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Abstract

Pre-trained chemical language models (CLMs)
excel in the field of molecular property predic-
tion, utilizing string-based molecular descrip-
tors such as SMILES for learning universal
representations. However, such string-based
descriptors implicitly contain limited structural
information, which is closely associated with
molecular property prediction. In this work,
we introduce Moleco, a novel contrastive learn-
ing framework to enhance the understanding of
molecular structures within CLMs. Based on
the similarity of fingerprint vectors among dif-
ferent molecules, we train CLMs to distinguish
structurally similar and dissimilar molecules
in a contrastive manner. Experimental results
demonstrate that Moleco significantly improves
the molecular property prediction performance
of CLMs, outperforming state-of-the-art mod-
els. Moreover, our in-depth analysis with di-
verse Moleco variants verifies that fingerprint
vectors are highly effective features in improv-
ing CLMs’ understanding of the structural in-
formation of molecules1.

1 Introduction

In drug discovery and materials science, applying
deep neural networks to molecular property pre-
diction has brought increasing attention (Butler
et al., 2018). These networks can predict molec-
ular properties with a significantly reduced cost
compared with traditional methods like wet lab
experiments. Moreover, combined with transfer
learning approaches with large-scale pre-training,
deep neural networks have shown their versatility
and generalization capacity, allowing for applying
a single model across various tasks. This also re-
duces the need for task-specific modeling, leading
to high usability and practicality.

* These authors contributed equally to this work.
1Our code and data are available at https://github.

com/Park-ing-lot/Moleco

Figure 1: Illustration of Moleco. We extract and con-
struct a set of similar molecules by measuring the co-
sine similarity between fingerprint vectors of different
molecules. We subsequently maximize the agreement
between pairs of structurally similar molecules, while
minimizing that of the other molecules in a batch.

Recently, inspired by the success of the pre-
trained language models (Devlin et al., 2019; Liu
et al., 2019), chemical language models (CLMs)
have been introduced and shown their excellence
in predicting molecular properties (Chithrananda
et al., 2020; Ahmad et al., 2022; Ross et al.,
2022). These CLMs, typically employing Trans-
former architectures (Vaswani et al., 2017), are
trained on large-scale string-based molecular de-
scriptors to learn universal molecular representa-
tions. String-based molecular descriptors, such
as Simplified Molecular-Input Line-Entry System
(SMILES) (Weininger, 1988), compactly represent
molecules in a text format, providing benefits in
handling large-scale molecule data. Moreover, the
employed Transformer architectures have shown
high efficiency and parallelizability in processing
large-scale molecular data.

Despite the efficiency of string-based molecular
descriptors, they contain limited structural informa-
tion of molecules in an implicit manner, which is
critical in predicting molecular properties (Soares
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et al., 2023). For example, SMILES involves re-
dundant, invalid descriptors of molecular structures
and needs to be interpreted to uncover its struc-
tural information. Moreover, typical pre-training
approaches for CLMs, namely masked language
modeling (Devlin et al., 2019), do not explicitly
train models to capture such structural informa-
tion. Thus, current CLMs suffer from capturing
the relationships between molecular structures and
properties (Graff et al., 2023).

In this work, we introduce Moleco (Molecular
Contrastive Learning with Chemical Language
Models), a novel contrastive learning framework to
enhance the understanding of CLMs on the struc-
tural information of molecules. Moleco leverages
contrastive learning among different molecules
based on a structural similarity calculated us-
ing fingerprint embeddings (Rogers and Hahn,
2010), which contain substructure information of
molecules. Specifically, based on the fingerprint
embeddings, Moleco identifies and utilizes top-k
structurally similar molecules as positive samples,
while using the others in batch as negative sam-
ples. This contrastive learning approach enriches
models’ representation to better reflect the rela-
tionships between different molecules in molecular
substructures. Furthermore, Moleco additionally
trains CLMs with a prediction of structural em-
beddings in a multitask learning manner, as direct
guidance of structure information of molecules.

We evaluate Moleco on various tasks from
MoleculeNet benchmarks (Wu et al., 2018), includ-
ing eight classification and four regression tasks.
Our extensive experiments verify that, although
fingerprints are highly simplified and straightfor-
ward methods to embed structural information
of molecules, Moleco significantly improves the
molecular property prediction of CLMs. Notably,
Moleco achieves performance improvements of
1.8% and 7.3% on average in molecular property
classification and regression tasks, respectively,
compared with state-of-the-art models. Moreover,
our in-depth analysis demonstrates that the pro-
posed fingerprint-based similarity effectively iden-
tifies structurally similar molecules, leading to the
improvements in CLMs’ understanding of struc-
tural properties of molecules.

Our main contributions are as follows:

• We propose Moleco, a novel contrastive learn-
ing framework that enhances CLMs’ under-
standing of molecular structures.

• We develop a novel scheme to identify and
leverage structurally similar molecules based
on fingerprint-based structural similarity.

• We verify that Moleco establishes new state-
of-the-art results across a wide range of molec-
ular property prediction tasks.

2 Related Work

2.1 Chemical Language Models

Self-supervised learning, with its substantial suc-
cess in various research domains, has inspired nu-
merous works on molecular property prediction.
Recently, inspired by the development of Natural
Language Processing (Devlin et al., 2019), string-
based molecular descriptors such as SMILES
(Weininger, 1988) and SELFIES (Krenn et al.,
2022) have been utilized to learn universal molecu-
lar representations with Transformer architecture
(Wang et al., 2023a; Ross et al., 2022; Yüksel
et al., 2023). Particularly, Ross et al. (2022) have
achieved superior performance on molecular prop-
erty predictions by learning universal molecular
representations with 1.2 billion SMILES sequences.
Yüksel et al. (2023) have proposed SELFormer, a
string-based Transformer architecture model that
utilizes SELFIES, aimed at learning robust molec-
ular representations. Due to the extensive quantity
of data, these approaches have achieved significant
performance improvements in molecular property
prediction. However, these methods do not involve
an explicit scheme to capture the complete struc-
tural information of molecules.

2.2 Chemical Graph Models

Another line of work (You et al., 2020; Wang et al.,
2022a,b; Rong et al., 2020; Zang et al., 2023) has
focused on learning molecular representations with
2D topology information of molecules, since a
graph is a natural representation of molecules and
conveys structural information. Rong et al. (2020);
Zang et al. (2023) have proposed to pre-train GNN
or Transformer models with a self-supervised learn-
ing method on graphs to learn rich structural and
semantic information of molecules. In addition,
pre-training models with 3D geometry information
have been proposed to boost molecular property
prediction (Stärk et al., 2022; Fang et al., 2022;
Liu et al., 2022). Fang et al. (2022) have pro-
posed GEM, a self-supervised framework using
molecular geometric information. Liu et al. (2022)
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has conducted fragment-based contrastive learn-
ing with geometric inputs. Distantly related to our
framework, these methods utilize 2D or 3D graphs
including explicit structural information to repre-
sent molecules, coming with a higher complexity.

2.3 Fingerprint-based Chemical Models
Meanwhile, several works have leveraged molec-
ular fingerprints in diverse molecular tasks. Fin-
gerprints such as ECFPs (Rogers and Hahn, 2010)
have been developed to encode structural informa-
tion of molecules into binary vectors for similarity
searching. Earlier machine learning approaches
(Cereto-Massagué et al., 2015; Coley et al., 2017)
learned molecular representation from fingerprints.
Kuang et al. (2024) have pre-trained a model with
contrastive learning based on 3D conformation de-
scriptors and ECFPs to figure out positive and neg-
ative examples. Zhu et al. (2022) have proposed
MEMO that utilizes different molecular featuriza-
tion techniques, including 2D topology, 3D geom-
etry, SMILES string, and fingerprint, to obtain a
better representation of molecules. In this work, we
leverage the fingerprints to alleviate the limitations
of string-based Transformer.

3 Methodology

In this section, we propose Moleco, which trains
CLMs to explicitly learn structural similarities of
different molecules in a contrastive manner. Specif-
ically, we first obtain structural similarities using
fingerprint embeddings of molecules, and subse-
quently train models to contrastively learn the sim-
ilarities, as illustrated in Figure 1. In addition, we
introduce an auxiliary training objective that di-
rectly predicts molecular embeddings, to further
enhance the structural understanding of CLMs. Af-
ter Moleco training, we fine-tune the models on
downstream tasks to predict molecular properties.

3.1 Molecular Contrastive Learning
Understanding molecular structure-property rela-
tionships is crucial for accurately predicting func-
tional outcomes, such as reactivity, stability, and
biological activity (Le et al., 2012), since the
molecules with similar structures often exhibit sim-
ilar properties (Martin et al., 2002). To supplement
CLMs’ understanding of such relationships, we
introduce Moleco, a novel molecular contrastive
learning framework for CLMs. We train models
to distinguish between structurally similar and dis-
similar molecules in a contrastive manner. This ap-

proach is expected to facilitate the model’s ability
to determine properties by recognizing structural
differences in molecules.

To this end, we employ fingerprints (Rogers and
Hahn, 2010), multi-dimensional binary vectors de-
scribing the existence of particular substructures in
a molecule, which can address the limitations of
string-based descriptors utilized by CLMs. Specif-
ically, we first create a set of structurally similar
molecules for each molecule, denoted as H , iden-
tified by a similarity metric based on fingerprints.
We extract 2048-dimensional fingerprints from the
SMILES descriptor of each molecule based on the
Morgan algorithm using the RDKit library2. By
calculating the cosine similarity between these vec-
tors, we identify the top-k similar molecules for
each molecule. Subsequently, we sample a batch
of N molecules and define the contrastive predic-
tion task on pairs of similar molecules. For each
molecule in a batch, we randomly select a molecule
from the pre-identified set of similar molecules H
to form the positive pair, resulting in 2N molecules
in a final batch.

We then define the agreement between two
molecule mi and mj in a batch as follows:

σ(mi,mj) = exp(sim(Mi,Mj)/τ), (1)

where Mi and Mj refer to the output molecular rep-
resentations of m and s from a CLM, respectively.
The τ is the temperature parameter for scaling. We
employ the NT-Xent loss function (Chen et al.,
2020) to maximize agreement between positive
pairs while minimizing agreement between nega-
tive pairs. Instead of explicitly sampling negative
examples, we treat the other 2(N − 1) molecules
in a batch as negative examples. Note that we
project the output molecular representations at the
<bos> token from CLMs to match the dimensions
of the extracted representations. Given a batch
of {m1,m2,m3, ...,m2N}, our loss function for a
molecule mi is defined as follows:

LCL(mi) = − log
σ(mi,ms)∑2N−1

k=1 σ(mi,mk)
, (2)

where ms is the similar molecule of mi in a batch.

3.2 Molecular Substructure Prediction
To further enhance the structural understanding of
CLMs, we train the model to predict molecular
substructures hashed in fingerprint vectors. We

2https://www.rdkit.org
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Methods BBBP ↑ Tox21 ↑ ToxCast ↑ ClinTox ↑ MUV ↑ HIV ↑ BACE ↑ SIDER ↑ Avg. ↑
3D Conformation
GeomGCL (Liu et al., 2022) - 85.0 - 91.9 - - - 64.8 -
GEM (Fang et al., 2022) 72.4 78.1 - 90.1 - 80.6 85.6 67.2 -
3D InfoMax (Stärk et al., 2022) 68.3 76.1 64.8 79.9 74.4 75.9 79.7 60.6 72.5
GraphMVP (Liu et al., 2022) 69.4 76.2 64.5 86.5 76.2 76.2 79.8 60.5 73.7
MoleculeSDE (Liu et al., 2023a) 71.8 76.8 65.0 87.0 80.9 78.8 79.5 60.8 75.1
Uni-Mol (Zhou et al., 2023) 71.5 78.9 69.1 84.1 72.6 78.6 83.2 57.7 74.5
MoleBlend (Yu et al., 2024) 73.0 77.8 66.1 87.6 77.2 79.0 83.7 64.9 76.2
Mol-AE (Yang et al., 2024) 72.0 80.0 69.6 87.8 81.6 80.6 84.1 67.0 77.8
UniCorn (Feng et al., 2024) 74.2 79.3 69.4 92.1 82.6 79.8 85.8 64.0 78.4

2D Graph
DimeNet (Klicpera et al., 2020) - 78.0 - 76.0 - - - 61.5 -
AttrMask (Hu et al., 2020) 65.0 74.8 62.9 87.7 73.4 76.8 79.7 61.2 72.7
GROVER (Rong et al., 2020) 70.0 74.3 65.4 81.2 67.3 62.5 82.6 64.8 71.0
BGRL (Thakoor et al., 2022) 72.7 75.8 65.1 77.6 76.7 77.1 74.7 60.4 72.5
MolCLR (Wang et al., 2022c) 66.6 73.0 62.9 86.1 72.5 76.2 71.5 57.5 70.8
GraphMAE (Hou et al., 2022) 72.0 75.5 64.1 82.3 76.3 77.2 83.1 60.3 73.9
Mole-BERT (Liu et al., 2023c) 71.9 76.8 64.3 78.9 78.6 78.2 80.8 62.8 74.0
SimSGT (Xia et al., 2023) 72.2 76.8 65.9 85.7 81.5 78.0 84.3 61.7 75.8
MolCA + 2D (Liu et al., 2023b) 70.0 77.2 64.5 89.5 - - 79.8 63.0 -

1D SMILES/SELFIES
ChemBERTa-2 (Ahmad et al., 2022) 70.1 48.1 49.8 51.9 43.8 74.7 80.9 49.0 58.5
MoLFormer-XL (Ross et al., 2022) 93.7 84.7 65.6 94.8 80.6 82.2 88.2 66.9 82.1
SELFormer (Yüksel et al., 2023) 90.2 65.3 - - - 68.1 83.2 74.5 -
MolCA (Liu et al., 2023b) 70.8 76.0 56.2 89.0 - - 79.3 61.2 -
Moleco (ours) 92.9 83.4 72.8 95.0 81.3 82.9 89.1 68.8 83.3

Table 1: Evaluation results on molecular property classification tasks (ROC-AUC; higher is better). The best and
second-best results are in bold and underlined.

first train the model to predict these fingerprints
directly, to detect the presence of substructures,
thereby improving the model’s understanding of
the structural information of molecules. We employ
a Binary Cross Entropy (BCE) loss. Then, our final
loss function for a molecule mi is formulated as
follows:

L(mi) = LBCE(mi, fi) + λLCL(mi), (3)

where fi is a fingerprint vector of a molecule mi

and λ is a non-negative hyper-parameter for bal-
ancing the objective functions. To ensure accu-
racy in learning, contrastive learning is omitted for
molecules that are not unique, specifically when
there are more than two similar molecules within a
batch for a particular molecule.

3.3 Fine-tuning of CLMs
After the Moleco training, we add a prediction head
to a CLM and fine-tune the model on a target molec-
ular property prediction task. The objective func-
tion of the task is as follows:

LFT (x) = − logP (y|x), (4)

where P (·) is the prediction of a CLM, x is an
input molecule, and y is its prediction label. While

Moleco is agnostic to the CLM architecture, in
our experiments, we mainly use MoLFormer-XL
(Ross et al., 2022) with its pre-trained parameters
as our model architecture. MoLFormer-XL is a
transformer-based CLM using linear attention with
rotary embeddings, modeling molecules in a bi-
directional manner.

4 Experiments

4.1 Experimental Settings

Datasets. To evaluate the molecular property pre-
diction ability of CLMs, we conduct experiments
on eight classification and four regression tasks
from the MoleculeNet benchmark (Wu et al., 2018).
For evaluation metrics, we report AUC-ROC for
classification, MAE for QM9, and RMSE for re-
maining regression tasks.

Training Setup. We train models with Moleco
on each dataset of the downstream tasks before
fine-tuning them. In our experiments, CLMs are
initialized with a publicly released MoLFormer-
XL checkpoint. For the fine-tuning, we adhere to
the recommended train, validation, and test splits
from Wu et al. (2018) and follow the experimental
settings established by the baseline (Ross et al.,
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Methods ESOL ↓ FreeSolv ↓ Lipophilicity ↓ Avg. ↓
3D Conformation
3D InfoMax (Stärk et al., 2022) 0.894 2.337 0.695 1.309
GraphMVP (Liu et al., 2022) 1.029 - 0.681 -
Uni-Mol (Zhou et al., 2023) 0.844 1.879 0.610 1.111
MoleBlend (Yu et al., 2024) 0.831 1.910 0.638 1.113
Mol-AE (Yang et al., 2024) 0.830 1.448 0.607 0.962
UniCorn (Feng et al., 2024) 0.817 1.555 0.591 0.988

2D Graph
AttrMask (Hu et al., 2020) 1.112 - 0.730 -
GROVER (Rong et al., 2020) 0.831 1.544 0.560 0.978
MolCLR (Wang et al., 2022c) 1.110 2.200 0.650 1.320
SimSGT (Liu et al., 2023c) 0.917 - 0.695 -

1D SMILES/SELFIES
ChemBERTa-2 (Ahmad et al., 2022) 0.949 1.854 0.728 1.177
MoLFormer-XL (Ross et al., 2022) 0.274 0.315 0.540 0.376
SELFormer (Yüksel et al., 2023) 0.682 2.797 0.735 1.405
Moleco (ours) 0.264 0.296 0.518 0.359

Table 2: Evaluation results on molecular property regression tasks (RMSE; lower is better). The best and second-best
results are in bold and underlined.

2022). The hyper-parameter settings used for the
experiment are shown in Table 8 in Appendix. All
experiments are conducted on two NVIDIA RTX
A6000 GPUs and four NVIDIA RTX A5000 GPUs.

Baselines. We compare our models with diverse
state-of-the-art baselines in three categories. “3D
Conformation” includes methods that utilize the
geometry information of molecules. “2D Graph”
includes methods that utilize 2D graphs includ-
ing atoms and bonds. “1D SMILES/SELFIES” in-
cludes CLMs that utilize string-based descriptors,
which are compatible with our Moleco framework.

4.2 Experimental Results

Main Results. We first compare Moleco with
state-of-the-art molecular property prediction meth-
ods on MoleculeNet classification tasks. As shown
in Table 1, Moleco surpasses the state-of-the-art
baseline, MoLFormer-XL, by an average of 1.8%.
Notably, Moleco exhibits the best performance on 4
tasks and the seconed-best performance on 2 tasks
among the 8 tasks. Moreover, as shown in Table
2, Moleco consistently stands out in three Molecu-
leNet regression tasks, surpassing the state-of-the-
art baseline MoLFormer-XL by an average of 7.3%.
These results show that contrastive learning based
on structural similarity with Moleco can lead to
performance improvements in diverse molecular
property prediction tasks.

We further compare Moleco with the base-
lines on QM9, a benchmark on quantum mechan-
ical properties of molecules, as shown in Table

3. Since the quantum mechanical properties are
closely related to geometry information of atoms
in molecules, methods with ground-truth geome-
try information (3D Conformation (GT)) achieve
the best performances in our experiments. How-
ever, this ground-truth geometry information can
be obtained through wet lab experiments or mas-
sive calculations, which are unavailable in many
real-world scenarios as in the above experiments
on molecular property classification and regression
tasks. In these contexts, we focus on investigating
how effectively chemical models can approximate
the quantum mechanical properties without such
geometry information, by comparing Moleco with
3D methods using geometry information derived by
the RDKit library. Our Moleco provides the most
accurate prediction of quantum properties with-
out ground-truth geometry information, exhibiting
17.5% of improvements in average over baselines
that estimate geometry information or those with-
out any geometry information, demonstrating its
efficacy and wide applicability.

Topological Analysis. Following Ross et al.
(2022), we evaluate the encapsulated topological in-
formation of Moleco by analyzing the resemblance
between molecular structures and the attention ma-
trices. We calculate the cosine similarities between
average pooled attention matrices and molecular
structures. To facilitate this, we randomly select
3,000 molecules from QM9, PubChem (Kim et al.,
2019), and ZINC (Irwin et al., 2012) datasets and
extract bond connectivity and 3D distance matri-
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Methods µ ↓ α ↓ εhomo ↓ εlumo ↓ ∆ε ↓ ⟨R2⟩ ↓ ZPV E ↓ U0 ↓ U298 ↓ H298 ↓ G298 ↓ Cv ↓ Avg.↓
(D) (a30) (eV) (eV) (eV) (a20) (eV) (eV) (eV) (eV) (eV) ( cal

mol·K )

3D Conformation (GT)
3D InfoMax (Stärk et al., 2022) 0.028 0.057 0.259 0.216 0.421 0.141 0.002 0.013 0.014 0.014 0.014 0.030 0.101
GraphMVP (Liu et al., 2022) 0.030 0.056 0.258 0.216 0.420 0.136 0.002 0.013 0.013 0.013 0.013 0.029 0.100
MoleculeSDE (Liu et al., 2023a) 0.026 0.054 0.257 0.214 0.418 0.151 0.002 0.012 0.013 0.012 0.013 0.028 0.100
MoleBlend (Yu et al., 2024) 0.037 0.060 0.215 0.192 0.348 0.417 0.002 0.012 0.012 0.012 0.012 0.031 0.113
UniCorn (Feng et al., 2024) 0.009 0.036 0.130 0.120 0.249 0.326 0.001 0.004 0.004 0.004 0.005 0.019 0.076

3D Conformation (RDKit)
SchNet (Schütt et al., 2017) 0.447 0.276 0.082 0.079 0.115 21.58 0.005 0.072 0.072 0.072 0.069 0.111 1.915
3D InfoMax (Stärk et al., 2022) 0.351 0.313 0.073 0.071 0.102 19.16 0.013 0.133 0.134 0.187 0.211 0.165 1.743
MoleculeSDE (Liu et al., 2023a) 0.423 0.255 0.080 0.076 0.109 20.43 0.004 0.054 0.055 0.055 0.052 0.098 1.808

2D Graph
1-GNN (Morris et al., 2019) 0.493 0.780 0.087 0.097 0.133 34.10 0.034 63.13 56.60 60.68 52.79 0.270 22.43
1-2-3-GNN (Morris et al., 2019) 0.476 0.270 0.092 0.096 0.131 22.90 0.005 1.162 3.020 1.140 1.276 0.094 2.012

1D SMILES/SELFIES
MoLFormer-XL (Ross et al., 2022) 0.362 0.333 0.079 0.073 0.103 17.06 0.008 0.192 0.245 0.206 0.244 0.145 1.588
Moleco (ours) 0.331 0.254 0.063 0.069 0.093 14.92 0.007 0.092 0.086 0.092 0.084 0.126 1.351

Table 3: Evaluation results on quantum mechanical property regression tasks (MAE; lower is better). The best and
second-best results are in bold and underlined. “3D Conformation (RDKit)” denotes the performance of 3D models
using the geometry information derived by the RDKit library.

Methods QM9 PubChem ZINC
Bond Dist. Bond Dist. Bond Dist.

MoLFormer-XL 60.99 85.73 45.18 79.68 44.11 77.17
Moleco 62.27 87.44 45.76 80.67 44.31 78.89

Table 4: Evaluation of encapsulated topological infor-
mation. We use Moleco trained on QM9 dataset.

ces using RDKit. The results in Table 4 show the
Moleco trained on the QM9 dataset exhibits higher
similarities across all datasets than its backbone,
indicating that Moleco can effectively enhance the
capability of identifying molecular structures.

Analysis on Moleco Variants. To verify the effi-
cacy of our design choice, we analyze diverse vari-
ants of Moleco using other fingerprint algorithms,
similarity functions, and structural embeddings.
We evaluate Moleco variants on eight MoleculeNet
classification tasks and three MoleculeNet regres-
sion tasks except for QM9. The results are shown
in Table 5. We first identify that the best setting
of Moleco is using Morgan fingerprints and the
cosine similarity function. We identify that using
fingerprints derived by other algorithms, such as
Torsion fingerprint or RDKit fingerprint, and a dif-
ferent similarity function, such as the Tanimoto
similarity, degrades the molecular property predic-
tion performance. In addition, we further examine
more complex and sophisticated methods to gen-
erate molecular embeddings including structural
information by calculating similarities using 3D
GeoFormer models (Wang et al., 2023b). Surpris-

Backbone Embeddings Similarity CLS ↑ REG ↓

MoLFormer-XL

Morgan FP Cosine 83.3 0.359
Morgan FP Tanimoto 82.3 0.374
Torsion FP Cosine 82.0 0.383
RDKit FP Cosine 81.6 0.380

3D GeoFormer Cosine 80.6 0.379

ChemBERTa-2 MorganFP Cosine 60.2 1.107

Table 5: Comparisons of Moleco variants. CLS and
REG denote an average score on molecular property
classification and regression tasks, respectively.

ingly, this leads to a significant performance degra-
dation, even underperforming original MoLFormer-
XL models. We suspect that CLMs and GNNs
may have highly different, incompatible views on
molecules, particularly about determining the sim-
ilarities of molecules. We plan to investigate the
detailed reason for the incompatibility and integra-
tion methods of both models’ representations.

Ablation Study To assess the distinct contribu-
tions of Moleco’s components to its enhanced per-
formance, we conduct ablation studies on three
regression tasks with Moleco, detailed in Table 6.
These demonstrate that the integration of the two
objective functions offers advantages over employ-
ing either method in isolation. Furthermore, using
our contrastive learning method alone resulted in
performance gains on ESOL and FreeSolv. This
finding implies that understanding the relationships
among molecules facilitates the effective integra-
tion of topological information.
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MCL MSP ESOL FreeSolv Lipop

Moleco

✓ ✓ 0.264 0.296 0.518
✓ - 0.292 0.338 0.529
- ✓ 0.286 0.306 0.536
- - 0.274 0.315 0.540

Table 6: Ablation study results. MCL and MSP refer to
molecular contrastive learning and molecular substruc-
ture prediction, respectively.

ESOL FreeSolv Lipop

MoLFormer-XL 0.274 0.315 0.540
MoLFormer-XL + SimCSE 0.280 0.341 0.538
Moleco 0.267 0.296 0.518

Table 7: Comparison of contrastive learning methods
on regression tasks.

Contrastive Method Comparison We analyze
the impact of different contrastive learning meth-
ods on molecular property prediction by comparing
MoLFormer-XL with two methods: SimCSE (Gao
et al., 2021) and Moleco. Table 7 presents the re-
sults on three regression tasks. MoLFormer-XL
combined with SimCSE shows either slight perfor-
mance degradation or minimal improvement com-
pared to the baseline, indicating that SimCSE’s ran-
dom dropout-based data augmentation technique is
less effective in this context. In contrast, Moleco
consistently outperforms other methods across all
datasets, demonstrating its ability to generate chem-
ically meaningful contrastive pairs that better cap-
ture the underlying molecular properties.

5 Conclusion

We have introduced Moleco, a novel contrastive
learning framework to enhance the structural un-
derstanding of CLMs to improve molecular prop-
erty prediction. We have trained CLMs to con-
trast structurally similar and dissimilar molecules,
which are identified by using the fingerprint vectors
of molecules. We have observed that Moleco out-
performs state-of-the-art models on diverse molec-
ular property prediction benchmarks. Furthermore,
our in-depth analysis has confirmed that Moleco
effectively improves the structural understanding
of CLMs, leading to significant performance im-
provements. Particularly, fingerprints, which are
highly simplified embedding methods, have most
effectively improved the molecular property predic-
tion of CLMs among diverse design choices. We
plan to investigate the applicability of Moleco on
multi-modal Transformers and generative CLMs.
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Appendix

In this section, we supplement our main con-
tent with additional experiments and analysis.
We mainly report the results on three molecular
property regression tasks (i.e., ESOL, FreeSolv,
Lipophilicity) due to the stability of performances
on them and high correlations with the average
performance on the other tasks.

Moleco

Backbone MoLFormer-XL
# Pram. 46M

Batch Size {32, 64, 128, 256}
Learning Rate {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}

λ {0.1, 0.2, 0.3, 0.4, 0.5}
# Mols {1, 5, 10, 50}
Epoch {10, 30, 50, 100}

Table 8: Training hyper-parameters for Moleco.

Epochs ESOL FreeSolv Lipop

Moleco

100 0.264 0.327 0.526
50 0.276 0.330 0.522
30 0.277 0.310 0.529
10 0.267 0.296 0.518
0 0.274 0.315 0.540

Table 9: Ablation study of contrastive learning. Results
with 0 epoch refer to fine-tuning without Moleco.

# Mols ESOL FreeSolv Lipop

Moleco

top-50 0.298 0.316 0.533
top-10 0.275 0.315 0.519
top-5 0.264 0.296 0.518
None 0.274 0.315 0.540

Table 10: Evaluation of number of similar molecules
(# Mols) for the fingerprint-based contrastive learning.
Results with None refer to fine-tuning without Moleco.

Source ESOL FreeSolv Lipop

Moleco

QM9 0.276 0.274 0.526
ESOL 0.264 0.355 0.535

FreeSolv 0.283 0.296 0.530
Lipop 0.273 0.351 0.518
None 0.274 0.315 0.540

Table 11: Evaluation of the transfer of topological in-
formation. Source refers to the dataset used to train
Moleco. Results with None refer to fine-tuning without
Moleco.

A Additional Analysis

Tables 9 and 10 show hyper-parameter analysis on
Moleco. We evaluate the performances on three
regression tasks with diverse numbers of epochs
and top similar molecules. We have identified that
contrastive learning with top-5 similar molecules
as positive examples for 10 epochs is the optimal
setting of Moleco in our experiments.

We further evaluate the generalizability of molec-
ular representations obtained by Moleco. By train-
ing the Moleco framework on three different re-
gression tasks, we cross-evaluate each model with
unseen data. The results in Table 11 often show im-
proved performance across these tasks, especially
for Moleco with QM9. This highlights the capa-
bility of Moleco to effectively transfer topological
information, confirming its wide applicability and
robustness in boosting performance across various
regression tasks.

B Correlation between Molecular
Structure and Property

In Section 4.2, we demonstrate Moleco’s ability
to capture the structural information by following
(Ross et al., 2022). This ability is crucial to prop-
erty prediction. To investigate the correlation be-
tween the ability to capture structural information
and the predictive performance, we first construct
two groups by randomly sampling 30 molecules
from the test set. We then evaluate each group
using Moleco, reporting the RMSE and cosine sim-
ilarity of the attention matrix against ground-truth
molecular structures (the Bond matrix and the 3D
distance matrix). We term the group with relatively
higher similarity as “Group 1”. The results pre-
sented in Tables 12-14 show that “Group 1”, which
exhibits higher similarity while showing lower RM-
SEs compared to “Group 2”. These findings imply
that a deep understanding of structural information
is crucial to property prediction.

We attempt various methods to find the most
similar molecule set with effective contrast learn-
ing, including cosine similarity, string match, and
random match. In this process, we first identify
the most similar molecules for each molecule us-
ing each measurement and then calculate the Mean
Absolute Error (MAE) and Maximum Absolute
Error (MaxAE) between the properties of the two
molecules to compare the results. Consequently,
we observe that higher cosine similarity between
two molecules tends to exhibit more similar proper-
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ESOL Bond Dist. RMSE

Group 1 53.35 87.57 0.256
Group 2 49.90 85.11 0.374

Table 12: Evaluation of two groups of 30 randomly
sampled molecules from the ESOL test set.

FreeSolv Bond Dist. RMSE

Group 1 59.60 88.94 0.403
Group 2 57.71 88.77 0.434

Table 13: Evaluation of two groups of 30 randomly
sampled molecules from the FreeSolv test set.

Lipop Bond Dist. RMSE

Group 1 54.43 85.20 0.421
Group 2 48.94 83.29 0.587

Table 14: Evaluation of two groups of 30 randomly
sampled molecules from the Lipophilicity test set.

ties. Table 15 illustrates that our similarity measure-
ment often results in the minimal average differ-
ence in ground-truth properties (MAE) between the
query molecule and its top-1 similar counterpart.
Furthermore, our similarity measurement proves to
be the most effective even in cases of large differ-
ences (MaxAE).

C Analysis on Top-5 Selected Molecules

In this section, we qualitatively analyze the selected
top-5 molecules. This analysis was conducted on
the QM9 dataset using our proposed method, which
focuses on identifying molecules with similar prop-
erties. Initially, as seen in Figure 2, the similarity
distribution of the top-5 selected molecules shows
that over 90% have a similarity score of 0.7 or
higher, indicating a high level of consistency in the
selection process. Additionally, as shown in Fig-
ure 3, the selected molecules indeed share mostly
similar substructures, suggesting that our method
effectively identifies relevant molecular features.
These results indicate that our fingerprint-based
similarity measure works effectively.

D Extracting Additional Features

We analyze the additional computatinal costs in-
curred by the process of extracting the similar-
ity features and identifying similar molecules.
Notably, we observed that identifying similar
molecules is more time-consuming than the fea-
ture extraction process itself. Furthermore, as indi-

cated in Table 16, the identification time required
for these operations escalates with the increase in
dataset size, potentially hindering the application
of the Moleco framework in the pre-training phase
for enhancements. This highlights the necessity
for more efficient algorithms for identifying sim-
ilar molecules as a pivotal consideration, aiming
to streamline the application of the Moleco frame-
work and optimize pre-training efforts.

E Full results of Moleco Variants

We report the full evaluation results of Moleco
variants in Tables 19 and 20.

Figure 2: Similarity distribution of the top-5 selected
molecules from the QM9 dataset.
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ESOL FreeSolv Lipop

MAE MaxAE MAE MaxAE MAE MaxAE

Cosine similarity 0.71 3.00 1.92 11.52 0.64 2.70
String match 0.68 5.35 2.03 14.27 0.81 3.69
Random match 2.01 7.24 3.84 14.93 1.19 4.40

Table 15: Evaluation of similarity measurement on 50 randomly sampled pairs of top-1 similar molecules and their
corresponding queries. We report the Mean Absolute Error (MAE) and Maximum Absolute Error (MaxAE) between
the ground-truth properties of molecules. We use the difflib library to calculate the similarity between strings.

# samples Extraction time (sec) Identification time (sec)

FreeSolv 642 < 1 11
ESOL 1,128 < 1 12
SIDER 1,427 < 1 12
ClinTox 1,478 < 1 12
BACE 1,513 1 11
BBBP 2,039 1 12

Lipophilicity 4,200 2 13
Tox21 7,831 3 17

ToxCast 8,577 4 19
HIV 41,127 24 95

MUV 93,087 31 733
QM9 133,885 44 892

Table 16: Time required for extracting ECFP4 fingerprints and identifying similar molecules. We use an NVIDIA
A5000 GPU with Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz for this experiment.

Descriptions # targets # examples

BBBP Blood brain barrier penetration ability 1 2,039
Tox21 Toxicity measurements on 12 targets 12 7,831

ToxCast Toxicity measurements on 617 targets 617 8,577
Clintox Toxicity of drugs in clinical trials 2 1,478
MUV Maximum unbiased validation 17 93,087
HIV Ability to inhibit HIV replication 1 41,127

BACE Inhibitors of bindings to human β-secretase 1 1 1,513
SIDER Side effects on 27 organs 27 1,427

Table 17: Classification tasks from MoleculeNet.

Descriptions # targets # examples

QM9 12 quantum mechanical properties 12 133,885
ESOL Water solubility of compounds 1 1,128

FreeSolv Hydration free energy 1 642
Lipophilicity Solubility in lipids 1 4,200

Table 18: Regression benchmarks from MoleculeNet.
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Figure 3: Visualization of the top pairs in the QM9 dataset.

Methods BBBP ↑ Tox21 ↑ ToxCast ↑ ClinTox ↑ MUV ↑ HIV ↑ BACE ↑ SIDER ↑ Avg. ↑
Moleco-3DGeoFormer-Cosine 92.1 83.5 70.2 93.1 79.6 79.5 83.8 63.1 80.6
Moleco-RDKitFP-Cosine 92.1 84.5 70.8 87.3 81.2 80.1 89.1 67.7 81.6
Moleco-TorsionFP-Cosine 91.9 83.8 70.3 92.2 79.3 81.3 89.1 68.3 82.0
Moleco-MorganFP-Tanimoto 93.1 84.3 70.9 93.5 81.6 77.4 90.4 67.3 82.3
Moleco-MorganFP-Cosine 92.9 83.4 72.8 95.0 81.3 82.9 89.1 68.8 83.3

Moleco w/ ChemBERTa-2 71.4 49.9 50.8 53.5 47.1 74.2 82.8 50.9 60.2

Table 19: Full results of Moleco variants on molecular property classification tasks (ROC-AUC; higher is better)

Methods ESOL ↓ FreeSolv ↓ Lipophilicity ↓ Avg. ↓
Moleco-3DGeoFormer-Cosine 0.277 0.341 0.519 0.379
Moleco-RDKitFP-Cosine 0.287 0.329 0.524 0.380
Moleco-TorsionFP-Cosine 0.282 0.341 0.527 0.383
Moleco-MorganFP-Tanimoto 0.276 0.329 0.517 0.374
Moleco-MorganFP-Cosine 0.264 0.296 0.518 0.359

Moleco w/ ChemBERTa-2 0.811 1.806 0.705 1.107

Table 20: Full results of Moleco variants on molecular property regression tasks (RMSE; lower is better).
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