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Abstract

While image-text pre-trained models, such as
CLIP, have demonstrated impressive capabil-
ities in learning robust text and image repre-
sentations, a critical area for substantial im-
provement remains—precise color understand-
ing. In this paper, we address this limi-
tation by introducing PRISM, a simple yet
highly effective method that extends CLIP’s
capability to grasp the nuances of precise col-
ors. PRISM seamlessly adapts to both rec-
ognized HTML colors and out-of-vocabulary
RGB inputs through the utilization of our cu-
rated dataset of 100 image-text pairs, which
can be effortlessly repurposed for fine-tuning
with any desired color. Importantly, PRISM
achieves these enhancements without com-
promising CLIP’s performance on established
benchmarks. Furthermore, we introduce a
novel evaluation framework, ColorLens, fea-
turing both seen and unseen test sets that can
be readily repurposed to assess a model’s preci-
sion in understanding precise colors. Our com-
prehensive evaluation and results demonstrate
significant improvements over baseline mod-
els. Project page: https://prism-google.
github.io

1 Introduction

Vision-language foundation models (VLMs),
such as Contrastive Language-Image Pre-training
(CLIP) (Radford et al., 2021), learn transferable
rich knowledge in a joint space for vision and
language with remarkable zero-shot and few-shot
capability in 2D visual recognition tasks such as
classification (Zhang et al., 2021; Zhou et al.,
2022b), detection (Gu et al., 2021), retrieval (Jia
et al., 2021), and text-conditioned image gener-
ation (Rombach et al., 2022). Recently, several
techniques have been proposed to improve the fine-
tuning stability of CLIP, enabling it to adapt and
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Figure 1: Brand-Specific Colors versus Standard Colors.
This figure illustrates the contrasts between standard color
shades and the unique, brand-specific shades used by well-
known brands. The juxtaposition highlights the significance
of precise color recognition in brand identity and consumer
perception.

generalize effectively to a variety of tasks (Zhou
et al., 2022a; Paiss et al., 2023; Zhang et al., 2022).
However, despite emerging as a robust represen-
tation learner for text and images, a notable gap
remains—an inadequacy in precise color under-
standing, a fundamental component of visual infor-
mation that has been relatively underexplored.

The significance of precise color understanding
resonates profoundly in practical domains, partic-
ularly in advertising and branding, where it plays
a pivotal role in establishing brand recognition
and influencing consumer perceptions. Colors not
only significantly influence consumer buying deci-
sions, enhancing brand recognition and impacting
visual appeal, but also evoke specific emotional
and psychological responses crucial for brand iden-
tity. Several brands have invested significantly in
establishing brand identity by designing unique
(or non-standard HTML) color palettes, creating a
visual language that is instantly recognizable world-
wide, as shown in Figure 1. Failure to accurately
recognize these unique shades in vision-language
models would lead to significant shortcomings in
downstream generation tasks (see (c) in Figure 2),
such as automated advertising or brand-related con-
tent creation. Therefore, enhancing the color dis-
cernment capabilities of these models is not just a
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(a) Text-to-Image Retrieval (b)    Image-to-Text Retrieval
Input Text: A white swan and a tan butterfly gracefully 
gliding and resting, respectively, by a serene pond.

Output Candidates:

1 2 3

4 5 6

PRISM: 1CLIP: 4

Input Image: Output Candidates:

1. Brune Top in Beige
2. Brune Top in Dark Salmon
3. Brune Top in Khaki
4. Brune Top in Burly Wood
5. Brune Top in Snow
6. Brune Top in Peru

PRISM: 1 

CLIP: 2 

(c)    Text-to-Image Generation using CLIP

Papayawhip colored tea pot Indian Red colored tea pot

Papayawhip 

Indian Red

Figure 2: Comparing CLIP and our proposed method PRISM: (a) In image retrieval task, where precise RGB colors
(e.g., D2B48C = tan color) are crucial, CLIP struggles in accurately retrieving images that match the specified color while
PRISM excels at distinguishing and retrieving the correct color among subtle variations; (b) Similarly, in text retrieval, PRISM
outperforms CLIP by achieving more precise matches between textual descriptions and corresponding images; (c) Few example
images generated using Stable Diffusion 1.5 (with CLIP as text encoder) demonstrating noticeable discrepancy in accurately
rendering desired color shades.

technical challenge, but a necessity for maintaining
brand integrity in digital representations.

As illustrated in Figure 2, when tasked with re-
trieving images based on exact RGB colors (e.g.,
D2B48C representing tan color), CLIP frequently
struggles to accurately retrieve images that align
with the specified color, particularly when colors
exhibit subtle resemblances. This limitation not
only impacts the performance of image retrieval
tasks but also extends to downstream applications
reliant on VLMs, including image generation mod-
els, which face difficulties with generating images
consistently adhering to the precise color palette.

The direct fine-tuning of VLMs for this purpose
encounters inherent challenges, including the risks
of overfitting and mode-collapse, primarily stem-
ming from the limited availability of image-text
pairs explicitly describing precise colors. In this
work, we introduce PRISM, to address these limi-
tations. At its core, our principal objective revolves
around expanding the pre-trained representational
domain, ensuring effective encapsulation of a one
or more desired RGB color values, all the while
retaining the VLM performance on established
benchmarks. To achieve this, we meticulously con-
struct a training set comprising 100 diverse and
high-quality image-text pairs. We show that our
curated training set can be seamlessly repurposed
for fine-tuning, facilitating the implantation of any

desired RGB triplet with remarkable ease.
In order to enhance the efficiency of fine-tuning,

especially with the constraint of a relatively small
set of examples, we introduce explicit hard nega-
tives and encourage the learning of a disentangled
embedding for the desired color. For RGB triplets
not recognized as standard HTML colors, we em-
ploy a rare-token lookup in the vocabulary (Ruiz
et al., 2023). Additionally, we construct a new
benchmark ColorLens that can be readily repur-
posed to measure a model’s precision in under-
standing precise colors. Our empirical findings
demonstrate a significant enhancement over base-
line models in retrieval tasks.

2 Related Work

Foundational vision-language (VL) models, de-
signed to bridge image representation with text em-
bedding, have achieved remarkable performance
across a broad spectrum of uni-modal and mul-
timodal applications (Chen et al., 2020; Kamath
et al., 2021; Li et al., 2020; Lu et al., 2019). CLIP,
as a widely acclaimed VL model, undergoes pre-
training through a contrastive learning approach,
leveraging a vast dataset of 400 million image-
caption pairs sourced from the internet and revealed
surprising capacities of open-vocabulary recogni-
tion and domain generalization (Radford et al.,
2021; Zhou et al., 2022c). While CLIP and its
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Figure 3: Our proposed PRISM-based fine-tuning ap-
proach: We implant unrecognized HTML colors using
unique tokens, integrate hard negatives for disentangling color-
relevant information, and employ regularization losses to pre-
serve image and text embeddings, resulting in improved model
performance. The overall loss function combines these ele-
ments to enhance the understanding of precise RGB colors in
our fine-tuning process.

variants have received considerable attention in the
context of prompt tuning (He et al., 2022; Zhou
et al., 2022b) and continual fine-tuning (Garg et al.,
2023; Ding et al., 2022), there has been no prior
investigation dedicated to exploring the realm of
precise color understanding.
CLIP Adaptation: Due to CLIP’s versatility, sev-
eral studies have adapted it for various purposes.
Recent works such as Structured Vision Language
Concepts (SVLC) (Doveh et al., 2023; Zhao et al.,
2022) have demonstrated that using a ‘bag of ob-
jects’ in both images and text is sufficient for opti-
mizing CLIP-Loss, resulting in a failure to differ-
entiate fine-grained language nuances and compre-
hend structured concepts such as object attributes
and relationships. Some works spot the limitations
of CLIP in compositional reasoning and propose ex-
tensions to enhance the reasoning skills, rectifying
object bias, and addressing associations (Liu et al.,
2021; Yamada et al., 2022; Thrush et al., 2022).
Another line of research has focused on improving
methods for assessing both the perceived quality
and abstract perception of images without task-
specific training (Wang et al., 2023). This includes
investigations into novel tasks like recoloring im-
ages to enhance specific emotions and providing
textual rationales for such recoloring. However,
there has been no prior work explicitly dedicated
to improving the precise color comprehension ca-
pabilities of CLIP.

3 Method

In this section, we first describe the construction of
our repurposable training and testing datasets, then

present our fine-tuning paradigm in detail. Our
primary objective is to enhance CLIP’s nuanced
understanding of colors by learning disentangled
embeddings for the desired color using our curated
small set of training examples, all while simulta-
neously preserving the semantic context of images
and text.

3.1 Dataset Construction
While an abundance of paired image and text data
exists, there is a lack of paired image-and-text data
consisting of precise RGB colors of the objects de-
picted in the image. Therefore, to enable training
and thorough evaluation of our proposed method,
we undertook a systematic and controllable ap-
proach to synthesize the data splits leveraging the
latest advancements in large language models, text-
to-image generation, and object segmentation tech-
niques.

We initiate the dataset creation process by har-
nessing the capabilities of GPT-4 (OpenAI, 2023).
Our goal here is to generate text prompts that accu-
rately describe objects while explicitly specifying
their color attributes. The text prompts generated
by GPT-4 subsequently undergo a manual review
process. The aim is to ensure that the generated
prompts are diverse, clear, and explicitly conveyed
the color attributes of the depicted objects. Be-
low are the sample instructions that we provide to
GPT-4:
"Generate a series of descriptive text prompts for

images, focusing on the precise depiction of objects
with specific color values. Each prompt should:

1. Describe a Unique Object: Choose an object
for each prompt. This could range from ev-
eryday items like a fruit, a car, or clothing,
to more unique or imaginative objects like a
fantasy creature or futuristic technology.

2. Specify Object Color Include color for the key
object. For example, ‘A ripe banana with a
red skin color resting on a wooden table’

3. Provide Context and Detail: Add descriptive
details about the object’s setting, texture, size,
and any other relevant characteristics to cre-
ate a vivid picture. For example, ‘The banana
is slightly curved, with small brown spots,
indicating ripeness, and lies next to a steel
knife’.

4. Ensure Clarity and Simplicity: While be-
ing detailed, keep the descriptions clear and
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Figure 4: Overview of our dataset construction process highlighting the integration of GPT-4 for text prompt
generation, Stable Diffusion XL for image synthesis, and SAM for segmentation, facilitating the creation of our
train and eval splits. The left side illustrates the step-by-step pipeline for image generation, while the right side
showcases diverse examples of images produced through our approach.

straightforward to facilitate accurate image
generation. Avoid overly complex sentences
or ambiguous descriptions.

5. Incorporate Interaction if Relevant: If appli-
cable, describe the object in interaction with
other elements or characters to add dynamism
to the scene. For example, ‘A child in a bright
green t-shirt holding the banana, ready to take
a bite.’ "

For generating corresponding images that
align with the curated text prompts, we em-
ploy Stable Diffusion XL (Podell et al., 2023).
We used DreamStudio service (https://beta.
dreamstudio.ai/) to generate images from the
text prompts using SDXL 1.0. For each prompt,
we generate between 4 to 8 images and then we
manually select one image that most faithfully rep-
resent the intended text prompt. In total, we curated
a training set consisting of 100 image-text pairs. To
train our model to recognize any RGB color, we re-
purpose these curated images by segmenting object
pixels using a object segmentation module (Kir-
illov et al., 2023) and modifying the segmented
pixels to match specified RGB colors1. We used
Segment Anything ViT-H model to identify ob-
ject segmentation masks (https://github.com/
facebookresearch/segment-anything). Fig-
ure 4 illustrates our dataset construction process.

1Using our controllable generation approach, we ensure
a diverse range of prompts and control over object (color)
modifiability.

For evaluating our model, we introduce Color-
Lens, comprising two critical evaluation settings:
text-to-image retrieval and image-to-text retrieval.
For the text-to-image retrieval setting, we create
Test Seen and Test Unseen splits using the same
pipeline discussed above, each with 50 image-text
pairs and hard negatives. Seen split includes famil-
iar objects with hard negatives, while unseen split
involves unseen objects during finetuning allowing
us to assess the model’s generalization capabilities.
In the image-to-text retrieval setting, we collect 100
image-text test pairs, consisting of 20 color shades.
Images for the common colors are sourced from
the extensive LAION-400M dataset (Schuhmann
et al., 2021) and the rest are generated synthetically
using the above pipeline. We add hard negatives by
replacing the color name in the text prompts with
the closest color shades.

3.2 PRISM
Rare-token Identifiers: In order to implant un-
recognized HTML colors, we associate it with a
unique token in the vocabulary. For instance, we
use the format “chair in [identifier] color", where
[identifier] serves as a distinct label linked to the
desired RGB color. Following a similar approach
as outlined in Ruiz et al. (2023), we conduct a rare-
token lookup within the CLIP vocabulary to obtain
three-letter unique identifiers (e.g., ‘hta’) that has
no particular strong associations with specific con-
cepts or meanings.
Disentangled Fine-tuning: In order to facilitate
disentanglement of color-relevant information from
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color-irrelevant details, we integrate hard negatives
into our fine-tuning framework. In each fine-tuning
step, we leverage the original ground truth image
and its hard negative images, systematically gener-
ated by manipulating RGB channels. Alongside the
original CLIP contrastive loss (Lclip) for text and
ground-truth images, we incorporate a weighted
hard negative loss (Lhard) with the specific aim of
minimizing the CLIP similarity between the text
description and the hard negative images.
Image and Text Prior Preservation: When we
unfreeze all parameters in both the text-encoder
and image-encoder, the model exhibits signs of
overfitting to our limited training data, leading to
language drift issues (Ruiz et al., 2023). To ad-
dress this challenge, we adopt a strategy of sam-
pling 5000 image-text pairs from the LAION 400M
dataset, focusing on color-related content and en-
compassing a diverse range of objects. We then
apply a regularization loss, denoted as Li_prior for
image embedding preservation and Lt_prior for text
embedding preservation, designed to preserve the
image and text embeddings for these 5000 pairs
during fine-tuning. Below is the overall loss func-
tion (L) we use in fine-tuning and we illustrate the
approach in Figure 3.

L “ Lclip`λ1¨Lhard`λ2¨Li_prior`λ3¨Lt_prior (1)

4 Experiments

In the section, we present a comprehensive evalua-
tion of our proposed method, PRISM, on retrieval
tasks using our newly introduced ColorLens test
splits specifically designed for assessing precision
in color-based retrieval tasks. We evaluate our
approach from both quantitative and qualitative
perspectives. Through ablation studies, we sys-
tematically dissect the contributions of each com-
ponent within our framework, highlighting their
individual effectiveness in enhancing the model’s
performance. Our experiments consistently demon-
strate the superiority of PRISM over state-of-the-
art methods, including CLIP and ALBEF (Li et al.,
2021), both in fine-tuning and adapter tuning set-
tings 2. Additionally, to provide a more compre-
hensive perspective, we extend the comparison to
include models such as ViT-L-14 and ViT-B-32 for
all the models.

In Tables 1 and 2 we compare PRISM against es-
tablished methods across both seen and unseen Col-

2We ensure that the baseline models are appropriately fine-
tuned to provide fair comparisons.

orLens test splits. The evaluation is multi-faceted:
The first column compares the original image-text
matching performance using precision and rank
metrics against a backdrop of 20 randomly selected
negatives from the test set. The second column ex-
tends this challenge by using the entire test suite as
potential negatives. The third column specifically
targets color-based retrieval performance, introduc-
ing ‘hard-negatives’ that are identical in every as-
pect except for distinct differences in RGB color
values of specific objects. These hard-negatives
are crafted to vary in their deviation from the true
color values, with smaller delta values (δ ă ε1) and
larger ones (ε1 ă δ ă ε2) to escalate the retrieval
difficulty (see section A in supplementary for more
details). Furthermore, in the final two columns,
we increase the number of negatives from 27 to
64, testing the models’ robustness under more chal-
lenging conditions.

As we can see, while most baseline models, both
in their zero-shot and fine-tuned forms, exhibit
strong performance in standard image-text match-
ing (as evidenced in the first two columns of the re-
sults), there is a noticeable tendency for direct fine-
tuning to lead to overfitting. This is particularly
evident in the performance dip observed from CLIP
to its fine-tuned variant (FT CLIP) in traditional
matching tasks. Contrasting this, PRISM stands out
by not only improving precision and ranking in the
color-focused retrieval tasks but also maintaining
robust performance in standard image-text match-
ing. This clearly indicates PRISM’s unique ability
to enhance color-specific understanding while pre-
serving the foundational semantics of the models.
Further strengthening our findings, similar trends
of PRISM’s efficacy are observed in the unseen test
split.
Ablations Table 3 presents an ablation of our
PRISM model, specifically the Ours+FT B/32 vari-
ant. The significant difference in precision and
recall between ablated versions and our method
demonstrate the importance of the Prior Preserva-
tion Loss and Hard Negative Loss in our frame-
work. Notably, the removal of the Prior Preserva-
tion Loss leads to enhanced performance in color-
specific retrieval tasks, however it results in a no-
table decrease in performance for standard image-
text matching. This suggests a pronounced risk of
overfitting when trained on a limited dataset. On
the other hand, omitting the Hard Negative Loss
maintains the model’s performance in standard
image-text matching scenarios but significantly di-
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20 Neg ALL Neg δ ă ε1 (27) δ ă ε2 (27) δ ă ε1 (64) δ ă ε2 (64)

Model p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó
CLIP B/32 98.0 1.02 98.0 1.06 8.0 10.80 14.0 10.28 2.0 24.90 12.0 21.96
CLIP L/14 100.0 1.00 98.0 1.04 8.0 10.14 18.0 8.50 4.0 22.80 12.0 18.30
ALBEF 90.0 2.59 87.0 2.76 4.0 15.10 7.0 16.55 1.0 27.91 6.0 28.70
ALBEF (MSCOCO) 91.0 2.40 88.0 2.60 4.0 14.89 8.0 16.54 1.0 27.90 7.0 26.89
ALBEF (Flickr30k) 92.0 1.97 90.0 2.00 5.0 13.34 9.0 14.34 1.0 27.60 8.0 25.70
CLIP Adapter B/32 100.0 1.00 98.0 1.04 10.0 10.28 22.0 8.14 4.0 21.84 16.0 16.88
CLIP Adapter L/14 100.0 1.00 100.0 1.00 12.0 10.34 18.0 8.64 6.0 23.42 14.0 18.70
FT CLIP B/32 100.0 1.00 96.0 1.06 12.0 10.50 16.0 8.76 6.0 22.82 10.0 18.68
FT CLIP L/14 100.0 1.00 98.0 1.02 10.0 10.44 16.0 8.64 6.0 23.54 10.0 19.30

Ours+Adap B/32 97.0 1.06 97.0 1.06 20.0 4.82 52.0 3.82 10.0 9.00 38.0 6.28
Ours+Adap L/14 100.0 1.00 98.0 1.02 10.0 8.24 22.0 6.78 7.0 15.08 20.0 14.70
Ours+FT B/32 100.0 1.00 98.0 1.04 24.0 4.24 40.0 3.46 20.0 7.30 36.0 5.04
Ours+FT L/14 100.0 1.00 98.0 1.04 30.0 4.04 40.0 3.90 18.0 7.54 34.0 5.96

Table 1: Evaluation of PRISM and baseline models on the ColorLens seen test split, demonstrating PRISM’s
enhanced precision and rank in color-based retrieval (last four columns) and consistent Performance in standard
image-text matching (first two columns).

20 Neg ALL Neg δ ă ε1 (27) δ ă ε2 (27) δ ă ε1 (64) δ ă ε2 (64)

Model p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó
CLIP B/32 100.0 1.00 100.0 1.00 10.0 7.32 20.0 7.74 8.0 16.80 16.0 15.32
CLIP L/14 100.0 1.00 100.0 1.00 12.0 8.00 22.0 7.60 10.0 17.78 18.0 16.80
ALBEF 89.0 2.50 88.0 2.52 6.0 14.10 10.0 13.90 5.0 19.70 7.0 21.12
ALBEF (MSCOCO) 90.0 2.45 89.0 2.50 5.0 13.76 11.0 13.01 5.0 19.52 7.0 21.01
ALBEF (Flickr30k) 92.0 2.00 91.0 2.01 7.0 11.00 14.0 11.23 6.0 18.00 10.0 19.00
CLIP Adapter B/32 98.0 1.02 98.0 1.02 12.0 6.58 32.0 5.36 8.0 14.12 22.0 11.46
CLIP Adapter L/14 100.0 1.00 100.0 1.00 10.0 7.92 24.0 7.58 10.0 18.14 20.0 16.84
FT CLIP B/32 100.0 1.00 100.0 1.00 10.0 8.86 18.0 8.12 6.0 20.28 12.0 18.06
FT CLIP L/14 100.0 1.00 100.0 1.00 8.0 8.52 20.0 7.78 8.0 19.54 12.0 18.08

Ours+Adap B/32 100.0 1.00 96.0 1.06 28.0 4.32 46.0 3.50 20.0 7.74 36.0 6.20
Ours+Adap L/14 100.0 1.00 100.0 1.00 14.0 5.02 28.0 5.58 11.0 13.14 22.0 12.76
Ours+FT B/32 100.0 1.00 100.0 1.00 34.0 3.06 50.0 2.64 30.0 5.54 40.0 4.58
Ours+FT L/14 100.0 1.00 100.0 1.00 24.0 3.32 60.0 2.74 16.0 5.96 50.0 3.52

Table 2: Performance of PRISM and baseline models on the ColorLens unseen test split.

minishes its effectiveness in distinguishing subtle
color differences, indicating that while it effectively
preserves the integrity of semantic representations,
it struggles in the nuanced task of color differentia-
tion.

4.1 Image-to-Text Retrieval

In the image-to-text retrieval setting, our evaluation
strategically focuses on testing the generalization
capabilities of our proposed PRISM method with
real images. The images in this split of ColorLens
stands in contrast to synthetic images used previ-
ously in the text-to-image retrieval test splits. From
the LAION-400M dataset, we specifically mine
images corresponding to 20 HTML color shades.
When certain shades are not present in LAION-
400M, we generate additional images using the
pipeline detailed in section 3.1. We fine-tune the

model using the PRISM method with our repur-
posable train images generated for each of these
20 shades and conduct comparative evaluations
against the baseline models. The experimental
setup for this task involves matching the given im-
age with the correct text caption, emphasizing the
precision of color identification.

The results, summarized in Table 4, demonstrate
that PRISM significantly outperforms all baseline
models. This remarkable performance indicates
that our synthetic training dataset is highly effective
in enhancing performance on real images. Further-
more, the results of our ablated model, displayed
in Table 5, reaffirm the critical role of the Prior
Preservation Loss and Hard Negative Loss in our
framework. These components are instrumental
in maintaining the balance between color-specific
accuracy and overall image-text matching perfor-
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20 Neg ALL Neg δ ă ε1 (27) δ ă ε2 (27) δ ă ε1 (64) δ ă ε2 (64)

Model p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó
Ours+FT B/32 100.0 1.00 100.0 1.00 34.0 3.06 50.0 2.64 30.0 5.54 40.0 4.58
w/o Prior Loss 91.0 1.32 91.0 1.36 40.0 2.10 70.0 1.28 38.0 3.30 68.0 1.98
w/o HN Loss 100.0 1.00 100.0 1.00 4.0 9.40 24.0 8.04 4.0 20.20 14.0 16.94

Table 3: Ablation study of the PRISM model (Ours+FT B/32 variant) on ColorLens unseen test split, showing the
impact of prior preservation loss and hard negative loss on color differentiation capabilities.

Neg Hard Neg

Model p@1 Ò rank Ó p@1 Ò rank Ó
CLIP B/32 100.0 1.00 8.0 9.20
CLIP L/14 100.0 1.00 11.0 10.00
ALBEF 93.0 1.85 6.0 16.10
ALBEF (MSCOCO) 94.0 1.80 6.0 16.00
ALBEF (Flickr30k) 96.0 1.50 7.0 15.05
CLIP Adapter B/32 98.0 1.02 11.0 10.02
CLIP Adapter L/14 100.0 1.00 11.0 10.00
FT CLIP B/32 100.0 1.00 9.0 10.90
FT CLIP L/14 100.0 1.00 10.0 9.50

Ours+Adap B/32 100.0 1.00 25.0 5.00
Ours+Adap L/14 100.0 1.00 22.0 6.05
Ours+FT B/32 100.0 1.00 31.0 4.06
Ours+FT L/14 100.0 1.00 28.0 4.70

Table 4: Performance of PRISM and baseline mod-
els on the ColorLens image-to-text retrieval test split.
The column Neg quantifies the performance of standard
image-text matching, while the last two columns are
dedicated to color-based retrieval - assessing the mod-
els’ proficiency in accurately identifying and matching
specific color shades with their corresponding text de-
scriptions.

mance, as evident from the substantial difference
in results with and without these elements in our
model.

5 Conclusion

We have presented PRISM, a novel and effective
framework designed to address the critical chal-
lenge of precise color understanding. Leveraging a
carefully curated training dataset comprising 100
image-text pairs, PRISM enables the seamless im-
plantation of any desired RGB color value while
preserving the core performance of CLIP on es-
tablished benchmarks. Through the incorporation
of explicit hard negatives, disentangled color em-
beddings, and rare-token lookup mechanisms, we
have ensured the robustness and generalization of
our approach. Furthermore, we introduced the Col-
orLens benchmark, encompassing both seen and
unseen test sets, which provides a comprehensive
evaluation of a model’s ability to understand pre-

Neg Hard Neg

Model p@1 Ò rank Ó p@1 Ò rank Ó
Ours+FT B/32 100.0 1.00 31.0 4.06
w/o Prior Loss 90.0 1.85 38.0 3.80
w/o HN Loss 100.0 1.00 5.0 18.50

Table 5: Ablation Study of the PRISM Model
(Ours+FT B/32 Variant) on the ColorLens image-to-
text retrieval test split, demonstrating the importance
of both Prior Preservation Loss and Hard Negative Loss
components on the model’s ability to discern and match
specific color shades.

cise colors. Our empirical results demonstrate sig-
nificant quantitative and qualitative improvements
over baseline models in color-based retrieval tasks.
We believe that PRISM has the potential to fos-
ter enhanced color-aware applications in various
practical domains, from advertising to image gen-
eration.

References
Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed

El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020. Uniter: Universal image-text
representation learning. In European conference on
computer vision, pages 104–120. Springer.

Yuxuan Ding, Lingqiao Liu, Chunna Tian, Jingyuan
Yang, and Haoxuan Ding. 2022. Don’t stop learn-
ing: Towards continual learning for the clip model.
arXiv preprint arXiv:2207.09248.

Sivan Doveh, Assaf Arbelle, Sivan Harary, Eli
Schwartz, Roei Herzig, Raja Giryes, Rogerio Feris,
Rameswar Panda, Shimon Ullman, and Leonid Kar-
linsky. 2023. Teaching structured vision & language
concepts to vision & language models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2657–2668.

Saurabh Garg, Mehrdad Farajtabar, Hadi Pouransari,
Raviteja Vemulapalli, Sachin Mehta, Oncel Tuzel,
Vaishaal Shankar, and Fartash Faghri. 2023. Tic-
clip: Continual training of clip models. arXiv
preprint arXiv:2310.16226.

1665



Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui.
2021. Open-vocabulary object detection via vision
and language knowledge distillation. arXiv preprint
arXiv:2104.13921.

Xuehai He, Diji Yang, Weixi Feng, Tsu-Jui Fu, Ar-
jun Akula, Varun Jampani, Pradyumna Narayana,
Sugato Basu, William Yang Wang, and Xin Eric
Wang. 2022. Cpl: Counterfactual prompt learn-
ing for vision and language models. arXiv preprint
arXiv:2210.10362.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. 2021. Scaling up visual
and vision-language representation learning with
noisy text supervision. In International conference
on machine learning, pages 4904–4916. PMLR.

Aishwarya Kamath, Mannat Singh, Yann LeCun,
Gabriel Synnaeve, Ishan Misra, and Nicolas Carion.
2021. Mdetr-modulated detection for end-to-end
multi-modal understanding. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 1780–1790.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen
Lo, et al. 2023. Segment anything. arXiv preprint
arXiv:2304.02643.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare,
Shafiq Joty, Caiming Xiong, and Steven Chu Hong
Hoi. 2021. Align before fuse: Vision and language
representation learning with momentum distillation.
Advances in neural information processing systems,
34:9694–9705.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xi-
aowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu,
Li Dong, Furu Wei, et al. 2020. Oscar: Object-
semantics aligned pre-training for vision-language
tasks. In Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXX 16, pages 121–137.
Springer.

Nan Liu, Shuang Li, Yilun Du, Josh Tenenbaum, and
Antonio Torralba. 2021. Learning to compose visual
relations. Advances in Neural Information Process-
ing Systems, 34:23166–23178.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan
Lee. 2019. Vilbert: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language
tasks. Advances in neural information processing
systems, 32.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Roni Paiss, Ariel Ephrat, Omer Tov, Shiran Zada, In-
bar Mosseri, Michal Irani, and Tali Dekel. 2023.
Teaching clip to count to ten. arXiv preprint
arXiv:2302.12066.

Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna,
and Robin Rombach. 2023. Sdxl: improving latent
diffusion models for high-resolution image synthe-
sis. arXiv preprint arXiv:2307.01952.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
conference on machine learning, pages 8748–8763.
PMLR.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
10684–10695.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael
Pritch, Michael Rubinstein, and Kfir Aberman. 2023.
Dreambooth: Fine tuning text-to-image diffusion
models for subject-driven generation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 22500–22510.

Christoph Schuhmann, Richard Vencu, Romain Beau-
mont, Robert Kaczmarczyk, Clayton Mullis, Aarush
Katta, Theo Coombes, Jenia Jitsev, and Aran Komat-
suzaki. 2021. Laion-400m: Open dataset of clip-
filtered 400 million image-text pairs. arXiv preprint
arXiv:2111.02114.

Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet
Singh, Adina Williams, Douwe Kiela, and Can-
dace Ross. 2022. Winoground: Probing vision and
language models for visio-linguistic compositional-
ity. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
5238–5248.

Jianyi Wang, Kelvin CK Chan, and Chen Change Loy.
2023. Exploring clip for assessing the look and feel
of images. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pages 2555–
2563.

Yutaro Yamada, Yingtian Tang, and Ilker Yildirim.
2022. When are lemons purple? the concept associ-
ation bias of clip. arXiv preprint arXiv:2212.12043.

Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao,
Kunchang Li, Jifeng Dai, Yu Qiao, and Hongsheng
Li. 2021. Tip-adapter: Training-free clip-adapter
for better vision-language modeling. arXiv preprint
arXiv:2111.03930.

Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li,
Xupeng Miao, Bin Cui, Yu Qiao, Peng Gao, and
Hongsheng Li. 2022. Pointclip: Point cloud under-
standing by clip. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 8552–8562.

1666

https://arxiv.org/abs/2303.08774


Tiancheng Zhao, Tianqi Zhang, Mingwei Zhu,
Haozhan Shen, Kyusong Lee, Xiaopeng Lu, and
Jianwei Yin. 2022. Vl-checklist: Evaluat-
ing pre-trained vision-language models with ob-
jects, attributes and relations. arXiv preprint
arXiv:2207.00221.

Chong Zhou, Chen Change Loy, and Bo Dai. 2022a.
Extract free dense labels from clip. In European
Conference on Computer Vision, pages 696–712.
Springer.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and
Ziwei Liu. 2022b. Conditional prompt learning
for vision-language models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 16816–16825.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and
Ziwei Liu. 2022c. Learning to prompt for vision-
language models. International Journal of Com-
puter Vision, 130(9):2337–2348.

In this supplementary material, we provide ad-
ditional details on our data collection, experiments
and evaluation to supplement main paper.

A More Results

Figure 5 shows few qualitative results for text-
to-image retrieval comparing CLIP and PRISM.
PRISM accurately matches the specific shades in
prompts such as ‘A green bicycle and a golden
retriever puppy with a slate blue ball’, demonstrat-
ing its fine-tuned color differentiation, which CLIP
struggles with.

We showcase qualitative results for image-to-
text retrieval in Figure 6. While both CLIP and
PRISM show proficiency in identifying standard
HTML colors like red and violet, CLIP noticeably
struggles with more nuanced shades such as Indian
red and lawn green. This distinction underscores
PRISM’s superior ability in color discernment.

B Text-to-Image Retrieval

For our experiments, we generated hard negative
images systematically by manipulating RGB chan-
nels. Specifically, we reduce individual color chan-
nels (R, G, or B) by a specified delta value, creating
hard negatives that closely resemble the original im-
ages while differing only in color. Hard-negatives
are crafted to vary in their deviation from the true
color values, with smaller delta values (δ ă ε1) and
larger ones (ε1 ă δ ă ε2) to escalate the retrieval
difficulty. In all our experiments, we used ε1 “ 30
and ε2 “ 70, where each of the RGB color values
range between 0 to 255.

C Image-to-Text Retrieval

In the image-to-text retrieval setting, we focus
on evaluating the generalization capabilities of
our proposed PRISM method with real images
and fine-tuning with multiple colors simultane-
ously. From the LAION-400M dataset, we specif-
ically mine from 5-10 images corresponding to
20 HTML color shades. Specifically, we consid-
ered the following 20 HTML colors in our eval-
uation: red, tomato, coral, indian red,
light coral, green, lawn green, forest
green, lime, lime green, cyan, light
cyan, dark turquoise, turquoise, pale
turquoise, plum, violet, orchid, fuchsia,
and pink. There are only a few standard col-
ors in this selected list such as red, green, vio-
let and cyan. When certain color shades are not
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A green bicycle and a golden retriever puppy 
with a slate blue ball, in the afternoon sun.

A red porcelain cat figurine and a toy plum 
colored horse

A tall green bird and a sienna colored car A papayawhip umbrella casting a shadow 
over a red apple resting on a white sandy beach

CLIP PRISM CLIP PRISM 

CLIP PRISM CLIP PRISM 

Figure 5: Comparative visualizations of text-to-image retrieval results using CLIP and PRISM for color-
specific prompts. The examples illustrate PRISM’s enhanced ability to accurately match detailed color descriptions,
such as ‘slate blue ball’ and ‘papayawhip umbrella’, demonstrating its advanced color understanding compared to
CLIP.

<X> and Black Flying Yin Yang Dragons 
Custom Announcement

A telescope pointing at a <X> balloon 
floating in the moonlit sky

A golden pear on a <X> table

A red chair next to a <X> flower pot A parked red colored <X> on a cobbled 
street

<X> stripes earrings

GT:       
<X> = Red
CLIP:    
<X> = Red
PRISM: 
<X> = Red

GT:       
<X> = Indian Red
CLIP:    
<X> = Red
PRISM: 
<X> = Indian Red

GT:       
<X> = Fuchsia
CLIP:    
<X> = Pink
PRISM: 
<X> = Fuchsia

GT:       
<X> = Pale Turquoise
CLIP:    
<X> = Cyan
PRISM: 
<X> = Pale Turquoise

GT:       
<X> = Lawn Green
CLIP:    
<X> = Green
PRISM: 
<X> =  Lawn Green

GT:       
<X> = Violet
CLIP:    
<X> = Violet
PRISM: 
<X> = Violet

Figure 6: Comparative visualizations of image-to-text retrieval results using CLIP and PRISM for color-
specific prompts. ‘ăXą’ represents specific color references. The corresponding ground-truth color used is de-
noted as ‘GT’.
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20 Neg ALL Neg δ ă ε1 (27) δ ă ε2 (27) δ ă ε1 (64) δ ă ε2 (64)

Model p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó
CLIP B/32 98.0 1.02 98.0 1.06 8.0 10.80 14.0 10.28 2.0 24.90 12.0 21.96
CLIP Adapter B/32 100.0 1.00 98.0 1.04 10.0 10.28 22.0 8.14 4.0 21.84 16.0 16.88
FT CLIP B/32 100.0 1.00 96.0 1.06 12.0 10.50 16.0 8.76 6.0 22.82 10.0 18.68

Ours+FT B/32 (1 color) 100.0 1.00 98.0 1.04 24.0 4.24 40.0 3.46 20.0 7.30 36.0 5.04
Ours+FT B/32 (5 colors) 100.0 1.00 98.0 1.04 23.0 4.80 40.0 3.46 21.0 7.00 36.0 5.04

Table 6: Comparison of PRISM performance in ColorLens seen test when fine-tuned with 1 versus 5 colors in
Text-to-Image Retrieval setting.

20 Neg ALL Neg δ ă ε1 (27) δ ă ε2 (27) δ ă ε1 (64) δ ă ε2 (64)

Model p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó p@1 Ò rank Ó
CLIP B/32 100.0 1.00 100.0 1.00 10.0 7.32 20.0 7.74 8.0 16.80 16.0 15.32
CLIP Adapter B/32 98.0 1.02 98.0 1.02 12.0 6.58 32.0 5.36 8.0 14.12 22.0 11.46
FT CLIP B/32 100.0 1.00 100.0 1.00 10.0 8.86 18.0 8.12 6.0 20.28 12.0 18.06

Ours+FT B/32 (1 color) 100.0 1.00 100.0 1.00 34.0 3.06 50.0 2.64 30.0 5.54 40.0 4.58
Ours+FT B/32 (5 color) 100.0 1.00 100.0 1.00 34.0 3.06 49.0 2.85 30.0 5.58 40.0 4.50

Table 7: Comparison of PRISM performance in ColorLens unseen test when fine-tuned with 1 versus 5 colors in
Text-to-Image Retrieval setting.

present in LAION-400M captions, we generate ad-
ditional images using the pipeline detailed in Sec-
tion 3.1 of main paper. For example, we couldn’t
obtain any caption containing the color “indian red"
from LAION-400M (https://huggingface.co/
datasets/laion/laion400m). In fine-tuning our
model, we leverage our proposed 100 train samples
in section 3.1. In other words, for each of the 20
colors we generate 100 train samples along with
their corresponding hard negatives.

D Random Samples from Train Split

In Table 9, we show random selection (text prompt
generated from gpt-4 and the corresponding im-
age generated by sdxl) of the samples from our
proposed train split of 100 samples.

E Results on Common Benchmarks

In Table 8, we show the zero-shot performance of
CLIP and PRISM on CIFAR 10, CIFAR 100 and
Caltech101 datasets. The results clearly indicate
that our model with image and text prior preserva-
tion losses doesn’t show any significant drop in the
accuracy on these common benchmarks.

E.1 More Evaluations for Text-to-Image
Retrieval

In this section, we compare the performance of
PRISM fine-tuned with single color versus multiple

Model CIFAR10 CIFAR100 Caltech101

CLIP B/32 58.7 29.8 71.0

PRISM
(Ours+FT B/32) 58.6 29.8 70.8

Table 8: Zero-shot accuracy comparison of PRISM and
CLIP on common benchmarks.

colors. As shown in Table 6 and Table 7, we do
not see any significant difference between model
performance when fine-tuned with 1 and 5 colors.
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Prompt
A yellow book next to a red vase

Prompt
Amidst a field of golden wheat a solitary crimson barn stands, its
rustic appearance hinting at stories of the past

Prompt
A blue kite soaring high amidst fluffy white clouds, its tail trailing
gracefully.

Prompt
A cherry tree in an orchard petals drifting gently to the ground
with a red chair next to it

Prompt
A red wine barrel in a cool cellar, surrounded by aged bottles on
wooden racks

Prompt
A sleek green violin resting on a satin cushion, with soft lighting

Table 9: Random examples from our proposed train split
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