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Abstract

Recent advancements in Large Language Mod-
els (LLMs) have showcased exceptional per-
formance in zero-shot learning and reasoning
tasks. However, integrating these models with
external tools - a crucial need for real-world ap-
plications - remains a significant challenge. We
propose RESTful-Llama, a novel framework
designed to enable Llama 3.1 to transform nat-
ural language instructions into effective REST-
ful API calls. To enhance the fine-tuning pro-
cess, we introduce DOC_Mine, a method to
generate fine-tuning datasets from public API
documentation. RESTful-Llama distinguishes
itself by enabling open-source LLMs to effi-
ciently interact with and adapt to any REST
API system. Experiments demonstrate a 31.9%
improvement in robustness and a 2.33x increase
in efficiency compared to existing methods.

1 Introduction

Large language models (LLMs) have made signifi-
cant strides in natural language processing (NLP)
and various interdisciplinary domains in recent
years. They exhibit the ability to engage in human-
like conversations and demonstrate the potential
to integrate with external tools, such as search en-
gines and productivity software (Shen, 2024)—an
essential feature for real-world applications. Given
the widespread use of these tools in daily activi-
ties, such integration is critical to meeting end-user
needs and enhancing their interaction with technol-
ogy.

Building on this potential, a promising area of
research seeks to incorporate LLMs with multi-
modal tools. Intelligent planners like Visual Chat-
GPT (Wu et al., 2023) and HuggingGPT (Shen
et al., 2023) utilize pre-defined templates to gen-
erate instructions executable by various founda-
tion models. While these strategies have shown
impressive results, they are typically confined to
a limited selection of specially designed tools or

models, making them difficult to adapt or extend
to other systems. Moreover, the reliance on propri-
etary LLMs, such as ChatGPT (OpenAI, 2024a),
raises concerns in the industry about potential data
breaches.

Rather than focusing exclusively on a limited
set of external tools, recent research efforts focus
on improving LLM generalization across a wider
range of tasks. For example, ReAct (Yao et al.,
2023) enables LLMs to interact with external envi-
ronments such as ALFWorld (Shridhar et al., 2021)
and Wikipedia to tackle general tasks. Concur-
rently, Gorilla (Patil et al., 2023) facilitates machine
learning-related API calls through platforms like
TorchHub (PyTorch, 2023). Despite their broader
scope, these approaches often face limitations in
task resolution success rates, which impedes their
practical deployment in real-world scenarios. On
the other hand, these methods struggle with sce-
narios where flexibility across diverse API systems
is required, such as when integrating LLMs with
dynamic, real-world API systems that evolve over
time.

To overcome the limitations of previous methods,
this study introduces a novel method, RESTful-
Llama, which empowers open-source LLMs to
translate user natural language queries into effec-
tive RESTful API calls for real-world applications.
In summary, the main contributions of the study
are as follows:

• We propose RESTful-Llama, a framework
that seamlessly integrates open-source lan-
guage models with and adapts to any existing
REST software system. This framework elim-
inates the long-term dependence on propri-
etary LLMs like GPT-4 (Achiam et al., 2023)
and Claude (Anthropic, 2023), mitigating data
privacy concerns and unlocking broader appli-
cations across various industries.

• We introduce DOC_Mine, a methodology
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that instructs LLMs to generate a more di-
verse fine-tuning dataset from public REST
API documentation. This method significantly
enhances model fine-tuning across different
contexts and improves success rates within the
framework. Additionally, we release a new
dataset containing 29,968 samples generated
through DOC_Mine, empowering academia
and industry to fine-tune models that follow
the RESTful-Llama workflow1 without rely-
ing on proprietary models.

• Experiments of RESTful-Llama on a dataset
of 400 real-world REST API queries show
a 31.9% improvement in robustness, and a
2.33x increase in efficiency, compared to the
ReAct method.

2 Preliminaries

2.1 Related Works
Transformers and LLMs Transformers (Vaswani,
2017) have transformed numerous NLP subfields,
such as text summarization (Ji et al., 2024), few-
shot learning (Li et al., 2023b), adversarial ro-
bustness (Chen et al., 2024), information extrac-
tion (Li et al., 2023a), social computing (Liu et al.,
2023), and question-answering (Xu et al., 2024).
Their ability to capture long-range dependencies
through self-attention mechanisms has significantly
enhanced context comprehension, leading to higher
accuracy across a variety of use cases. Recently,
LLMs have further extended these capabilities and
moved beyond traditional NLP applications. A
key development is the ability of LLMs to inter-
act with external systems, enabling them to tackle
complex problems and integrate with real-world
applications.

LLMs with external models: Recent research
has explored connecting LLMs to various external
models to address complex tasks. HuggingGPT
(Shen et al., 2023) uses ChatGPT as a controller
to perform task planning and select available Hug-
ging Face models based on function descriptions.
Visual ChatGPT (Wu et al., 2023) enables interac-
tion between ChatGPT and multiple Visual Foun-
dation Models (VFMs), allowing the exchange of
images during conversations. GPT4Tools (Yang
et al., 2023) adopts self-tuning to train open-source
models to use tools to solve visual problems.

1The fine-tuning dataset and the fine-tuned Llama 3.1-8B
model are available at https://github.com/wmd3i/RESTful-
Llama.

LLMs with tools and APIs: Another line of re-
search has aimed at enhancing LLMs’ proficiency
in utilizing tools, allowing them to retrieve up-to-
date information and perform operations by inter-
acting with external tools. Chameleon (Lu et al.,
2023) uses GPT-4 (Achiam et al., 2023) as a plan-
ner to coordinate a broad set of tools, such as web
search engines and Python functions. ReAct (Yao
et al., 2023) allows LLMs to interact with external
environments like Wikipedia or ALFWorld (Shrid-
har et al., 2021) to solve general tasks. Gorilla
(Patil et al., 2023) utilizes Llama 2 (Touvron et al.,
2023) to solve machine learning tasks, but is lim-
ited to a set of 1,645 APIs selected from Hugging-
Face, Torch Hub, and TensorFlow Hub.

Table 1: Works that Connect LLMs with APIs/Tools/-
Models.

Model Number
Chameleon 13
Gorilla 1645
GPT4Tools 31
Visual ChatGPT 22
ReAct 42

RESTful-Llama (ours) 25,000+

However, as shown in Table 1, current methods
are constrained to a limited set of APIs, tools, or
language models. Integrating arbitrary open-source
LLMs with a widely used protocol like REST APIs
offers a promising solution for expanding the scope
of real-world applications.

2.2 RESTful APIs

Representational State Transfer (REST) APIs are
a standard in web service development and are
widely adopted across industries. According to the
2023 Postman API report (Postman, 2023), 86% of
more than 40,000 developers and API professionals
report using REST APIs. These APIs are based on
the REST architecture, which uses standard HTTP
methods (GET, POST, PUT, DELETE) to facilitate
communication between clients and servers, while
maintaining stateless interactions. When a client
requests a resource through an endpoint, the server
typically responds with data in JSON format, along
with HTTP status codes such as 200 (success), 400
(client error), or 500 (server error) to indicate the
outcome of the request (Masse, 2011).

Integrating LLMs with RESTful APIs opens ac-

2The ReAct implementation supports 4 specific tasks, but
the approach can be generalized to other tasks.
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Figure 1: Data creation and fine-tuning steps

cess to a vast ecosystem of over 25,000 APIs3,
This aligns with industry practices, where the ma-
jority of developers and API professionals rely
on REST architecture for their services (Postman,
2023). Moreover, using RESTful APIs provides
enhanced control over potential risks, as the API
endpoints are fully controllable. Therefore, it is
essential for LLMs to not only adapt to a wide
range of API systems, but also ensure robust and
seamless interactions with them.

3 Dataset Creation and Fine-tuning

Given the widespread use and availability of REST
API documentation, creating a diverse and high-
quality dataset for fine-tuning open-source LLMs
is essential. In this section, we outline the steps in-
volved in dataset creation and fine-tuning. As illus-
trated in Figure 1, the procedure includes: (i) using
the DOC_Mine approach to generate the dataset
from public API documentation, (ii) cleaning and
filtering the generated data, and (iii) the supervised
fine-tuning (SFT) process.

3.1 DOC_Mine Approach

The DOC_Mine approach follows a backward
generation strategy. Initially, an advanced teacher
model4 is prompted to generate Python REST API
scripts from public API documentation. This pro-
cess aligns with the LLM output in Section 4.4.
Subsequently, the teacher model is prompted to
reverse-translate these scripts into the natural lan-
guage user queries, mirroring the inputs discussed
in Section 4.2. A trace of the DOC_Mine work-
flow, including the prompting template, is outlined
in Appendix D.

3The number is reported by RapidAPI (RapidAPI).
4We use GPT-4o (OpenAI, 2024b) as the teacher model in

this work.

3.1.1 From API Documentation to Python
Script

DOC_Mine leverages publicly available REST API
documentation as seed data to generate Python
scripts. We utilize API documentation from vari-
ous industries, including Spotify (music), Notion
(note-taking), Slack (communication), Paypal (pay-
ments) and OpenAI (AI). By drawing from these di-
verse sources, we generate a wide variety of Python
REST API scripts and corresponding natural lan-
guage user queries.

For each API, we identify and collect seed doc-
uments from Postman collections5, which are pri-
marily based on the OpenAPI Specification (OAS)
JSON schema. This approach eliminates the need
for explicit web scraping and conserves tokens
when querying the teacher model. Using the
teacher model, we generate Python scripts that
incorporate user authorization tokens. However,
these scripts may contain noise, such as inaccura-
cies and redundancies. To address this, we perform
an additional filtering step to remove inaccurate or
redundant data, ensuring that the fine-tuning pro-
cess is not impacted by misleading information.

3.1.2 From Python Script to User Query

Next, we prompt the teacher model to translate
the generated Python scripts into potential human
natural language commands for API usage. In
addition to common categories like gender, user
mood, and age group, we specifically target an in-
ternational audience by modeling major English di-
alects (Trudgill and Hannah, 2013). This allows us
to capture user queries and behaviors across diverse
situations. The template in Appendix D is popu-
lated with a variety of user groups and contexts, as
detailed in Appendix A. By modeling different user
groups and contexts, we ensure that DOC_Mine is
aligned with varied user needs and scenarios.

5https://www.postman.com/collection/
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Figure 2: RESTful-Llama workflow

3.2 Data Cleaning and Filtering

To ensure the quality of the dataset, we first exe-
cute the generated python script and discard those
that lead to errors or exceptions. Next, we perform
data cleaning to remove duplicate API scripts and
user queries from the generation. This step elim-
inates samples that are either identical or contain
the same code snippets. Afterward, we apply an
NSFW text classifier 6 to filter out any data that are
not safe for work (NSFW), and use regular expres-
sions (regex) to exclude data containing person-
ally identifiable information (PII). Following the
de-duplication and filtering steps, we finalized a
dataset of 29,968 samples for fine-tuning. Detailed
statistics on the cleaning and filtering process are
provided in Appendix B.

3.3 Supervised Fine-Tuning (SFT)

We employ an SFT approach using the Llama 3.1-
8B Instruct model (Dubey et al., 2024). This pro-
cess takes a sequence (t1, t2, . . . , tT ), consisting
of model inputs and outputs. The training objective
is to minimize the standard cross-entropy loss L,
defined as:

L = − 1

T

T∑

i=1

logP (ti | t1, t2, . . . , ti−1),

where P (ti | t1, t2, . . . , ti−1) represents the prob-
ability of the i-th token ti, given the preceding
tokens t1, t2, . . . , ti−1.

We utilize a single Nvidia A100 40G GPU and
employ the LoRA technique (Hu et al., 2022) to per-
form SFT on the base Llama 3.1-8B Instruct model.
LoRA adapters are applied to all linear layers of
the model. Details of the training hyperparameters
are provided in Appendix C.

6https://huggingface.co/michellejieli/NSFW_text_classifier

4 The RESTful-Llama Framework

As illustrated in Figure 2, RESTful-Llama con-
sists of four main steps: (1) initialization with API
documentation ingestion, (2) extracting essential
information from the user query, (3) identifying rel-
evant API documentation stored in the vector store,
and (4) translating the user query into a Python
script using the fine-tuned Llama 3.1-8B model, as
described in Section 3.3. The complete workflow
is summarized in Algorithm 1.

4.1 Initialization
During initialization, the workflow ingests REST
API documentation for specific API systems into
the vector store. We use the bge-small-en embed-
ding model (Xiao et al., 2023) to vectorize the
documentation. Each entry is treated as a vector
store documentation node di, with an accompany-
ing succinct description stored as its metadata.

4.2 Data Pre-Processing
In this step, the Llama 3.1 model extracts essential
parameters from the user query, such as the address
to be queried. These parameters are critical for the
correct execution of REST APIs. Once extracted,
they are forwarded to the script generation phase
(Section 4.4), where they are reiterated to improve
accuracy (Li et al., 2024).

4.3 Retrieval from Vector Store
We compute the cosine similarity between the user
query and the API documentation nodes in the vec-
tor store. To ensure consistency, the user query is
vectorized using the same bge embedding model as
the stored nodes. The cosine similarity is calculated
using the following formula:

cos_sim(q, di) =
qTdi

||q|| · ||di||
, (1)
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Algorithm 1: RESTful-Llama Workflow
Input :vector store VStore, embedding

model EmbM, k, user query query
Output :Python script script

// Extract essential params
1 params← pre_process(query);
// Query the vector store

2 query_embedding←
EmbM.get_embedding(query);

3 top_k_nodes←
VStore.query(query_embedding, k);

4 identified_node←
select_best_node(top_k_nodes, query);

5 llm_response←
generate_rest_api_script(identified_node,
query, params);

6 script← extract(llm_response);
7 script← correct_params(script, params);
8 if validate(script) then
9 return script;

10 else
11 raise Error("Validation failed");
12 end

where q and di are the vector representations of the
user query and API nodes. Based on these cosine
similarities, the system retrieves the top-k7 nodes.
Given that a single REST service often includes
numerous API endpoints, the vector store enhances
efficiency by narrowing the candidate selection to
the top-k most relevant APIs. The Llama 3.1 model
is then employed to refine the selection process and
identify the most relevant node.

As outlined in Algorithm 2, our approach con-
catenates the descriptions of the top-k retrieved
nodes to form a comprehensive query. This query,
along with a template prompt, is passed to the
Llama 3.1 model. The model analyzes the input
and selects the node most relevant to the user query
using a predefined answering template. A helper
function, get_best_node_idx(), is used to extract
the index of the selected node. If the extraction
fails, it defaults to the highest-ranked node (the
node with the highest cosine similarity according
to the retrieval). Finally, the user query and the
selected documentation are forwarded to the next
phase.

7k is a configurable parameter that can be tuned to the
user’s needs.

Algorithm 2: Node Selection Procedure
(select_best_node)

Input : top-k nodes top_k_nodes,
workflow template template, user
query query

Output :Identified node identified_node

1 query← template + query
2 foreach node in top_k_nodes do
3 Append node’s description to query
4 end
5 resp← generate_best_node_resp(query)
6 idx← get_best_node_idx(resp, k_threshold)
7 if idx is valid then
8 identified_node← top_k_nodes[idx]
9 else

10 identified_node← top_k_nodes[0]
11 end
12 return identified_node

4.4 Generating Python Script

Once retrieval is complete, the user query, param-
eters, and selected API documentation are orga-
nized and passed to the Llama 3.1 model. Leverag-
ing retrieval-augmented generation (RAG) (Lewis
et al., 2020), the model generates an executable
Python script that interfaces with the desirable
REST API. Python is chosen over other program-
ming languages, such as Shell script, due to its
greater flexibility in integrating with various li-
braries and systems, as well as its robust error-
handling capabilities through try-except blocks.

Additionally, we have observed that the model
occasionally misspells credential strings, especially
when they are long. To address this, an interpola-
tion step is performed to validate and correct any
misspelled parameters by referencing the extracted
parameters from Section 4.2. Finally, a syntax
check is conducted to ensure the script compiles
correctly. If the script fails this check, an error is
raised.

5 Experiment

In this section, we evaluate the effectiveness of our
approach, RESTful-Llama, compared to the base-
line ReAct method. We also conduct case studies
to investigate the impact of varying the k value in
vector store retrieval.
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5.1 Experimental Setup

Hardware To ensure smooth execution with suf-
ficient GPU memory, we utilize a single Nvidia
A100 40GB GPU. Both the Llama and Mis-
tral (Jiang et al., 2023) models are run in bfloat16
(BF16) mode, offering a balance between accuracy
and memory efficiency.

Datasets and Task To evaluate the performance
of RESTful-Llama, we source eight out-of-training-
distribution API categories from RapidAPI, includ-
ing common real-world APIs such as Zillow, Urban
Dictionary, Yahoo Finance, Booking.com, Twitter,
NBA API, Google News, and Steam. We conduct a
survey with two REST API users to gather 400 user
queries related to these APIs. The task is defined
as translating each user query into an executable
Python script for the corresponding REST API call.

Evaluation Metrics For each task, we prepare a
solution Python script that performs the intended
action of the user query. Both the actual and ex-
pected Python scripts are executed. We then com-
pare the REST API status codes and the field val-
ues in the response payload against the expected
outcomes. A successful translation is defined as
one where both the status codes and payload val-
ues from the actual script match those from the
expected script.

We benchmark RESTful-Llama performance
against ReAct with Llama 3.1-8B instruct model
(baseline), which is adapted to the same REST API
query task. For a fair comparison, we use the same
vector store for both our approach and the baseline.
To process the collected user queries, we configure
the vector store retrieval with the top-5 results (i.e.,
k = 5) and import the corresponding RapidAPI
documentation.

5.2 Results

Table 2: Success Rate (SR) and Average Time Compari-
son of Different Methods (Llama 3.1-8B)

Method
Vector Store
Retrieval SR

Final
SR

Avg Time ± Std
(s)

RESTful-Llama
(w/ fine-tuning)

0.98 0.95 9.01 ± 1.13

RESTful-Llama
(no fine-tuning)

0.91 0.85 11.48 ± 1.68

ReAct 0.86 0.72 21.03 ± 21.88

Table 2 provides a comparison of success rates
(SR) and average task time across different meth-
ods using Llama 3.1-8B. The results highlight the
performance of RESTful-Llama with Llama 3.1-

8B fine-tuned on the DOC_Mine-generated dataset,
RESTful-Llama using the vanilla Llama 3.1-8B,
and ReAct paired with the vanilla Llama 3.1-8B.
The table also reports vector store retrieval SR, as
errors in retrieval often result in incorrect REST
API endpoints and unexpected outcomes.

With fine-tuning on the DOC_Mine-generated
dataset, RESTful-Llama’s vector store retrieval SR
improves by 7.7%, and the final SR increases by
11.7%. Although the APIs used in testing are out-
of-training distribution and unrelated to the fine-
tuning dataset, we hypothesize that fine-tuning en-
hances the model’s understanding of REST API
documentation, thereby improving its vector store
retrieval SR. Beyond these gains, a deeper analy-
sis shows that the fine-tuned model adheres more
closely to RESTful-Llama’s template and work-
flow, which further enhances its robustness.

Furthermore, RESTful-Llama achieves a 31.9%
higher final SR compared to the ReAct method with
its final SR of 95%, demonstrating its reliability in
converting user queries into REST API calls. In
contrast, an analysis of ReAct’s errors highlights its
struggles with extracting critical information and
issues related to hallucinations.

Regarding the runtime, RESTful-Llama takes an
average of 9.01 seconds to convert a user query into
an executable Python script, compared to 21.03 sec-
onds for ReAct, demonstrating a 2.33x speed im-
provement. Additionally, RESTful-Llama reduces
the standard deviation by 19.36x, indicating much
more consistent query response times. This effi-
ciency is largely due to RESTful-Llama’s reduced
reliance on a prolonged prompt prefix, which con-
tributes to more stable and predictable user wait
times.

We also measured and compared the through-
put, initialization (init) latency, and maximum GPU
memory consumption for each method. Through-
put is defined as the number of tasks completed
per second, while init latency refers to the time
required to complete the first task.

Table 3: Comparison of Other Metrics between
RESTful-Llama and ReAct (Llama 3.1-8B)

Method
Throughput
(task/sec)

Init
Latency

(sec)

Max GPU
Memory

(GB)
RESTful-Llama 0.11 16.49 15.8

ReAct 0.048 23.17 33.6

Table 3 demonstrates that RESTful-Llama de-
livers a 2.29 improvement in throughput and a
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1.41x reduction in latency compared to ReAct.
Additionally, RESTful-Llama uses just 15.8 GB
of GPU memory, which is 53% less than Re-
Act. This increased efficiency, along with sig-
nificantly lower memory consumption, makes
RESTful-Llama more cost-effective and practical
for real-world deployment.

Table 4: Success Rate (SR) and Time Comparison of
Different Methods (Mistral-7B-v0.3)

Method
Vector Store
Retrieval SR

Final
SR

Avg Time ± Std
(s)

RESTful-Llama
(w/ fine-tuning)

0.87 0.77 14.47 ± 2.40

RESTful-Llama
(no fine-tuning)

0.93 0.88 15.40 ± 2.24

ReAct 0.91 0.85 65.59 ± 66.04

Lastly, we tested RESTful-Llama with the
Mistral-7B v0.3 model (Table 4). Interestingly,
the fine-tuned version of RESTful-Llama did not
outperform the non-fine-tuned or ReAct methods
in this case. We hypothesize that this is due to
the DOC_Mine fine-tuning dataset not aligning
well with the Mistral template. However, RESTful-
Llama with no fine-tuning still demonstrates some
improvement in accuracy over ReAct, and its pro-
cessing time is significantly faster.

5.3 Ablation Study

Table 5: Success Rates and Time Comparison for Dif-
ferent k Values (Llama 3.1-8B)

Name
Vector Store

Retrieval
SR

Final
SR

Avg Time ± Std
Time (s)

k=1 0.90 0.88 9.00 ± 1.42
k=5 0.98 0.95 9.01 ± 1.13

As shown in Table 5, we assess the benefit of
using the model to select the best node from the top-
k nodes, compared to directly choosing the node
with the highest cosine similarity to the user query
(i.e., k = 1).

Directly using the node with the highest cosine
similarity significantly degrades RESTful-Llama’s
performance due to the high vector store retrieval
error rate. Instead, k = 5 offers a much higher
SR with only a minimal increase in average task
execution time.

6 Industrial Application

In this section, we briefly describe how RESTful-
Llama is adapted and deployed in the real world.

RESTful-
Llama

Firefighter
System

Figure 3: RESTful-Llama with fire department system

As shown in Figure 3, RESTful-Llama is integrated
into a fire department system to assist firefighters
in their operations. This integration enables indi-
viduals with no technical background and minimal
training to effectively use the system. Users can
submit queries, which RESTful-Llama translates
into system commands, displaying the results back
to the users.

7 Conclusion

In this paper, we introduce RESTful-Llama, a novel
framework that bridges the gap between natural
language processing and RESTful API operations
for real-world applications. Specifically, we fine-
tune the Llama 3.1 model to better align with the
RESTful-Llama framework, which subsequently
generates Python scripts that invoke the desired
REST APIs according to user queries. Our exper-
imental results demonstrate that RESTful-Llama
outperforms existing methods, improving both ro-
bustness and efficiency in API interactions.

Limitations

While RESTful-Llama shows significant perfor-
mance improvements over previous methods, its
scalability in managing concurrent API calls on a
large scale remains untested. Future work should
explore optimizations in the underlying serving
infrastructure or configurations to enhance through-
put and handle larger volumes of requests more
effectively.

Additionally, the current implementation’s abil-
ity to robustly handle errors or unexpected inputs is
still underdeveloped, and this remains an area for
future improvement. Another potential enhance-
ment involves allowing the framework to memo-
rize historical user queries, which could enable two
strategies: retrieving cached responses to speed up
processing or learning from past correct and incor-
rect responses using techniques like reinforcement
learning. Addressing these limitations will be the
focus of our future work.
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Ethical Considerations

This section outlines the ethical considerations in-
volved in the research presented in this paper, with
a particular focus on data privacy, security, and
fairness.

• Data Privacy and Security: RESTful-Llama
and DOC_Mine only use publicly available
REST API documentation and avoid propri-
etary or sensitive data. Furthermore, any gen-
erated dataset with PII or NSFW content is
filtered out. Additionally, both GPT-4o for
dataset generation and Llama 3.1 for REST
API script generation comply with data pri-
vacy standards.

• Bias Mitigation: To ensure fairness, we em-
ploy strategies to minimize bias in the dataset.
DOC_Mine sources API documentation from
diverse industries to reduce bias toward any
specific domain. Additionally, we include var-
ious international user contexts, such as differ-
ent English dialects, to ensure that generated
queries are inclusive and applicable to a wide
range of user groups.

• Risk Control and Accountability: RESTful-
Llama operates in a controlled environment by
generating only REST API scripts, which pro-
vide greater control over potential risks since
API endpoints are fully manageable. The sys-
tem relies on well-documented, publicly avail-
able APIs, enabling users to easily understand
and monitor the process. However, as the
generated results may be unpredictable, users
should carefully evaluate potential risks be-
fore deployment.
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A Contextual Parameters
Table 6: Contextual Parameters for Tailoring Prompts

Context Category Groups

Gender Group
Male, Female,

Non-binary

User Mood
Happy, Sad, Angry,

Relaxed

English Dialect
American, British,

Australian, New Zealand,
South African, Indian

Age Group
Teen, Adult,

Senior

B Data Cleaning and Filtering Statistics

Table 7: Data Cleaning and Filtering Overview

Name Initial
Count

Filter
Count

Final
Count

Spotify 38,016 28,412 9,604
Notion 9,936 7,764 2,172
Slack 50,976 39,194 11,782
PayPal 45,360 41,129 4,231
OpenAI 13,392 11,213 2,179
Total 157,680 127,712 29,968

C Training hyper-parameters

Table 8: Fine-tuning Hyper-parameters

Parameter Value
Learning Rate 1.0e-4
Training Epochs 3.0
LR Scheduler Type cosine
Warmup Ratio 0.1
Precision BF16
LoRA Rank 8
LoRA Alpha 32
Dropout Rate 0.1

D DOC_Mine Trace
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You are exceptionally skilled at using REST API with Python. You 
have access to this API documentation:

Rest API Doc:
…

Guideline:
Provide a Python script using request library that demonstrates 
how to use this API. Don't include any curl command. Start with 
"Here's the Python script ```python”

You are a human user attempting to send a human command to 
an LLM that will result in a RESTful API Python script. Here is a 
Python script:

Python script: 
…

Guideline:
Context: You are a {gender_group} human and feeling 
{user_mood}. You are a {age_group} user and use 
{user_english_dialect} English dialect. You are attempting to use 
the REST API to enhance your experience.
Provide a concise natural language command that would result 
in this script when translated by an LLM. Following this 
template. Include necessary parameters. Do not start with 
\'Write a Python script\'. Be creative.Natural 

Language Query

Parameters
You are a helpful AI assistant trying to guide a user through a 
process. Merge the query and parameter into one sentence:

Query:
…
Parameter:
…
Strictly use existing query and parameters.

Merged Natural 
Language Query 
with parameters

REST API Doc

Figure 4: DOC_Mine Trace - Blue areas are placeholders to be filled in within the template. Orange boxes provide
context, while green boxes contain instructions.
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