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Abstract

Recent advancements in large language mod-
els (LLMs) are propelling us toward artificial
general intelligence with their remarkable emer-
gent abilities and reasoning capabilities. How-
ever, the substantial computational and mem-
ory requirements limit the widespread adoption.
Quantization, a key compression technique, can
effectively mitigate these demands by com-
pressing and accelerating LLMs, albeit with
potential risks to accuracy. Numerous studies
have aimed to minimize the accuracy loss asso-
ciated with quantization. However, their quan-
tization configurations vary from each other
and cannot be fairly compared. In this paper,
we present LLMC, a plug-and-play compres-
sion toolkit, to fairly and systematically ex-
plore the impact of quantization. LLMC inte-
grates dozens of algorithms, models, and hard-
ware, offering high extensibility from integer
to floating-point quantization, from LLM to
vision-language (VLM) model, from fixed-bit
to mixed precision, and from quantization to
sparsification. Powered by this versatile toolkit,
our benchmark covers three key aspects: cali-
bration data, algorithms (three strategies), and
data formats, providing novel insights and de-
tailed analyses for further research and practi-
cal guidance for users. Our toolkit is available
at https://github.com/ModelTC/llmc.

1 Introduction

Recently, LLMs such as GPT-4 (OpenAI et al.,
2024) have demonstrated unprecedented generative
capabilities in the field of natural language process-
ing (NLP) and also achieved widespread applica-
tions. However, their substantial computational and
storage costs have impeded their further populariza-
tion among users. For instance, BLOOM (Touvron
et al., 2023), a multilingual LLM with 176 billion
parameters, requires a minimum of 350 GB space

*Equal contribution.
†Corresponding authors.

to store model weights in full-precision (FP16) for-
mat. Even worse, it requires 5×80GB A100 or
9×40GB A800 NVIDIA GPUs to perform infer-
ence. Therefore, reducing LLMs’ serving cost is
paramount to further enhance their application.

For the aforementioned challenge, model quan-
tization (Nagel et al., 2021) can be an effective
solution. It maps weights and/or activations to a
lower-bit data format to reduce memory footprint
and accelerate model inference. Existing quantiza-
tion approaches can be categorized into two types:
quantization-aware-training (QAT) (Bhalgat et al.,
2020; Gong et al., 2019; Esser et al., 2020) and post-
training quantization (PTQ) (Wei et al., 2023a; Li
et al., 2021). Although with prominent high perfor-
mance, the necessity for QAT to undergo finetun-
ing or retraining with substantial training data and
training costs renders it unattainable for the ma-
jority of users. Correspondingly, PTQ compresses
models without retraining, making it a preferred
method for LLMs due to its minimal resource re-
quirements. Therefore, we do not mention some
QAT methods (Du et al., 2024; Liu et al., 2024,
2023b; Egiazarian et al., 2024) in this paper.

However, current PTQ methods always evalu-
ate across distinct datasets in different quantiza-
tion configurations and with simulated quantiza-
tion. For example, AWQ (Lin et al., 2023) employs
Pile (val) (Gao et al., 2020a) as calibration data, in-
stead of C4 (Raffel et al., 2019) in GPTQ (Frantar
et al., 2022). This situation would cause an inaccu-
rate assessment of configurations for efficient and
accurate LLM quantization.

To provide a comprehensive options menu for
users and directions with insights for further re-
search, we make a fair benchmark, which considers
three key dimensions, e.g., calibration data, algo-
rithms, and data formats. First, we systematically
explore the effect of calibration data for higher
model performance. Then, we aim to investigate
the effectiveness and underlying mechanisms of
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Figure 1: Overview of our LLM compression toolkit LLMC, which incorporates diverse algorithms, ultra-low cost
quantization, multiple backends support, and high extensibility. More features are under development.

three primary algorithm strategies: transformation,
clipping, and reconstruction. Finally, we probe how
to select types between the integer and float-point
quantization for further accuracy improvements.
All the aforementioned studies benefit from our
LLMC, a user-friendly, plug-and-play LLM com-
pression toolkit. This toolkit incorporates several
distinct traits, as demonstrated in Figure 1, offering
users the freedom to select options that best suit
their needs.

In a word, our main contributions can be de-
scribed as follows:

• We release a versatile LLM compression toolkit
LLMC supporting dozens of algorithms, models,
and multiple inference backends with powerful
expandability and all-around evaluation. It also
enables users to perform compression for 100-
billion-parameter LLMs with just a single GPU,
which substantially facilitates the application of
LLM quantization.

• We modularly and fairly benchmark LLM quan-
tization considering calibration data, algorithms,
and data formats. With detailed observation and
analysis, we provide various types of novel points
for performance and method improvements un-
der different configurations.

• Equipped with our powerful toolkit and compre-
hensive insights, future LLM researchers can ef-
ficiently integrate suitable algorithms and low-bit
formats for their applications, thereby democra-
tizing the compression of large language models.

2 LLMC: A Versatile LLM Compression
Toolkit

First and foremost, we have developed a compre-
hensive toolkit named LLMC for LLM compres-

sion, characterized by the following key features,
which are also exhibited in Figure 1.
Diverse algorithms support. LLMC supports a
wide range of quantization algorithms, including
16 different methods covering weight-only, weight-
activation, and mixed-precision quantization. This
variety allows for fair comparisons and in-depth
analyses of different approaches.
Quantization with an ultra-low cost. Our toolkit
is designed to be resource-efficient, and capable
of running large models with minimal hardware
requirements. Benefiting from our pipeline with of-
floading technique, only one 40G A100 is required
to calibrate and evaluate OPT-175B (Zhang et al.,
2022), whose weights occupies ≈ 350GB.
Multi-backend compatibility. Built on LLMC,
various quantization settings and model for-
mats are compatible with multiple backends and
hardware platforms, such as LightLLM (Mod-
elTC, 2023), TRT-LLM (Nvidia, 2023), PPL-
LLM (OpenPPL, 2023), vLLM (Kwon et al., 2023),
MLC-LLM (team, 2023), and llama.cpp (llama.cpp
team, 2023), making it highly versatile.
High extensibility. The toolkit is highly modular
and extensible, allowing easy adaptation 1 from
integer quantization to floating-point quantization,
from LLMs to VLMs (Zhang et al., 2024), from
quantization to sparsification, and from dense mod-
els to Mixture-of-Expert (MoE) models (Shazeer
et al., 2017). This modularity ensures users can ex-
tend and customize the toolkit to meet their needs.
Comprehensive evaluation. LLMC enables com-
prehensive evaluation of quantized models, pro-
viding detailed performance metrics and analysis,
e.g., PPL (Alon and Kamfonas, 2023), and data

1All adaptations mentioned here have been implemented
and results are shown in the appendix.
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visualization analysis, e.g., Kurtosis value, quan-
tization error, and outlier distribution. This thor-
ough evaluation capability ensures that users can
make informed decisions about the best quantiza-
tion strategies for their models.

3 Benchmarking LLM Quantization

Powered by LLMC toolkit, we explore the quantiza-
tion of LLMs from three distinct perspectives: the
calibration data in subsection 3.2, the algorithms
in subsection 3.3, and the data format of quanti-
zation in subsection 3.4. More explorations, e.g.,
extendability of LLMC, KV cache quantization,
and inference speed can be found in the appendix.

3.1 Experimental Settings

We first introduce experimental settings as follows.
More implemental details with quantization prelim-
inary can be found in the appendix.
Models. To demonstrate the generability of our
benchmark, we access performance on LLaMA-
2 (Touvron et al., 2023) and LLaMA-3 (AI@Meta,
2024) family, spanning model sizes from 7B to 70B
for general language tasks. To broaden the scope
of our evaluation, we show more results in the ap-
pendix, including ChatGLM (Zeng et al., 2023)
for long context abilities, LLaVA-1.5 (Liu et al.,
2023a) for the multimodal task, Mixtral (Jiang
et al., 2024) as a representative of MoE models.
Datasets. We categorize the evaluation datasets
into upstream and downstream datasets. For the
upstream datasets, we employ WikiText2 (Foun-
dation) and C4 (Raffel et al., 2019) dataset
with the perplexity metric for evaluation, since
perplexity can stably reflect the LLM’s perfo-
mance (Dettmers and Zettlemoyer, 2023). For the
downstream tasks, we select examination tasks in-
cluding MMLU (Hendrycks et al., 2021), ARC-
e (Clark et al., 2018), BoolQ (Clark et al., 2019),
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al.,
2020), GPQA (Rein et al., 2023), MBPP (Austin
et al., 2021), Human-Eval (Chen et al., 2021a),
the long context evaluation LongBench (Bai et al.,
2023), and multimodal evaluation MME (Fu et al.,
2023). For the calibration data, to ensure a fair
comparison, the vast majority of experiments use
the same subset of the Pile (Gao et al., 2020b) vali-
dation set. We use the same calibration data num-
ber of 128 and the same sequence length of 512.
We also find that different preprocessing methods
of the calibration data can affect the quantization

accuracy significantly. So, we use the same prepro-
cessing method as in our open-source code.

3.2 Impact of Calibration Data
With fair experimental settings, we first explore
how calibration data impacts quantization accuracy.
Prior studies (Li et al., 2023; Liu et al., 2023b)
highlight significant effects of different calibration
datasets on quantized model performance. Yet, a
systematic analysis of crucial factors is lacking.
To address this, we identify and propose two key
aspects to guide future calibration data selection.
Token distribution consistency. Previous re-
search (Cai et al., 2020; Zhang et al., 2021) fo-
cuses on synthesizing better distribution-matched
calibration images to achieve higher performance
for vision models. Derived from that view, we
are the first to investigate the impact of the token
distribution relationship between calibration and
test data on model performance. As shown in Ta-
ble 1 and Figure 2, we find that the performance
of a model calibrated with data that more closely
matches the token distribution of the test set tends
to be superior. For instance, WikiText2 calibration
data with 1.97 lower DKL achieves a ≈ 0.2 PPL
decrease than Pile (val) on the WikiText2 test data
with GPTQ quantization. This finding indicates
the importance of selecting calibration data with an
aligned distribution for the data in practice.

𝒟!" = 1.60 𝒟!" = 2.51

𝒟!" = 0.54

Figure 2: Token distribution for calibration/test datasets.
The y-axis shows frequency, the x-axis shows token ID,
and “DKL” calculates the KL divergence between the
calibration data and the specific test data: WikiText2.

Calib. Data GPTQ AWQ OmniQuant

C4 6.323 6.173 5.717
Pile (val) 6.330 6.195 5.753

WikiText2 6.133+0.568 6.144+0.156 5.697+0.516

Table 1: Impact of calibration data on performance
across algorithms. We evaluate the PPL↓ of WikiText2
test data, employing w3a16g128 GPTQ (Frantar et al.,
2022) and AWQ (Lin et al., 2023), and w6a6 Qmni-
Quant (Shao et al., 2023) quantized LLaMA-2-7B. Data
indices show differences in results from randomly shuf-
fling token order within each data entry.
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Weight Activation

Figure 3: Kurtosis value of weights (Left) and input activations (Right) with various layer types for different methods
under w6a6 quantization. The legends denote the quantization method and its corresponding PPL on WikiText2. We
do not employ transformation for down_proj for a fair comparison, as only default AWQ and QuaRot include this
position. The colorful values represent changes of K after using transformation for down_proj for all scaling-based
methods, and online transformation for QuaRot. To be noted, we only mark numbers > 0.2 for all the cases.

Intra-sentence logic. Unlike vision models that
utilize image calibration data, LLMs’ calibra-
tion data consist of sequentially ordered token se-
quences that embody logical meaning. Therefore,
we also conduct experiments to explore the impact
of that logic on LLM quantization. Seeing from the
data indices in Table 1, breaking the logic within
the calibration data can cause a non-negligible ac-
curacy drop. Notably, in this scenario, the robust-
ness of learning/reconstruction-based algorithms
such as GPTQ, and OmniQuant are lower than non-
learning methods. Specifically, both exhibit ×3.3
PPL increasing compared with AWQ. Overall, peo-
ple should not seek or generate an illogical corpus
to calibrate LLMs.

3.3 Dive into the Quantization Algorithms

Besides calibration data, we could also methodi-
cally explore and benchmark LLM quantization
algorithms equipped with our LLMC. Three main
techniques for the field are outlier transformation,
weight clipping, and weight reconstruction. How-
ever, how and how much they help under different
scenarios remains unclear, as existing studies lack
fair comparisons. Therefore, we will respectively
discuss these methods in this section.

3.3.1 How Does Transformation Influence
Activation and Weight Outlier?

Most of the existing works aim to reduce the
outliers via different kinds of equivalent transfor-
mation 2, which can be categorized as scaling-
based transformation, e.g., AWQ (Lin et al., 2023),
SmoothQuant (Xiao et al., 2023), OS+ (Wei
et al., 2023b), and OmniQuant (Shao et al., 2023)
and rotation-based transformation, for instance,
QuaRot (Ashkboos et al., 2024).

Scaling-based transformation typically involves
2In this section, our experiments only employ transforma-

tion methods in each algorithm. We also apply transformation
of AWQ to weight activation quantization.

searching for or learning a scaling vector to con-
vert activation outliers into weights by optimiz-
ing the layer’s quantization error. Conversely, the
rotation-based transformation employs an Orthogo-
nal matrix without accounting for output error. To
thoroughly examine their effects, we analyze the
kurtosis value 3 of each layer after transformation,
providing insights into their inherent mechanisms.

From Figure 3 and Table 2, We observe three
distinct findings. 1) Scaling-based transforma-
tion methods achieve lower K for activations at
the cost of higher K for weights compared with
full precision, which would induce a non-negligible
performance degradation for lower-bit weight quan-
tization, even with higher-bit activations can not
eliminate the risk (w6a6 > w4a8 in Table 3). 2) K
for some specific positions like down_proj layers
is significantly higher than others. These positions
have a pronounced impact on accuracy. For exam-
ple, with down_proj transformed (evident lower K
in Figure 3), salient improvements are gained as ex-
hibited in Table 3. 3) Although the rotation-based
transformation reduces outliers by directly optimiz-
ing the tensor’s outliers, it may not realize obvious
accuracy improvement in some cases. From Ta-
ble 2, it is evident that the quantization error of
output tensors is not minimized, as optimization
did not focus on reducing output error, leading to a
higher PPL.

3.3.2 When Should We Utilize the Weight
Clipping?

The technique of weight clipping, restricting the
range of weight values before quantization, has
been recognized for its contribution to maintain-
ing better performance (Lin et al., 2023; Du et al.,
2024; Shao et al., 2023) for the quantization pro-
cess. Here, we analyze its application situations

3Kurtosis value is defined as K = 1
n

∑n
i=1(

Xi−µ
σ

)4,
where µ and σ represent mean and variance of a tensor X , to
reflect outlier conditions (Bondarenko et al., 2023).
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Method q_proj k_proj v_proj o_proj gate_proj up_proj down_proj PPL↓

Full Prec. 3.6505 4.3354 3.4174 3.4720 3.2991 3.2300 3.5845 6.14

AWQ
4.9219 6.1633 3.4602 3.4720 3.3190 3.2438 4.3083

8.57
0.9960 0.9960 0.9784 0.9387 0.9882 0.9628 0.9479

QuaRot
2.9051 2.9050 2.9069 2.9075 2.9074 2.9073 2.9075

40.81
0.9962 0.9967 0.9797 0.8286 0.9764 0.9579 0.9230

Table 2: Comparison on K and PPL on Wikitext2 of
w3a16g128 LLaMA-3-8B for scaling-based transforma-
tion methods AWQ and rotation-based transformation
method QuaRot. Due to the neglect of optimizing output
quantization error (cosine similarity in the gray cells),
QuoRot results in higher PPL even with fewer outlier
issues.

AWQ SmoothQuant OS+ OmniQuant QuaRot

w4a8 w6a6 w4a8 w6a6 w4a8 w6a6 w4a8 w6a6 w4a8 w6a6

8.60 7.00 8.85 7.04 8.55 7.01 8.83 7.02 9.77 6.95
7.77 6.79 7.92 6.85 7.76 6.81 7.92 6.83 9.43 6.74

Table 3: PPL on Wikitext2 for different transformation
methods with or without transforming down_proj lay-
ers for LLaMA-3-8B. The gray raw indicates the results
are obtained with down_proj layers transformed.

under two different scenarios.
Symmetric or asymmetric. Clipping and quanti-
zation can be divided into symmetric or asymmetric
categories. However, previous studies (Lin et al.,
2023; Liu et al., 2024) always neglect their rela-
tionships and employ wrong patterns. As shown in
Figure 4, we can observe that symmetric clipping
with symmetric quantization maintains more infor-
mation (i.e., solid gray box) than with asymmet-
ric quantization, and for asymmetric clipping vice
versa. This finding can help improve current meth-
ods with significant accuracy recovery, especially
for extremely lower bit-width. For instance, in
Table 4, default AWQ, applying asymmetric quan-
tization with symmetric clipping, results in a 6.8e4
PPL score and performance 4 declines of 48.11%
for 2-bit LLaMA-2-70B compared with 3-bit con-
figuration. Conversely, equipping with asymmetric
clipping, AWQ in LLMC achieves 42.47% accu-
racy upswings with admissible PPL.
Bit-width. Besides different combinations of quan-
tization and clipping, we also investigate the im-
pact of clipping with different bit-width. From
Table 5, weight clipping does not show superior-
ity across all bit-widths. 1) For higher bit (4-bit)
weight-only quantization, clipping has a side-effect,
unlike improvement for lower-bit (3-bit). We hy-
pothesize that in 4-bit quantization, weight clipping

4Without special claims, we calculate average accuracy on
five downstream tasks: MMLU, ARC-e, BoolQ, HellaSwag,
and PIQA, and average PPL on WikiText2 and C4 in the paper.
Detailed data is presented in the appendix subsection A.7.
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Figure 4: Comparison between asymmetric and sym-
metric weight clipping w.r.t. asymmetric/symmetric
quantization. After weight clipping, we obtain the final
range of tensor to quantize as depicted in the solid gray
box related to asymmetric/symmetric quantization.

#Bits Method
LLaMA-2-7B LLaMA-2-70B

Avg. PPL↓ Avg. Acc.↑ Avg. PPL↓ Avg. Acc.↑

w3a16g128
AWQ 7.25 61.18 4.90 80.95

AWQ w/ asym. clip 7.21 61.59 4.89 81.07

w2a16g64
AWQ 1.8e5 37.69 6.8e4 32.84

AWQ w/ asym. clip 13.26 48.77 6.49 75.31

Table 4: Impact of asymmetric/symmetric weight clip-
ping. We evaluate the average accuracy and the average
PPL here. “asym. clip” means we employ asymmetric
clipping.

causes more information loss than quantization
rounding. However, for 3-bit quantization, quanti-
zation rounding has a greater impact. 2) For weight
activation quantization, suitable clipping exhibits
positive effects whatever bit-width. We ascribe this
for clipping anomalous values effectively adjusting
the majority of weights (i.e., moderate and small
elements). Accounting for hard-quantized and con-
siderably influential activations, this approach sig-
nificantly reduces the output errors resulting from
the multiplication of quantized large activations
with well-adjusted weights 5, which greatly reduce
the impact of these quantized activations.

3.3.3 Should We Combine Transformation
and Reconstruction?

Apart from transformation and clipping, the
reconstruction-based method like GPTQ (Frantar
et al., 2022) is also widely used to quantize weights.
This method iteratively updates the unquantized
weights to compensate for the impact of the cur-
rent quantized weights, thereby minimizing the
output quantization error. Some recent transfor-
mation methods (Ashkboos et al., 2024; Lin et al.,
2023) integrate this technique to demonstrate their
extendability.

Nevertheless, we find that a significant and obvi-
ous accuracy from this combination is not usually
the case. From Table 6 6, we conclude that: 1) the

5Activation outliers make huge performance deterioration
can be found in LLM.int8() (Dettmers et al., 2022).

6Clipping for AWQ here is canceled to expel distractions.
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Model
w3a16g128 w4a16g128 w6a6 w8a8

w/ clip w/o clip w/ clip w/o clip w/ clip w/o clip w/ clip w/o clip

LLaMA-3-8B
11.74 11.23 11.99 17.42 10.35 9.46 10.73 10.35
30.60 24.80 40.60 42.20 40.60 39.40 43.80 43.80

LLaMA-3-70B
8.08 7.57 9.09 11.62 26.38 25.75 16.79 16.66

54.00 54.20 59.20 60.00 58.20 58.20 60.20 57.60

Table 5: Impact of weight clipping under various bit-
width. We employ AWQ for weight-only and OS+ for
weight activation quantization with or without clipping
as methods here. Accuracy on GPQA is highlighted in
gray rows, and the rest for MBPP.

Metric GPTQ AWQ AWQ w/ GPTQ QuaRot QuaRot w/ GPTQ

Avg. PPL↓ 10.67 10.98 10.55 50.00 10.35
Avg. Acc.↑ 71.96 70.72 72.72 45.90 74.84

Table 6: Impact of reconstruction (GPTQ) combined
with scaling (AWQ) and rotation-based (QuaRot) trans-
formations for w3a16g128 LLaMA-3-8B.

Figure 5: Visualization of relative quantization errors for
the weight of q_proj in the first block for w3a16g128
LLaMA-3-8B. Ŵ represents the quantized counterpart
of the weight W .

scaling-based transformation like AWQ w/ GPTQ
shows moderate improvement for LLaMA-3-8B.
2) However, The rotation-based method QuaRot
w/ GPTQ far surpasses QuaRot alone, even with
28.94% accuracy boost for 3-bit LLaMA-3-8B.
The inherent reason might lie in two aspects: 1)
Scaling-based transformation methods may am-
plify weight outliers 7. This gives rise to a larger
challenge for iterative compensation during the re-
construction, especially weights in rear columns
which GPTQ can not properly deal with 8. How-
ever, QuaRot, which effectively eliminates weight
outliers, pairs well with GPTQ. From Figure 5, the
steeper quantization error of later weight columns
for AWQ w/ GPTQ compared with QuaRot w/
GPTQ validates our analysis. 2) Rotation-based
transformation only aims to decrease tensor outliers
without considering output errors, so the kurtosis
value is significantly reduced. However, for weight-
only quantization, outliers in the activation might
amplify the error in quantized weights 9, leading to
obvious output discrepancy. GPTQ exactly consid-
ers the output error through approximated Hessian
matrix, and thus can always complement rotation-
based transformation. As in Table 7, QuaRot w/

7K analysis in subsubsection 3.3.1 verifies this.
8This can be found in QUIK (Ashkboos et al., 2023)
9The importance of salient activation is described in AWQ.

Method q_proj k_proj v_proj o_proj gate_proj up_proj down_proj

QuaRot 0.9962 0.9967 0.9797 0.8286 0.9764 0.9579 0.9230

QuaRot w/ GPTQ 0.9971 0.9975 0.9847 0.9476 0.9895 0.9791 0.9529

Table 7: Fine-grained analysis comparing QuaRot and
QuaRot w/ GPTQ in w3a16g128 LLaMA-3-8B. We
report the output cosine similarity between the original
layer and the quantized layer.

Full
Prec.

w3a16g128 w4a16g128 w4a16 w4a4 w6a6

Naive AWQ Naive AWQ Naive AWQ Naive SmoothQuant Naive SmoothQuant

5.47
6.66 6.19 5.78 5.59 6.11 5.81 NaN NaN 6.86 6.77

6.89 6.38 5.70 5.63 5.89 5.75 90.85 16.35 5.56 5.56

Table 8: PPL for LLaMA-2-7B weight-only quantiza-
tion and weight-activation INT (gray rows)/FP (whight
rows) quantization on WikiText2. Naive means simple
round-to-nearest quantization.

GPTQ performing a much higher cosine similarity
between the output of the corresponding layer and
its quantized counterpart helps confirm our analy-
sis.

3.4 Integer or Floating-point Quantization?

The above-mentioned algorithms are based on inte-
ger (INT) quantization. Although traditional INT
quantization has received widespread adoption in
the industry, floating-point (FP) quantization has
emerged as a rising alternative. This is attributed to
its superior accuracy and high flexibility, offering
advantages for handling long-tailed distributions.

Table 8 reports the detailed FP quantization re-
sults for LLMs. For the weight-activation quanti-
zation, FP quantization consistently surpasses INT
quantization by a large margin as it can better over-
come the outlier issue. It is worth noting that under
w4a4, the INT quantization suffers from non-trivial
performance degradation while FP quantization im-
proves to a usable level. Conversely, when apply-
ing weight-only quantization, the FP quantization
achieves worse performance under ultra-low-bit (≤
3-bit) or small group size. These findings indicate
that: 1) the positive zero and negative zero in FP
format constrain the representation capability of
this quantization type, particularly under low-bit.
2) the range of small group size is more uniform,
which is unsuitable for FP quantization. 3) the sym-
metric FP quantization struggles to deal with the
asymmetry in LLMs.

4 Additional Results and Discussions

Impact of quantization for fine-tuning. We con-
duct experiments for quantization on LLaMA-3-
8B with supervised fine-tuning (SFT) on Evol-
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instruction-66k 10 to analyze the impact. We
choose ms-swift (Zhao et al., 2024) as the finetun-
ing framework. Additionally, we set the learning
rate to 2e-6 with a mini-batch size of 2 and trained
the model for 1 epoch on 16 40G A800 GPUs.
After fine-tuning, we employ w4a16 naive quanti-
zation and AWQ to quantize the model. We choose
HumanEval (Chen et al., 2021b) and HumanEval-
X (Zheng et al., 2023) for evaluation. As illustrated
in Table 9, quantization leads to more severe accu-
racy drops for the SFT model than the base model.
This might be caused by the limited fine-tuning data
and more in-depth analyses are needed in the fu-
ture. Moreover, an advanced algorithm, i.e., AWQ
brings obvious improvements compared to Naive
quantization for the SFT model.

Test Data Base/SFT Base/SFT+Naive Base/SFT+AWQ

HumanEval 23.78/49.39 19.51/42.07 21.34/46.34
HumanEval-X 32.81/41.58 26.47/36.10 26.83/39.27

Table 9: Accuracy of Base/SFT models after quanti-
zation. “Base” denotes LLaMA-3-8B. We report the
average accuracy of 5 languages in HumanEval-X.

Impact of calibration data for VLMs. Besides
LLMs, we further present the impact of calibration
data for LLaVA-7B (Liu et al., 2023a) here. The
results in Table 10 indicate that we should collect
text and vision data together for VLM quantization.

Method Perception Cognition

FP 1477.60 283.21
Calib. Data: Pile (val) 1437.94 274.64
Calib. Data: T&V 1470.93 286.78

Table 10: Impact of calibration data for VLMs. We
employ w4a16 AWQ. “T&V” denotes MS-COCO (Lin
et al., 2014) and TextVQA (Singh et al., 2019).

Accuracy alignment with the existing methods.
Except for the PPL alignment results in subsec-
tion A.3, we further conduct downstream experi-
ments for LLaMA-2-7B to prove our reproducibil-
ity (experimental details in the appendix). As il-
lustrated in Table 11 and Table 12, our LLMC is
reliable in reproducing the outcomes of existing
quantization methods.

w4a16g128 MMLU BoolQ ARC-e PIQA

AWQ 46.36 71.25 54.14 77.04
AWQ-LLMC 46.47 71.62 53.96 77.26
GPTQ 43.36 72.81 51.50 77.86
GPTQ-LLMC 43.40 72.91 51.50 77.75

Table 11: Alignment for weight-only quantization. “-
LLMC” represents the results are reproduced with our
toolkit LLMC.

10https://huggingface.co/datasets/codefuse-ai/
Evol-instruction-66k

w8a8 MMLU BoolQ ARC-e PIQA

SmoothQuant 46.17 69.76 49.03 77.26
SmoothQuant-LLMC 46.28 69.08 50.97 77.26
QuaRot w/ GPTQ 46.38 71.50 52.73 77.75
QuaRot-LLMC + w/ GPTQ-LLMC. 46.42 70.61 53.26 77.97

Table 12: Alignment for weight-activation quantization.

Role of model scales. Besides LLaMA-2
and LLaMA-3 families, we also conduct
experiments for quantizing different LLM
families, e.g., SmolLM-135M/350M/1.7B 11,
MiniCPM-1B/2B (Hu et al., 2024), and Qwen-2-
0.5B/1.5B (Yang et al., 2024) in subsection A.8.
We find that low-bit quantization causes more per-
formance degradation for homology models with a
larger size. This phenomenon is counter-intuitive
and needs to be further explored. Besides, higher
precision quantization, e.g., w8a8 or w4a16 leads
to subtle accuracy drops for LLMs across all sizes.
We will explore the role of scale for larger LLMs
in the future.
Pipeline of LLMC. Basically, our LLMC receives
an FP LLM and calculates its quantization param-
eters with advanced algorithms. Finally, this tool
can export the model with quantization parameters
to the quantization format compatible with a spe-
cific backend like vLLM (Kwon et al., 2023). The
detailed usage can be found in the official docu-
ment 12. Additionally, LLMC can provide quanti-
zation analyses and PPL evaluations for those quan-
tized LLMs. With this tool, people can produce
various compressed industrial models deployed on
different hardware 13.

5 Conclusion

This paper introduces LLMC, a user-friendly and
versatile toolkit for LLM compression. Supported
by the toolkit, a series of observations and analy-
ses were conducted, providing valuable and novel
insights and suggestions for the community.
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A Appendix

Technique Approach Strategy Eq. Trans. Algorithm

TRANSFORMATION

Rule-based
s = max(|X|γ)/max(|W |1−γ), γ = 0.5, 0.75, ... ✓ SmoothQuant(Xiao et al., 2023)

Q, where QQT = I and |Q| = 1 ✓ QuaRot (Ashkboos et al., 2024)

Search-based
s = max(|X|γ)/max(|W |1−γ), grid search for γ ∈ [0, 1] ✓ AWQ(Lin et al., 2023)

s = max(1.0,max(X)/t), grid search for t ✓ OS+(Wei et al., 2023b)

Learnining-based s = argmins L, s← s− η ∂L(s)
∂s ✓ OmniQuant(Shao et al., 2023)

CLIPPING

Rule-based α = 1, β = 1 ✓

SmoothQuant(Xiao et al., 2023),
OS+(Wei et al., 2023b),

GPTQ(Frantar et al., 2022),
QuaRot (Ashkboos et al., 2024)

Search-based grid search for α = β ∈ [0, 1] ✗ AWQ(Lin et al., 2023)

Learning-based α, β = argminα,β L, α← α− η ∂L(α)
∂α , β ← β − η ∂L(β)

∂β ✗ OmniQuant(Shao et al., 2023)

RECONSTRUCTION Hessian-based W ←W −EH−1,H−1 =
(
2XX⊤ + λI

)−1
✗ GPTQ(Frantar et al., 2022)

Table 13: Detailed comparison of the three main strategies in the main text. Eq. Trans. indicates whether the
algorithm is an equivalent transformation. γ is the scaling factor. s and Q represent transformation vector and
matrix. I is the identity matrix. L is the loss function with the learning rate η. α and β mean clipping minimum
and maximum value. H is Hessian matrix, and E denotes quantization errors calculated with H . λ is the decay
coefficient.
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A.1 Preliminary for Quantization
A complete uniform quantization process can be
formulated by:

w̄ = clip(
⌊w
s

⌉
+ z,Nmin, Nmax),

ŵ = s · (w̄ − z),
(1)

where s ∈ R+ and z ∈ Z are called scale and
zero-point, respectively. ⌊·⌉ rounds the continu-
ous numbers to the nearest integers. Eq. 1 first
quantizes the weights or activations into the target
integer range [Nmin, Nmax] and then de-quantizes
the integers to the original range.

Naive quantization can be split into four dimen-
sions: bit-width, symmetric/asymmetric, group
size, and dynamic/static.
Bit-width: Given t bits, [Nmin, Nmax] is deter-
mined by [−2t−1, 2t−1 − 1]. In this paper, the
notion “wxay” is employed to represent the bit-
widths of weights “w” and activations “a”;
Symmetric or asymmetric. For asymmetric quan-
tization, a zero-point value z will usually be intro-
duced to represent the floating-point zero. Other-
wise, the symmetric quantization does not have that
adjustable z to adapt various ranges;
Group size. Shen et al. (2020) first proposes
group-wise quantization, which divides each chan-
nel of a weight 14 into different groups and em-
ploys a different set of scale and zero-point for each
group Wi,j:j+g with group size g. However, per-
tensor (W:,:) quantization or per-channel (Wi,:)
quantization can be also seen as group-wise quanti-
zation with a larger group size;
Dynamic or static. Due to variance in activa-
tion range for LLM, Yao et al. (2022) first intro-
duces token-wise (Xi,:) quantization for activation,
which dynamically calculates the min/max range
for each token during model inference. We also
measure dynamic/static per-tensor activation quan-
tization to make a comprehensive comparison.

As outlined in Table 13, we also summarize the
three strategies, e.g., transformation, clipping, and
reconstruction in the main text and define their
behavior. Additionally, for the equivalence trans-
formation categories OS+ and OmniQuant, con-
sidering that we are using the LLaMA series mod-
els (which have layers without bias), we aim to
avoid introducing additional computations into the

14We denote weight W ∈ Rout×in. The first/second di-
mension of W represents output/input channels. Notably, we
ignore the batch size dimension for activation X ∈ Rn×d,
where n means token number, d means hidden size.

model’s inference process. Therefore, we have de-
cided not to explore the shift operation involved in
these two methods.

A.2 More Implementation Details

Unless otherwise specified, our implementation
adopts asymmetric quantization for both activa-
tions and weights. Specifically, we apply per-token
dynamic quantization for activations and static
quantization for weights. g128 and g64 represent
two commonly used settings in group weight quan-
tization, indicating group sizes of 128 and 64, re-
spectively. In line with previous works Shao et al.
(2023); Liu et al. (2024); Ashkboos et al. (2024),
For OmniQuant, the learning rate for weight clip-
ping and transformation is 5e−3 and 1e−2 during
the reconstruction phase. We follow the default set-
ting of 20 learning epochs. Besides, we employ the
evaluation tool OpenCompass (Contributors, 2023)
with LightLLM (ModelTC, 2023) as the backend
on Nvidia A100 80G GPU to benchmark down-
stream tasks. Additionally, we evaluate PPL with
2048 sequence length in our own LLMC.

A.3 PPL Alignment with the Existing
Methods

Method Calib. Data Sequence Length Number of Samples Seed

GPTQ C4 2048 128 0
AWQ Pile (val) 512 128 42

Omniquant Wikitext2 2048 128 2
Smoothquant Pile(val) 512 128 42

OS+ Pile (val) 512 128 42
Quarot Wikitext2 2048 128 0
Wanda pileval 512 512 42

Table 14: Calibration and hyperparameter settings in
our alignment experiments.

In this section, we conduct some alignment ex-
periments with several established quantization al-
gorithms (LLMC vs. original paper/codes). Our
experimental settings are the same as the origi-
nal paper or default settings of their open-source
codes (as shown in Table 14). These experimen-
tal results are summarized in Table 15, Table 16,
Table 17, and Table 18. The performance from
the tables illustrates that our LLMC tool achieves
performance almost identical to the original quan-
tization algorithms reported in the literature. By
employing these experiments, we demonstrate that
our tool is not only effective but also reliable in
reproducing the outcomes of existing quantization
methods. This ensures that our contributions are
both credible and valuable to the ongoing research
in LLM quantization.
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Method w4g128 w3g128 w2g64

GPTQ 5.62 6.32 14.97
GPTQ-LLMC 5.62 6.32 14.97
AWQ 5.60 6.24 2.16e5
AWQ-LLMC 5.60 6.24 2.16e5
OmniQuant 5.59 6.09 9.53
OmniQuant-LLMC 5.59 6.09 9.53

Table 15: Wikitext2 PPL alignment results of weight-
only asymmetric quantization of LLaMA-2-7B Model.
“-LLMC” means our implementation with the LLMC
toolkit.

Method w8a8 w6a6 w4a4

OmniQuant 5.49 5.70 12.21
OmniQuant-LLMC 5.49 5.70 12.23
Quarot w/ GPTQ. 5.48 5.50 6.22
Quarot-LLMC w/ GPTQ-LLMC. 5.48 5.50 6.24

Table 16: Wikitext2 PPL alignment results of weight-
activation asymmetric quantization of LLaMA-2-7B
Model.

Method LLaMA-2-7b LLaMA-2-70b LLaMA-3-8b LLaMA-3-70b

Wanda 6.91 4.22 9.56 OOM
Wanda-LLMC 6.91 4.19 9.58 5.75

Table 17: Wikitext2 PPL alignment results of 50%
unstructured sparsification method Wanda (Sun et al.,
2024) for LLaMA-2-7B, 70B, and LLaMA-3 family.

Method w8a8

SmoothQuant 5.589
SmoothQuant-LLMC 5.589
OS+ 5.511
OS+-LLMC 5.517

Table 18: Wikitext2 PPL alignment results of weight-
activation symmetric quantization of LLaMA-2-7B
Model.

Model KV Cache Prec.
Pass@1 (%) ↑

Human-Eval MBPP Avg.

LLaMA-2-7B

Full Prec. 12.80 22.00 17.40

int8 13.41 20.00 16.71

int4 13.41 21.00 17.21

int2 0.00 0.00 0.00

w4a8kv4 12.20 18.40 15.30

LLaMA-2-13B

Full Prec. 18.29 24.00 21.15

int8 17.68 23.00 20.34

int4 17.68 23.00 20.34

int2 0.00 0.00 0.00

w4a8kv4 15.85 23.40 19.63

LLaMA-2-70B

Full Prec. 29.27 42.00 35.64

int8 29.88 38.00 33.94

int4 30.49 39.00 34.75

int2 0.00 0.00 0.00

w4a8kv4 29.27 38.20 33.74

Table 19: Naive KV cache quantization results on
Human-Eval and MBPP for LLAMA-2 series models.
We employ group-wise quantization (i.e., g8) here.

A.4 KV Cache Quantization

This part shows the accuracy of KV cache quanti-
zation for code generation tasks. From Table 19,
we can find that the naive int8 and int4 KV cache
quantization brings almost no accuracy degradation
for both the Human-Eval and MBPP datasets. This
conclusion proves that the naive 4-bit KV cache can
be adopted without harm to performance. However,
the naive 2-bit KV cache will bring a crash for the
generation, and thus should not be adopted. Similar
results can be found in Table 23 for long-context
evaluation.

A.5 Extensibility of LLMC

To further demonstrate the extensibility of the
toolkit, we conduct extensive experiments, includ-
ing MoE quantization (shown in Table 20), VLM
quantization (shown in Table 21), and sparsification
(shown in Table 24).
MOE quantization. We utilize our toolkit to eval-
uate the performance of quantized Mixtral-8x7B,
as shown in Table 20.

#Bits Method
PPL ↓

WikiText2 C4 Avg.

Full Prec. - 3.84 7.40 5.62

w4a16g128
AWQ 4.05 7.59 5.82

GPTQ 4.05 7.60 5.82

w3a16g128
AWQ 4.73 8.29 7.07

GPTQ 4.93 8.52 7.18

w8a8
SmoothQuant 3.87 7.48 5.68

OS+ 3.87 7.48 5.68

w6a6
SmoothQuant 4.28 7.89 6.09

OS+ 4.27 7.90 6.09

Table 20: Ablation results of Mixtral-8x7B weight-only
quantization and weight-activation quantization.

VLM quantization. For the VLM quantization,
the quantized LLaVA-7B is evaluated by our toolkit
on Perception and Cognition tasks, as depicted in
Table 21.
Sparsity. Table 24 presents the results for

the LLaMA-2-7B, 70B, and LLaMA-3 family of
models obtained using the sparsification method
Wanda Sun et al. (2023).
Mixed precision. Table 22 presents the results
for weight-only mixed precison on LLaMA-2-7B
and LLaMA-3-8B. Mixed precision is an effective
method for mitigating quantization errors. More
than specific algorithms, LLMC also supports cus-
tomized layer-wise bit allocation. We found that
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#Bits Method
PPL ↓

Perception Cognition Avg.

Full Prec. - 1477.60 283.21 880.40

w4a16g128
AWQ 1441.85 276.78 859.31

GPTQ 1416.23 285.0 850.61

w3a16g128
AWQ 1417.28 259.64 838.46

GPTQ 1346.07 280.71 813.39

w8a8
SmoothQuant 1468.93 281.07 875.0

OS+ 1467.28 280.71 873.99

w6a6
SmoothQuant 1469.67 298.21 883.94

OS+ 1467.20 299.64 883.42

Table 21: Ablation results of LLaVA-7B weight-only
quantization and weight-activation quantization.

5-bit to 8-bit precision for the down_proj offer al-
most the same benefits.

LLaMA-2-7B LLaMA-3-8B

Full Prec. 5.47 6.14

w3a16g128 6.16 8.08

w3a16g128 w/ down_proj-w8a16g128 5.93 7.45

w3a16g128 w/ down_proj-w6a16g128 5.94 7.44

w3a16g128 w/ down_proj-w5a16g128 5.95 7.48

w3a16g128 w/ down_proj-w4a16g128 5.99 7.61

Table 22: PPL results on Wikitext2 of mixed preci-
sion with AWQ. We only apply higher bit allocation for
down_proj, as it vastly impacts the performance men-
tioned in the main text.

A.6 Inference Speed

Full Prec. w4a16 w8a8
LLaMA-2-7B
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Figure 6: Throughput comparison of quantization on
the edge GPU (Drive Orin). (Token/s)

To assess the practical benefits of different quan-
tization approaches, we conducted evaluations 15

using NVIDIA’s cloud (SMX 80G A100) and edge

15In this section, all weight-only quantization employ 128g
group-wise quantization.

(Drive Orin) GPUs, alongside the official infer-
ence library, TensorRT-LLM (Nvidia, 2023). Part
of our results, as depicted in Figure 9, highlight
the throughput improvements achieved for mod-
els with 32,000 input tokens and 512 output to-
kens. The findings indicate that quantization with
8-bit weights and activations enhances the prefill
stage’s speed by 20%-30% and the decode stage by
40%-60%. In contrast, 4-bit weight-only quantiza-
tion reduces the prefill speed by 10% but increases
the decode speed by 40%-60%. It’s important to
note that these acceleration rates tend to dimin-
ish for larger models. Besides, 8-bit KV cache
quantization has minimal impact on prefill times
and slightly reduces decoding throughput for very
large models, such as those with 70B models. Fig-
ure 7 and Figure 8 supplementarily illustrated the
speedup brought by various quantization schemes
on 1K and 4K input context length. We can also
find that the conclusion for these two scenarios is
the same as the 32K input context length. More-
over, Figure 6 shows the speed up on the Drive
Orin edge GPU. It can be seen that weight-only
quantization also helps the prefill under this setting,
which is different from cloud GPUs.

A.7 Detailed Accuracy & PPL
This section presents detailed data from some of the
experiments discussed in the main text. Table 25
and Table 26 shows the detailed data for Table 4.
Table 27 shows the detailed data for Table 6.

A.8 Results for Various Model Families
From Table 28 to Table 34, we report quantiza-
tion results for different model families, includ-
ing SmolLM 16, MiniCPM (Hu et al., 2024), and
Qwen2 (Yang et al., 2024). We additionally pro-
vide the results on SIQA (Sap et al., 2019), ARC-
c (Clark et al., 2018), OBQA (Luo et al., 2021),
and WinoGrande (Sakaguchi et al., 2019).

16https://huggingface.co/blog/smollm
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Model KV Cache Prec.
Accuracy (%) ↑

NarrativeQA QASPER MultiFieldQA-en MultiFieldQA-zh Avg.

ChatGLM3-6B-32k

Full Prec. 25.93 43.35 51.57 62.36 45.80
int8 25.74 43.57 51.81 62.48 45.90
int4 26.13 43.43 51.63 61.04 45.56
int2 1.89 4.68 3.13 1.08 2.70

Table 23: KV cache quantization results on Single-Document QA from LongBench (Bai et al., 2023)

Model

Sparsity

Dense 25% 50% 75%

C4 Wikitext2 C4 Wikitext2 C4 Wikitext2 C4 Wikitext2

LLaMa2-7B 7.26 5.47 7.46 5.61 9.25 6.85 260.42 259.91
LLaMa2-70B 5.71 3.32 5.76 3.4 6.49 4.17 32.5 21.66
LLaMa3-8B 9.44 6.13 10.01 6.47 15.07 9.68 336.62 290.38
LLaMa3-70B 7.16 2.85 7.44 3.22 9.96 5.81 93.99 74.78

Table 24: Perplexity results of LLaMA-2-7B, 70B, and LLaMA-3 family under Wanda method.

Figure 7: Inference speed of 7B, 13B, and 70B LLaMA-2 models on NVIDIA A100 GPU. (Input sequence length:
1024, Output sequence length: 512)

Figure 8: Inference speed of 7B, 13B, and 70B LLaMA-2 models on NVIDIA A100 GPU. (Input sequence length:
4096, Output sequence length: 512)
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Figure 9: Inference speed of 7B, 13B, and 70B LLaMA-2 models on NVIDIA A100 GPU. (Input sequence length:
32K, Output sequence length: 512)

#Bits Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 Avg. MMLU ARC-e BoolQ HellaSwag PIQA Avg.

w3a16g128
AWQ 6.22 8.28 7.25 38.10 48.56 71.78 70.86 76.61 61.18

AWQ w/ asym. clip 6.18 8.24 7.21 42.33 47.09 71.44 70.93 76.17 61.59

w2a16g64
AWQ 2.09e5 1.59e5 1.8e5 25.38 4.87 62.17 24.83 51.2 37.69

AWQ w/ asym. clip 11.69 14.83 13.26 27.4 25.4 63.27 57.4 70.4 48.77

Table 25: Results of asymmetric/symmetric weight clipping for LLaMA-2-7B model.

#Bits Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 Avg. MMLU ARC-e BoolQ HellaSwag PIQA Avg.

w3a16g128
AWQ 3.75 6.05 4.90 67.54 87.65 86.57 81.11 81.88 80.95

AWQ w/ asym. clip 3.74 6.04 4.89 67.07 89.95 86.30 80.95 81.07 81.07

w2a16g64
AWQ 7.1e4 6.5e4 6.8e4 24.46 26.46 37.83 24.60 50.87 32.84

AWQ w/ asym. clip 5.24 7.73 6.49 57.91 80.07 83.91 75.98 78.67 75.31

Table 26: Results of asymmetric/symmetric weight clipping for LLaMA-2-70B model.

#Bits Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 Avg. MMLU ARC-e BoolQ HellaSwag PIQA Avg.

w3a16g128

GPTQ 8.28 13.07 10.67 57.81 78.48 73.49 72.16 77.86 71.96

AWQ 8.57 13.39 10.98 54.35 74.78 74.56 71.85 78.07 70.72

AWQ w/ GPTQ 8.18 12.91 10.55 59.10 80.60 73.12 72.40 78.40 72.72

Quarot 40.81 59.20 50.00 29.03 29.98 58.87 45.18 66.43 45.90

Quarot w/ GPTQ 7.99 12.70 10.35 60.25 83.25 78.56 72.96 79.16 74.84

Table 27: Results of reconstruction (GPTQ) combined with scaling (AWQ) and rotation-based (QuaRot) transforma-
tion for LLaMA-3-8B model. Clipping for AWQ here is canceled to expel distractions.

148



#Bits Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 Avg. ARC-e ARC-c BoolQ PIQA SIQA HellaS. OBQA WinoG. Avg.

Full Prec. - 17.56 22.17 19.86 53.04 39.51 68.34 23.00 35.14 60.00 61.36 25.94 45.79

w2a16g128

RTN 2.27e+07 3.06e+07 2.66e+07 51.38 34.19 52.61 18.80 25.84 47.74 24.66 21.33 34.57

GPTQ 1.30e+04 1.04e+04 1.17e+04 52.57 33.16 50.98 16.80 25.94 45.26 27.86 20.82 34.17

AWQ 1.02e+04 8.18e+03 9.18e+03 48.93 34.44 51.03 15.60 25.62 38.84 26.30 20.48 32.65

w3a16g128

RTN 91.65 96.75 94.20 48.38 36.59 60.88 19.00 30.21 49.54 46.84 21.93 39.17

GPTQ 32.89 40.29 36.59 51.93 37.15 61.53 20.80 31.39 58.56 51.89 22.53 41.97

AWQ 54.20 55.94 55.07 50.36 37.41 62.40 17.00 31.28 52.23 51.56 24.49 40.84

w4a16g128

RTN 22.54 28.04 25.29 53.67 38.54 66.38 23.00 34.18 62.05 58.04 25.85 45.21

GPTQ 20.03 25.01 22.52 52.01 39.71 65.56 22.00 33.99 56.36 58.84 24.74 44.15

AWQ 21.42 26.19 23.81 52.25 38.02 66.76 22.80 34.07 58.96 58.54 25.77 44.65

w4a4

RTN 2.60e+03 2.22e+03 2.41e+03 50.91 33.73 52.61 17.40 26.40 43.73 30.77 18.77 34.29

SmoothQuant 331.70 441.95 386.82 52.09 33.32 53.70 18.20 27.38 44.46 37.42 20.65 35.90

OS+ 263.76 389.67 326.71 52.49 35.62 55.39 14.60 27.56 43.46 41.46 20.73 36.41

QuaRot 472.15 567.85 520.00 49.17 34.34 56.37 14.60 27.08 41.01 43.01 20.73 35.79

w6a6

RTN 22.84 27.45 25.14 49.41 38.28 65.07 20.00 33.02 58.23 56.73 25.68 43.30

SmoothQuant 20.37 25.12 22.74 53.91 38.13 64.64 22.80 32.52 59.02 59.22 25.00 44.41

OS+ 19.67 25.00 22.33 51.54 39.71 66.81 21.20 32.88 59.85 60.19 24.32 44.56

QuaRot 20.26 25.02 22.64 52.25 39.05 66.32 22.40 33.06 57.77 60.14 25.68 44.58

w8a8

RTN 17.75 22.45 20.10 52.57 39.05 68.01 21.80 35.07 60.37 61.45 25.09 45.43

SmoothQuant 17.68 22.35 20.01 52.64 39.66 67.74 21.80 35.14 60.15 61.49 25.43 45.51

OS+ 17.67 22.32 19.99 53.51 39.00 67.79 23.00 35.14 60.09 61.66 25.85 45.76

QuaRot 17.77 22.42 20.10 52.33 39.15 68.01 22.80 35.14 60.34 61.15 25.34 45.53

Table 28: Quantization Results for SmolLM-135M model. Activation clipping and online rotation within QuaRot
are canceled for a fair comparison. “HellaS.” and “WinoG.” represent HellaSwag and WinoGrande, respectively.
We mark the best results in bold.
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#Bits Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 Avg. ARC-e ARC-c BoolQ PIQA SIQA HellaS. OBQA WinoG. Avg.

Full Prec. - 13.10 17.68 15.39 58.25 41.25 71.33 25.20 41.63 55.20 69.82 33.28 49.49

w2a16g128

RTN 2.98e+06 2.60e+06 2.79e+06 51.22 32.91 51.74 16.40 25.72 47.95 25.21 20.90 34.01

GPTQ 797.15 812.25 804.70 48.62 34.95 50.22 16.00 26.24 39.30 27.69 18.69 32.71

AWQ 3.12e+03 2.67e+03 2.90e+03 48.93 34.08 52.50 15.20 26.82 42.11 30.68 19.97 33.79

w3a16g128

RTN 32.13 39.52 35.83 53.35 36.80 67.30 22.20 36.23 62.02 57.87 29.44 45.65

GPTQ 21.14 26.85 24.00 52.64 37.77 65.56 19.40 36.47 51.96 57.95 27.99 43.72

AWQ 23.24 28.91 26.08 53.75 38.28 66.76 21.00 37.86 53.91 61.41 29.86 45.35

w4a16g128

RTN 15.11 20.20 17.65 56.20 40.53 70.46 24.20 40.39 54.37 65.87 32.00 48.00

GPTQ 14.80 19.72 17.26 55.72 39.36 69.91 23.80 39.75 54.43 66.20 31.14 47.54

AWQ 15.17 20.08 17.63 57.06 40.94 69.26 23.00 41.00 51.74 68.27 32.85 48.02

w4a4

RTN 645.64 613.99 629.82 51.14 33.88 54.52 13.80 26.51 43.61 33.96 19.37 34.60

SmoothQuant 123.40 233.90 178.65 48.70 35.36 59.47 17.20 30.35 45.17 44.87 24.66 38.22

OS+ 80.14 122.98 101.56 49.96 35.41 58.43 13.20 30.46 47.06 48.70 21.67 38.11

QuaRot 157.89 158.13 158.01 49.41 34.44 57.73 15.80 28.28 39.08 40.57 21.16 35.81

w6a6

RTN 15.32 21.15 18.24 55.17 40.23 69.15 23.00 39.44 48.78 66.46 30.89 46.64

SmoothQuant 14.26 19.17 16.72 53.20 40.99 69.53 26.80 40.84 53.98 67.85 32.08 48.16

OS+ 14.15 19.01 16.58 54.14 41.40 69.75 23.00 40.86 53.88 67.34 32.42 47.85

QuaRot 14.36 19.24 16.80 54.30 40.84 69.64 24.40 40.41 55.05 68.35 32.00 48.12

w8a8

RTN 13.31 17.97 15.64 56.04 40.58 70.67 25.80 41.64 55.20 70.24 33.79 49.24

SmoothQuant 13.27 17.90 15.58 56.75 41.30 70.95 25.80 41.67 55.96 70.03 33.53 49.50

OS+ 13.24 17.85 15.55 55.96 41.10 71.16 26.20 41.67 55.84 70.16 34.04 49.52

QuaRot 13.26 17.90 15.58 56.75 40.89 71.16 25.20 41.73 53.82 69.87 33.87 49.16

Table 29: Quantization Results for SmolLM-350M model.

#Bits Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 Avg. ARC-e ARC-c BoolQ PIQA SIQA HellaS. OBQA WinoG. Avg.

Full Prec. - 9.58 13.92 11.75 60.93 43.65 75.79 30.00 49.55 65.93 76.47 43.43 55.72

w2a16g128

RTN 1.40e+07 1.06e+07 1.23e+07 49.64 33.42 53.10 17.20 25.85 44.50 25.42 22.61 33.97

GPTQ 465.98 319.93 392.95 51.70 34.60 51.25 15.60 27.03 51.38 30.68 19.28 35.19

AWQ 91.93 122.20 107.06 49.64 34.65 60.72 16.40 31.11 56.36 50.38 23.38 40.33

w3a16g128

RTN 17.57 23.43 20.50 56.99 41.20 72.36 28.60 45.72 61.47 70.20 39.93 52.06

GPTQ 12.10 16.85 14.47 58.56 40.89 73.01 27.80 45.21 61.56 71.09 37.37 51.94

AWQ 12.11 16.68 14.40 57.70 41.81 73.34 28.20 45.22 63.91 72.81 39.76 52.84

w4a16g128

RTN 10.56 15.13 12.85 60.30 44.52 75.08 31.20 49.12 63.00 76.05 43.52 55.35

GPTQ 10.05 14.45 12.25 60.54 43.76 74.97 29.40 48.43 65.29 75.67 42.41 55.06

AWQ 10.05 14.43 12.24 60.77 43.50 75.79 29.60 48.56 65.57 75.97 42.92 55.34

w4a4

RTN 1.34e+07 8.32e+07 4.83e+07 50.59 33.06 50.98 14.80 24.50 48.87 29.38 22.18 34.30

SmoothQuant 285.34 222.59 253.96 51.62 34.24 54.46 15.60 29.47 55.78 42.68 23.29 38.39

OS+ 403.41 882.42 642.91 47.99 36.03 55.77 17.40 29.64 54.04 47.60 25.00 39.18

QuaRot 37.41 49.55 43.48 50.20 37.15 60.07 17.80 34.05 58.90 52.10 26.45 42.09

w6a6

RTN 11.71 16.65 14.18 56.20 41.97 73.29 28.60 46.47 63.73 72.81 38.40 52.68

SmoothQuant 10.71 15.54 13.12 59.35 42.27 74.43 30.40 47.87 64.46 74.37 39.85 54.12

OS+ 10.51 15.13 12.82 58.96 42.43 73.99 29.20 48.25 64.83 73.78 40.44 53.98

QuaRot 10.35 14.99 12.67 58.09 42.43 73.83 29.60 48.65 65.14 74.66 40.70 54.14

w8a8

RTN 9.73 14.21 11.97 59.67 43.86 76.01 30.60 49.40 66.02 76.35 42.92 55.60

SmoothQuant 9.65 14.04 11.84 61.33 43.50 75.63 30.40 49.37 65.81 76.60 43.00 55.71

OS+ 9.64 14.01 11.83 60.46 43.65 75.63 30.00 49.43 66.36 76.73 44.03 55.79

QuaRot 9.64 14.01 11.82 59.91 43.30 75.79 30.20 49.33 66.36 76.64 43.43 55.62

Table 30: Quantization Results for SmolLM-1.7B model.
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#Bits Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 Avg. ARC-e ARC-c BoolQ PIQA SIQA HellaS. OBQA WinoG. Avg.

Full Prec. - 8.60 13.74 11.17 60.62 45.04 74.48 23.20 50.09 68.23 70.37 36.26 53.54

w2a16g128

RTN 7.86e+03 1.61e+04 1.20e+04 50.91 34.54 53.10 13.80 25.90 40.70 26.39 22.44 33.47

GPTQ 71.23 101.64 86.44 48.86 36.03 57.24 16.20 29.00 43.12 33.88 19.45 35.47

AWQ 100.70 197.93 149.31 52.64 38.18 60.83 16.60 31.88 42.60 44.78 22.95 38.81

w3a16g128

RTN 11.00 17.70 14.35 60.77 41.50 72.42 19.60 46.76 63.79 63.93 33.28 50.26

GPTQ 10.34 16.44 13.39 60.62 42.99 71.60 21.80 46.40 60.64 65.11 35.24 50.55

AWQ 10.01 16.23 13.12 59.67 44.52 72.63 22.40 47.07 65.38 66.84 34.30 51.60

w4a16g128

RTN 8.98 14.35 11.67 59.43 44.37 73.07 23.20 49.42 67.13 69.40 36.35 52.80

GPTQ 8.89 14.23 11.56 60.46 44.06 73.39 22.80 49.00 69.24 68.64 36.09 52.96

AWQ 8.87 14.25 11.56 61.17 45.19 73.29 23.40 49.36 71.01 69.32 36.60 53.67

w4a4

RTN 35.70 50.17 42.93 52.17 39.05 64.09 16.60 36.29 57.34 51.47 25.51 42.81

SmoothQuant 19.75 30.51 25.13 52.33 40.48 65.45 19.00 40.68 60.40 55.18 28.07 45.20

OS+ 21.72 33.72 27.72 51.22 40.79 65.67 20.20 40.59 59.82 53.79 28.67 45.09

QuaRot 19.18 30.01 24.60 52.01 35.31 59.30 18.00 28.77 63.39 41.25 26.54 40.57

w6a6

RTN 9.09 14.44 11.77 61.01 44.58 74.16 22.40 49.33 69.30 69.11 36.60 53.31

SmoothQuant 9.03 14.39 11.71 60.06 44.11 73.18 23.40 49.25 69.24 69.70 36.09 53.13

OS+ 9.05 14.38 11.72 59.83 44.52 73.88 23.40 49.48 68.93 68.94 36.01 53.12

QuaRot 9.01 14.41 11.71 58.80 36.85 65.29 20.20 31.16 69.48 47.35 29.35 44.81

w8a8

RTN 8.65 13.80 11.23 62.04 44.17 74.48 23.80 49.86 68.10 70.08 36.52 53.63

SmoothQuant 8.64 13.79 11.21 59.91 44.11 74.32 22.20 49.90 68.32 70.29 35.67 53.09

OS+ 8.63 13.78 11.21 59.91 44.63 74.16 23.00 49.92 68.17 70.08 35.67 53.19

QuaRot 8.64 13.79 11.22 60.38 37.15 64.96 22.40 31.53 68.99 48.06 29.61 45.38

Table 31: Quantization Results for MiniCPM-1B model.

#Bits Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 Avg. ARC-e ARC-c BoolQ PIQA SIQA HellaS. OBQA WinoG. Avg.

Full Prec. - 8.16 13.00 10.58 63.14 47.24 76.22 28.60 52.88 73.58 74.66 42.58 57.36

w2a16g128

RTN 612.79 880.31 746.55 49.01 35.52 56.64 15.80 28.51 58.93 31.86 20.14 37.05

GPTQ 29.60 45.30 37.45 47.75 36.44 60.88 15.20 32.90 55.87 38.85 21.67 38.69

AWQ 24.28 36.25 30.26 55.09 40.07 66.10 16.80 39.54 63.70 55.89 29.35 45.82

w3a16g128

RTN 9.79 15.54 12.66 60.22 44.58 74.48 25.80 50.42 71.83 70.12 40.78 54.78

GPTQ 9.56 15.29 12.43 61.33 43.91 73.50 25.40 50.23 73.12 69.74 37.97 54.40

AWQ 9.18 14.68 11.93 60.85 46.21 74.05 27.20 51.07 73.36 71.76 40.27 55.60

w4a16g128

RTN 8.40 13.43 10.92 64.96 47.34 76.22 28.80 52.77 73.70 74.45 42.24 57.56

GPTQ 8.50 13.59 11.04 61.88 47.39 75.30 27.40 52.65 75.14 73.40 41.89 56.88

AWQ 8.32 13.39 10.85 61.33 46.88 75.73 28.80 52.80 74.65 74.96 41.72 57.11

w4a4

RTN 33.64 52.72 43.18 53.35 38.64 64.85 18.00 37.21 62.60 52.23 26.71 44.20

SmoothQuant 17.20 28.01 22.61 53.99 41.91 68.39 23.20 42.71 63.88 60.02 33.28 48.42

OS+ 17.15 28.22 22.68 53.75 41.15 68.50 20.40 43.25 63.82 59.22 31.91 47.75

QuaRot 19.87 31.97 25.92 53.51 35.98 61.04 16.80 27.36 61.50 40.91 25.09 40.27

w6a6

RTN 8.46 13.58 11.02 63.14 45.96 75.03 27.60 52.21 73.21 73.78 40.61 56.44

SmoothQuant 8.43 13.49 10.96 62.59 45.24 75.63 27.80 52.03 72.75 73.99 41.21 56.41

OS+ 8.45 13.51 10.98 61.33 45.55 74.65 28.00 52.01 74.07 74.16 41.81 56.45

QuaRot 8.48 13.55 11.01 61.56 38.33 65.18 20.60 28.49 72.23 52.36 31.91 46.33

w8a8

RTN 8.13 13.04 10.59 63.77 46.57 76.39 29.40 52.97 73.94 74.66 42.24 57.49

SmoothQuant 8.17 13.04 10.60 63.06 46.93 76.33 29.20 52.80 73.73 74.62 42.32 57.37

OS+ 8.18 13.04 10.61 63.06 47.19 76.17 29.60 52.80 74.01 74.28 41.89 57.38

QuaRot 8.18 13.04 10.61 62.75 38.43 66.05 22.40 28.57 73.58 53.07 31.83 47.09

Table 32: Quantization Results for MiniCPM-2B model.
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#Bits Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 Avg. ARC-e ARC-c BoolQ PIQA SIQA HellaS. OBQA WinoG. Avg.

Full Prec. - 13.58 18.97 16.27 57.70 43.04 69.48 21.40 38.35 61.04 54.76 25.51 46.41

w2a16g128

RTN 2.09e+05 1.97e+05 2.03e+05 51.30 34.03 53.37 14.40 25.48 44.86 25.00 22.70 33.89

GPTQ 1.34e+03 1.39e+03 1.37e+03 50.04 34.49 53.70 13.80 25.95 44.28 27.86 20.90 33.88

AWQ 9.73e+03 8.82e+03 9.27e+03 48.54 33.06 53.37 15.00 26.30 46.36 28.75 20.14 33.94

w3a16g128

RTN 32.82 45.18 39.00 52.64 37.51 62.62 18.80 33.34 45.08 46.04 23.38 39.93

GPTQ 19.62 28.06 23.84 52.96 37.10 66.43 19.00 34.71 59.60 51.98 24.49 43.28

AWQ 22.72 30.28 26.50 52.96 39.00 66.16 18.00 35.18 57.34 49.28 23.72 42.70

w4a16g128

RTN 15.75 21.90 18.83 54.54 40.69 67.68 21.20 37.42 62.32 51.01 23.98 44.86

GPTQ 14.86 20.80 17.83 55.49 41.04 67.90 21.00 37.47 59.17 56.86 24.57 45.44

AWQ 14.90 20.86 17.88 56.99 41.20 68.44 19.20 37.50 59.45 52.90 24.83 45.06

w4a4

RTN 1.09e+03 1.01e+03 1.05e+03 48.86 34.60 52.45 13.20 26.23 41.71 27.86 19.62 33.07

SmoothQuant 172.65 232.83 202.74 49.72 34.49 54.73 12.80 27.93 45.66 32.58 21.33 34.90

OS+ 261.88 271.76 266.82 52.09 33.93 56.75 15.20 28.44 46.02 33.84 21.33 35.95

QuaRot 57.48 78.85 68.16 51.54 35.21 59.63 15.80 30.25 48.20 38.97 21.42 37.63

w6a6

RTN 15.79 21.99 18.89 53.99 40.33 67.08 21.00 37.14 50.46 53.66 26.37 43.75

SmoothQuant 15.29 21.25 18.27 55.09 41.04 67.19 21.40 37.63 54.34 53.37 26.54 44.58

OS+ 15.32 21.22 18.27 54.78 42.07 68.44 20.40 37.92 53.33 54.76 25.85 44.69

QuaRot 14.93 20.82 17.87 55.17 41.56 67.63 21.40 37.62 57.40 55.72 25.43 45.24

w8a8

RTN 13.85 19.37 16.61 56.12 42.22 69.37 21.80 38.32 58.93 54.59 25.17 45.81

SmoothQuant 13.72 19.20 16.46 56.99 42.37 69.80 21.00 38.29 59.97 54.71 25.60 46.09

OS+ 13.70 19.16 16.43 58.33 42.73 69.80 21.20 38.29 59.79 55.51 25.85 46.44

QuaRot 13.70 19.17 16.44 55.88 42.48 69.64 21.80 38.26 60.61 55.22 25.26 46.14

Table 33: Quantization Results for Qwen2-0.5B model.

#Bits Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 Avg. ARC-e ARC-c BoolQ PIQA SIQA HellaS. OBQA WinoG. Avg.

Full Prec. - 9.84 14.36 12.10 64.72 46.11 75.57 26.80 48.31 71.96 65.87 33.45 54.10

w2a16g128

RTN 3.41e+04 2.45e+04 2.93e+04 50.20 32.75 50.60 15.00 25.84 46.12 25.29 20.48 33.28

GPTQ 482.42 462.96 472.69 52.49 34.08 54.30 14.60 26.58 44.40 28.96 20.82 34.53

AWQ 326.04 398.14 362.09 51.38 34.95 55.98 14.80 28.12 42.72 34.72 20.31 35.37

w3a16g128

RTN 15.24 21.27 18.26 61.72 43.19 70.95 23.00 43.65 68.01 60.14 32.00 50.33

GPTQ 12.39 18.54 15.47 61.25 43.24 71.98 25.20 44.39 68.44 62.50 30.89 50.99

AWQ 13.47 19.40 16.43 62.04 43.45 71.22 23.20 44.11 65.96 59.55 28.07 49.70

w4a16g128

RTN 10.59 15.29 12.94 64.01 44.73 74.59 26.40 47.21 72.39 62.46 31.48 52.91

GPTQ 10.28 15.02 12.65 66.14 45.29 74.54 26.40 47.68 71.07 65.07 32.68 53.61

AWQ 10.41 15.16 12.79 66.69 46.57 75.24 26.00 47.22 70.55 65.40 31.83 53.69

w4a4

RTN 275.87 265.84 270.85 50.99 34.54 55.77 13.60 28.63 44.68 31.48 20.56 35.03

SmoothQuant 85.82 105.29 95.56 48.93 35.16 59.52 16.60 32.30 45.60 37.29 23.98 37.42

OS+ 98.76 115.03 106.89 50.67 37.10 56.96 13.00 31.65 46.79 36.41 21.42 36.75

QuaRot 42.19 56.01 49.10 52.17 35.82 58.65 17.80 34.72 50.86 38.38 21.50 38.74

w6a6

RTN 11.02 15.83 13.42 63.93 43.91 72.80 25.80 46.91 63.64 62.88 31.83 51.46

SmoothQuant 10.94 15.74 13.34 63.30 44.83 73.12 25.80 47.41 65.57 63.80 32.42 52.03

OS+ 10.84 15.59 13.22 63.77 45.14 73.18 27.40 47.27 62.35 62.25 32.25 51.70

QuaRot 10.86 15.61 13.24 64.17 46.37 74.21 26.60 47.21 67.52 65.28 34.13 53.19

w8a8

RTN 9.96 14.43 12.19 64.88 46.37 75.30 26.80 48.13 72.26 65.87 33.11 54.09

SmoothQuant 9.97 14.41 12.19 65.67 47.13 75.35 27.40 47.98 72.20 67.34 33.19 54.53

OS+ 9.93 14.31 12.12 65.82 46.88 75.35 26.40 48.13 72.42 65.53 33.19 54.22

QuaRot 9.89 14.31 12.10 65.59 46.06 75.03 26.60 48.09 71.65 65.87 33.02 53.99

Table 34: Quantization Results for Qwen2-1.5B model.

152


