of which can be avoided with a
ranking approach.

Ranking Approach Since our primary objective
is scoring queries independently, rather than rel-
ative ranking, we choose to model our task as a
pointwise ranking problem, similar to the work on
query performance prediction (Zamani et al., 2018;
Hashemi et al., 2019; Arabzadeh et al., 2021; Khod-
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abakhsh and Bagheri, 2023; Meng et al., 2024).
This allows us to train a model using data with
absolute engagement scores, rather than collecting
pairwise comparisons. A pointwise approach is
also preferred from a model complexity perspec-
tive. It allows us to use standard regression ap-
proaches, rather than more sophisticated pairwise
or listwise ranking models. This is preferred as
the lower computational cost leads to faster train-
ing and inference. A pointwise approach is also
more interpretable, and makes it easy to perform
inference on new queries as they appear. Since it
is trained on engagement data, it is also the most
suitable for incremental or online learning, allow-
ing the pointwise model to easily adapt to changing
user behavior. Accordingly, a pointwise approach
is the most scalable and practical solution.

3.2 Pointwise Ranking Model
Our goal is to create a supervised ranking model
for selecting HC queries. We first define our proxy
target, the query (q) level engagement score (e), as
following:

e(q) =
freqc(q)

freq(q)
(1)

where freqc(q) is the user click count for an infor-
mational component (e.g. QA widget like in Fig-
ure 1a) displayed in the search results, and freq(q)
is the total frequency for the query. Note that the
definition of the engagement score can vary among
different businesses. In this work, we consider the
overall query-level engagement instead of content-
level engagement like the CTR of an individual QA
pair generated for a query. The scope of this paper
is on the selection of HC queries and we leave the
study of how to guide the content generation for
optimizing CTR as future work.

For a query q ∈ Q, we have its user interac-
tion features x ∈ Rd where d is the total num-
ber of features. We aim to learn a function f(·)
that could predict the engagement score of a query
given its features. Once we obtain the predicted
engagement scores for a list of n queries Q =
{q1, . . . , qi, . . . , qn}, then we re-rank them in de-
scending order of their engagement scores.

We do not rely on query embeddings for several
reasons. First, the query space is large, and dif-
ferences between queries can be nuanced (airpods
vs. airpods case), possibly leading to poor gen-
eralization. As we will demonstrate in Section 5,
embedding-based methods perform inferior com-
pared to our proposed method, which does not rely

on query surface text features. Second, text en-
coders are slower in both training and inference.
Finally, by using behavioral features our model
is language agnostic without using a multilingual
encoder.

Training Data Acquisition In order to bootstrap
the model training, a key requirement is to have
a small but representative set of seed queries with
engagement scores to train a model that can gener-
alize to previously untargeted queries.1 In general
this seed query set should be manually chosen by
experts, and be stratified over product categories
for coverage.

Next, we summarize the features we used (Sec-
tion 3.3) and then describe how we train the ranking
model (Section 3.4).

3.3 Query Features
We have three feature groups, and all features are
listed in Table 1.

Behavioral Features (B1-B8) characterize user
interactions with a search system for a query. Af-
ter a query is submitted, we observe subsequent
interactions such as clicking on a search result, or
adding a product to the cart. We hypothesize that
how users interact with the results (e.g. number of
item clicks, going deeper into the results, etc.) can
help identify HC queries.

Financial Features (F1-F5) relate to the pur-
chases associated with a query. We hypothesize
that financial signals (e.g. order volumes, prices,
temporal patterns) can help distinguish HC queries.

Catalog Features (C1-C3) focus on features of
the products served in the search results, as derived
from the product catalog. Such features serve as
feedback from the product search system and are
inspired by post-retrieval methods for predicting
query performance (Cronen-Townsend et al., 2002;
Roitman and Kurland, 2019; Butman et al., 2013).

3.4 Training
We approach the EQR task as pointwise regression
and train Gradient Boosted Decision Trees (GBDT)
to predict query engagement scores. During train-
ing we minimize the Mean Squared Error (MSE):

L =
1

2

∑

i

(f(xi)− e(qi))
2 (2)

1This includes queries that are unseen in the model train-
ing set but present in search traffic, or queries that were never
selected as HC queries for a target widget (i.e., the QA com-
ponent in our case).
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where xi is the feature vector of query qi. In this
paper, we adopt the XGBoost (Chen and Guestrin,
2016) implementation to train our models.

4 Experimental Setup

Dataset As illustrated in Figure 1a, we collected
the data associated with a QA component from
Amazon spanning a one-year period. During this
time, 11,273 queries were manually selected to trig-
ger the QA component and display curated content.
We obtained the corresponding query-level user en-
gagement data as our proxy targets. The data was
divided into training, validation, and test sets, with
respective proportions of 70%, 15%, and 15%.

4.1 Evaluation Metrics
To evaluate the performance of different methods,
we use the following evaluation metrics:

• HIT@k: Considering k queries with the highest
ground-truth engagement scores as positives, this
is the ratio of positive queries in top-k predicted
results by the model.

• Kendall’s Tau: An ordinal rank correlation coef-
ficient for two lists (our predictions and ground
truth). Values lie in [-1, 1], and larger values
indicate greater similarity (Kendall, 1938). This
metric is also commonly used in query perfor-
mance prediction (Hauff and Azzopardi, 2009).

• MSE: Mean Square Error between the ground-
truth engagement and predictions. It is a more
challenging metric as it requires capturing the
precise engagement levels, which may fluctuate
due to seasonal variations.

The HIT@k metric assesses the ranking perfor-
mance for top queries, while Kendall’s Tau coeffi-
cient evaluates the performance across the entire
test set. While the former two metrics focus on
query ranking performance, MSE measures exact
engagement prediction.

4.2 Baselines
We compare our GBDT ranker with the following
methods.

• Frequency: Queries are ranked by frequency.
This baseline measures whether popularity is a
predictor for detecting HC queries.

• Regression methods: We use the features outlined
in Section 3.3 for both Random Forest and linear
models, which include Lasso, Ridge, Elastic Net,
and linear regression.

• RoBERTa: A 300M parameter encoder pre-
trained on internal shopping data. We fine-tune
this with our training data.

We employed a grid search on the validation set to
select hyperparameters for all methods.

Inspired by the work of using LLMs for query
performance prediction (Meng et al., 2024), we
also adopt LLMs to predict the engagement scores
(i.e., eq. (1)) of queries in our testing set.

• GPT-3.5 and GPT-4o (zero-shot): We developed
a prompt to follow our task definition without
any examples.

• GPT-3.5 and GPT-4o (few-shot): We add 20
examples (selected uniformly over engagement
scores) from our training data in the prompt.

Note that the RoBERTa and GPT baselines (text
models) rely solely on the text embeddings of
queries, while the other methods depend only on
the non-text features we proposed in Section 3.3.
For RoBERTa, we added a linear layer to transform
the CLS embedding into a continuous score in [0,
1]. For GPT baselines, we prompted it to score
input keywords with scores in [0, 1], which are
then used for ranking. The prompt is described in
Appendix A.

5 Results

5.1 High Consideration Query Prediction
Table 2 shows the query prediction results for all
methods.

Decision Tree Ensembles yield best overall
performance. The gradient-boosted XGboost en-
semble achieves the best performance across all
metrics, with Random Forest achieving similar re-
sults. These ensemble-based models outperform all
other single models, due to robustness and ability
to capture diverse patterns within the data. Among
linear methods, Lasso regression exhibits the best
performance, although the difference is not statis-
tically significant when compared to Elastic Net.
We observe that the Hit@k results of the frequency-
based ranking baseline are notably poor. This ver-
ifies our claim in Section 1 that query frequency
information does not necessarily correlate with cus-
tomer consideration.

We achieve high recall for the top queries.
When measuring recall of the top 500 HC queries
with Hit@500, around 70% of them were identified
by XGBoost and approximately 60% were identi-
fied by all other models trained with our proposed
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Method Hit@5 Hit@50 Hit@100 Hit@500 Kendall’s Tau MSE

Frequency 0.00 0.04 0.05 0.17 0.34 -

XGBoost (all features) 0.20 0.42 0.50 0.69 0.52 0.0038
XGBoost (behavioral only) 0.00 0.26 0.39 0.63 0.50 0.0041
XGBoost (financial only) 0.00 0.18 0.17 0.55 0.43 0.0049
XGBoost (catalog only) 0.00 0.08 0.14 0.46 0.17 0.0063

Random Forest 0.20 0.36 0.37 0.67 0.51 0.0040
Lasso 0.00 0.34 0.34 0.62 0.46 0.0043
Ridge 0.00 0.30 0.32 0.60 0.47 0.0044
Elastic Net 0.00 0.34 0.32 0.63 0.47 0.0043
Linear 0.00 0.32 0.31 0.61 0.47 0.0043

RoBERTa 0.20 0.28 0.34 0.50 0.32 0.0112
GPT-3.5 (zero-shot) 0.00 0.06 0.11 0.30 0.05 0.4024
GPT-3.5 (few-shot) 0.00 0.06 0.08 0.30 0.05 0.1049
GPT-4o (zero-shot) 0.00 0.16 0.18 0.40 0.14 0.3822
GPT-4o (few-shot) 0.00 0.14 0.14 0.41 0.12 0.0486

Table 2: The results of query ranking and engagement prediction of different methods.

features. The robust performance across models
highlights the reliability and consistency of our
approach in accurately identifying HC queries.

Ranking over the entire test set is accurate.
When measuring ranking performance on the en-
tire test set with Kendall’s Tau, XGBoost and Ran-
dom Forest both show a strong correlation with
the ground truth rankings. Rankings from the re-
gression models show moderate correlations. We
also observe that in general MSE follows a similar
trend with Kendall’s Tau. This is expected since
both metrics consider the entire test set. However,
when Kendall’s Tau indicates low correlation, the
MSE difference between two methods can be large
(comparing zero-shot and few-shot GPT baselines).

Text-based methods underperform feature-
based models. This is unsurprising given that those
methods are typically pre-trained to capture seman-
tic similarities in text. Even GPT-3.5 performs
poorly in all metrics, with little or no improvement
even with few-shot in-context learning. GPT-4o
achieves better results than GPT-3.5 but still cannot
beat all other feature-based models. The task of
EQR requires predicting on unseen queries, which
may lead to challenges in generalization when fac-
ing queries that are dissimilar in semantics to those
encountered during (pre-)training. This shows that
query semantics alone are not sufficient for this
task; behavioral features provide stronger cues.

5.2 Ablation Study and Feature Importance
We conduct an ablation study on the feature groups
from Section 3.3. Specifically, we examine how our
best XGBoost model’s performance changes when
using each feature group independently. The results
are shown in Table 2 (row 3 to row 5). We observe

High
Consideration

iphone pro max,
shark matrix,
fujifilm x100f,
hard drive ssd,
bose tv speaker soundbar,
tv 4k, xiaomi scooter,
nikon d500, dji mini ,
vacuum cleaners

Low
Consideration

rubber mats for gym,
pink belt, purse strap,
keychain wristlet,
foldable shoes,
mushroom lamp,
paw patrol toys,
toys for boys,
iridescent earrings

Table 3: Examples of top and bottom ranked queries.

a significant drop in performance across metrics
when utilizing only one group of features. This
drop indicates that behavioral features are of the
most importance, followed by financial features.

In Figure 2 we plot the importance of different
features obtained from XGBoost calculated with
three different methods: (1)Total Gain sums up the
total gain achieved by using the feature across all
splits (i.e., the reduction in entropy achieved by the
split), reflecting its contribution to improving the
model’s performance; (2)Total Covererage repre-
sents the total number of samples that the feature
splits across all trees; and (3)Weight measures the
frequency of a feature’s use in splitting the data
across all trees. Though the interpretation of fea-
ture importance can be different, it is consistent
across the three methods that the top two features
are all behavior related, which aligns with the re-
sults in Table 2.
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(c) Feature importance by total cover.

Figure 2: Feature importance vales obtained from XGBoost.

5.3 Human Evaluation
To validate the precision of our method in identify-
ing HC queries, we used our model to make predic-
tions on a large sample of unseen traffic in terms
of our QA widget. We then created a set of 1,500
queries by selecting evenly from both the highest
and lowest ranked queries in terms of predicted
engagement scores. Expert annotators judged the
shuffled set and classified each query as HC or not.
The human labels were used as ground truth, and
the model’s top ranked queries were considered
HC. We computed the precision of our model as
96%, indicating its ability to generalize to unseen
queries and potentially replace human annotators.

6 Commercial Deployment

Our model has been deployed in a production set-
ting to identify HC queries for more than one year.
As an initial step towards commercial deployment,
we performed a head-to-head comparison between
queries chosen by human experts and our model.
Each group selected 500 HC queries, for which we
curated and deployed high-quality QA content. As
our metric, real engagement metrics (eq. (1)) were
measured over a 30-day period. Results showed
that the model-chosen queries outperformed the
human-selected set with a relative increase of 6%.

Having validated the precision of our predictions
(§5.3) and their downstream impact on customers,
the model was moved to full commercial deploy-
ment. Removing the need for human annotators en-
ables scaling HC query selection applications from
an order of thousands to millions with relative ease.
This, in turn, enables rapid model improvements
by building an engagement-based feedback loop
for the model to learn from its own predictions.

In Table 3, we show some sampled queries from
the top 10% and bottom 10%, as determined by the

predicted rankings of a random sample of queries.
We observe that a significant portion of top queries
are related to various types of electronics where
customers greatly benefit from curated QA content
or articles when making a purchase decision. Con-
versely, lower-ranking queries like “rubber mats
for gym” typically involve products where specific
knowledge is not essential for decision-making.

7 Discussion and Conclusion

We introduce the task of Engagement-based Query
Ranking in order to select High Consideration
queries. We proposed three categories of features to
train pointwise rankers to address this task. Our ex-
perimental results show that our proposed method
achieves better performance than the baselines. The
human evaluation indicates that our method could
serve as an effective tool to save resources spent on
error-prone human annotations.

One limitation of our work is the difficulty in ac-
curately measuring the true recall of our model. Fu-
ture work could consider the combination of prod-
uct category predictions for queries and conduct
the selection of high consideration queries for each
product category. Another limitation of our work is
that we do not consider optimizing the curated con-
tent for selected queries and rely on human experts
to decide what content to be create. Furthermore,
we did not address the removal of nearly duplicated
queries, which would require a separate processing
pipeline. Future work could focus on personal-
ized content selection for HC queries, and leverage
active learning techniques to optimize the content-
level engagement metrics. Another promising di-
rection to explore is the integration of behavioral
and financial features, along with an innovative
LLM-based optimization approach (Senel et al.,
2024) to improve overall performance.
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Appendix

A Prompt Details

The only difference between zero-shot and few-shot prompts are the presence of 20 additional pairs of
(query, eq) few-shot example. However due to legal and privacy reasons, we only include our zero-shot
prompt below for generating engagement scores with reasons.

Instruction
You are an expert at assessing the potential engagement level (0 - 1) of product
search queries in e-commerce websites. Engagement level is defined as the
likelihood of each customer clicking one of the recommended questions for that
query. Please assume the quality of recommend questions are always the best, so
when assessing engagement level, please focus only on the query itself. Please
consider these aspects when judging engagement level: (1) how popular are products
returned from this query? (2) how much research is needed to make purchase
decision for returned products? For example, you need to ask more questions to
buy "Airpods" than "potato chips".

Following above guidelines, output engagement level in a continuous scale between
0 and 1. Your output must be structured in a json parseable string format that
can be parsed using json.loads() python function. Do NOT add any sentence, such
as "Here is the output:", before the json object. This output should only include
two keys: (1) engagement level; (2) reason. Do not add any newline inside json
object. Always use double quotes to enclose values.

Figure 3: Zero-shot prompt used for generating engagement score and reasons using OpenAI GPT models.Figure 3: Zero-shot prompt used for generating engagement score and reasons using OpenAI GPT models.
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