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Abstract

With the rapid growth of Large Language Mod-
els (LLMs) across various domains, numer-
ous new LLMs have emerged, each possessing
domain-specific expertise. This proliferation
has highlighted the need for quick, high-quality,
and cost-effective LLM query response meth-
ods. Yet, no single LLM exists to efficiently
balance this trilemma. Some models are pow-
erful but extremely costly, while others are fast
and inexpensive but qualitatively inferior. To
address this challenge, we present TO-Router,
a non-monolithic LLM querying system that
seamlessly integrates various LLM experts into
a single query interface and dynamically routes
incoming queries to the most high-performant
expert based on query’s requirements. Through
extensive experiments, we demonstrate that
when compared to standalone expert models,
TO-Router improves query efficiency by up to
40%, and leads to significant cost reductions
of up to 30%, while maintaining or enhancing
model performance by up to 10%.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable performance across a diverse
set of challenging domain-specific tasks (Beech-
ing et al., 2023). However, no single LLM can
outperform all others across every task and use
case (Shnitzer et al., 2023). Recent works (Hu
et al., 2024; Ong et al., 2024; Ding et al., 2024)
highlight the urgent need for efficient tools that can
unify the expertise of multiple LLMs, combining
them into a single cohesive unit. Such tools can
allow enterprises to develop applications, e.g., for
customer support, on top of a single endpoint that
can integrate multiple domain experts and intelli-
gently route any query to the most suitable expert.

However, due to the high costs and latency in-
volved in querying LLM experts hosted at various
providers (Chen et al., 2023), it is essential for such

multi-LLM querying tools to efficiently and eco-
nomically direct queries to the most suitable expert.
This requires balancing three key factors: query
throughput, monetary cost, and model performance
— achallenge we refer to as the multi-LLM routing
trilemma.

Our aim is to provide an empirical solution
to this trilemma by showcasing the potential of
a multi-LLM routing system that improves this
balance. We propose an LLM routing system,
called TensorOpera-Router (hereinafter referred to
as TO-Router), to explore the feasibility of building
a multi-LLM routing model that leverages the col-
lective power of multiple LLM experts. TO-Router
aims to efficiently, inexpensively, and accurately
answer query prompts by selecting the most cost-
effective and suitable LLM from a diverse set of
expert models. Our contributions are as follows:

* We empirically demonstrate the promise of
different routing methods developed through
the TO-Router system in balancing query ex-
ecution time, query cost, and model perfor-
mance, leading to significant gains.

* We show that, on average, our routing system
outperforms standalone model experts.

* We demonstrate that routing methods trained
to learn the embedding query space outper-
form naive routing methods.

* We present a routing method based on a pre-
trained BERT model that exhibits the best per-
formance.

2 Background & Related Work

Model Routing. Depending on the mechanism
used by routing methods to decide the most suit-
able LLM(s) to answer a given prompt, two distinct
routing categories have been recently introduced:
predictive/classification routers, which do not gen-
erate LLM outputs in advance, but instead, they
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Figure 1: TO-Router system’s overview of router data preparation, router model training and deployment pipelines.

predict the best LLM to handle a given prompt
based on specific performance metrics (Hu et al.,
2024; Ong et al., 2024; Srivatsa et al., 2024) and
cascading routers, which refer to routing methods
that process a query request by executing it over
a series or combinations of LLMs (Chen et al.,
2023) until specific quality criteria are met. To
train the predictive routers, different training meth-
ods have been recently introduced that leverage
data augmentation techniques and human prefer-
ence data (Ong et al., 2024) or existing benchmark
datasets (Shnitzer et al., 2023) to improve rout-
ing predictions. In this work, we too develop and
evaluate predictive routing methods trained on stan-
dardized benchmark datasets to efficiently classify
and direct query prompts to the best LLM expert.

Mixture-of-Experts. A typical MoE architec-
ture (Jordan and Jacobs, 1994) consists of a set
of expert models trained to specialize in different
data regions and a gating network model that deter-
mines the contribution of each expert to the final
prediction. Recently, MoEs have witnessed wide
adoption in the LLM domain as well, where mul-
tiple MLP experts are integrated into encoder and
decoder blocks, to boost the training of extremely
large networks (Shazeer et al., 2017; Jiang et al.,
2024; Fedus et al., 2022). Similar to these MoE
approaches, the LLM routing methods can be seen
a special case of an MoE architecture, where the
predictive routing model is the gating mechanism
and the pool of LLMs the set of available experts.
However, unlike MoE architectures that route to
homogeneous experts, our approach routes to het-

erogeneous domain experts of varying sizes.

Ensemble Learning. Model routing also bears
similarities with ensemble machine learning (Zhou,
2012) techniques that seek to provide better pre-
dictive outcomes by combining the predictions of
multiple models. A key distinction between routing
and ensemble techniques, like bagging (Breiman,
1996), and boosting (Freund and Schapire, 1997),
is that models participating in an ensemble are typ-
ically trained on the (whole or subsets of) same
dataset and therefore assumed to have a similar ex-
pertise. However, the router predicts and retrieves
the predictions out of a varying set of LLMs ex-
perts that have been trained on highly diverse sets
of data distributions.

3 TensorOpera Router System Overview

To effectively learn and deploy a multi-LLM rout-
ing model, a sequence of different critical devel-
opment phases need to be executed, from data
preparation to router model training and evalua-
tion and model deployment/serving. The proposed
TO-Router system’s end-to-end pipeline shown in
Figure 1 facilitates the development of these phases
and in practice has helped to swiftly develop, pro-
totype and deploy different model routing methods
into real-world settings. !

Phase 1: Router Data Preparation. The gen-
eration of the training and testing dataset for the
routing model is a multi-step process. First, we
need to find the appropriate domain specific (e.g.,

'We plan to release the source code as open-source soon.
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bio, coding, physical sciences) instruction datasets
and model experts to which we want the routing
model to learn propagating relevant query prompts.
Thereafter, we perform a forward pass over each
expert model (step 1) to collect the associated met-
rics required to train and test the performance of
the routing model and create the experts predic-
tion dataset (step 2), i.e., for every prompt in each
dataset we query each expert individually. In this
work, we collect the following metrics per instruc-
tion prompt: {negative log likelihood, BERT simi-
larity score (BERTSim), inference time in seconds,
total input tokens, total output tokens }; for more de-
tails on these metrics, please see section 4.4. Once
the expert prediction dataset is created, we select
one of the collected metrics to generate soft labels
(step 3) and prepare the final training and testing
dataset for the routing model (step 4). In the current
work, we use the BERTSim scores to create soft
labels and train the routing expert model classifier.
We use soft labels, since we want the routing model
to learn the ranking of the experts in terms of their
prediction performance. To generate the soft la-
bels of each expert model and for each instruction
record, we pass the selected metric (e.g., similarity
score, log loss), through a softmax function with
temperature. For instance, for the r-instruction
record, the expert (class) softmax probability ¢,
exp(T)

is given by: ¢, (x;7T) = Ei(m].), where F

T
is the total number of experts, 7' is the tempera-

ture value, and x = (z1,x2, ..., zg) is the vector
of metric scores. In our evaluation, we generate
expert’s soft labels based on the BERT similarity
scores and with a temperature value of 7' = 10.
Phase 2: Router Training. Once the router’s
training and testing dataset is created, we pass the
instruction records through the router’s embedding
model, e.g., Bag-of-Words, TF-IDF, BERT or other
small or large language models, to create their vec-
torized representation (step 5). Then, we use the
generated embeddings to train the prompt-to-expert
classifier (step 6), using non-parametric, supervised
learning approaches (e.g., kNN), classical deep
learning models (e.g., MLP) or more advanced lan-
guage sequencing pre-trained models (e.g., BERT).
Even though our approach for creating the soft la-
bels is versatile and can be applied to any metric
or combination of metrics, in this work, we only
consider the BERTSim score as part of the MLP
and BERT routers’ training cost function, since all
expert models are deployed on the same hardware,

j=1

and therefore throughput and cost per token are sim-
ilar across all experts. More information on these
routing models is provided in section 4.3. It is im-
portant to note that, during training and testing, we
only consider the best, most suitable (top-1) expert,
but as it is also discussed in Section 5, our approach
can also be extended to combine the responses of
multiple (top-k) experts.

Phase 3: Router Deployment. When the final
routing model is trained, the model is deployed as a
standalone endpoint on the platform (step 7), ready
to receive user queries (either through CLI or web
interface). Whenever a new user query is submitted,
the router first tokenizes and encodes the text of the
incoming query prompt using the tuned embedding
model from Phase 2 (step 8). Subsequently, the
router performs a forward pass over the trained/fine-
tuned classification model (e.g., MLP, BERT) and
predicts the most relevant expert model (step 9).
Depending on which expert model the classifica-
tion model predicts, the router selects the respec-
tive expert-prompt adaptor to submit and execute
the query. Once query execution completes, the
router receives the reply from the expert model and
forwards it back to the end user (step 10). Through-
out the router’s deployment time, the platform pro-
vides the necessary monitoring capabilities to trou-
bleshoot and tune the routing model, such as num-
ber of requests, queries’ semantic context, expert
models hitting frequency, and total costs.

4 Experiments

In this section we discuss the expert models, bench-
mark datasets, routing methods and metrics we
considered to evaluate the TO-Router system.

4.1 Expert Models

We choose several representative models across
different domains as the expert models to ver-
ify the effectiveness of our routing method in
the TO-Router system. For the Biomedical do-
main, we selected two variants from Llama-3-8B
(BioLlama-7B) (Shao et al., 2024) and Mistral-7B
(BioMistral-7B) (Labrak et al., 2024) models 2.
Both models achieve excellent performance across
many biomedical evaluation benchmarks. In the
code domain, we select Meta’s officially released
Llama2-7B (CodeLlama-7B) (Roziere et al., 2023)
variant trained on code datasets. In the general
instruction-following domain, we incorporate three

2We refer to each model using its name in bold fonts.
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instruction-tuned versions of LLMs across different
sizes, i.e., Fox-1.6B (TOAI, 2024) a recently in-
troduced powerful small language model, Mistral-
7B-Instruct (MistralAI-7B) (Jiang et al., 2023),
and Qwen-7B-Instruct (Qwen-7B) (Yang et al.,
2024). Finally, for the math domain, we choose a
strong reasoning model trained on large amounts
of math documents, MathDeepSeek-7B-Instruct
(MathDeepSeek-7B) (Guo et al., 2024). More de-
tails regarding models’ architecture and fine-tuning
please please see section D in the Appendix.

4.2 Datasets

All the datasets listed here are widely used by LLM
developers (Touvron et al., 2023a,b; Jiang et al.,
2023) to evaluate model performance in common-
sense reasoning, coding, and medical domains. To
generate the final training and testing data for the in-
vestigating routing methods, we gather all records
together from all datasets and perform a stratified
80% train, 20% test split per dataset.

Ai2-ARC (Clark et al., 2018). The Ai2-ARC
dataset consists of 7,787 natural science questions
designed for standardized tests. We use its chal-
lenge partition with 2,590 samples, which includes
only those questions that were answered incorrectly
by both a retrieval-based algorithm and a word co-
occurrence algorithm.

GSM8k (Cobbe et al., 2021). GSM8Kk is a high-
quality dataset of grade school-level math word
problems, covering relatively simple math concepts
with 7,473 training and 1,319 testing samples.

MBPP (Austin et al., 2021). The MBPP dataset
contains 974 basic programming problems suitable
for entry-level programmers. It also includes text
descriptions of the problems and test cases for func-
tional correctness verification.

PubMedQA (Jin et al., 2019). The Pub-
MedQA dataset is a biomedical question-answering
dataset designed for answering research questions
with yes/no/maybe responses. It contains 1,000
manually labeled question-answer pairs for cross-
validation and testing.

4.3 Routing Methods

Below, we describe the various predictive and non-
predictive routing methods we consider in our eval-
uation. *

3To ensure routing models are cost-effective and econom-
ically viable, we omit LLM-based routers from our current
evaluation setting.

Zero-Router. Following the work of (Hu et al.,
2024), we also evaluate the performance of the
routing methods against the average performance
of the available LLMs without any routing logic
(lower bound), i.e., no-routing approach.

Optimal. We compare against two optimal cases
(upper bounds), one refers to the optimal BERT-
Sim performance per dataset (shown in Figure 2a),
and the other to the optimal performance recorded
across all three evaluating dimensions (i.e., cost,
throughput, model performance, shown in Fig-
ure 3). In the former case, the optimal value is
measured by averaging the best BERTSim score
recorded for every test query by any expert. In
the latter case, the optimal set of values is the
minimum cost, maximum throughput and maxi-
mum performance recorded by any expert model
or router method.

Random-Router. To evaluate the performance
of a random router, for every test query we ran-
domly pick an expert to execute the query. Af-
ter performing this step for all test queries, we
repeat the entire process for 10 times. Let E =
(e1,€2,...,en) be the collection of all experts, we
randomly select an expert from E in each trial. Let
eg denote the ¢ expert randomly selected in the j-th
trial, then the entire random expect selection pro-
cess can be represented as: {e},...,el’}. Once
the collection of random experts is assembled, we
submit the test query to each expert and collect all
measurements to compute the evaluation metrics.

kNN-Router. The kNN-Router first encodes all
training queries q; € D! using a sentence trans-
former. Then, for every test query, qg, it finds its
closest training query ¢} in terms of cosine sim-
ilarity in the embedding space and subsequently
executes the test query using the expert that ex-
hibited the best performance for the most relevant
training query. The best performing expert €} is the
expert whose BERTSim score is the highest out of
all the training query’s experts, ¢}(E):

Yient |laill[|aell

/_
€; =

‘max (BERTSim;)

Jj€q(E)

A schematic flow of the INN-Router’s embedding
similarity and expert selection is also shown in
Figure 5. Given that we only need to find the most
similar training query to a given test query, we
subsequently refer to this method as /NN-Router.
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MLP-Router. To learn our predictive MLP-
Router, we use a simple 2-layer perceptron:

Yy =@ Zwﬁ)a (Z wg)xi + b§-1)> + b,(f)
j=1 i=1

To train the MLP model, we convert the training
queries into their vector representation by fitting
a Bag-of-Words model. To learn the ranking of
experts in terms of prediction performance, we use
cross entropy loss on the scaled BERTSim scores.
We used ReLU (o) and softmax (¢) as the hidden
and output layers’ activation function, respectively.

BERT-Router. To learn the BERT-Router,
we performed a full parameter fine-tuning on a
BERT model (approx. 110M parameters) for se-
quence classification. We appended a classification
head with a softmax activation funciton on top of
BERT’s final hidden layer outputs to map the BERT
embeddings H to the number of experts (classes):

y = softmax(WH +b), H = BERT(X)

To fine-tune BERT, we first tokenize and encode
all input training queries’ text sequences X using
the BERT tokenizer and then update the pre-trained
BERT model weights for a small number of epochs
using cross entropy loss. Similar to the MLP-
Router model, we train BERT-Router using the
soft labels created by the scaled BERTSim scores.

4.4 Evaluation Criteria

All expert models and routing methods are evalu-
ated on four dimensions: (1) total inference cost,
(2) throughput, (3) BERT similarity score, and (4)
negative log loss (NLL).

Total Inference Cost. For any expert model
the total cost to execute a given test query is mea-
sured based on the input and output token costs.
For a model m that was prompted with a sequence
of test queries that were used a total number of
T; input tokens, and the model generated a total
number of T}, output tokens, with a ¢; and ¢, cost
per 1 million input and output tokens, respectively,
the total cost for the entire test query sequence
is measured by: C,, = 1%6 * ¢ + 1%"6 % Co. In
the case of the routing methods that did not use
one single model to answer the sequence of testing
queries but routed different testing queries to dif-
ferent expert models M, the total cost is measured
as: Cp = > s Cm. To measure the querying of
standalone deployed expert models, we handpicked

the price per million input and output tokens from
different model providers. Table 1 shows the cost
of input and output token per model architecture.

Model Type $$ / IM Input Tokens ~ $$ / 1M Output Tokens
DeepSeek-8B $0.14 $0.28
Fox-1.6B $0.20 $0.20
Llama-8B $0.20 $0.20
Mistral-8B $0.25 $0.25
Qwen-7B $0.20 $0.20

Table 1: Price per million input and output tokens for
different model architectures.

Throughput. To measure the querying execu-
tion performance of a expert model and of different
routing methods for the entire test query set, we
compute the throughput for each query as the frac-
tion of total output tokens 777, generated by each
model m, over the inference time in seconds, i.€.,
time from query submission to query completion,
ts.. Specifically, the throughout for a single test
query ¢ is measured as 7; = %?' For the entire
set of test queries NV, the mean throughput 7 is
computed as: T = % Efv Ti.

BERTSim. Given that each expert model uses
its own vocabulary and tokenizer and to ensure
that there is an equitable comparison between the
responses generated by each expert, we evaluate
the vectorized text similarity between the ground
truth and the predicted answer of an expert through
the cosine distance on the BERT embeddings; dur-
ing computation the expert response is used as is
without any post-processing. Such a vector rep-
resentation allows for a soft measure of similar-
ity (Zhang et al., 2019). We refer to this similarity
score as BERTSim (Zhang et al., 2019). The cosine
similarity of a reference (ground truth) vector x;

and a candidate (predicted) vector Z; is computed
Tsa

as: % For every expert model and routing
method we measure the BERTSim score across all
test queries and we compute the final BERTSim
score as the mean of all scores.

Negative Log-Likelihood. We use the Negative
Log-Likelihood (NLL) to measure the quality of
the probabilistic predictions made by each expert
model. Lower NLL values are indication that the
model is assigning higher probabilities to the true
classes and therefore reflecting better performance.
In principle, a single sequence’s NLL is defined as:

T

Ll = — 2108; Py | X, y1:4-1)
=1
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where P(y; | X, y1.¢—1) is the predicted probability
of the t-th token in the sequence given the input
sequence X and the previous tokens y;.4—1. In
our evaluation, we measure the mean NLL over
the generated sequence of every expert model and
routing method across all test queries.

4.5 Evaluation

To systematically evaluate all investigating expert
models in terms of query response times, we de-
ployed each model on a machine employed with 8
NVIDIA DGX H100 GPUs. # Figures 2a and 2b
show the BERTSim score and NLL value compari-
son between all routing and optimal methods.

Performance per Dataset
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Figure 2: Router performance per dataset.

From the router vs. router comparison in Fig-
ures 2a and 2b, it is shown that naive methods, such
as Random-Router or INN-Router that do not learn

“Due to production demands, we could reserve only 1 GPU
to perform the evaluation. Hence, we resorted to evaluate
models with 7B params hosted on a single GPU, since larger
models (e.g., 70B params) would require at least 2 GPUs.

Model / Router Total Cost  Throughput BERTSim NLL
BioLlama-8B $0.195 155.613 0.686 3.408
BioMistral-8B $0.125 208.399 0.669 3.581
CodeLlama-7B $0.156 102.993 0.694 3.299
Fox-1.6B $0.118 214.925 0.761 2.958
MathDeepSeek-7B $0.138 187.166 0.746 3.286
MistralAI-7B $0.223 89.587 0.694 4.205
Qwen-7B $0.164 114.008 0.698 2.326
Random-Router $0.143 209.171 0.715 3.316
INN-Router $0.131 208.399 0.669 3.581
MLP-Router $0.147 177.508 0.773 3.164
BERT-Router $0.122 213.145 0.783 3.091

Table 2: Total querying cost, mean throughput and co-
sine similarity between predicted and expected answers
per model and router considering all the four benchmark
datasets. Box coloring represents the following ranking
column-wise: ‘rank 1, rank 2 , rank 3 .

the embedding space can lead to suboptimal perfor-
mance, cf. 0.3 BERTSim score for Random- and
INN- Routers to 0.4 and 0.45 of MLP- and BERT-
Routers in the Ai2-ARC dataset. Analogously,
when it comes to train routing models that learn
the embedding space, cf. BERT-Router to MLP-
Router, more complex routing methods (i.e., BERT-
Router) can lead to better outcomes and match
closer the optimal performance, especially in chal-
lenging domains like GSM8K, cf. BERT-Router’s
NLL value of 1.803 to MLP-Router’s 2.286.

To conduct a more thorough evaluation between
expert models and routing methods, in Table 2, we
record all the numerical values collected through-
out our experiments in terms of total monetary cost,
query throughput, BERTSim score and NLL value.
For every evaluating dimension, we also highlight
with different colors the top-3 positions/rankings.
The recorded values for the Zero-Router and the
Optimal across all four dimensions are, Zero-
Router: {$0.161, 153.242,0.707, 3.295} and Opti-
mal: {$0.118, 214.925, 0.783, 2.326}; we do not
report these values in the table to emphasize the
ranking between routing methods and standalone
models. The Mistral AI-7B exhibits the worst per-
formance across all expert models, while the more
recent small language model, Fox-1.6B, has the
best performance across all expert models and eval-
uating dimensions.

By using as a reference routing method the
BERT-Router approach and baseline the mean per-
formance of all standalone model experts (i.e., the
Zero-Router), we find that the BERT-Router leads
to a close of 30% cost reduction and 40% query
inference throughput increase compared to no rout-
ing at all. At the same time though, BERT-Router
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is capable of maintaining or slightly enhancing the
average mean model performance, by a 11% in
terms of BERT similarity score and lead to a 6%
NLL reduction.

To further analyze the optimization trilemma
problem w.r.t. total monetary cost (x-axis), query
throughput (y-axis) and model performance (z-
axis), Figure 3 provides a 3D visualization of the
tree different metrics. As it is clearly shown in the
Figure, the BERT-Router method outperforms all
other expert models and routing methods across all
three evaluation criteria, while almost matching the
optimal performance.

Optimal
BERT-Router
MLP-Router
1INN-Router
Random-Router
Zero-Router
Qwen-7B
Mistralai-7B
Mathdeepseek-7B
Fox-1.6B
Codellama-78
Biomistral-78
Biollama-8B

00000000OP<>

Figure 3: A holistic view of model performance,
throughput and total querying cost for standalone de-
ployed expert models and different routing methods.

Independent of Fox’s and other expert models’
performance, the collective model power provided
by the routing methods, especially of the BERT-
Router method, outperforms any other standalone
expert model. This can also be seen in the query
per expert assignment heatmap shown in Figure 4,
where we record the number of test queries an-
swered by each expert model for every routing
method. From the reported values, it is apparent
that both the MLP-Router and the BERT-Router
route most of the test queries to the Fox-1.6B small
language model, which is similar to the behavior
observed by the Optimal (oracle) approach. How-
ever, other routing approaches like the Random-
Router and 1NN-Router, distribute almost equally
the number of queries across all model experts.

Overall, our evaluation shows that routers can
match or outperform standalone large language
model experts (e.g., BERT-Router vs. Mistral Al-
7B, BioLlama-8B). The BERT-router model is
highly efficient, with just 110M parameters — 15
times smaller than the Fox SLM and 70 times

smaller than the studied LLMs — making it ideal
for production. While we didn’t assess routers’
performance against extremely large models, our
results suggest that our routing and evaluation meth-
ods are applicable to larger models and are not tied
to the ones studied in this work.

Query Count per Expert & Routing Method

Biollama-8B

Biomistral-7B

Codellama-7B

Fox-1.6B

Model Expert

Mathdeepseek-7B

Mistralai-7B

Routing Method

Figure 4: Number of test queries allocated to each model
expert by each routing method.

5 Conclusion

We presented for the first time our multi-LLM
routing system, called TO-Router. Through the
TO-Router system, users can easily interact with
multiple LLM expert models hosted at the same
or across multiple platform providers, without hav-
ing to restrict themselves to a single monolithic
LLM system. At the same time, users can overall
benefit from significant cost savings (up to 30%)
and improved query response times (up to 40%)
while maintaining or enriching (up to 10%) model
performance. As part of our immediate future plan
we aim to evaluate the feasibility of dynamically
adding and removing model experts during router’s
endpoint deployment, and test the routing efficacy
of small and large language pre-trained models. Fi-
nally, we also plan to evaluate approaches where
we combine the responses of top-k experts into one
instead of returning the response of a single expert.
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A KkNN-Router Diagram
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Figure 5: A flow diagram of the embedding similarity
approach used by the INN-Router.

B Router Models Data Preparation

To generate experts’ soft labels to train the MLP
and BERT-Router models, we used the BERT sim-
ilarity scores and set the temperature value of
the softmax function to 10, i.e., T' = 10. To
compute the closest training query to a given test
query in the case of the INN-Router, we compute
the queries’ embeddings using the sentence trans-
former library. >

C Router Models Training
Hyperparameters

The total number of experts is 7. The MLP-
Router’s hidden layer size is 256. The random seed
for all experiments is set to 42. The applied opti-
mizer for training both the MLP and BERT routers
is Adam with weight decay, the learning rate is set
to be — 3 and be — 5, respectively. We also applied
L2 norm regularization with A = 1le —4. The batch
size is set to 8 and the total number of training
(MLP model) and fine-tuning (BERT model) is set
to 5 epochs. The BERT model for the router is
bert-base-uncased. To counter dataset class/expert
imbalance we observed while generating the train-
ing and testing datasets, i.e., an expert model might
be more suitable to answer many more queries than
other experts, we used a sample weighting function,
with the weight of each sample being the inverse
proportion count of samples per class in the entire
training dataset, i.e., the total weight sample pro-
portion for each class/expert ¢ across all experts F,

. icp |Dj . .

is measured as w; = %, Vi € E, with the

final weight value per training sample being equal
J— w; ;

to w; Sier |wj‘V2 e k.

D Expert Model Resources

Below, we provide details regarding the internal ar-
chitecture and type of models we used as our expert

Shttps://www.sbert.net/docs/quickstart.html
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models in this study. For every instructed model,
if not otherwise specified, we set the maximum
tokens generation length to 512, the temperature to
0.7, and the top-p parameter to 0.95.

* BioLlama-7B %:This model is an advanced
Llama-3-based model designed specifically
for the biomedical domain. With policy op-
timization and a custom medical instruction
dataset, it outperforms even the ChatGPT API.
Following the recommended parameters, we
set max new tokens to 256, temperature to 0.1
and top-p to 0.9.

BioMistral-7B 7: This Mistral-based model,
pre-trained using textual data from PubMed
Central Open Access, is well-suited for medi-
cal domains and achieves performance compa-
rable to the ChatGPT API across all medical
evaluation benchmarks.

CodeLlama-7B 3: This model adapts the
Llama-2-7B model with a large collection of
code datasets, incorporating an infilling train-
ing objective and long input context subsets.

Fox-1.6B °: Fox-1 is a decoder-only
transformer-based small language model
with 1.6B parameters, developed by Ten-
sorOpera Al. Fox-1-Instruct-v0.1 is an
instruction-tuned version with an 8K native
context length, finetuned with 5B tokens
of instruction-following and multi-turn
conversation data.

Mistral-7B-Instruct '°: This model is an of-
ficially released instruct fine-tuned version of
the Mistral-7B-v0.2.

Qwen-7B-Instruct '': This model is an offi-
cially released instruct fine-tuned version of
the Qwen2-7B.

6https://huggingface.
L1lama3-OpenBiolLLM-8B
7https://huggingface.
BioMistral-7B
8https://huggingface.
CodelLlama-7b-hf
‘https://huggingface.
6B-Instruct-vo.1
Yhttps://huggingface.
Mistral-7B-Instruct-ve.
11https://huggingface.
Qwen2-7B-Instruct

co/aaditya/
co/BioMistral/
co/codellama/
co/tensoropera/Fox-1-1.
co/mistralai/

2
co/Qwen/
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» MathDeepSeek-7B '%: This model, initial-
ized with DeepSeek-Coder-v1.5 7B, continues
pre-training on math-related tokens sourced
from the web, achieving impressive scores on
the competition-level MATH benchmark. Fol-
lowing the recommended parameters, we set
max new tokens to 512, top-k to 50 and top-p
to 0.95.

12https://huggingface.co/deepseek—ai/
deepseek-math-7b-instruct
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