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Abstract

This study presents a novel learning approach
designed to enhance both mathematical rea-
soning and problem-solving abilities of Large
Language Models (LLMs). We focus on inte-
grating the Chain-of-Thought (CoT) and the
Program-of-Thought (PoT) learning, hypoth-
esizing that prioritizing the learning of math-
ematical reasoning ability is helpful for the
amplification of problem-solving ability. Thus,
the initial learning with CoT is essential for
solving challenging mathematical problems. To
this end, we propose a sequential learning ap-
proach, named SAAS (Solving Ability Am-
plification Strategy), which strategically transi-
tions from CoT learning to PoT learning. Our
empirical study, involving an extensive perfor-
mance comparison using several benchmarks,
demonstrates that our SAAS achieves state-of-
the-art (SOTA) performance. The results under-
score the effectiveness of our sequential learn-
ing approach, marking a significant advance-
ment in the field of mathematical reasoning in
LLMs.

1 Introduction

The advent of Large Language Models (LLMs)
has marked a significant breakthrough in various
domains. However, despite their remarkable per-
formance across these domains, a notable chal-
lenge persists in the realm of mathematical reason-
ing (Zhao et al., 2023; Lu et al., 2022b; Meadows
and Freitas, 2022; Qian et al., 2022; Zhou et al.,
2022; Lightman et al., 2023; Drori et al., 2021;
Zhang et al., 2019). The ability of LLMs to com-
prehend, interpret, and manipulate mathematical
concepts is not yet on par with their linguistic ca-
pabilities.

The significance of mathematical reasoning in
LLMs involves more than just crunching numbers.
It also encompasses the ability to engage in logical
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thinking, problem-solving, and complex decision-
making, which are essential for understanding and
generating human-like responses in the different
situations (Lu et al., 2022b; Meadows and Fre-
itas, 2022; Thawani et al., 2021). In other words,
mathematical reasoning in LLMs is essential for
a comprehensive understanding and manipulation
of language in numerous scientific and practical
applications. However, the current ability of LLMs
in mathematical reasoning hinder their potential
in the fields where numerical and logical compre-
hension are paramount such as coding. Thus, it’s
critical challenge to enhance the ability of LLMs
in mathematical reasoning.

In this study, we explore a learning approach
for enhancing both mathematical reasoning abil-
ity and problem-solving ability in LLMs, focus-
ing on learning with both the Chain-of-Thought
(CoT) (Wei et al., 2022b) and the Program-of-
Thought (PoT) (Chen et al., 2022; Gao et al.,
2023a). The CoT rationale (Figure 1-(a)) consists
of a series of intermediate reasoning steps. Al-
though it enhances the reasoning ability of LLMs, it
leads to arithmetic calculation errors when dealing
with large numbers (Chen et al., 2022), resulting
a low problem-solving ability. To address this is-
sue, Chen et al. (2022) proposed the PoT rationale
(Figure 1-(b)), which expresses the reasoning steps
as code and delegate computation steps to an code
interpreter. It requires the reasoning steps to be ex-
pressed accurately as code. Therefore, we hypothe-
size that prioritizing the learning of mathematical
reasoning ability is helpful for the amplification of
problem-solving ability. In other words, the initial
learning with CoT is essential for solving chal-
lenging mathematical problems, since it improves
the mathematical reasoning ability (Magister et al.,
2022; Shridhar et al., 2023; Jie et al., 2023; Liang
et al., 2023).

Our research is motivated by an analysis of ex-
isting models (Gou et al., 2023; Yue et al., 2023).
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If	Robert	will	turn	30	after	2	years,
then	his	current	age	is	30	- 2	=	28	years.

Since	Patrick	is	half	the	age	of	Robert,
then	Patrick's	age	is	28	/	2	=	14	years.

Therefore,	Patrick	is	currently	14	years	old.

The	answer	is:	14

(a)	CoT rationale
```python
def	calculate_patrick_age():
"""Patrick	is	…	how	old	is	Patrick	

now?"""
robert_age_future =	30
robert_age_now =	 robert_age_future - 2
patrick_age_now =	robert_age_now /	2
return	patrick_age_now

patrick_age_now =	calculate_patrick_age()
print(patrick_age_now)
```

Patrick	is	14	years	old	now.

(b)	PoT rationale

𝐷123

𝐷423

𝐷123 × 𝑛(%)

(c)	SAAS
Question:	Patrick	is	half	the	age	of	his	elder	brother	Robert.	If	Robert	
will	turn	30	after	2	years,	how	old	is	Patrick	now?

Figure 1: Overview of SAAS (Solving Ability Amplification Strategy) with two core strategies: i) sequential
learning strategy; ii) cognitive retention strategy.

ToRA (Gou et al., 2023) tried to learn reasoning
ability as well as PoT by adding reasoning step
into the PoT rationale. Similarly, MAmmoTH (Yue
et al., 2023) tried to learn both CoT and PoT by
using both CoT rationale and PoT rationale as train-
ing data simultaneously. However, we conjecture
that they do not fully utilize the advantages of learn-
ing with both CoT and PoT. This is because they
did not consider the sequence of CoT learning and
PoT learning, resulting a less effective learning.

In this work, we introduce a sequential learning
approach, named SAAS (Solving Ability Amplifi-
cation Strategy), to effectively utilize the strengths
of CoT learning and PoT learning. This approach
transitions from CoT learning to PoT learning, fo-
cusing on enhancing problem-solving ability in PoT
learning based on logical skills established in CoT
learning. This pedagogical strategy ensures that the
competencies developed during CoT learning pos-
itively influence the PoT learning phase, leading
to an overall improvement in solving challenging
mathematical problems.

We validate the rationality and effectiveness of
our SAAS via extensive experiments on the rep-
utable benchmarks (Cobbe et al., 2021; Hendrycks
et al., 2021; Gao et al., 2023b; Patel et al., 2021;
Miao et al., 2021; Lu et al., 2022a; Koncel-
Kedziorski et al., 2016). Most importantly, SAAS
achieved state-of-the-art with remarkable perfor-
mance. Through this, in this paper, we present a
novel and effective perspective (i.e., our hypothesis)
within the field of mathematics.

2 SAAS: Solving Ability Amplification
Strategy

In this paper, we hypothesize that learning about
the problem-solving ability is more effective af-
ter logical skills are well established. To explore
this, we propose the sequential learning approach,
named SAAS (Solving Ability Amplification Strat-
egy), which transitions from CoT learning to PoT
learning as shown in Figure 1. Our SAAS is
motivated by the pedagogical strategy of human
that first learns logical skills and then develops
problem-solving abilities by solving numerous
problems (Glaser, 1984). In the following subsec-
tions, we describe CoT learning and PoT learning
in details.

2.1 Chain-of-Thought Learning
It has been shown in various domains that CoT
learning, which trains LLMs with data composed
of CoT rationales, improves reasoning ability (Jie
et al., 2023; Liang et al., 2023). Thus, we first fine-
tune the LLM via CoT learning for improving math-
ematical reasoning ability. The primary objective
in this phase is to optimize the model parameters
for logically interpreting and responding to mathe-
matical problems.

To achieve this, we employ a widely used op-
timization approach (Yu et al., 2023; Gou et al.,
2023) that seeks to find the optimal parameters,
denoted as θ∗cot, which minimize the negative log-
likelihood. This is expressed mathematically as:

argmin
θ

− 1

|Dcot|
∑

(xcot,ycot)∈Dcot

log pθ(ycot|xcot), (1)

where θ represents the learnable parameters of the
LLM. The dataset Dcot consists of (xcot, ycot) pairs,
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where xcot denotes a mathematical question, and
ycot is the desired CoT rationale for that question.

This optimization process is designed to ensure
that the model learns to generate CoT rationales
that are logically consistent throughout the rea-
soning process. This is particularly important in
the field of mathematics, since the rationale be-
hind each step is as critical as the final answer.
By minimizing the negative log-likelihood, we ef-
fectively guide the model to generate step-by-step
explanations that mirror human problem-solving
approaches, thus enhancing its overall reasoning
capability.

This phase sets the foundation for the subsequent
PoT learning phase, where the model’s enhanced
reasoning ability, developed through CoT training,
is further refined and applied to more complex
problem-solving scenarios.

2.2 Program-of-Thought Learning
Although the LLM optimized with parameters θ∗cot
demonstrates improved logical skills, it still ex-
hibits limitations in problem-solving ability, par-
ticularly in computational accuracy (Chen et al.,
2022), which will be empirically validated in sec-
tion 3.2.4. To amplify this problem-solving ability,
building upon the mathematical reasoning estab-
lished in the CoT learning phase, we further fine-
tune the LLM with θ∗cot as its starting point using
data composed of PoT rationales.

To accomplish this, we construct a dataset
Dpot+cot that consists of both PoT and CoT ratio-
nales. Notably, we integrate CoT rationales along-
side PoT rationales in this dataset. This is because
we observed that focusing exclusively on PoT ratio-
nales during this phase leads to a deterioration in
mathematical reasoning ability in our experiments,
as detailed in Table 3. To mitigate this cognitive for-
getting, we introduce a cognitive retention strategy.
This strategy involves randomly sampling CoT ra-
tionales and incorporating them into the PoT learn-
ing phase. Such a mixed approach (i.e., congnitive
retention strategy) ensures that the LLM retains its
previously acquired reasoning skills while adapting
to the new learning format.

The objective in this phase is to find the final
optimal parameters θ∗ of the LLM, which involves
minimizing the following negative log-likelihood:

argmin
θ∗cot

− 1

|Dpot+cot|
∑

(x,y)∈Dpot+cot

log pθ∗cot(y|x), (2)

where x represents a mathematical question, and y

Seed Dataset Rationale Models Size

MetaMathQA CoT GPT, WizardMath 465K
MATH, GSM8K CoT WizardMath 300K

QANDA CoT WizardMath 120K

MetaMathQA PoT ToRA 60K
MATH, GSM8K PoT ToRA 226K

MathInstruct PoT ToRA 38K
QANDA PoT ToRA 12K

Table 1: Summary of synthetic datasets

is the desired output, which could be either a PoT
rationale or a CoT rationale, for the given question
x. This approach aims to harmonize the strengths
of both CoT and PoT learning, thereby equipping
the LLM with enhanced computational accuracy
and problem-solving abilities while maintaining its
proficiency in logical reasoning.

3 Experiments

In this section, we conduct extensive experiments
to answer the following key research questions
(RQs):

• RQ1: Does SAAS quantitatively outperform its
competitors for solving challenging mathemati-
cal problems?

• RQ2: Are two core strategies of SAAS (sequen-
tial learning, cognitive retention strategy) effec-
tive in improving the accuracy?

• RQ3: Is SAAS effective in solving not only basic
but also challenging mathematical problems?

• RQ4: Does sequential learning that transitions
from CoT learning to PoT learning help improve
both the mathematical reasoning and computa-
tional accuracy?

3.1 Experimental Settings

3.1.1 Dataset Details
In this paper, we synthesize GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021), Meta-
MathQA (Yu et al., 2023), MathInstruct (Yue et al.,
2023), and QANDA. The QANDA dataset was
gathered manually through direct interaction with
the application1. The overall procedure of synthetic
data generation is illustrated in Figure 2.

Specifically, we synthesize these datasets into
Chain-of-Thought (CoT) and Program-of-Thought
(PoT) rationales via various models (GPT, Wizard-
Math (Luo et al., 2023), ToRA (Gou et al., 2023)).

1https://mathpresso.com/en
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Question: Patrick is half the age of 
his elder brother Robert. If Robert 
will turn 30 after 2 years, how old is 
Patrick now?
Answer : 14

LLMs
Augment with 
CoT Prompt

Augment with
PoT Prompt

Seed Dataset

Post-processing
(Validation of Answer, 
Near Deduplication)

Figure 2: Overall procedure of the synthetic data generation.

To generate diverse synthetic data, we adjust some
hyperparameters such as temperature and top_p.
Then, we select only the correct responses and elim-
inate similar ones among these correct responses as
in Wang et al. (2022). The detailed descriptions of
seed datasets are described in Appendix B. Table 1
provides the summary of our synthetic datasets for
fine-tuning.

3.1.2 Training Details
We used the CodeLLaMA 13B model (Roziere
et al., 2023) as our base model and fine-tuned it
with our synthetic datasets by setting the batch
size to 128. We set learning rate to 2e− 5 and use
cosine scheduler with warm-up period (1 epoch).
For efficient model training, we used DeepSpeed
ZeRO Stage3 (Rajbhandari et al., 2020).

3.1.3 Model Details
To evaluate the effectiveness of our SAAS in RQ1,
we compared it with several state-of-the-art com-
petitors. These competitors are divided into two
groups: general models and mathematics domain-
specific models. The general models include
GPT-4 (Achiam et al., 2023), ChatGPT (gpt-3.5-
turbo)(OpenAI, 2023), Claude-2(Anthropic, 2023),
PaLM-2 (Anil et al., 2023), LLaMA-2 (Touvron
et al., 2023), Platypus-2 (Lee et al., 2023), CodeL-
LaMA (Roziere et al., 2023), and SOLAR-1 (Kim
et al., 2023). The mathematics domain-specific
models consist of WizardMath (Luo et al., 2023),
MetaMath (Yu et al., 2023), MulggleMath (Li et al.,
2023a), Toolformer (Schick et al., 2023), Math-
Coder (Wang et al., 2023), MammoTH (Yue et al.,
2023), and ToRA (Gou et al., 2023).

As in Gou et al. (2023), we report CoT prompt-
ing results by default, and include PAL (Gao
et al., 2023a) prompting results for selected mod-
els. Within the category of mathematics domain-
specific models, WizardMath, MetaMath, and Mug-
gleMath exclusively employ CoT learning for fine-
tuning. Conversely, ToRA utilizes solely PoT learn-
ing, whereas MathCoder and MammoTh integrate

a combination of CoT and PoT learning method-
ologies for fine-tuning. Also, Toolformer is trained
to utilize calculators.

3.1.4 Evaluation Details
We evaluated the model’s performance and its abil-
ity to generalize mathematical reasoning using
both in-domain and out-of-domain data. For in-
domain evaluation, we use the test set of MATH
and GSM8K dataset. For out-of-domain evaluation,
we utilized the following various datasets, which
are used in the previous studies (Gou et al., 2023;
Yue et al., 2023) and publicly available: GSM-
Hard (Gao et al., 2023b), SVAMP (Patel et al.,
2021), ASDIV (Miao et al., 2021), TabMWP (Lu
et al., 2022a), and MAWPS (Koncel-Kedziorski
et al., 2016) that consists of SingleEQ, SingleOP,
AddSub, and MultiArith. These datasets ensure a
comprehensive analysis of the model’s applicability
across various mathematical contexts.

3.2 Results and Analysis
We highlight the best and the second-best results in
each column (i.e., dataset) of the following tables
in bold and underline, respectively.

3.2.1 RQ1: Comparison with Competitors
To demonstrate the superiority of our SAAS over
competitors, we compare the accuracies of all com-
petitors and SAAS. In this experiment, we utilize
LLaMA-2 7B, CodeLLaMA 7B, SOLAR-1 10.7B,
LLaMA-2 13B, CodeLLaMA 13B, CodeLLaMA
34B, and Llemma-34B as our base models.2

Table 2 shows the results. We summarize our
empirical findings as follows. First, we observed
that mathematics domain-specific models outper-
forms general models with similar size in almost
cases. This indicates a requisite for domain-specific
models to address complex mathematical problems
effectively. Second, among mathematics domain-
specific competitors, ToRA, which utilizes solely

2For experiment on the 70B model, we could not proceed
it due to hardware constraint.
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Model Size GSM8K MATH GSM-Hard SVAMP TabMWP ASDiv MAWPS Avg.

General Models

GPT-4 - 92.0 45.2 64.7 93.1 67.1 91.3 97.6 78.3
GPT-4 (PAL) - 94.2 51.8 77.6 94.8 95.9 92.6 97.7 86.4

ChatGPT - 80.8 35.5 55.9 83.0 69.1 87.3 94.6 72.3
ChatGPT (PAL) - 78.6 38.7 67.6 77.8 79.9 81.0 89.4 73.3

Claude-2 - 85.2 32.5 - - - - - -
PaLM-2 540B 80.7 34.3 - - - - - -

LLaMa-2 7B 13.3 4.1 7.8 38.0 31.1 50.7 60.9 29.4
Platypus-2 7B 14.4 5.4 8.6 36.7 26.5 47.9 58.4 28.3

CodeLLaMa (PAL) 7B 34.0 16.6 33.6 59.0 47.3 61.4 79.6 47.4

SOLAR-1 10.7B 25.8 8.0 17.1 59.3 33.6 55.1 68.4 38.1
LLaMa-2 13B 24.3 6.3 13.6 43.1 39.5 56.3 70.4 36.2
Platypus-2 13B 23.7 7.1 14.3 50.7 45.3 55.1 69.6 38.0

CodeLLaMa (PAL) 13B 39.9 19.9 39.0 62.4 59.5 65.3 86.0 53.1

CodeLLaMa (PAL) 34B 53.3 23.9 49.4 71.0 63.1 72.4 91.5 60.7

LLaMa-2 70B 57.8 14.4 36.0 73.6 57.5 76.0 92.4 58.2
Platypus-2 70B 45.9 15.0 24.6 74.3 47.3 72.7 91.1 53.0

Mathematics Domain-Specific Models

WizardMath 7B 54.9 10.7 20.6 57.3 38.1 59.1 73.7 44.9
MetaMath 7B 66.5 19.8 - - - - - -

MuggleMATH 7B 68.4 - - - - - - -
Toolformer 7B - - - 29.4 - 40.4 44.0 -
MathCoder 7B 64.2 23.3 - - - - - -

MathCoder-CODE 7B 67.8 30.2 - - - - - -
MAmmoTH 7B 53.6 31.5 - - - - - -

MAmmoTH-CODE 7B 59.4 33.4 - - - - - -
ToRA 7B 68.8 40.1 54.6 68.2 42.4 73.9 88.8 62.4
SAAS 7B 74.3 43.2 58.3 74.3 49.6 77.3 93.6 67.2

ToRA-CODE 7B 72.6 44.6 56.0 70.4 51.6 78.7 91.3 66.5
SAAS-CODE 7B 74.8 45.2 58.1 73.6 64.0 80.4 93.8 70.0

SAAS 10.7B 82.0 50.1 64.9 85.0 72.5 87.5 95.7 76.8
WizardMath 13B 63.9 14.0 28.4 64.3 46.7 65.8 79.7 51.8
MetaMath 13B 72.3 22.4 - - - - - -

MuggleMATH 13B 74.0 - - - - - - -
MathCoder 13B 72.6 29.9 - - - - - -

MathCoder-CODE 13B 74.1 35.9 - - - - - -
MAmmoTH 13B 62.0 34.2 - - - - - -

MAmmoTH-CODE 13B 64.7 36.3 - - - - - -
ToRA 13B 72.7 43.0 57.3 72.9 47.2 77.2 91.3 65.9
SAAS 13B 76.6 46.2 61.6 77.8 58.2 80.5 94.3 70.7

ToRA-CODE 13B 75.8 48.1 60.5 75.7 65.4 81.4 92.5 71.3
SAAS-CODE 13B 79.4 50.6 61.6 80.6 68.2 84.5 95.4 74.3

MathCoder-CODE 34B 81.7 45.2 - - - - - -
MAmmoTH-CODE 34B 72.7 43.6 - - - - - -

ToRA-CODE 34B 80.7 50.8 63.7 80.5 70.5 84.2 93.3 74.8
SAAS-CODE 34B 82.9 52.3 64.1 82.8 73.9 85.4 95.2 76.6
SAAS-LLEMA 34B 85.4 54.7 67.0 85.2 80.2 87.6 96.6 79.5

WizardMath 70B 81.6 22.7 50.3 80.0 49.8 76.2 86.2 63.8
MetaMath 70B 82.3 26.6 - - - - - -

MuggleMATH 70B 82.3 - - - - - - -
MathCoder 70B 83.9 45.1 - - - - - -

ToRA 70B 84.3 49.7 67.2 82.7 74.0 86.8 93.8 76.9

Table 2: Accuracies of competitors and our SAAS on the mathematical benchmark datasets. Our SAAS models are
shown in purple color.

PoT learning, consistently outperforms all others
with similar size, including MathCoder and Mam-
moTH, which integrate a combination of CoT learn-
ing and PoT learning methodologies. This implies

that simply combining CoT and PoT learning does
not effectively solve complex mathematical prob-
lems. Therefore, a strategic and careful approach
is imperative in the combination of CoT and PoT
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Strategy GSM8K MATH

Chain-of-Thought (CoT) 69.7 26.9
Program-of-Thought (PoT) 76.8 47.7
Combination of CoT and PoT 79.0 49.2
SAAS 79.4 50.6
without cognitive retention strategy 79.0 49.6

Reverse SAAS 76.8 47.1
without cognitive retention strategy 69.4 27.6

Table 3: Accuracies of different learning strategies. All
improvements are statistically significant with p-value
≤ 0.001.

learning. Third and most importantly, our SAAS
consistently and significantly outperforms all com-
petitors with similar size. Specifically, on ∼7B
size, 7B∼13B size, 13B∼34B size, and 34B∼70B
size, SAAS outperforms the best competitors (i.e.,
ToRA-CODE and ToRA) by up to 5.26%, 7.71%,
and 6.28% in terms of average score. Note that al-
though we could not fine-tune 70B model, SAAS
with 10.7B showed similar performance to ToRA
with 70B. Furthermore, SAAS-LLEMA demon-
strated superior performance than ToRA with 70B.
This remarkable performance of SAAS underscore
the effectiveness of our sequential learning ap-
proach.

3.2.2 RQ2: Effectiveness of Sequential
Learning and Cognitive Retention
Strategy

To further explore what factors contribute to the
improvement of our SAAS, we conduct compara-
tive experiments on diverse learning strategies, as
shown in Table 3. Specifically, we compare CoT
learning, PoT learning, CoT+PoT learning, SAAS
that transtions from CoT learning to PoT learning,
and reverse SAAS that transtions from PoT learn-
ing to CoT learning. In addition, we compare (re-
verse) SAAS without cognitive retention strategy
to validate the effectiveness of this strategy. From
Table 3, our empirical findings are summarized as
follows:

i) Effectiveness of the hybrid learning: Combin-
ing of CoT and PoT learning significantly outper-
forms both CoT learning and PoT learning. This
is because CoT learning, which enhances math-
ematical reasoning ability, and PoT learning,
which improves problem-solving ability, play
a complementary role;

ii) Effectiveness of the sequential learning: Our
SAAS without cognitive retention strategy

Figure 3: Accuracies on GSM8K with respect to the
number of required reasoning steps.

slightly outperforms combining of CoT and PoT
learning in MATH only. We conjecture that the
absence of significant improvement, despite se-
quential learning, can be attributed to the de-
terioration of mathematical reasoning abilities
during the PoT learning phase (i.e., cognitive
forgetting). Furthermore, reverse SAAS with-
out cognitive retention strategy shows a lower
accuracy than combining of CoT and PoT learn-
ing. This result indicates that the order of the
learning sequences in sequential learning is vital
for mathematical reasoning and problem-solving
abilities;

iii) Effectiveness of the cognitive retention strat-
egy: To mitigate the cognitive forgetting, in Sec-
tion 2.2, we proposed the cognitive retention
strategy, which includes some data samples from
first phase in the second phase. (Reverse) SAAS
outperforms (reverse) SAAS without cognitive
retention strategy, verifying the effectiveness of
the cognitive retention strategy.

3.2.3 RQ3: Further Analysis of the
Capabilities of SAAS

To analyze the capabilities of SAAS depending
on the difficuly of mathemtical problem, we quan-
titatively assess the break-down accuracies for
problems with respect to the reasoning steps as
in Shi et al. (2023). Specifically, we segmented
the GSM8K dataset into 4 categories based on the
number of reasoning steps required to arrive at
an answer. Then, we quantified accuracies of CoT
learning, PoT learning, and SAAS across each des-
ignated category.

As illustrated in Figure 3, SAAS outperforms
both CoT learning and PoT learning for all cat-
egories. Moreover, as the reasoning steps in a
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To	find	the	number	of	valid	codes,	we	need	to	
consider	the	number	of	choices	for	each	digit.
For	the	first	digit,	there	are	9	choices
(0-9,	excluding	0).
For	the	second	digit,	there	are	8	choices
(0-9,	excluding	the	digit	already	chosen).
For	the	third	digit,	there	are	7	choices
(0-9,	excluding	the	digits	already	chosen).
For	the	fourth	digit,	there	are	6	choices
(0-9,	excluding	the	digits	already	chosen).
For	the	fifth	digit,	there	are	5	choices
(0-9,	excluding	the	digits	already	chosen).
Therefore,	the	total	number	of	valid	codes	is	
9	*	8	*	7	*6	*	5	=	1260.
The	answer	is:	1260

CoT Learning
```python
from	sympy import	factorial

def	valid_codes():
"""Benjamin	is	trying	to	break	a	

combination	lock.	This	particular	type	of	lock
has	5	digits	from	0	to	9,	and	Benjamin	just	
happens	to	know	that	there	can	be	no	
repeated	digits	in	the	code	for	this	type	of	
lock.	How	many	valid	codes	are	there?"""
#	There	are	10	choices	for	each	of	the	5	

digits
num_codes =	10**5

return	num_codes

result	=	valid_codes()
print(result)
```
```output
100000
```
The	number	of	valid	codes	is	100000.

PoT Learning SAAS
```python
from	sympy import	factorial

def	valid_codes():
"""Benjamin	is	trying	to	break	a	

combination	lock.	This	particular	type	of	lock
has	5	digits	from	0	to	9,	and	Benjamin	just	
happens	to	know	that	there	can	be	no	
repeated	digits	in	the	code	for	this	type	of	
lock.	How	many	valid	codes	are	there?"""
#	There	are	10	choices	for	each	of	the	5	

digits,	and	the	choices	are	independent,
#	so we	use	the	product	of	the	number	of	

choices	for	each	digit
valid_codes =	factorial(10)	/	factorial(10	-

5)

return	valid_codes

result	=	valid_codes()
print(result)
```
```output
30240
```
The	number	of	valid	codes	is	30240.

Question:	Benjamin	is	trying	to	break	a	combination	lock.	This	particular	type	of	lock has	5	digits	from	0	to	9,	and	Benjamin	just	happens	
to	know	that	there	can	be	no	repeated	digits	in	the	code	for	this	type	of	lock.	How	many	valid	codes	are	there?

Answer:	30240	

Figure 4: Responses of different learning approaches for a given question-answer pair.

mathematical problem extend (i.e., the difficulty
increases), especially the step 5 or above, the dif-
ference between our SAAS and other strategies be-
comes more pronounced. This result supports our
hypothesis that prioritizing the learning of mathe-
matical reasoning ability via CoT learning is help-
ful for the amplification of challenging problem-
solving ability.

3.2.4 RQ4: Case Study

To demonstrate that our SAAS is effective in terms
of both mathematical reasoning and computational
accuracy, we conduct a case study showing the re-
sponses of CoT learning, PoT learning, and SAAS
for a given question-answer pair. Figure 4 shows
the visualization results, where the colored words
indicate incorrect responses and the words with no
color mark indicate correct responses.

As depicted in Figure 4, CoT learning approach
exhibited inaccuracies in arithmetic computations
as well as deficiencies in mathematical reason-
ing. Conversely, PoT approach demonstrated pre-
cise calculations yet exhibited a critical deficiency
in mathematical reasoning. As we expected, our
SAAS exhibited precise computational accuracy
along with enhanced mathematical reasoning ca-
pabilities (See the more detailed comments than
the comments of PoT learning). Through this case

study, we demonstrated the following three obser-
vations: i) only CoT learning approach leads to
arithmetic calculation errors; ii) only PoT learning
approach may result in a deficit of mathematical
reasoning; iii) sequential learning that transitions
from CoT to PoT learning help improve computa-
tional accuracy as well as mathematical reasoning.

4 Conclusion

In this paper, we demonstrated the following two
important points in the sense of solving challenging
mathematical problems: (1) prioritizing the learn-
ing of mathematical reasoning ability via Chain-of-
Thought (CoT) learning is helpful for the amplifica-
tion of problem-solving ability during Program-of-
Thought (PoT) learning; (2) for effective sequential
learning, it is necessary to employ a cognitive reten-
tion strategy that incorporates some data samples
from the initial phase into the subsequent phase.
In light of this, we proposed a novel sequential
learning approach, named SAAS (Solving Abil-
ity Amplification Strategy), which progresses from
CoT learning to PoT learning with cognitive reten-
tion strategy. Through extensive experiments with
the reputable benchmarks, we demonstrated that
SAAS consistently and significantly outperforms
all competitor, marking a significant advancement
in the field of mathematical reasoning in LLMs.
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Limitations

This study, while advancing the field of compu-
tational linguistics through the use of Large Lan-
guage Models (LLMs), encounters several limita-
tions that are important to acknowledge.

Firstly, the intricate nature of LLMs can some-
times lead to unpredictability in their outputs. This
unpredictability can be particularly challenging
when dealing with mathematical reasoning, where
precision and accuracy are paramount, making it
difficult to utilize LLMs in applications in the field
of mathematics.

Furthermore, despite advancements via our
study, LLMs still have limitations in their under-
standing and application of advanced mathematical
concepts. While they can perform well on struc-
tured problems, their ability to handle abstract and
complex mathematical reasoning is still an area of
ongoing research and development.

Additionally, the reliance on synthetic data for
training these models also presents a limitation.
While synthetic datasets are useful for mitigating
the scarcity of real-world data, it may not always
accurately capture real-world scenarios, leading to
potential gaps in the model’s performance when
applied to practical, real-world tasks.

Finally, ethical considerations, particularly
around the potential misuse of AI, remain a con-
cern. Ensuring that LLMs are used responsibly and
do not perpetuate biases is an ongoing challenge in
the field.

In summary, while our study leverages the capa-
bilities of LLMs to enhance mathematical reason-
ing in computational linguistics, it is important to
recognize the limitations related to unpredictability
of LLMs, understanding of advanced mathemati-
cal concepts, reliance on synthetic data, and ethical
considerations. These limitations highlight the need
for continued research and development in the field
to address these challenges effectively.
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our experiments were grounded in fairness and ob-
jectivity, without favoring any particular outcome.
This commitment was reflected in our meticulous
planning and consistent application of methodolo-
gies across various datasets.

We also placed a strong emphasis on data privacy
and security, handling all data, especially synthetic
data generated for our models, in compliance with
relevant data protection laws and guidelines. We
confirmed that all the data used in our experiments
were free of licensing issues. Our approach to data
was characterized by strict anonymization proto-
cols and its use was confined strictly to research
purposes. We have strived for transparency in our
research process, documenting all methodologies,
data sources, and analysis techniques clearly, which
underpins our commitment to the reproducibility
of scientific research. This allows other researchers
to verify our results and build upon our work, con-
tributing to the collective knowledge in the field.

Recognizing the broader impacts of AI and
LLMs on society, our research was conducted with
a profound sense of responsibility. We were mind-
ful of the ethical implications of AI development
and aimed to create models that are effective yet
ethically aligned, avoiding any form of biased, dis-
criminatory, or harmful applications of these tech-
nologies. We believe our research makes a positive
contribution to the field of computational linguis-
tics and AI, particularly in enhancing the mathe-
matical reasoning capabilities of Large Language
Models in a manner that is ethically sound and
socially responsible.

Our work underscores our commitment to con-
ducting scientifically rigorous and ethically respon-
sible research, maintaining the highest standards of
integrity in AI and computational linguistics.
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A Related Work and Background

The field of Large Language Models (LLMs) has
witnessed substantial advancements, yet the inte-
gration of mathematical reasoning within these
models remains a challenging frontier. Existing
researches in LLMs primarily focus on the natural
language understanding and generation (Wei et al.,
2022a; Yang et al., 2023), with limited exploration
in mathematical problem-solving. The complex-
ity of mathematical problems, which requires not
only numerical computation but also logical infer-
ence and the understanding of abstract concepts,
still remains a notable challenge for LLMs (Zhao
et al., 2023; Lu et al., 2022b; Meadows and Freitas,
2022; Qian et al., 2022; Zhou et al., 2022; Light-
man et al., 2023; Drori et al., 2021; Zhang et al.,
2019). To address this challenge, many researches
are being conducted via the following approaches:
1) prompting approach, 2) fine-tuning approach,
and 3) continued pretraining approach.

Prompting Approach Recent studies are based
on the prompting methods for mathematical rea-
soning without additional training. Recently, the
concepts of Chain of Thoughts (CoT) (Wei et al.,
2022b) and Program of Thoughts (PoT) (Chen
et al., 2022; Gao et al., 2023a) have emerged as
promising approaches to enhance mathematical
reasoning in LLMs. The CoT involves breaking
down complex reasoning problems into a series of
intermediate reasoning steps. This approach has
shown promise in improving the accuracy and reli-
ability of LLMs in mathematical problem-solving,
by mimicking the human thought process of step-
by-step reasoning. However, it is not ideal for solv-
ing complex mathematical problems (Chen et al.,
2022). To address this issue, the PoT introduces
a more algorithmic perspective. Specifically, it ex-
presses the reasoning steps as code and delegate
computation steps to an code interpreter. This ap-
proach allows the LLMs to effectively deal with
problems that require a combination of mathemati-
cal operations and logical reasoning, by structuring
the problem-solving process in a programmatic
manner.

Fine-tuning Approach More recently, many
works (Luo et al., 2023; Yue et al., 2023; Yu et al.,
2023; Gou et al., 2023) focus on the fine-tuning
LLMs for mathematical reasoning tasks. Wizard-
Math (Luo et al., 2023) proposed Reinforcement
Learning from Evol-Instruct Feedback (RLEIF),

which integrates supervised fine-tuning (SFT) and
proximal policy optimization (PPO) for mathemat-
ical reasoning. MAmmoTH (Yue et al., 2023) in-
troduces a new hybrid instruction-tuning dataset
called MathInstruct3, which consists of CoT ra-
tionale and PoT rationale. MetaMath (Yu et al.,
2023) proposed a new instruction-tuning dataset
named MetaMathQA4, which is augmented by
question bootstrapping methods. ToRA (Gou et al.,
2023) suggested a series of tool-integrated reason-
ing agents, which is fine-tuned on the tool-use
trajectories (PoT rationale) datasets generated by
prompting GPT-4.

Continued Pretraining Approach Some re-
searches (Lewkowycz et al., 2022; Azerbayev
et al., 2023) continually pretrain a base model
to specialize in the mathematical reasoning. Min-
erva (Lewkowycz et al., 2022) is a large language
model pretrained on general natural language data
and further trained on the scientific and mathemat-
ical data. Llemma (Azerbayev et al., 2023) was
also obtained through continued pretraining Code
Llama (Roziere et al., 2023) on their own collected
data named Proof-Pile-25.

In this paper, we focus on the fine-tuning ap-
proach by integrating the CoT and PoT learning.
Motivated by Dong et al. (2023) that showed that
the abilities of LLMs can be improved depending
on the SFT strategy, we analyze how much per-
formance can be improved depending on the SFT
strategy from the perspective of solving challeng-
ing mathematical problems.

B Detailed Descriptions of Seed Datasets

The detailed description of each seed dataset is as
follows:

i) GSM8K (Cobbe et al., 2021): It focuses on
elementary-level math problems to evaluate abil-
ities that handle logical reasoning and parse and
interpret math questions presented in natural lan-
guage;

ii) MATH (Hendrycks et al., 2021): It includes a
wide range of math problems, ranging from el-
ementary arithmetic to advanced topics such as

3https://huggingface.co/datasets/
TIGER-Lab/MathInstruct

4https://huggingface.co/datasets/
meta-math/MetaMathQA

5https://huggingface.co/datasets/
EleutherAI/proof-pile-2
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algebra, calculus, and geometry, which are chal-
lenging more than GSM8K;

iii) MetaMathQA (Yu et al., 2023): It is a
dataset augmented through rephrasing question,
forward-backward reasoning (Jiang et al., 2023),
self-verification, and answer augmentation based
on GSM8K and MATH;

iv) MathInstruct (Yue et al., 2023): It consists
of a mix of 13 types of CoT and PoT math-
ematical rationales from various mathemati-
cal fields. Specifically, CoT type data consist
of GSM8K, GSM8K-RFT (Yuan et al., 2023),
AQuA-RAT (Ling et al., 2017), MATH, THe-
oremQA (Chen et al., 2023) Camel-Math (Li
et al., 2023b) and College-Math. Otherwise, PoT
type data consist of GSM8K, AQuA-RAT, The-
oremQA, MathQA (Amini et al., 2019) and
NumGLUE (Mishra et al., 2022);

v) QANDA: It consists of a diverse collection of
real-world mathematical questions and detailed
solutions, catering to a broad spectrum of math-
ematical concepts and difficulty levels.
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