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Introduction

It is our great pleasure to welcome you to the Seventh Workshop on e-Commerce and NLP
(ECNLP).

This workshop focuses on intersection of Natural Language Processing (NLP) and e-
Commerce. NLP and information retrieval (IR) have been powering e-Commerce applications
since the early days of the fields. Today, NLP and IR already play a significant role in
e-Commerce tasks, including product search, recommender systems, product question
answering, machine translation, sentiment analysis, product description and review
summarization, and customer review processing. With the exploding popularity of chatbots
and shopping assistants -– both text- and voice-based -– NLP, IR, question answering, and
dialogue systems research is poised to transform e-Commerce once again.

The ECNLP workshop series was designed to provide a venue for the dissemination of
late-breaking research results and ideas related to e-commerce and online shopping, as well
as a forum where new and unfinished ideas could be discussed. This is the seventh edition of
the workshop since its inception in 2019.

We have received a larger number of submissions than we could accept for presentation,
(55% acceptance rate). The selection process was competitive and we believe it resulted in
a balanced and varied program that is appealing to audiences from the various sub-areas of
e-Commerce.

We would like to thank everyone who submitted a paper to the workshop. We would also like to
express our gratitude to the members of the Program Committee for their timely reviews, and
for supporting the tight schedule by providing reviews at short notice.

We hope that you enjoy the workshop!

The ECNLP Organizers April 2024
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Meta

mfarber@meta.com, slavanov@meta.com, idoguy@acm.org

Abstract
In the rapidly evolving landscape of e-commerce, product returns have become a significant economic burden for
businesses, where the reasons for returns may vary from wrong sizing and defective products to simply no longer
needing the purchased product. This paper presents, to the best of our knowledge, the first comprehensive study of
the complexities of product returns across a variety of e-commerce domains, focusing on the task of predicting the
return reason. We propose a supervised approach for predicting return likelihood and the underlying return reason.
We test our approach over a real-world dataset from a large e-commerce platform.

Keywords: e-commerce, product return, return reason prediction

1. Introduction

Due to the rapid growth of the e-commerce industry
in the past years, online selling has become very
trending. E-commerce platforms deal with many
technological problems such as recommendations
and personalization, search, product categoriza-
tion, content generation, and various logistic as-
pects such as inventory optimization and delivery.
The e-commerce supply chain is becoming more
complex as organisations are both expanding their
businesses geographically and increasing their sup-
plier base to continue their growth. Consumers are
frequently ordering and returning items (the return
rate may vary from 5% to up to 60% (Zhu et al.,
2018; Cullinane et al., 2019; Li et al., 2018), de-
pendent on product category, returns policy and
other reasons). Moreover, some buyers will not
make a purchase if there is no return policy and
will prefer sellers that provide comfortable and fair
return policy (Hjort and Lantz, 2016).

Managing product returns in e-commerce is an
important problem in the past years due to several
main factors. The first is financial impact, since
high return rates can significantly impact a retailer’s
bottom line. Returns lead to additional costs in
terms of restocking, and potential loss of saleable
inventory, which can erode profit margins. Second
factor is customer satisfaction. A smooth return
process is crucial for maintaining customer satis-
faction and trust. Negative experiences with returns
can lead to loss of customer loyalty and negative
word-of-mouth, impacting future sales. This factor
includes resource allocation and inventory man-
agement. Handling returns requires time, labor,
and infrastructure, diverting resources from other
essential business operations. An efficient return
management system is needed to minimize these
resource demands. Moreover, high return rates
can disrupt inventory management and forecasting,
making it more challenging for retailers to maintain

optimal stock levels and meet customer demand.
Last but not the least factor is the environmental im-
pact. Frequent returns contribute to higher carbon
emissions due to increased transportation needs
for reverse logistics. Additionally, returned items
may end up in landfills if they cannot be resold, con-
tributing to waste and pollution. Hence, by investing
effort in dealing with the problem of product returns,
e-commerce businesses can improve their financial
performance, enhance customer satisfaction, opti-
mize resource allocation, maintain better inventory
management and even reduce their environmental
impact.

The problem of products returns can be seen as
part of a wider field of reverse logistics. In general,
reverse logistics is the process of managing the flow
of goods from the point of consumption back to the
point of origin for various purposes such as returns,
repairs, recycling, or disposal. In the context of
e-commerce, reverse logistics primarily deals with
the management of product returns. Managing re-
verse logistics effectively in e-commerce requires
a combination of efficient processes, technology,
and partnerships. By addressing these challenges,
retailers can minimize the financial and environmen-
tal impact of returns, improve customer satisfaction,
and maintain optimal inventory levels.

In this paper we present a deep-dive study of
the complexities of product returns across a variety
of e-commerce domains, focusing on the task of
predicting the return reasons. To the best of our
knowledge we are the first to extensively study this
problem in general e-commerce setting, in opposite
to previous works that focus on specific domains
or specific reasons. We propose an ensemble-
based machine learning approach for predicting
return likelihood and the underlying return reason.
We showcase the performance of our proposed
approach over real-world dataset of product trans-
action from a large e-commerce platform.
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2. Related Work

Many works studied product returns in e-commerce,
however, in general, the problem of product return
prediction in e-commerce has not attracted much
attention from the data mining community, despite
the large amount of data available from historical
purchase and return records (Li et al., 2018). A
line of papers that is most related to our work, fo-
cus on predictive analytics using machine learning
methods (e.g., (Fuchs and Lutz, 2021; Ma and Kim,
2016; Urbanke et al., 2015)). These works apply
advanced data mining and machine learning tech-
niques to predict the likelihood of product returns
and in some cases try to predict the return reason.
These predictive models can help businesses iden-
tify high-risk customers or products, allowing for
proactive interventions to reduce return rates. For
example, Urbanke et al. (Urbanke et al., 2015) use
feature extraction to generate a large set of fea-
tures that are originated from various categorical
variables such as return history, preferred payment
method and device information from which the re-
turned product was originally ordered. Some infor-
mation is available only after the customer finishes
the transaction, hence this methods limits the abil-
ity to take proactive actions. Other works focus on
improvements in product information, images, and
descriptions, which can reduce return rates by en-
suring that customers have a clear understanding
of what they are purchasing. The works mentioned
above focus on prediction of the return event (bi-
nary classification). In our paper we focus on the
more fine-grained task of predicting a return reason
out of large list of possible reasons.

Moreover, while in our paper we work on var-
ious e-commerce domains, some of the papers
(e.g. (Seewald et al., 2019; Nestler et al., 2021;
Kedia et al., 2019)) focus on fashion, where the
return rate may reach up to 60% (Zhu et al., 2018;
Cullinane et al., 2019; Li et al., 2018). One of
the most popular reason for returns in fashion is
wrong size(Nestler et al., 2021). To deal with the
size-related returns, some works propose methods
that unify sizes across different platforms (e.g., (Du
et al., 2019)) and help users to choose the correct
size on any platform. Other works (e.g., (Abdulla
and Borar, 2017)) proposed personalized size rec-
ommendations, or other innovative tools to prevent
the return event (Castelblanco DÃaz, 2021). Many
works try to proactively predict the return event, e.g.
Kedia et al. (Kedia et al., 2019) that proposes a
method to predict the chance that the customer will
return the product even before the order is com-
pleted. It uses deep neural network model that
uses latent size and fit features of the product and
the customer. As mentioned above, in this work we
do not focus on any specific domain, but provide a

solution for various domains that predicts the return
event and the return reason for a specific product,
given only information about the product.

Other line of works (e.g., (Hjort and Lantz, 2016;
El Kihal et al., 2021; Ambilkar et al., 2022)) study
the connection between the returns and the return
policies: These studies focused on understanding
the impact of different return policies on consumer
behavior, sales, and returns. They observe that fac-
tors such as return time windows, restocking fees,
and return shipping costs, can affect the customer
satisfaction and minimizing return rates.

Finally, returns management in e-commerce can
be viewed as part of a larger problem of reverse
logistics management. The reverse logistics opti-
mization research (e.g., (EL HACHIMI et al., 2018;
Sandhya and Kumara, 2020)) focuses on improv-
ing the efficiency and cost-effectiveness of reverse
logistics processes, such as transportation, inspec-
tion, refurbishment, and disposition of returned
products. The goal is to minimize the financial and
environmental impact of returns.

3. Dataset and characteristics

We start by describing the dataset utilized in this
work. Our dataset is obtained from one of the
largest e-commerce platforms, covering 618240
products across 2928 categories from 26 domains.
Each entry in the dataset is associated with a trans-
action, with an indication regarding whether it was
resulted in return. The data is split 50/50, with
309120 of the entries resulted in return and 309120
did not result in return. In case of a return, the cus-
tomer can choose one of predefined 13 options as
the return reason, whose distribution is presented in
Table 1. Customers can also include free-form text
elaborating on the return reason, and ∼10% chose
to do so. In addition, the following information re-
garding the products and transactions is provided:
Textual features (product name, category and de-
scription), numerical features (product price and
quantity) and categorical features (product size,
transaction country, transaction platform, coarse
platform category).

4. Returns prediction

In this paper we deal with two types of prediction
tasks: Binary prediction - whether the product is
going to be returned, and Multiclass prediction -
Predicting a return reason for products that were
returned. Here we analyze two types of return rea-
sons lists - an extensive list consisting of all avail-
able return reasons (see Section 3), and a concise
list consisted of common 5 reasons. To examine
the contribution of the different features, for each
task we train several models, some of them utilize
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Table 1: Distribution of return reason across our
dataset

Return reason Percentage
Too small 21.0%
Too large 15.4%
Item quality not as expected 10.3%
Not needed anymore 9.9%
Inaccurate description 9.2%
Did not like the style 8.7%
Bought by mistake 7.7%
Defective item 5.7%
Damaged item 4.1%
Wrong item received 3.9%
Did not like the color 2.2%
Found better price 1.2%
Item not compatible 0.6%

only textual features while others utilize the entire
range of features. For the latter type of tasks, an
analysis of the features importance is provided.

4.1. Methods
As described in Section 3, our dataset consists of
several types of features: textual, categorical and
numerical. To train a range of models on a tabular
data utilizing those different types, we use Auto-
Gluon (Erickson et al., 2020). This is an AutoML
package that trains common types of classification
models (including tree-based, neural networks and
transformers), and performs model selection and
hyperparameters tuning. The models are then com-
bined to produce an ensemble model that provides
the final predictions (Shi et al., 2021).

We use TabularPredictor with multimodal support
1 to train models that utilize numerical, categorical
and textual features. Models that utilize only textual
features are trained using TextPredictor 2. For both
TabularPredictor and TextPredictor, transformers-
based model ELECTRA (Clark et al., 2020) with
the hyperparameters specified in footnote 1 is used
to train classification task on the textual features.
Textual features are concatenated with a separator
between each pair. In TabularPredictor, the categor-
ical and numerical features are fed into tree based
models like XGBoost as well as well as neural net-
works (see Figure 1 on page 3 in (Erickson et al.,
2020) for details), and the final model is formed
from an ensemble of these models together with
the Electra model mentioned above.

In our experiments, the data is split randomly
into training (70%), validation (15%) and test (15%),

1https://auto.gluon.ai/0.4.0/
tutorials/text_prediction/multimodal_
text.html

2https://auto.gluon.ai/0.0.15/
tutorials/text_prediction/beginner.html

Table 2: Multi-class performance (full set of rea-
sons).

Model features Accuracy Macro F1
Product Category 0.255 0.119
Product name 0.319 0.202
Product description 0.322 0.220
All textual features 0.337 0.223
All features (ensemble) 0.352 0.249

with a distinct set of products belonging to each.
Results are reported on the test set.

4.2. Experiments and Results
The binary model for predicting a return, based on
ensemble with all features, reached 0.942 ROC
AUC on the test set, with 0.876 F1 score and 0.877
accuracy. This accuracy reduces a bit to 0.866
when utilizing textual features only. This is on par
or above with previously reported results for this
task (Zhu et al., 2018; Urbanke et al., 2015; Li et al.,
2018).

As the binary classification task is already well
studied (see above and Section 2) and achieves
high accuracy, we move to the more challenging
task of predicting the specific return reason. For
this purpose, we limit the data only to entries that
resulted in a return, and build a classifier to predict
the return reason. First we perform the experiments
on the full list of 13 return reasons using the mod-
els described in Section 4.1. Table 2 summarizes
the results over different facets of the products as
features. When limiting to a single textual feature,
performance is higher when using the product de-
scription, compared to using its name only and, in
turn, category. It makes sense as the description
contains richer data compared to the other 2 fields,
and is directly tied to some of the return reasons
(e.g "inaccurate description"). Using all the 3 textual
features yields further performance boost, and us-
ing all available features via an ensemble reaches
the highest performance at 0.352 accuracy.

To gain a deeper understanding of the roles the
different features play, we display feature impor-
tance in Table 3. The importance of each feature
is measured via the impact on model’s accuracy
when fixing the rest of the features and permuting
the entries of the given feature3. We can see that
product description (which intuitively contains the
most rich information about the product) is the most
important feature, followed by product category. In
fact, all features except of country and quantity have
significant importance (p-value smaller than 0.01).

3https://auto.gluon.ai/stable/api/
autogluon.tabular.TabularPredictor.
feature_importance.html
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Table 3: Feature importance (full set of reasons).

Feature Importance p-value
Description 0.061 0.000007
Inferred Model Category 0.035 0.0002
Size 0.021 0.00008
Page category name 0.017 0.001
Checkout product 0.014 0.00003
Name 0.011 0.002
Price 0.007 0.0004
Country 0.001 0.15
Pack Quantity 0.001 0.08

Since our data is based mostly in the US and the
majority of product quantities is 1, these features
become somewhat redundant, which explains their
low importance. The high importance of the textual
features is also reflected in the fact that the model
that was trained on textual features only is not sig-
nificantly inferior compared to the best performing
model.

The relatively low accuracy, even of the best per-
forming model, can be explained by the following
factors: 1) The data is highly unbalanced, with
some of the return reasons having very few en-
tries in the dataset (see Table 1), making it much
harder to infer those. 2) Some of the return rea-
sons require much deeper familiarity with the cus-
tomer or the product journey which is not present
in the data we have ("item not needed anymore",
"bought by mistake", "wrong item received", etc).
3) The predefined list of return reasons provided
by the e-commerce platform includes many sub-
jective and also not so well defined/overlapping
reasons (e.g "item not compatible" vs "item qual-
ity not as expected", and also "defective item" vs
"damaged item", etc). Customer’s confusion is also
demonstrated in the free text responses that they
provide, which sometimes are not aligned with the
reason they picked from the list. To demonstrate the
model’s difficulty to distinguish between "overlap-
ping" reasons, we examined the confusion matrix.
Consider the following two return reasons: "found
better price" and "not needed anymore". These
reasons overlap, since if the customer found the
same item in a better price, then they don’t need
this item anymore. In our dataset the latter reason
is 8 times more common than the former. Thus, un-
surprisingly, 24% of the test samples who belong to
"found better price" category were labeled as "not
needed anymore" by the model (most common la-
bel for this category). Similar phenomenon occurs
for the classes "item not compatible" and "defective
item". The latter is 9 times more common that the
former, and is labeled as such by the model in 40%
of the cases that belong to "item not compatible".

Table 4: Distribution of return reason across our
dataset, when limiting to 5 common return reasons

Wrong
size Quality No

need

De-
scrip-
tion

Defec-
tive

50.9% 14.4% 13.9% 12.8% 8.0%

Table 5: Multi-class performance (5 common rea-
sons).

Model features Accuracy Macro F1
All textual features 0.648 0.464
All features (ensemble) 0.656 0.463

4.2.1. Predicting common return reasons

To alleviate some of the issues above, we filtered
a more concise list of 5 common return reasons:
Wrong size - union of too small and too large, item
quality not as expected (Quality), not needed any-
more (No need), inaccurate description (Descrip-
tion), and defective item (Defective). Their distribu-
tion is presented in Table 4.

Table 5 shows the performance of the prediction
model when limiting the data to these reasons. It is
substantially higher than in the previous task, indi-
cating they could be distinguished more effectively,
with accuracy reaching 0.656 using the ensemble
with all features. Note that this is significantly bet-
ter than the baseline of choosing the most com-
mon class (wrong size), which according to Table 4
would have reached an accuracy of 0.509. In Ta-
ble 6 we detail the precision and recall over each
of the 5 reasons.

To provide more insights into the ensemble
model , we depict in Figure 1 the components of
the ensemble (trained on all features), showing
the score of each one on the validation set, as
well as the score of the ensemble on the validation
set. The weights of each component within the en-
semble are as follows: XGBoost: 0.26, NeuralNet-
Torch: 0.05, LightGBMLarge: 0.32, TextPredictor:
0.37 (see https://auto.gluon.ai/ for details
about these models). This demonstrates the high

Table 6: Precision and recall of the ensemble clas-
sifier across each of the 5 reasons.

Reason Precision Recall
Wrong size 0.776 0.978
Quality 0.396 0.253
No need 0.421 0.339
Description 0.463 0.374
Defective 0.531 0.346
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Figure 1: Composition of the top performer ensem-
ble model, predicting 5 return reasons

importance of the textual features, with the TextPre-
dictor model receiving the highest weight among
the list.

Next we display in Table 9 the confusion matrix
between the classes. Naturally as "wrong size" is
the largest class (and significantly larger compared
to the others), some of the data that belongs to the
other classes is predicted as "wrong size". Other
than that, the diagonal elements are the largest in
each row, meaning that for each class, the largest
bucket predicted is indeed the class itself.

Table 7: Distribution of return reason across the 5
most common domains.

Reason Clothing Home J&W H&B Electronics

Wrong size 78.1% 0.7% 43.1% 4.7% 9.5%
Quality 8.9% 29.7% 21.6% 35.9% 12.7%
No need 6.9% 30.2% 16.3% 30.8% 26.7%
Description 4.4% 27.3% 12.1% 15.3% 17.9%
Defective 1.7% 12.2% 6.8% 13.3% 33.2%

4.2.2. Cross-domain analysis

As mentioned in Section 3, our dataset spans a vari-
ety of e-commerce domains. We set out to compare
product return behavior and predictability across
different domains. To this end, we considered the
5 most common domains in our dataset, which ac-
count overall for 85% of the return instances. As
Table 7 shows, the distribution of return reasons
varies substantially over these domains. Particu-
larly, the distribution within the Clothing domain,
where most of the previous work has focused, as
mentioned in Section 2, is largely different than
within other domains, reinforcing the need to study
product return behavior across multiple domains.
As might be expected, the majority of returns in the
Clothing domain (nearly 80%), are due to wrong
size. The only other domain where “wrong size” is
the most common reason is Jewelry & Watches,
but to a lesser extent than in Clothing. In the Home
and Health & Beauty domains, wrong size is a rare
return reason. In Home, “quality not expected”, “not
needed anymore” and “inaccurate description” are
the most common reasons. In Electronics, “defec-
tive item” is the most common.

After observing the notable differences in return
reasons across e-commerce domains, we set out

Table 8: Performance of the ensemble model
across the 5 most common domains.

Reason Accuracy Macro F1
Clothing 0.790 0.243
Home 0.410 0.334
Jewelry & Watches 0.472 0.314
Health & Beauty 0.456 0.363
Electronics 0.505 0.432

to examine the performance differences of our en-
semble classifier across domains. Table 8 sum-
marizes these results. The performance in the
Clothing domain is noticeably different than in all
other domains. Accuracy reaches 0.79, higher than
any other domain, whereas macro F1 is the low-
est among all domains. This is due to particularly
strong performance of the classifier for the “wrong
size” reason, at the expense of the performance for
other reasons. In fact, on the Clothing domain, the
accuracy of the ensemble model yield an uplift of
only 1% compared to a majority baselines always
deeming the reason as “wrong size” (see Table 7).
Yet, the uplift in Macro F1 is more substantial, and,
as discussed, the overall performance of the model
across all categories is substantially higher than
the majority baseline.

For the other four domains, results are more sim-
ilar across reasons, which yields a more balanced
trade-off between the accuracy and macro F1 met-
rics. For the Electronics domain, macro F1 is the
highest, while accuracy is second best among the
5 domains. Table 10 demonstrates the precision
and recall across the 5 reasons for Electronics. It
can be seen that precision and recall are fairly high
for three of the reasons: “wrong size”, “defective
item”, and “not needed anymore”. It is especially
interesting to observe the performance for “wrong
size” which account for only 9.5% of the Electron-
ics returns (Table 7). This may indicate that the
model learns to generalize this reason from other
categories, where it is more frequent (e.g., Cloth-
ing). We leave further exploration of cross-domain
transfer learning for future work.

Table 10: Precision and recall of the ensemble
classifier over the Electronics domain across each
of the 5 reasons.

Reason Precision Recall
Wrong size 0.554 0.864
Quality 0.293 0.119
No need 0.518 0.587
Description 0.238 0.099
Defective 0.552 0.716
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Table 9: Confusion matrix for the 5 classes prediction model. Rows represent GT label and columns
represent model’s prediction. Rows are normalized.

Wrong size Quality No need Description Defective

Wrong size 0.978 0.008 0.007 0.007 0.000

Quality 0.391 0.252 0.168 0.139 0.048

No need 0.309 0.158 0.338 0.128 0.064

Description 0.245 0.147 0.166 0.373 0.066

Defective 0.156 0.118 0.176 0.202 0.345

5. Conclusions

In this work, we study the problem of product re-
turns in e-commerce. To the best of our knowledge,
we are the first to systematically investigate the un-
derlying reasons for returns and aims to predict in
e-commerce in general, as opposed to focusing
on specific domains. In this paper we proposed
an ensemble-based machine learning approach for
predicting return likelihood and the underlying re-
turn reason. The proposed method was tested over
real-world dataset of product transactions from a
large e-commerce platform.
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Abstract
The context of modern smart voice assistants is often multi-modal, where images, audio and video content are
consumed by users simultaneously. In such a setup, co-reference resolution is especially challenging, and runs
across modalities and dialogue turns. We explore the problem of multi-modal co-reference resolution in multi-turn
dialogues and quantify the performance of multi-modal LLMs on a specially curated dataset of long, image-interleaved
conversations between a voice assistant and human in a shopping use case. We propose a custom architecture
for multi-modal embedding alignment using a novel parameter augmentation technique. Our proposed Parameter
Augmented LLM approach shows a 4.9% absolute F1 improvement above a cross-attention baseline while reducing
the number of parameters being trained by 4×.

Keywords: multi-modality, co-referencing, parameter-augmentation

1. Introduction

Recent advancements in multi-modal large lan-
guage models (MLLMS) have pushed the capa-
bilities of conversational agents, extending beyond
processing and generating human-like text to in-
clude understanding and integrating multiple modal-
ities such as images and audio. These advance-
ments have led to substantial progress in tasks like
image captioning (Lin et al., 2014), image classifica-
tion (Russakovsky et al., 2015) and visual question
answering (Goyal et al., 2017). However, these
tasks often have a clear division between the text
and images, not fully reflecting the complex, inter-
woven nature of the inputs encountered by conver-
sational agents. This intertwining of visual and tex-
tual inputs is more pronounced in the environments
like online shopping, where users seamlessly shift
between textual and visual references.

Addressing this gap, Multi-modal Co-reference
Resolution (MCR) emerges as a critical challenge,
aiming to connect language and visual content by
mapping textual references to their corresponding
spatial regions in images. In this work we focus on
MCR within the context of conversational agents in
the shopping domain where the challenge is am-
plified by the vast diversity of products and the
ambiguity of natural language descriptions, mark-
ing a stark contrast to areas like visual question
answering (VQA) and image captioning. Efforts
to address MCR for conversational agents have
been relatively limited, further compounded by the
fact that most multi-modal dialogue datasets (Zang

∗equal contribution

et al., 2021; Kottur et al., 2021), contain very few
images among the dialogues. In contrast, a typical
dialogue in the shopping context can involve 5− 66
utterances, with an average of 32 images, highlight-
ing the need for specialized attention to MCR in this
domain. Figure 1 shows a sample dialogue for the
shopping use case.

Figure 1: An example of a multi-turn dialogue with
multi-modal co-referencing. The co-references are
color coded and shown by arrows.
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Among the recent efforts (Lee et al., 2022; Guo
et al., 2022; Chen et al., 2023) to address MCR
for conversational agents, an encompassing strat-
egy has been the end-to-end training of multi-modal
transformer architectures. While effective, this strat-
egy demands significant computational resources,
manifesting in both a high number of parameters
and extensive training time. To mitigate these
challenges, we propose a novel technique that
leverages existing unimodal large language models
(LLMs) and adapt them for multi-modal inputs and
outputs. Our approach augments the weights of
pre-trained unimodal LLMs to learn an alignment
with the pre-trained visual encoder’s embeddings,
thereby converting them into multi-modal system.
This method significantly reduces the number of
parameters to be trained along with a notable im-
provement in the MCR performance.

To evaluate the effectiveness of our methodology
in practical conversational tasks within the shop-
ping domain, we focus on two key areas: i) image
selection and ii) image retrieval. The image se-
lection task leverages textual and visual attributes
to identify and select the most relevant product
from a list of options; e.g., the utterance "show
me the bag with brown handles" in Figure 1. For
this, we employ the Multi-Modal Context Carryover
(MMCC) (Wanigasekara et al., 2022) dataset to as-
sess our model’s performance in accurately select-
ing the correct product based on the given criteria.
In the image retrieval task, the objective is to iden-
tify relevant products at the final turn of a multi-turn,
multi-modal dialogue.

We use the Multi-Modal Domain Aware (MMDA)
dataset (Saha et al., 2018), which is rich in image-
inclusive dialogues, for evaluating our model’s per-
formance for an image retrieval task. Our results
demonstrate a significant improvement over exist-
ing models, including the pretrained multi-modal
cross-attention model, OpenFlamingo (Awadalla
et al., 2023). We achieve an increase of approxi-
mately 5 points in F1 score, while training 4x fewer
parameters. This underscores the efficiency of our
proposed parameter augmentation methodology
for multi-modal co-reference resolution.

2. Related Work

There have been several elaborate image-text mod-
els over the years, such as CLIP (Radford et al.,
2021) and BLIP models (Li et al., 2022, 2023). The
goal of this work is aligning the embeddings of
such visual models with embeddings of pretrained
language models efficiently. Alignment can be clas-
sified as either natural language alignment or em-
bedding alignment.

2.1. Multi-Modal Alignment Approaches
Natural language alignment between vision and
language foundation models consists of first repre-
senting the vision input as text using an image-text
model (such as CLIP, BLIP, and BLIP-2) then pro-
cessing the unified text using a language model
(Guo et al., 2023; Wu et al., 2023). This has shown
to have zero-shot capabilities, but can be limited
because of its discrete nature. To overcome this, Vi-
sual ChatGPT (Wu et al., 2023) combines 22 vision
foundation models for different vision tasks and a
prompt manager that determines how the vision
foundation models are used. This is a complex and
resource-intensive setup.

Embedding alignment employs neural ap-
proaches to translate the embeddings of the vi-
sion foundation model to the embedding space of
the language model. This approach can be ro-
bust, but does not have zero-shot capabilities un-
less pretrained on a multi-modal dataset first. To
achieve such an alignment, Flamingo(Alayrac et al.,
2022), Open-Flamingo (Awadalla et al., 2023) and
BLIP (Li et al., 2022) use cross attention and con-
trastive learning objectives. BLIP2 (Li et al., 2023)
proposes a querying transformer to learn queries
for the visual embeddings. Mini-GPT4 (Zhu et al.,
2023) proposes to only train a linear projection layer
to project visual embeddings to text space. Alter-
natively, one can use convolution and linear layer
(Koh et al., 2023a; Lyu et al., 2023) with or without a
separate modality encoder (Lyu et al., 2023; Moon
et al., 2023; Koh et al., 2023b) for a similar projec-
tion. Most recently, GILL(Koh et al., 2023a) uses a
linear projection and a learnable query embeddings
module.

Currently. there are closed-source pipelines such
as GPT-4 (OpenAI, 2023; Yang et al., 2023) and
GEMINI (Team et al., 2023) that perform a similar
multi-modal co-reference resolution task as ours.
Given that they are closed-source and have the
possibility of using a multi-modal mixture of experts
setup, we do not compare our work with them.

2.2. Multi-Modal Co-Reference
Resolution

MCR bridges the gap between language and im-
ages by mapping the text to spatial regions being
referred. A closely related field, Visual Grounding
(VG) seeks to align text queries with their corre-
sponding locations in images. In the VG domain,
JR-net (Jain and Gandhi, 2022) is one of the SOTA
methods; it separately encodes images and queries
and then employs a sophisticated joint reasoning
and fusion method to generate results. VLT (Ding
et al., 2023) is another method that transforms the
image data into the same space as language to-
ken embeddings and uses a masked decoder to
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locate targets. Several datasets have also been in-
troduced to support the research in the direction of
MCR which includes CIN (Goel et al., 2022) which
is rich in co-reference chains and grounding an-
notations, and others (Parcalabescu et al., 2022;
Ramanathan et al., 2014; Cui et al., 2021; Hong
et al., 2023) that link textual mentions of people
with their images.

More recently, SIMMC2.0 and SIMMC2.1
datasets are introduced as challenges in DSTC.
These datasets encompass 11,000 task-oriented
dialogues for shopping scenarios with photore-
alistic scenes, spurring the development of nu-
merous multi-modal methods tailored to conver-
sational agents. In (Lee et al., 2022) proposes a
multi-modal encoder-decoder model that offers a
unified solution for various tasks associated with
situated conversational agents, including MCR.
GraVL (Guo et al., 2022) introduce an innovative
approach to merge Graph Neural Networks with
VL BERT capturing visual relationships alongside
dialogue and metadata for nuanced understanding.
SHIKRA (Chen et al., 2023) stands out by propos-
ing a multi-modal model capable of engaging in
referential dialogue, enabling users to input spe-
cific image regions and responding by referencing
the pertinent areas if required.

3. Our Approach

3.1. Motivation
In the techniques discussed previously (Alayrac
et al., 2022; Awadalla et al., 2023; Zhu et al., 2023;
Lyu et al., 2023; Koh et al., 2023a), there is a logi-
cal separation of input based on modalities, even
though the model may accept interleaved multi-
modal inputs. For instance, cross attention uses
one modality as attention query and another modal-
ity as attention key, whereas the querying trans-
former learns queries from one modality then feeds
it through self and cross attention layers to the other
modality. We argue that such a logical separation,
though sufficient for types of tasks where modal-
ities are separate e.g. VQA, Image Captioning
etc., is suboptimal for a multi-modal co-reference
resolution. This is in line with findings from (Koh
et al., 2023b) who observe poor performance when
performing an image retrieval task over multiple
co-referenced images. We test this hypothesis us-
ing our proposed approach, which preserves the
sequence of the multi-modal information during pro-
cessing. We use OpenFlamingo as baseline for
our experiments.

3.2. Problem Formulation
In our setup, a multi-modal dialogue D :=
{(Ui, Si, Ii)}si=1 contains s turns, each of them com-

posed of a user textual utterance Ui, the system
answer Si, and the images Ii.

Due to the nature of the chosen datasets (i.e.
shopping context), at each turn, the images Ii are
interleaved within the system utterance, while the
user utterance is fully uni-modal. Note however
that both the user and the system can reference
textual or image entities from past turns, requiring
multi-modal co-reference resolution. An example
of such an interaction is shown in Figure 1.

In what follows, we refer to token and image em-
beddings as xt and xv. Our approach relies on
augmenting a pre-trained LLM hθ(x

t) with frozen
parameters θ and hidden dimension dllm. We de-
note their augmented counterparts with a hat su-
perscript: the augmented LLM is noted hθ,θ̂(x

t),
with the set of additional parameters θ̂ and the final
augmented hidden dimension d̂llm. The difference
∆d̂ = d̂llm − dllm > 0 measures the amount of
parameters augmentation.

3.3. Architecture

3.3.1. Prompting

To aid the LLM to perform multi-modal co-
referencing, we introduce special tokens to delin-
eate the beginning and end of dialogues, as well
as the beginning and end of images. We also intro-
duce a special token (< im >) to mark the positions
of images in the text. This will then be used by the
Multi-Modal Interleaver shown in Figure 2 to insert
the image embeddings into the text embeddings
at the same position the image was in the input,
i.e, fusing the special token embeddings with the
respective image embeddings.

<dialogue>
...
<image><im></image>
...

</dialogue>

3.3.2. Linear Layer

Image embeddings are obtained from a frozen im-
age encoder vϕ that maps the collection of p im-
ages to vectors xvm ∈ Rp×dvm (e.g., CLIP (Radford
et al., 2021)). These visual embeddings need to be
aligned with text embeddings coming from the LLM
hθ(x

t) ∈ Rdllm (which also includes the placeholder
< im > tokens).

To achieve this, we simply apply a linear transfor-
mation by multipling with Wl ∈ Rdvm×dllm similar to
(Lyu et al., 2023; Koh et al., 2023b):

xv = WT
l xvm , xv ∈ Rp×dllm . (1)
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<dialogue> System: Ok – Showing Lacdo 360 Laptop Bag 
<image> </image> </dialogue>

<dialogue> User: Show me shoes that go with the bag </dialogue>

Image 
Encoder

Cross RMS Norm

Catalogue

<dialogue>System: Sure, let me just quickly browse the catalogue
<image> </image><image> </image> </dialogue>

System: Ok – Showing Lacdo 360 Laptop Bag 
User: Show me shoes that go with the bag

Linear Layer
𝑥t

Pretrained and Frozen

Trained from Scratch

Non-Parameterized 
Modules

Multi-Modal Interleaver 

Token Embedding

Parameter 
Augmented 

LLM𝑥v

Attention & FF Layers Augmente
d Params 

t <im><im> t t…

t vv t t…

Linear Mapping & Concat

t vv t t…
𝑥𝑊𝑐

𝑥 𝑥

v

xv⟵Wnorm ⨀ xv/𝜎t

xv = Wl
T xvm

𝑥vm

𝑥v

Figure 2: LLM-Agnostic Architecture for Parameter Augmentation. Boxes with t and v refers to text and
image embeddings, respectively. We optimize the linear layer, cross RMS normalization module, and
the augmented parameters, the rest of the LLM remains frozen. The Multi-Modal Interleaver looks up
the position of the images in the input sequence and inserts the image embeddings in their respective
positions.

3.3.3. Cross-modality Normalization

Previous works have demonstrated neural archi-
tectures to be especially sensitive to the statistics
of their activations, exemplified by popular layer
normalization blocks such as LayerNorm or RMS
(Zhang and Sennrich, 2019) used in LLM architec-
tures. This problem is accentuated in a multi-modal
setup; indeed, differences in activations distribu-
tions for visual and textual inputs require different
normalizations (BatchNorm in Vision vs LayerNorm
in NLP) (Shen et al., 2020). As we wish to fuse
both the image embeddings xv onto LLM token
representations xt, we compute the magnitude of
xt, averaged across the interleaved sequence, and
use them to rescale xv component-wise. More
precisely, considering a sequence of n textual em-
beddings xt ∈ Rn×dllm :

σt =

√
1

dllm × n

∑

i,j

(
xt
ij − µ(xt)

)2
, (2)

xv ← xv/σt, (3)

with 0 < i < n indexing the tokens sequence, 0 <
j < dllm indexing the features and µ(·) the mean
over both sequence and feature dimensions.

3.3.4. Multi-Modal Interleaver

The role of the Multi-Modal Interleaver (shown in
Figure 2, right-hand side) is to preserve the integrity
of the sequence of multi-modal input. Since the
images are separated from the text so that they can
be processed by the image encoder, it is possible
to lose the original order of the multi-modal input.
Recent works (Lyu et al., 2023) concatenate the
multi-modal aligned embeddings, but this changes
the sequence of the inputs that will be processed
by the model. We replace the removed images
with the special token < im > which marks the
position of the images. These special tokens will
be replaced with cross-modalities normalized em-
beddings by the Multi-Modal Interleaver. We fuse
the embeddings of the special token < im > with
the respective aligned image embeddings by a sim-
ple elementwise addition operation. The resulting
multi-modal embeddings are then passed on to the
rest of the LLM Layers as interleaved text and im-
age embeddings, as seen in Figure 2. This has
the advantage of performing the essential cross
attention operation as shown in Figure 3 without
the use of a separate module. It also preserves
the distances between tokens and images in the
dialogue, which is likely helpful for co-reference
resolution.
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Figure 3: Multi-modal Attention has the advantage
of implying both self and cross attention using the
same parameters, while preserving the original or-
der of the interleaved image-text sequence.

3.3.5. Parameter Augmentation

LLMs have been shown to exhibit the catastrophic
forgetting phenomena after being fine-tuned on
data with a different underlying distribution (Zhai
et al., 2023). A straightforward mitigation is to
freeze the LLM (Zhai et al., 2023). This is the foun-
dation principle behind Parameter Augmentation,
i.e., we freeze the uni-modal LLM parameters θ and
introduce separate parameters θ̂ to map separate
modalities together as seen in Figures 2 and 4. We
argue that this preserves the robustness of LLMs,
allowing the transfer of their high-quality represen-
tations to other modalities. To upcycle the LLM hθ(·)

Figure 4: LLM parameters are depicted with the ice
icon, showing they are frozen. The Parameter Aug-
mented LLM weights are obtained by concatenating
the frozen weights of the LLM and the augmented
parameters.

to hθ,θ̂(·), we augment the modules at each layer
by extending the hidden dimension dllm through
concatenation of additional weights: for each ex-
isting LLM weight matrix Wllm ∈ Rr×dllm , we cre-
ate Ŵllm = (Wllm|Waug), with trainable weights
where Waug ∈ Rr×∆d̂. All subsequent operations
(attention, normalization, feed forward) are there-
fore between inputs and augmented weights Ŵllm.
We demonstrate that even a small increase ∆d̂

along the hidden dimension is sufficient for the aug-
mented LLM to learn complex relationships such
as those in Figure 1. By only optimizing Waug (and
freezing Wllm), our approach reaps computation
and memory benefits. As a comparison, the base-
line (Awadalla et al., 2023) increases the LLM pa-
rameters by 18.7% while our approach increases it
by 5.3%.

After the multi-model interleaver, the sequence
of n fused image and token vectors x ∈ Rn×dllm

are still of the dimension of the original LLM dllm.
To map them to x̂ ∈ Rn×d̂llm , we add an additional
linear adapter Wc ∈ Rdllm×∆d̂:

x̂ = (x|xWc) , x̂ ∈ Rn×d̂llm . (4)

By concatenating the augmented dimensions with
the original embedding themselves, we hope to
keep intact the spatial information encoded in pre-
trained LLM embeddings (also see illustration in
Figure 4).

We can now optimize the negative log likelihood
Lθ̂ of the augmented LLM, with respect to θ̂. Ele-
ment xi at any position i below can be either image
or text, their order determined by the interleaved
sequence:

Lθ̂ = − 1

B

B∑

j=0

n∑

i=1

log
(
hθ,θ̂(xi|x0, · · · , xi−1)

)
,

(5)
where j indexes the dataset of size B.

4. Experiment Set Up

We experiment on an image selection (Wani-
gasekara et al., 2022, 2023) and a specially curated
image retrieval dataset adapted from (Saha et al.,
2018). We measure performance for image se-
lection using accuracy while we use classification
metrics (accuracy, precision, recall, F1) for the im-
age retrieval task. For both datasets, we fine-tune
the models for only 1 epoch.

4.1. Datasets
The Multi-Modal Context Carryover (MMCC)
dataset (Wanigasekara et al., 2022, 2023) is similar
to datasets used in VQA and Image Captioning, i.e.
images can be logically separated from text. The
Multi-Modal Domain Aware (MMDA) (Saha et al.,
2018) contains an average of 32 images per dia-
logue, logically separating the images from text can
impede performance. Also, in the MMDA dataset
multiple images can be correct, unlike the MMCC
dataset which has only one correct image.

The Image Selection task is performed on the
Multi-Modal Context Carryover (MMCC) dataset
(Wanigasekara et al., 2022, 2023). This dataset

12



Train Valid Test
# Dialogues 38,843 8,373 8,478
Avg # Tokens 717.5 713.7 707.9
Avg # Images 32.2 32.2 31.9
Avg # Utterances 13.3 13.1 13.1
Ratio P:N 1:6 1:6 1:6

Table 1: Dataset Statistics for the curated MMDA
dataset. The ratio P:N is the ratio of the positively
annotated images against negatively annotated im-
ages at the terminal utterance. A label is consid-
ered positive if it is relevant to the user’s query that
involves co-reference resolution.

has 33k entries, each containing 3 product images,
their descriptions and selection criteria. Given the
list of products images, product descriptions and
selection criteria, the task is to select the product
which has the highest probability to match the cri-
teria. We model this as a generation rather than a
classification task, where the LLM generates the in-
dex of the product image. We prompt this as shown
below:
Image <position><image><im><image>
<description>
Action: Given the list of images,
determine the position of the image
that satisfies the criteria
Criteria: <criteria>
Position: <MASK>

The Image Retrieval task is performed on the
Multi-Modal Domain-Aware (MMDA) (Saha et al.,
2018) dataset. We require that contexts have at
least 1 multi-modal utterance and that the last ut-
terance (where inference happens) have both pos-
itive and negative labelled data. We discard all
dialogues that do not meet this criteria. During in-
ference, we shuffle the list of positive and negative
images and predict whether each one belongs to
the last utterance or not.
User: ...
System: ...
Question: Is <image><im></image>
a good match?
Answer: <MASK>
...

4.2. Pretrained vision encoders and
multi-modal LLMs

Pretrained vision encoders: We are able to di-
rectly use pretrained vision encoders like CLIP and
BLIP as simple baselines for the image selection
task in a zero-shot manner. We extract product
image and product description text embeddings
separately. The image with the highest cosine sim-
ilarity with the textual referring utterance is chosen

as the selected image. For the image retrieval task
in a dialogue setting, the dialogue contexts are too
long for the direct use of CLIP and BLIP encoders
(717±410 tokens) so we use OpenFlamingo as our
baseline.

Pretrained multi-modal LLMs: OpenFlamingo
(Awadalla et al., 2023) is the publicly available ver-
sion of the Flamingo (Alayrac et al., 2022) LLM.
The 9B variant of OpenFlamingo is made up of a
7B MPT LLM (Team, 2023) with CLIP as the image
encoder. It is pretrained on the LAION multi-modal
dataset and so has some zero-shot capabilities. In
the image selection task, we prompt the model to
generate the index of the relevant image while for
the image retrieval task, we prompt the model to
generate a binary answer (Yes / No) for each image
in the candidates.

4.3. Augmented LLM
The parameter augmentation technique we pro-
pose is LLM-agnostic. In our experiments, we aug-
ment the parameters of the Open LLaMA (Touvron
et al., 2023a) 7B model. This model has a hidden
dimension size of 4096, we explore augmentations
in the range ∆d̂ = 0 to ∆d̂ = 256.

We prompt the augmented LLaMA similarly as
OpenFlamingo and perform ablation experiments
for both image selection and retrieval tasks, treat-
ing ∆d̂ as a hyperparameter. This augmented
LLaMA model is at a disadvantage when compared
to the OpenFlamingo model because the Open-
Flamingo model has been further fine-tuned on
multi-modal tasks using 2B image-text pairs from
the LAION (Schuhmann et al., 2022) dataset. Thus,
augmented LLaMA is not directly comparable with
OpenFlamingo in zero-shot or in-context learning
and is disadvantaged for fine-tuning. However, we
see that it out-performs pretrained OpenFlamingo
as shown in table 3

5. Results

The multi-modal multi-turn setting adds complexity
to the co-referencing problem since each user ut-
terance can reference any system utterance in the
previous turns as seen in Figures 6 and 7. In this
paper, we use image retrieval metrics as a proxy to
measure multi-modal co-referencing.

5.1. Image Selection Results
Figure 5 shows ablation experiment results on the
MMCC dataset (Wanigasekara et al., 2022, 2023).
The “linear layer" only includes the linear module
shown in Figure 2 and the “linear layer & norm"
has the linear module and the cross RMS norm
module. We sweep the hyperparameter ∆d̂ from
0 to 256 where 0 indicates no augmentation. We
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Figure 5: Ablation results of Parameter-Augmented
LLM on image selection task, showing accuracy as
a function of ∆d̂.

Figure 6: Sample Image Retrieval result for Pa-
rameter Augmented LLaMA on a dialogue with 5
utterances and 5 images before the final utterance.
In this case, F1=1.0. The green box indicates that
the image is relevant, and the red box indicates that
the image is not relevant to the user query.

observe parameter augmentation range 8− 64 to
be the best setting for both “linear layer" and “linear
layer & norm".

Table 2 shows the results using different Visual
Language models on MMCC dataset. We ob-
tain the LSTM results from previous SOTA (Wani-
gasekara et al., 2022) for the image selection task.
For the image encoders, we observe that CLIP
(Radford et al., 2021) has better performance com-
pared to BLIP (Li et al., 2022). Prompting and
fine-tuning OpenFlamingo resulted in the best per-
formance overall. Parameter Augmented LLaMA
with ∆d̂ = 32 performed better than OpenFlamingo
in zero-shot but was outperformed in in-context and
fine-tuned settings. We see that a uni-modal LLM
such as LLaMA can transfer its capabilities to the
multi-modal setting through parameter augmenta-
tion and approach the performance of a pretrained

Figure 7: Sample Image Retrieval result for Pa-
rameter Augmented LLaMA on a dialogue with 16
utterances and 6 images before the final utterance.
In this case, F1=0.8. The green box indicates that
the image is relevant, and the red box indicates that
the image is not relevant to the user query. The
orange dashed box refers to the image the user is
currently using as an example.

Model Set Up Accuracy
BLIP zero-shot 44.17%
CLIP zero-shot 77.40%
LSTM + CLIP Fine-Tuning 84.84%
LSTM + ALBEF Fine-Tuning 86.17%

OpenFlamingo
zero-shot 32.40%
In Context 38.48%
Fine-Tuning 90.12%

Parameter
Augmented
LLaMA ∆d̂ = 32

zero-shot 34.51%
In Context 34.92%
Fine-Tuning 85.95%

Table 2: Showing results of image-text models, en-
semble, OpenFlamingo and Parameter-Augmented
LLM on image selection task. LSTM results are
from previous state of the art (Wanigasekara et al.,
2022)

.

model.

5.2. Image Retrieval Results
In Table 3, we show the performance of multi-modal
LLMs on the MMDA dataset. We observe poor
zero-shot and in-context performance using Open

14



Model Experiment Set Up Accuracy Precision Recall F1

OpenFlamingo
zero-shot 35.67% 0.3472 0.9635 0.4621
In-Context 36.14% 0.3486 0.9651 0.4648
Fine-Tuning 76.70% 0.6953 0.8235 0.7240

Linear Layer Fine-Tuning 66.77% 0.5583 0.8334 0.5995

Parameter Augmented
LLaMA Fine-Tuning

Linear Layer ∆d̂ = 64 77.89% 0.7118 0.9334 0.7727
Linear Layer & Norm ∆d̂ = 64 70.93% 0.6519 0.9096 0.7135
Linear Layer ∆d̂ = 128 77.84% 0.6702 0.6510 0.6228
Linear Layer & Norm ∆d̂ = 128 70.64% 0.5997 0.9213 0.6851
Linear Layer ∆d̂ = 256 78.73% 0.6373 0.5090 0.5323
Linear Layer & Norm ∆d̂ = 256 79.05% 0.6595 0.8437 0.7122

Table 3: Showing results of a OpenFlamingo and our Parameter-Augmented LLM for image retrieval task
applied on the MMDA dataset.

Flamingo, highlighting the difficulty of the task. Af-
ter fine-tuning, the Parameter Augmented LLaMA
(∆d̂ = 64) outperforms fine-tuned OpenFlamingo.
This highlights the robustness of parameter aug-
mentation over cross-attention.

5.3. Qualitative Analysis
Figure 6 and 7 show sample result of Parameter
Augmented LLaMA on the image retrieval MMDA
dataset with F1 score of 1.0 and 0.8 respectively.
A red box around an image refers to a negatively
labelled image, while a green box refers to a pos-
itively labelled image. The dashed box refers to
the image the user is currently using as an exam-
ple. The models then predict Y es/No given a list
of images.

Our approach is able to differentiate between
styles of similar images as we show in Figure 6
where the candidate products are both sandles but
different styles, this is more granular than differ-
entiating unrelated objects e.g., sandles vs chair.
In Figure 7, we see similar capabilities over more
utterances. We attribute the false negative result
(prediction No but the box is green) in Figure 7 as
a mis-annotation because the shoe is not similar
to co-referenced shoe (shoe with orange dashed
border) and is not made of strap material nor a high
top as specified by user utterance.

In the OpenFlamingo architecture, 1.3B of the 9B
parameters are optimized, this accounts for 18.6%
with respect to its uni-modal LLM (7B). In the pa-
rameter augmented setting with ∆d̂ = 64, we op-
timize 370M parameters (5.3% of uni-modal LLM)
which is a more resource efficient setup. Thus,
our model optimizes 13.3% fewer parameters with
respect to the uni-modal LLM (in both cases, the
uni-modal LLM is 7B).

In the image selection results in Figure 5, we see
a significant drop in performance for ∆d̂ = 128 and
∆d̂ = 256. This is because it introduces more than

1.5× more parameters compared to the other aug-
mentations. The image selection dataset is com-
paratively smaller and has a total of approximately
3M tokens, and training on one epoch is insufficient
given the higher number of parameters. For image
retrieval results (Table 3), the dataset is compar-
atively larger and has approximately 30M tokens,
and so we see steady performance improvements
with higher augmentations.

The augmented LLM variant also resulted in the
best performance for the image retrieval dataset,
exceeding that of a model with 1.2× parameters,
trained on 20k× more data while optimizing 3.5×
fewer parameters. We see more gains for the
MMDA dataset than the MMCC dataset, where the
co-reference is simpler. This is in line with our hy-
pothesis - we reap more benefits from using param-
eter augmentation when the degree of multi-modal
co-referencing increases.

For the image selection task based on Figure
5, for augmentation ∆d̂ = 128 and ∆d̂ = 256, the
Cross Normalization is significantly outperformed
by the normalization ablation. Overall, variants
with cross normalization are outperformed by the
variants without normalization. We observe a dif-
ferent trend for image retrieval in that the ∆d̂ = 256
augmented LLaMA, with normalization performing
better than without normalization, setting the best
accuracy result (see Table 3). However, we ob-
serve more over-fitting to the data when normaliza-
tion is used, creating the need for a better design
for multi-modal normalization. We will explore this
in our future work.

6. Conclusion

We explore the possibility to leverage existing pre-
trained LLM capabilities and offer a simple and ro-
bust parameter augmentation technique that does
not require additional multi-modal pre-training tasks.
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We demonstrate competitive results in image selec-
tion and best results in the image retrieval dataset
compared to a cross-attention baseline pre-trained
on billions of multi-modal examples.
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Abstract
Expansion-enhanced sparse lexical representation improves information retrieval (IR) by minimizing vocabulary
mismatch problems during lexical matching. In this paper, we explore the potential of jointly learning dense semantic
representation and combining it with the lexical one for ranking candidate information. We present a hybrid
information retrieval mechanism that maximizes lexical and semantic matching while minimizing their shortcomings.
Our architecture consists of dual hybrid encoders that independently encode queries and information elements. Each
encoder jointly learns a dense semantic representation and a sparse lexical representation augmented by a learnable
term expansion of the corresponding text through contrastive learning. We demonstrate the efficacy of our model
in single-stage ranking of a benchmark product question-answering dataset containing the typical heterogeneous
information available on online product pages. Our evaluation demonstrates that our hybrid approach outperforms
independently trained retrievers by 10.95% (sparse) and 2.7% (dense) in MRR@5 score. Moreover, our model offers
better interpretability and performs comparably to state-of-the-art cross encoders while reducing response time by
30% (latency) and cutting computational load by approximately 38% (FLOPs).

Keywords: Hybrid Information Retrieval, Interpretability, Heterogeneous Product Question-Answering

1. Introduction

In the field of natural language processing, ranked
information retrieval (IR), refers to retrieving infor-
mation ordered by relevance from a large collection,
in response to a query. Ranked IR remains impor-
tant even with the emergence of advanced large
language models (LLMs) as a means of greatly
enriching their outputs.

Existing retrieval approaches can be categorized
into two groups - sparse and dense. Sparse re-
trieval uses a token-based sparse representation
of the query and the information, such as bag-of-
words (BoW) obtained via TF-IDF (Sparck Jones,
1988) or BM25 (Robertson and Walker, 1994), and
an inverted index for query processing. Although
these BoW models facilitate faster retrieval, they
rely on exact matches, and hence cannot identify
semantically relevant information having a different
set of tokens than the query. Dense retrieval, on
the other hand, retrieves by comparing dense rep-
resentations often computed by neural networks
such as BERT (Devlin et al., 2019). While these
models can perform semantic-level matching, their
computational complexity renders them impracti-
cal for online real-time ranking when the corpus
becomes large.

In an effort to balance the quality-cost trade-off,
a two-stage pipeline is proposed where a quicker
retriever first retrieves a smaller set of candidates
and then a dense retriever re-ranks them in a sec-
ond stage. Unfortunately, this approach suffers
from two major problems. First, any semantically

relevant information pruned due to lack of exact
word matches in the first stage is not considered
for further ranking. Second, the neural ranker in
the last stage lacks interpretability because, for
scoring, it uses the inner product of the latent rep-
resentation of the text which is difficult to explain
in human understandable terms. Recently pro-
posed transformer (Vaswani et al., 2017) encoders
have the potential to tackle these issues. By utiliz-
ing a pre-trained masked language model (MLM),
SparTerm (Bai et al., 2020) and SPLADE (For-
mal et al., 2021) progressively improved the use
of expansion-aware sparse lexical representation
learners in mitigating vocabulary mismatch prob-
lems, while enhancing interpretability. SparseEm-
bed (Kong et al., 2023) further extended this con-
cept by learning contextual embeddings of the top-k
tokens in the lexical representation. However, these
models ignore the text-level dense representation
(i.e. [CLS] token encoding) which captures the sum-
marized expression of a text. Furthermore, being a
byproduct of the BERT with MLM head, it can be
obtained without additional computation and stored
as a single vector. Finally, jointly learning lexical
and semantic representations can pave the way
for a single-stage ranking, especially in product-
question-answering tasks (Shen et al., 2022) where
information from an online product page can be pre-
computed offline and then ranked at query time.

In this work, we investigate these possibilities and
present a hybrid information ranker that balances
the quality, cost, and interpretability by incorporat-
ing both lexical and semantic matching in ranking.
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The contribution of our work is in two areas:
• We present a hybrid ranking model that jointly

learns semantic and lexical representations
and combines them for efficient information
retrieval.

• We evaluate our model on a heterogeneous
product question-answering dataset and show
that our approach provides better performance
and interpretability with a reasonable compu-
tational complexity and memory footprint. Our
code is available online1.

2. Related Works

Our hybrid model brings together ideas from both
dense retrieval and sparse retrieval. Based on the
scoring process, we find three variants of dense re-
trievers (as shown in Figure 1) related to our work;
all of them employ pre-trained language models to
learn dense semantic representations. Nogueira
et al. (Nogueira and Cho, 2019) used BERT as
a cross-encoder(Figure 1(c)) where concatenated
query-information sequence is processed simul-
taneously through all-to-all interactions and a bi-
nary classifier maps the resultant representation
to relevance probability. In DPR (Karpukhin et al.,
2020), Karpukhin et al. employed two indepen-
dent dense encoders (Figure 1(a)) that separately
map query and information into their single-vector
dense representations and the information score
is computed by their inner product. To improve
model expressiveness, Khattab et al. proposed
ColBERT (Khattab and Zaharia, 2020), a late-
interaction(Figure 1(b)) model, to utilize a multi-
vector representation from dual encoders that allow
deferred cross interaction among contextual token
encodings. However, ColBERT suffers from scala-
bility issues as it requires storing and indexing all
the token encodings in a sequence.

Term-based BM25 (Robertson and Walker, 1994)
has been long used as a baseline for sparse
retrieval. In order to capture semantic relation-
ships in sparse representations, SNRM (Zamani
et al., 2018) uses high-dimensional vectors of la-
tent terms. However, it loses the interpretability pro-
vided by actual vocabulary terms. SparTerm (Bai
et al., 2020) addresses this (interpretability) issue
by mapping text to a sparse term-importance distri-
bution in BERT vocabulary space. In SPLADE (For-
mal et al., 2021), Formal et al. extended this
idea by introducing a log-saturation effect in term-
importance estimation and sparsity regulariza-
tion in training loss. Following this, SparseEm-
bed (Kong et al., 2023) learns and uses contextual
embeddings of the sparse lexical representation

1https://github.com/biplob1ly/HybridPQA

Evidence Ranking

Items Train Validation Test

Total records 24295 2731 309347
Unique query 4528 509 2773
Mean candidates per query 5.37 5.37 111.56
Mean +ve candidate ratio 0.25 0.24 0.06
Mean question words 11.23 11.73 6.98
Mean candidate words 17.19 18.49 12.59
Mean sources per query 1.09 1.10 5.12

Answer Generation

Items Train Validation Test

Total records 3693 398 2289
Unique query 3356 395 1340
Mean evidences per query 1.1 1.01 1.71
Mean answer words 8.22 8.27 7.24

Table 1: The summary of the hetPQA (Shen et al.,
2022) dataset.

to improve model expressiveness. Our approach
closely follows this direction of research. However,
instead of only comparing lexical representation,
we also consider summarized semantic matching
without increasing encoding complexity, by leverag-
ing the fact that BERT computes the [CLS] token
encoding anyway. Moreover, unlike prior hybrid
models (Karpukhin et al., 2020; Ma et al., 2021;
Gao et al., 2021; Luan et al., 2021), our model
jointly learns semantic representations and expand-
able lexical representations, enabling interpretabil-
ity with expanded tokens.

3. Dataset

We apply our model to hetPQA (Shen et al.,
2022), a large-scale benchmark dataset for product
question-answering systems, that provides various
information from product web pages as candidate
evidence to answer a product-specific query. In
production, after ranking the candidate evidence
elements for a query, the higher-ranked ones are
utilized for answer generation. The information (ev-
idence) is extracted from heterogeneous sources
that include: 1. product attributes in JSON for-
mat, 2. bullet points from product summary, 3.
community answers to product questions (CQA),
4. product descriptions, 5. on-site publications
(OSP) about products, and 6. user reviews on the
product page. The collection has separate sets
of data for evidence ranking and answer genera-
tion, and each dataset comprises train, validation,
and test split. The details of the splits are reported
in Table 1. Further, our manual inspection of the
BM25-driven evidence ranking result on the test set
revealed 1377 incorrect annotations; these were
corrected. We have disclosed our correction in the
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Figure 1: Existing neural rankers with different interaction schemes.

Items Attribute Bullet CQA Desc OSP Review

Ranking 4.0% 4.4% 44.1% 12.8% 2.6% 32.1%
Generation 11.4% 16.6% 21.8% 17.8% 8.6% 23.8%
Mean #words 5.8 12.6 13.3 12.9 17.8 18.4

Table 2: The distribution of sources and mean word
count in the hetPQA (Shen et al., 2022) dataset.

repository shared above and also conducted all
our experiments with the amended test set. Alto-
gether, the evidence ranking set has 7585 unique
questions and 149283 unique pieces of informa-
tion distributed over the aforementioned 6 sources.
The answer generation set contains a total of 5037
unique questions and 5229 unique evidence ele-
ments. The overall source distribution and average
word counts are given in Table 2. More details can
be found in hetPQA (Shen et al., 2022) paper.

Data Preparation To begin with, the text was
normalized to a canonical representation. All non-
English characters were replaced by their equiv-
alents. Symbols and short forms of dimensions
(e.g. 3′′ l × 4′′ w) were substituted by the corre-
sponding English words (length 3 inches × width
4 inches). We also flattened JSON-formatted at-
tributes to comma-separated strings.

4. Framework

Our framework comprises two major components:
a ranker and a generator. Given a query and a
set of candidate information, the ranker sorts the
information in descending order of relevance. The
generator then produces a coherent and informa-
tive response from the top-ranked results. We elab-
orate on this in the subsections below.

4.1. Ranker
The key function of a ranker is to measure the rele-
vance of each candidate information element with
respect to the query. Figure 2 depicts the archi-
tecture of our proposed hybrid ranker. It consists
of two separate modules that can independently
compute the representations of the queries and
information elements. Given a query Q = t1···|Q|
where token ti ∈ V for vocabulary V , and a candi-
date information element C = t1···|C| of the same
vocabulary, Our ranker first obtains lexical(l) and
semantic(d) representations of the query and the
candidate information as lQ and dQ, lC and dC , re-
spectively following the process described in the
next subsections. Then the relevance score of the
information is computed by the linear interpolation
of their semantic and lexical matching:

r(Q,C) = α× f(dQ, dC) + (1−α)× f(lQ, lC) (1)

Where f(Q,C) = Q · C and α ∈ (0, 1) is a hy-
perparameter indicating importance given to the
semantic match.

4.2. Representation Learning
The representation learning procedure for query
and information has independent yet similar
pipelines as shown in Figure 2. The query-encoder
is a pre-trained masked language model (MLM)
such as BERT (Devlin et al., 2019) and it maps the
query token sequence to their contextual embed-
dings HQ ∈ R|Q|×h (h: hidden size) and also out-
puts a summarised representation of entire query
in the form of [CLS] token embedding hCLS ∈ Rh.
While the sequence encodings can also be pooled
to obtain the summarized vector, it requires addi-
tional computation. Instead, we use the pre-trained
hCLS as the query’s dense semantic representa-
tion: dQ = hCLS .
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Figure 2: The proposed hybrid information ranker.

We build on the SPLADE (Formal et al., 2021)
and SparseEmbed (Kong et al., 2023) methods
to compute the lexical representation. In these
methods, and as illustrated in Figure 2, the se-
quence encodings HQ are fed to the BERT’s pre-
trained MLM head which maps them to MLM logits,
MQ ∈ R|Q|×|V |. Logit value mi,j in MQ can be
considered as an importance indicator of the vocab-
ulary term vj ∈ V for the query token ti ∈ Q. ReLU
is applied to the raw logit values to ensure posi-
tivity and is followed by a log operation to reduce
the dominance of fewer terms. Then the resultant
logits are aggregated (using max-pooling or sum-
mation) along query token sequences to obtain the
combined importance wj of a term vj ∈ V using
the following formula:

wj = max
i=1...|Q|

log(1 +ReLU(mi,j)) (2)

We collect the aggregated importance over the
lexical terms, W = w1···|V | through the max pooling
layer. To reduce computational complexity during
score calculation, we enforce sparsity in W by re-
taining only the top-k weights in it and zeroing out
the rests as shown in Figure 2. This leaves us with
an expansion-aware sparse lexical representation
lQ = W of the query. Following a similar approach
for the candidate information element, we obtain its
dense semantic representation dC and its sparse
lexical representation lC .

4.3. Loss Function

For the training of the hybrid model, we combine
ranking loss due to both semantic and lexical rep-
resentation. Given a dataset Si···|S|, where a train-
ing instance Si comprises a query Qi, a piece of
positive information C+

i and b negative candidates

(C−
i,1, C

−
i,2, . . . , C

−
i,b), our model is trained to mini-

mize the following contrastive loss for each kind of
representation:

Lrank = − log
ef(Qi,C

+
i )/τ

ef(Qi,C
+
i )/τ +

∑b
j=1 e

f(Qi,C
−
i,j)/τ

(3)
Here, τ is a temperature hyperparameter. To
have an efficient ranking system in terms of
computational complexity and memory footprint,
it is beneficial to enforce sparsity in the high-
dimensional (size: |V |) lexical representation. Fol-
lowing SPLADE (Formal et al., 2021), we also use
FLOPS loss for this regularization:

LC
reg =

∑

j∈V

(
1

N

N∑

i=1

w
(Ci)
j

)2

(4)

where Ci is a candidate information element in a
batch of size N and wj is the importance weight
of a vocabulary token computed from Equation 2.
Collectively, the training procedure minimizes the
following loss function:

L = Ld
rank + Ll

rank + λQLQ
reg + λCLC

reg (5)

where λQ and λC are hyperparameters to introduce
higher sparsity in query than information for less
scoring cost.

4.4. Generator
Given a query Q and n number of potential infor-
mation elements C1···n, we aim to generate an an-
swer A. To effectively combine multiple informa-
tion elements for a query, we employ a fusion-in-
decoder (Izacard and Grave, 2021) model for an-
swer generation. It uses a pre-trained sequence-to-
sequence network such as T5 (Raffel et al., 2020)
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# Model MAP R-Prec MRR@5 NDCG Hit Rate@5 P@1

a BM25 (Robertson and Walker, 1994) 0.435 0.388 0.622 0.658 0.796 0.510

b Cross Encoder (Nogueira and Cho, 2019) 0.604acdefghi 0.540acdefghi 0.795acdefgh 0.780acdefghi 0.930acde 0.703acdefgh

c Independent Dense (Karpukhin et al., 2020) 0.552ade 0.488ae 0.761ade 0.752ade 0.918ade 0.659ade

d Late Interaction(Khattab and Zaharia, 2020) 0.544ae 0.481ae 0.734ae 0.741ae 0.902ae 0.618ae

e Sparse Lexical (Formal et al., 2021), k=128 0.505a 0.449a 0.694a 0.713a 0.873a 0.572a

f Hybrid, k=128 0.563acde 0.498acde 0.770ade 0.757acde 0.924ade 0.665ade

g Hybrid, k=256 0.572acdef 0.505acdef 0.780acdef 0.763acdef 0.925ade 0.679acdef

h Hybrid, k=512 0.573acdef 0.507acdef 0.782acdef 0.764acdef 0.924ade 0.679acdef

i Hybrid, k=512, source-aware 0.575acdef 0.508acdef 0.792acdefgh 0.766acdef 0.927acde 0.697acdefgh

Table 3: The overall effectiveness of the experimented rankers on the hetPQA (Shen et al., 2022)
dataset. The best results are highlighted in boldface. Our hybrid model scores are obtained with α = 0.5.
Superscripts denote significant differences in both Fisher’s randomization test and paired Student’s t-test
with p ≤ 0.05.

that first encodes pairs of question and information
< (Q,C1), (Q,C2), · · · , (Q,Cn) > independently
and then joins the resultant representations in de-
coder before performing attention. Finally, we use
greedy decoding to generate a natural language
answer. As this method processes candidate infor-
mation elements independently, it allows the aggre-
gation of the elements at a relatively lower latency.

5. Experimental Environment

We use BERT-base-uncased (Devlin et al., 2019)
(110M parameters) and T5-base (Raffel et al.,
2020) (220M parameters) provided by Hugging-
face (Wolf et al., 2020) as the core model for evi-
dence ranking and answer generation respectively.
We set the following hyperparameters to the rel-
evant models: {Max token length (each of ques-
tion, evidence, answer): 128, Warm-up steps: 200,
Batch size: 8, Gradient Accumulation Steps: 8,
Learning rate: 1e − 5, λQ: 3e − 4, λC : 1e − 4}.
The evidence rankers and generator are trained
for 1,500 and 1000 steps respectively and the best
checkpoints are considered for evaluation. All the
experiments were conducted using a 5-core CPU
node at 2.40 GHz, equipped with a single NVIDIA
Tesla P100 16GB GPU core and 25 GB of mem-
ory. For preprocessing and evaluation, we use
NLTK (Bird et al., 2009), calflops (xiaoju ye, 2023),
and ranx (Bassani, 2022). Our baseline methods
are listed in the first row of Table 3. We use Okapi
BM25 implementation from rank_25 (Brown, 2020).
For cross-encoder, independent dense encoders,
and late-interaction method, we follow the imple-
mentation as described in §2. The only difference
between the sparse-lexical method and our hybrid
model is that the former does not incorporate se-
mantic matching in computing the loss and the
score. For fairness of comparison, none of our
dual-encoders use any additional projection layer
on top of BERT’s layer and for ranking, we sorted

all the candidate information based on Equation 1
instead of using any indexer.

6. Evaluation

In this section, we evaluate the performance of
the two modules of our framework, viz., evidence
ranking and answer generation.

6.1. Evidence ranking
We assess the impact of our proposed method
along three dimensions: 1. ranking quality, 2. com-
putational cost and memory footprint, and 3. in-
terpretability. Table 3 lists the experiment results
and provides a comparison of our proposed ranking
method to the baselines specified in §5. Evalua-
tion of all methods was conducted on the amended
held-out test set and on the same environment as
mentioned in §5. There are 2583 unique queries
in the test set having at least one positive evidence
and we consider only those queries for our evalua-
tion.

Ranking Quality To report ranking quality, we uti-
lize six commonly-used evaluation metrics- MAP:
mean average precision, R-Prec: precision at the
top-R retrieved information elements, MRR@5:
mean reciprocal rank within top-5 candidates,
NDCG: normalized discounted cumulative gain, Hit
rate@5: fraction of queries with at least one posi-
tive evidence in top-5 ranked candidates and P@1:
precision of the top-ranked evidence. As shown
in Table 3, the hybrid approach outperformed all
other methods except cross-encoder in all metrics.
Although the hybrid model with k = 128 (top token
count in lexical representation) bests the indepen-
dent dense encoder model by a slim margin across
the metrics, the difference in their effectiveness be-
comes statistically significant when more tokens
(k ≥ 256) are considered for lexical matching. The
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Figure 3: Ranking results of our hybrid ranker on heterogeneous evidence sources.

Resource Requirements

Metric BM25 Cross
Encoder

Independent
Dense

Late
Interaction

Sparse
Lexical Hybrid

Params - 109.48M 2x109.48M 2x109.48M 2x109.51M 2x109.51M

Inference
FLOPs

Encoding - 45.94G 22.36G 22.36G 28.51G 28.51G
Interaction - - 2h 2n2 · h + n 2k 2(h + k)

Latency
(ms)

Per Query 0.75 475.24 229.93 275.05 296.66 331.83
Per Info. 0.007 4.2 2.04 2.43 2.63 2.93

Offline Storage
(Per Evidence) - - h n · h 2k h + 2k

Table 4: Resource requirements of the experimented rankers on the hetPQA (Shen et al., 2022) dataset.
Here dense representation size h = 768, max sequence length n = 128, Count of top tokens considered
in lexical representation k = 128.

hit-rate@5 indicates the model positions at least
one relevant piece of information among the top
five in 92.7% of the queries.

Figure 3 illustrates a comparative performance
of our proposed method with others across the six
different sources of evidence. It shows that our
hybrid model dominates existing methods in rank-
ing evidence belonging to the same source. The
contrasting score differences between BM25 and
neural rankers in attribute and bullet sources not
only show the struggle of the pure lexical method
with less expressive data but also corroborate the
advantage of semantic matching in handling het-
erogeneous data. In contrast to attribute or bullet
evidence which stores clear and concise informa-
tion, user-driven sources such as CQA and review
come with inherent noise including misspellings,
presumptive opinions, and so on. According to
our manual inspection, these noises contributed to
the models’ relatively poor performance in these
sources.

Resource Requirements Table 4 summarizes
the resource requirements of our experimented
ranking methods. All the methods employ the iden-
tical configuration of BERT (Devlin et al., 2019).
Consequently, the parameter size listed in the first
row is roughly proportional to that of a single BERT
model except for the sparse-lexical and hybrid mod-
els where we have 2×0.03M additional parameters
for MLM layers. The second row provides the num-
ber of floating point operations (FLOPs) needed
to be done in the inference stage which includes
computation for encoding (measured in Giga-scale:
109) and interaction. Expectedly, the highly perform-
ing cross-encoder costs almost double the GFLOPs
incurred by the independent dense encoder as the
latter only performs query encoding in live and
pre-computes the information representation offline.
Late-interaction method, on the other hand, is sub-
ject to a quadratic interaction cost (2n2 · h+ n) due
to its cross term-alignment. In contrast, our hybrid
model outperforms all other two-tower rankers (In-
dependent dense, Late-interaction, Sparse lexical)
with a moderate 21% increase in encoding GFLOPs
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Figure 4: MRR@5 with regular (dashed) and source-scaled (solid) interaction scores at different semantic
and lexical matching combinations.

and has a linear interaction cost as it only sums the
product of the matching query tokens. For latency
measurement, we consider the mean combined
time elapsed for encoding, interaction, and score-
sorting per query as well as per information. Each
test set query has an average of 112 information
elements. The inference latency is aligned with
the inference FLOPs and the latency of our model
is halfway between that of the independent dense
model and cross encoder. In terms of offline stor-
age required for each evidence representation, the
hybrid approach demands space for a dense vector
(O(h)) as well as key-value (key: vocabulary token
index) pairs corresponding to non-zero elements
(O(k)) of sparse lexical representation. This mem-
ory requirement (O(h + k)) is much smaller than
that of the late-interaction method (O(n · h)) as the
latter stores all the token encodings.

6.2. Ablation Study
A comparison of evaluation results between our
model and models using a subset of components
reveals the contribution of additional components
in our model. While results in all metrics show a
similar trend, we use the standard MRR@5 for our
ablation study. To begin with, our hybrid model is of
identical architecture as in the sparse lexical model
and differs from independent dense models only
by the MLM layers. However, our model outper-
forms the sparse lexical model by 10.95% and the
dense retriever by 0.7%-2.7% (for 128 ≤ k ≤ 512)
in MRR@5 (Table 3). This indicates the benefit of
joint learning instead of maximizing only lexical or
semantic matching independently.

While our semantic matching captures the under-
lying summarized meaning, explicit token matching
compliments it by allowing us to interpret it. Figure 4
illustrates the effect of their contribution on MRR@5
by varying α in Equation 1 and changing sparsity
i.e. the number of top-k tokens (represented by
color) considered in sparse representation (see
§4.2). The differences in area under curves in-
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Figure 5: Results of answer generation.

dicate that a higher number of token considera-
tions results in better ranking. On the other hand,
the sub-optimal results with lexical-only (α = 0)
or semantic-only (α = 1) matching and the consis-
tently superior results with α in the range of 0.5−0.8
further support our hybrid approach.

Furthermore, our analysis reveals that the dis-
tribution of scores across heterogeneous sources
differs significantly and favors sources with high
mean scores even if they obtain relatively low hit
rates at top-5 positions. To counter this, we utilize
the source-specific hit-rate@5 obtained from the
regular ranking as prior confidence in those sources
and multiply it with the combination of normalized
scores obtained from Equation 1. The resulting
ranking score, as shown by the solid lines in Fig-
ure 4, outperforms that of the regular ranking in
dashed lines by 1%-3% across α and k values.

6.3. Generation Quality

Figure 5 illustrates the answer quality generated by
three approaches: 1. simply copying the top evi-
dence as an answer, 2. Bart-Large (406M params)
and 3. Fusion-in-Decoder with T5 (FiD-T5: 220M
params). We utilize the results of the copy-based

25



Id Source Text Expansion

#1
Desc

Query how fast does the car go? speed, time
Evidence maximum speed: 12 mph fast, time, go
Answer the maximum speed is 12 mph.

#2
Review

Query how long do they stay lit? time, last, light
Evidence the glow only lasts for on average of 30 minutes. time, long, light
Answer they last under an hour.

#3
CQA

Query how do you hook it up to a television? tv, power, plug
Evidence you just plug it directly to your tv. power
Answer plug it into your television.

#4
attribute

Query how tall is the castle?? height, size
Evidence item dimensions width: 15.75′′, length: 30.5′′, height:23′′ tall, size
Answer the castle is 23 inches tall.

Table 5: Sample evidence prediction and answer generation.

approach and Bart-Large model from (Shen et al.,
2022). Despite having a smaller number of param-
eters, the responses generated by FiD-T5 result in
a higher BLEU score than that of other approaches.
Examples of sample answer generation can be
found in Table 5.

6.4. Interpretability Analysis - Examples
and Discussion

A desired quality of a model is to have a simple
and human-understandable mechanism to explain
its decision-making process. Expanded tokens se-
lected by our model’s lexical representations can
be interpreted as visualizable faces of underlying
thoughts captured in jointly learned semantic repre-
sentation. Further, the dot product of a matched to-
ken importance can be considered as its alignment
strength. Table 5 illustrates this idea by highlighting
matching tokens of query and predicted evidence.
The importance of a token is depicted by its high-
lighting intensity. The examples demonstrate that
our model can match relevant tokens through ex-
pansion even if they are not present in the original
text. More interestingly, the matching expansion
(e.g. time in ex#1, light in ex#2, power in ex#3 and
size in ex#4) reveals the shared implicit impression
that connects the query and the evidence.

There are a few shortcomings to the model which
we leave as future work. First, it treats different
forms (e.g. lasts and lasting) of a root token (e.g.
last) as separate tokens causing redundant expan-
sion. It can be avoided by merging them with their
normalized value. Second, although we reduce the
memory footprint of sparse lexical representation
by keeping only token index-value pairs, further
analysis is required to check its compatibility and
efficiency with an indexer such as FAISS (John-
son et al., 2019). Without using such an indexer,
despite having lower FLOPs, the ranking latency
may rise dramatically if we compute token inter-

action in a loop. Furthermore, differential studies
on domain-specific signals such as rate of prod-
uct sale, count of repeating questions, customers’
feedback, and engagement can be measured to
quantify the effectiveness of the generator as well
as the retriever.

7. Conclusion

The study presents a hybrid information ranker
that ranks information for a query by comparing
their jointly learned dense semantic representa-
tions and sparse lexical representations. Our eval-
uation found that our approach outperformed widely
popular sparse or dense retrievers while incurring
only a linear cost for both computation and offline
storage. Also, our expansion-enhanced lexical
matching demonstrates signs of interpretability. In
the future, we plan to extend the framework to an
end-to-end system with extensive evaluation using
a larger dataset.
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Abstract
E-commerce faces persistent challenges with data quality issue of product listings. Recent advances in Large
Language Models (LLMs) offer a promising avenue for automated product listing enrichment. However, LLMs are
prone to hallucinations, which we define as the generation of content that is unfaithful to the source input. This
poses significant risks in customer-facing applications. Hallucination detection is particularly challenging in the vast
e-commerce domain, where billions of products are sold. In this paper, we propose a two-phase approach for detecting
hallucinations in LLM-enriched product listings. The first phase prioritizes recall through cost-effective unsupervised
techniques. The second phase maximizes precision by leveraging LLMs to validate candidate hallucinations detected
in phase one. The first phase significantly reduces the inference space and enables the resource-intensive methods
in the second phase to scale effectively. Experiments on two real-world datasets demonstrated that our approach
achieved satisfactory recall on unstructured product attributes with suboptimal precision, primarily due to the inherent
ambiguity of unstructured attributes and the presence of common sense reasoning. This highlights the necessity for
a refined approach to distinguish between common sense and hallucination. On structured attributes with clearly de-
fined hallucinations, our approach effectively detected hallucinations with precision and recall surpassing targeted level.

Keywords: large language model, hallucination, e-commerce, product listing enrichment

1. Introduction

In e-commerce, the significance of comprehensive
product listings cannot be overstated, as it plays
a pivotal role in facilitating informed purchase de-
cisions by customers. However, real-world prod-
uct listings often suffer from diverse quality issues,
such as data incompleteness, information redun-
dancy, and misinformation. These challenges im-
pact customers’ shopping experiences. Therefore,
product listing enrichment is a critical task in e-
commerce to generate compelling product listings.

The product listing enrichment task aims to cre-
ate concise yet informative product listings given
the source product data. Figure 1 illustrates this
process. In the initial listing, several essential prod-
uct attribute values are missing, and the product
name contains redundant details. After enrichment,
the product name is more succinct and user-friendly,
and a correct value was populated for the attribute
Material. Such enriched listings can help customer
reduce cognitive load during product evaluation and
improve sales conversion (Purnomo, 2023).

Product listing enrichment involves generating
structured data and free text from the source in-
put, which is an essential task in various natural
language generation applications, such as sum-
marization (Nenkova et al., 2011) and data-to-text
generation (Wiseman et al., 2017). Traditional
template-based approaches (Gatt and Reiter, 2009;
Reiter et al., 2005) rely on manually crafted rules
and lack scalability. Transformers and language
models (Vaswani et al., 2017; Devlin et al., 2018;

Figure 1: Example of product listing enrichment
and hallucination.

Yang et al., 2019; Liu et al., 2019; Radford et al.,
2019) have demonstrated exceptional capabilities
of generating fluent text. Recently, Large Language
Models (LLMs) (Brown et al., 2020; Ouyang et al.,
2022; Achiam et al., 2023; Touvron et al., 2023;
Chowdhery et al., 2023) have pushed the bound-
aries of natural language generation to new heights
(Bubeck et al., 2023). The remarkable language
comprehension of LLMs offers an opportunity for
automating the generation and enhancement of
product listings (Westmoreland, 2023).

However, a concerning drawback of LLMs is its
tendency to hallucinate, when LLMs generate texts
that appear fluent and coherent but are nonfactual
or unsupported by the input data (Varshney et al.,
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2023). In Figure 1, the LLM successfully improved
the product Name and accurately generated value
for Material. Conversely, the reliability of the gener-
ated values for Color and Size is questionable when
examining the source data alone without additional
information. Such hallucinations pose risks by po-
tentially leading to negative user experiences and,
more critically, misinformation-induced purchases.
In safety-critical scenarios, such as the failure to
generate warnings on toy choking hazards, halluci-
nations may result in legal consequences.

In this work, we address the hallucination prob-
lem in LLM-enriched product listings. We define hal-
lucination as the generation of text that is unfaithful
to the provided source input (Ji et al., 2023). Some
works also consider factual inaccuracies in their def-
inition (Varshney et al., 2023; Zhang et al., 2023).
The primary function of product listings is to com-
municate descriptive details about the items. For
example, the value of Material is product-specific,
inherently contingent upon the source product infor-
mation. Here, factual accuracy depends on faith-
fully reflecting the source input for each unique
product, assuming the provided product informa-
tion accurately describes the products. The source
input data serves as the definitive reference for
truth in this context.

Previous studies have employed the hidden layer
activations or logit values of LLMs to detect halluci-
nated content (Azaria and Mitchell, 2023; Varshney
et al., 2023). Yet, such methods require access to
the internal states of LLMs, which is typically not
available in state-of-the-art black-box LLMs (e.g.
ChatGPT). Some have integrated external knowl-
edge bases with LLMs (Guo et al., 2022; Martino
et al., 2023; Peng et al., 2023a; Lee et al., 2022), but
this introduces additional cost and complexities. Al-
ternatively, LLMs have been used to autonomously
verify their outputs (Wang et al., 2023; Manakul
et al., 2023) or have been fine-tuned for specific
tasks (Cao et al., 2021; Yu et al., 2023), though
LLM-based methods can be costly without in-house
models. In-house LLMs, while circumventing some
expenses, still demand extensive training data and
substantial resources for model development.

While akin to detecting hallucinations in summa-
rization (Cao et al., 2021) or data-to-text genera-
tion (Tian et al., 2019), our task involves unique
challenges due to the mixture of free text and struc-
tured data in both source input and generated text.
The former is often noisy and poor-formatted, par-
ticularly when sourced from third-party sellers in
e-commerce. Furthermore, LLM-generated val-
ues may be embedded in various product attribute
fields, necessitating a comprehensive examination
of all product information for potential evidence.
Given that an e-commerce website can sell billions
of products, addressing hallucination detection at

such a scale requires careful consideration of both
performance and cost factors.

In this paper, we present an approach for halluci-
nation detection in LLM-enriched product listings
without accessing internal LLM states or relying
on external data sources. We propose to detect
hallucinations in a two-phase fashion, prioritizing
recall in the initial phase and enhancing precision in
the subsequent phase. The motivation stems from
the high cost associated with LLM-only approaches
in massive-scale e-commerce applications. In the
initial phase, which we call Lexical and Semantic
Screening (LSS), we apply cost-effective unsuper-
vised techniques to detect a broad range of hallu-
cinations. While these methods are efficient, their
accuracy may be compromised due to limitations
in text comprehension. The second phase, LLM
validation, utilizes LLMs to confirm potential hallu-
cinations detected in the first phase. Leveraging
the robust language understanding capabilities of
LLMs, we optimize precision in the second phase.
The initial LSS phase significantly reduces the infer-
ence space, allowing the more resource-intensive
LLM validation to scale effectively. Experiments
on two real-world e-commerce datasets demon-
strate the effectiveness of our proposed approach.
In addition, we discovered that our approach per-
forms better on structured attributes with concise,
deterministic values, as opposed to unstructured
attributes presented in long-form free text. We iden-
tified directions for future work through analysis of
the experimental results.

2. Related Work

2.1. Definition of Hallucination

Varshney et al. (2023) defined hallucination as the
generation of text or responses that seem syntac-
tically sound, fluent, and natural but are factually
incorrect, nonsensical, or unfaithful to the provided
source input. This definition aligns with the taxon-
omy proposed by Zhang et al. (2023). However,
studies on hallucination in various natural language
generation tasks (Tian et al., 2019; Maynez et al.,
2020; Weng et al., 2023) may emphasize distinct
aspects of the phenomenon. Consequently, the def-
inition of hallucination may exhibit variability across
tasks. In the product listing enrichment task, prod-
uct listings primarily convey descriptive information
about the products, and factual accuracy is con-
tingent on faithfully representing the source input
for each individual product. In this sense, our per-
ception of hallucination aligns more closely with Ji
et al. (2023)’s definition, which refers to the gener-
ation of text that is nonsensical, or unfaithful to the
provided source input. It is further categorized into
intrinsic and extrinsic hallucination. Intrinsic hallu-
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cination involves output contradicting the source,
while extrinsic hallucination refers to output unveri-
fiable against the source. We are concerned with
both types, encompassing content that either con-
tradicts or lacks support in the source input, empha-
sizing the unfaithfulness aspect. After we identify
unfaithful hallucinations, we need to further deter-
mine the factual accuracy to serve the end business
goal. However, we focus this work on the faithful-
ness aspect and leave the factual part for future
work.

2.2. Hallucination Detection
Many recent studies have been focused on miti-
gating hallucinations in LLMs. Depending on the
accessibility of LLM models, there are white-box,
grey-box and black-box approaches. A white-box
method (Azaria and Mitchell, 2023) used the LLM’s
hidden layer activations to train a classifier that
predicts the probability of a statement being true.
Grey-box approaches detect the parts of the output
sequence that the LLM is least confident about by
examining the logit output values in the response
(Varshney et al., 2023). Both white-box and grey-
box approaches require access to internal states
or token probabilities that may not necessarily be
available, e.g. when LLMs are accessed through
limited API calls. Black-box approaches (Manakul
et al., 2023) are suitable for a wider range of appli-
cations when only LLMs responses are available.

Approaches for mitigating hallucination can also
be grouped into zero-resource and external knowl-
edge based approaches depending on if an exter-
nal knowledge base is involved. External knowl-
edge based approaches try to mitigate hallucina-
tion through information augmentation from exter-
nal knowledge sources (Guo et al., 2022; Moiseev
et al., 2022; Martino et al., 2023; Peng et al., 2023a).
However, knowledge augmented approaches usu-
ally come with the cost of additional complexity and
resource overhead (Lee et al., 2022).

Zero-resource approaches do not rely on exter-
nal knowledge to detect hallucinated responses.
One line of studies leverage unsupervised met-
rics scores (Celikyilmaz et al., 2020; Forbes et al.,
2023) such as ROUGE (Lin, 2004), BLEU (Pap-
ineni et al., 2002), and METEOR (Banerjee and
Lavie, 2005) to measure the consistency between
the generated text and the source text. While these
metrics offer simplicity, they frequently fall short in
accurately aligning texts. This leads to sub-optimal
performance when semantically relevant text di-
verges from the reference’s surface form. Addi-
tionally, these metrics struggle to capture distant
dependencies and tend to penalize changes in se-
mantic ordering. BERTScore (Zhang et al., 2019)
leverages the pre-trained contextual embeddings
from BERT (Devlin et al., 2018) and matches words

in candidate and reference sentences by cosine
similarity. BERTScore has been shown to corre-
late well with human judgments. Another approach
is converting hallucination detection to classifica-
tion problem (Chen et al., 2023). Recent studies
showed that LLMs can be good evaluators them-
selves (Wang et al., 2023) and many studies lever-
age LLMs to detect hallucinations (Mündler et al.,
2023; Manakul et al., 2023; Weng et al., 2023; Fu
et al., 2023). Another way to mitigate hallucina-
tion is fine-tuning LLMs on task-specific data (Cao
et al., 2021; Yu et al., 2023). Some of these ap-
proaches can complement each other. For exam-
ple, Guan et al. (2023) combined LLM verification,
instruction tuning and retrieval augmentation to ver-
ify facts for LLMs outputs. LLM-based approaches
can entail significant expenses when utilizing com-
mercially available LLMs, especially on large-scale
e-commerce applications. Alternatively, the devel-
opment of proprietary LLMs within an organization
introduces a different set of costs.

In this work, we present a method for detect-
ing hallucinations in LLMs-enriched product list-
ings. Our approach utilizes zero-resource black-
box hallucination detection techniques, eliminating
the need for external knowledge base or access to
LLMs’ internal states. This independence allows
our system to be agnostic of upstream LLMs and
be generalizable to a wider range of LLMs applica-
tions. Moreover, our method enhances scalability
compared to LLM-only approaches by markedly re-
ducing the inference space prior to LLM validation.

3. Methodology

We propose a two-phase approach for hallucina-
tion detection (Figure 2), emphasizing recall in the
initial phase and enhancing precision in the sub-
sequent phase. In the first phase, termed Lexi-
cal and Semantic Screening (LSS), cost-effective
unsupervised techniques are applied to detect a
broad spectrum of hallucinations. Although these
methods are efficient, their performance may be
compromised by text comprehension limitations. In
the second phase, LLM validation, we utilize LLMs
to validate the candidate hallucinations identified
in the first phase. We optimize precision in the
second phase by leveraging the robust language
understanding capabilities of LLMs. Given the crit-
ical need for scalability in hallucination detection,
particularly in the context of e-commerce with a
vast product inventory, the initial LSS phase signif-
icantly reduces the inference space. This reduc-
tion enables the more resource-intensive approach
to scale effectively in the second phase, address-
ing the challenge of processing billions of prod-
ucts for product listing enrichment in e-commerce.
Figure 3 depicts LLM-generated attribute values,
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Brand: Lilly Pulitzer and Size: 12inchx10inch, for
the given source product listing. Using LSS, we
confirmed the legitimacy of Brand: Lilly Pulitzer by
cross-referencing it with information in the source
product name. Subsequently, we evaluated the
Size: 12inchx10inch attribute and determined it to
be hallucinated content employing LLM validation.

Figure 2: Two-phase hallucination detection.

Figure 3: Example of hallucination detection.

3.1. Lexical and Semantic Screening
(LSS)

In the initial phase, we employ unsupervised meth-
ods to flag all potential hallucinations by detect-
ing information lacking supporting evidence in the
source input. This support is traced through exact
keywords or similar content, examined at either the
token or the entire generated value level. We inves-
tigated techniques for locating supporting evidence
from the source input:

3.1.1. Token-level LSS

Rebuffel et al. (2022) advocated addressing hal-
lucinations at the word level rather than the in-
stance level. They employed word-level alignment
between candidate and inference text to control hal-
lucinations. Their experiments demonstrated that
word-level signals improved the fluency, factual ac-
curacy, and relevance of LLM outputs. In our study,
we similarly employ token-level alignment between

the source input and LLM-enriched values to detect
hallucinations.

Exact match. A direct method involves examining
the presence of generated content in the source in-
put. In Figure 2, the explicit mention of Lilly Pulitzer
in the source input rules out hallucination. This
method, denoted as Texact, exhibits high recall but
low precision in identifying hallucinations.

Exact matching often results in a large number
false positive hallucinations, as LLMs may produce
semantically similar but distinct words in enriched
product listings. Fuzzy matching provides more
flexibility, allowing LLMs to generate product in-
formation with enhanced fluency and coherence,
leveraging advanced vocabulary. We assessed
three fuzzy matching techniques:

Edit-distance. Token-level edit-distance (Leven-
shtein et al., 1966) between the source text and
hallucinated text was used in generating synthetic
data for hallucination detection and it was found
that this approach provided sufficiently high quality
training data in practice (Zhou et al., 2020). In our
work, we adopt a similar approach by calculating
the token-level edit distance between each token in
the generated and source texts to pinpoint potential
supporting evidence within the source data. This
method is denoted as Tedit.

N-gram overlap metrics. N-gram matching met-
rics are commonly used for evaluating text genera-
tion by counting the number of n-grams that occur
in the reference and candidate text. ROUGE (Lin,
2004) is often used for summarization evaluation,
while BLEU is the most widely used metric in ma-
chine translation (Papineni et al., 2002). METEOR
(Banerjee and Lavie, 2005) introduces flexibility by
permitting a transition from strict unigram matching
to encompassing word stems, synonyms, and para-
phrases. These metrics provide a way to find the
evidence for supporting the LLM-generated content
from the source input. Therefore, we utilize three
metrics: Trouge, Tbleu, and Tmeteor.

Embedding similarity. Token embeddings cap-
ture nuanced semantic and syntactic word rela-
tionships (Mikolov et al., 2013; Pennington et al.,
2014; Bojanowski et al., 2016), and allow for a soft
measure of similarity instead of strict string match-
ing between the generated and source text. In
this work, we experimented with three embedding
models provided in Gensim (Rehurek and Sojka,
2011): word2vec-google-news-300 (Mikolov et al.,
2013) (Tword2vec), glove-wiki-gigaword-300 (Pen-
nington et al., 2014) (Tglove), and fasttext-wiki-news-
subwords-300 (Bojanowski et al., 2016) (Tfasttext).
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3.1.2. Value-level LSS

Instead of checking evidence at the token level, we
can evaluate the semantic similarity between the
generated text and the source input as a whole.
Significant deviations from the source text in the
generated content can signal hallucination.

Sentence embedding. Sentence transformers
convert sentences into semantically meaningful
embeddings that can be compared using cosine-
similarity (Reimers and Gurevych, 2019). In
this work, we used four sentence-transformers
(Reimers and Gurevych, 2019) models from Hug-
gingFace (Wolf et al., 2019): all-MiniLM-L6-v2, all-
mpnet-base-v2, gtr-t5-large (Ni et al., 2021), and
multi-qa-mpnet-base-dot-v1, denoted as VminiLM ,
Vmpnet, Vgtr, and Vqa respectively.

BERTScore. BERTScore has been shown to cor-
relate well with human judgments for evaluating
natural language generation tasks (Zhang et al.,
2019). BERTScore calculates a similarity score
between the candidate and reference text by aggre-
gating the cosine similarities of their token embed-
dings. Unlike traditional metrics such as ROUGE,
BLEU and METEOR that rely on string matching or
heuristics, BERTScore uses contextualized token
embeddings. It demonstrates a stronger capability
of accommodating instances where semantically
correct phrases deviate from the surface form of the
reference. We abbreviate this approach as Vbert.

ALIGNSCORE. ALIGNSCORE (Zha et al., 2023)
evaluates the factual consistency of generated text
against a model input. It is applicable to various
factual inconsistency scenarios, as it employs a
unified training framework of the alignment function
by integrating diverse data sources from seven well-
established tasks. We denote this as Valign.

3.2. LLM Validation

Recent studies have explored the use of LLMs
for evaluating their own generated text (Varshney
et al., 2023), showing promising results. However,
LLM validation typically incurs a significant expense
due to associated API fees, presenting a challenge
that impedes the scalability of LLM validation for
e-commerce product listing enrichment. This chal-
lenge underscores the need to initially filter out a
substantial portion of non-hallucinated content in
the LSS step, which allows the subsequent LLM
validation step to focus on a more manageable num-
ber of candidates. In this work, we used Claude 2
(Anthropic, 2023) from Anthropic for LLM validation.

Zero-shot. LLMs have shown great potential in
evaluating the factual consistency between a docu-
ment and its summary in the zero-shot setting (Luo
et al., 2023). Thus, we directly prompt an LLM to
verify the hallucinations detected in the LSS step.

Chain-of-thought (CoT). Chain-of-thought (CoT)
prompting significantly enhances LLMs’ complex
reasoning abilities (Wei et al., 2022). CoT prompt-
ing, involving the presentation of intermediate rea-
soning steps, prove effective in both zero-shot (Ko-
jima et al., 2022) or in-context learning (Wei et al.,
2022) settings. Kojima et al. showed that LLMs
demonstrated decent zero-shot reasoning capabil-
ity by instructing them to think step by step (Kojima
et al., 2022). In this work, we adopt a similar ap-
proach, instructing LLMs to provide step-by-step
reasoning and identify supporting evidence when
available. We only use the final decision from LLM
as the prediction. Nonetheless, prompting the LLM
to seek evidence initiates an underlying reasoning
process, which can potentially improve the overall
performance (Kojima et al., 2022).

In-context learning. LLMs demonstrate impres-
sive ability to do in-context learning (Brown et al.,
2020). They can generalize to unseen data by
leveraging a limited set of training examples in the
prompt, without explicit pre-training for the specific
task (Xie et al., 2021). We asked domain experts
to select examples of product listings with and with-
out hallucinations and include them in prompts. By
augmenting the context with these selected exam-
ples, it is anticipated that the LLM will discern the
underlying pattern present in the demonstrations,
thus enabling accurate predictions.

Many studies have investigated instruction-
tuning for LLMs to enhance alignment with specific
tasks (Ouyang et al., 2022; Peng et al., 2023b). In
contrast to in-context learning, wherein examples
are presented during inference without updating
the LLMs’ parameters, instruction tuning involves
utilizing a set of examples to adjust the parame-
ters during training. However, no demonstrations
are employed during inference in instruction tun-
ing (Duan et al., 2023). Although instruction tuning
has shown promising results, it requires human-
annotated prompts and feedback on a specific task.
In our work, we do not experiment with instruction-
tuning but consider it a potential future direction.

4. Experiments

In this section, we first introduce the dataset em-
ployed for evaluating hallucination detection in LLM-
enriched product listings. We then compare the
performance of different approaches, demonstrat-
ing the effectiveness of our proposed approach.
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Finally, we discuss our findings, providing insights
that guide our future research.

4.1. Dataset

We conducted experiments on two sets of human-
annotated LLM-enriched product listings as de-
scribed in Table 1. DS exclusively contains struc-
tured product attributes, whereas DU comprises
only unstructured attributes. Structured attributes
typically encompass product features characterized
by enumerated, categorical, numerical, or keyword
values, whereas unstructured attributes comprise
long-form free-text values. In Table 1, we provide
a summary of word counts for both structured and
unstructured attributes. Given that the majority of
product attributes are structured, we consolidate
these into a single total count rather than listing
each attribute individually. Conversely, we detail
the three most prevalent unstructured attributes.
Structured attributes normally contain 1-2 words,
while unstructured attributes can include more than
one hundred words. Additionally, attributes in DS

exhibits deterministic values, enabling annotators
to identify hallucinations through a direct examina-
tion of the source input. In contrast, DU introduces
greater ambiguity. For instance, DS primarily in-
cludes attributes such as Color, making it straight-
forward to assess the faithfulness of generated val-
ues to the source. On the contrary, DU contains
descriptive attributes, where values are less de-
terministic. Annotators’ perceptions play a critical
role in human judgments, contributing to increased
uncertainty in hallucination detection.

Dataset Attribute type #Listings #Entries
DS Structured 200 2,765
DU Unstructured 4,042 12,126

Table 1: Dataset description.

Type Attribute #Words
Avg. 50p 75p

Structured - 2 1 2

Unstructured
U-Attribute 1 17 16 21
U-Attribute 2 91 81 102
U-Attribute 3 138 130 160

Table 2: Number of words by attribute type.

The datasets include original product listing
alongside LLM-enriched values for one or multi-
ple attributes in that listing. Our approach focuses
on detecting hallucination at the attribute level. For
instance, Figure 3 displays a listing with 2 LLM-
enriched attributes: Brand and Size. We make
independent decisions for each attribute. Domain

experts audited the dataset to pinpoint hallucina-
tions in LLM-generated values, and we use these
human labels as the gold standard to evaluate our
proposed approaches.

4.2. Experimental results
We utilize precision, recall, and F1 score to assess
model performance. In e-commerce, distributing
hallucinated product listings may lead to negative
user experiences or legal issues in critical scenar-
ios. Nevertheless, rejecting LLM-enriched product
listings based on mistakenly identified hallucina-
tions carries substantial costs. The precision-recall
trade-off allows optimizing the balance between the
consequences of false positive and false negative
predictions in practice.

4.2.1. LSS

Table 3 and 4 detail the performance of various
LSS models on DS and DU . In the results, P , R,
and F1 represent precision, recall, and F1 score,
respectively. Precision and recall targets, estab-
lished by domain experts, are denoted as p and r.
The target f1 is calculated with p and r. We present
the performance of various approaches compared
against the targets. As we optimize recall in the
LSS phase to maximize the coverage of halluci-
nations, we choose the optimal model from each
method with recall >= min(recallmax, r).

LSS Model P/p R/r F1/f1 %Inf

Texact 1.05 1.09 1.07 7.4
Tedit 1.05 1.09 1.07 7.4
Trouge 0.88 1.06 0.95 9.0
Tbleu 1.05 1.07 1.06 6.8
Tmeteor 0.68 1.06 0.82 11.6
Tword2vec 1.09 1.04 1.06 6.4
Tglove 1.09 1.03 1.06 6.4
Tfasttext 1.09 1.04 1.07 6.4
VminiLM 0.85 1.06 0.94 9.8
Vmpnet 0.81 1.07 0.91 116
Vgtr 0.84 1.06 0.93 9.5
Vqa 0.81 1.06 0.91 10.6
Vbert 0.40 1.08 0.57 48.5
Valign 0.80 1.07 0.91 10.6

Table 3: Performances of LSS models on DS .

The results indicate that LSS models exhibited
promising abilities in detecting hallucinations within
DS . Texact, Tedit and Tfasttext yielded the high-
est F1 score at 1.07f1. While other LSS models
demonstrated slightly lower performance, the ma-
jority maintained recall rates above 1.05r and pre-
cision within the range of 0.8p-1.05p. In contrast,
these models exhibited a significant drop in perfor-
mance when applied to DU . While most maintained
over 1.05r recall, precision struggled, falling below
0.25p. In e-commerce, ensuring high recall in hal-
lucination detection is crucial, as false negatives
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LSS Model P/p R/r F1/f1 %Inf

Texact 0.23 1.11 0.36 12.5
Tedit 0.23 1.11 0.36 12.5
Trouge 0.23 1.11 0.37 13.2
Tbleu 0.23 1.11 0.36 12.5
Tmeteor 0.26 1.08 0.41 7.2
Tword2vec 0.23 1.11 0.36 12.4
Tglove 0.23 1.11 0.36 12.4
Tfasttext 0.23 1.11 0.36 12.4
VminiLM 0.27 0.96 0.41 2.9
Vmpnet 0.20 0.90 0.31 2.5
Vgtr 0.17 0.74 0.27 1.7
Vqa 0.24 1.06 0.37 6.0
Vbert 0.25 0.34 0.29 0.3
Valign 0.22 1.05 0.35 6.8

Table 4: Performances of LSS models on DU .

directly affect customer experiences and can hurt
brand reputation.

The%Inf column denotes the portion of the infer-
ence space identified by LSS as hallucination can-
didates, serving as input for LLM validation. LSS
models effectively reduced the inference space to
less than 12.5%, and some models further nar-
rowed this down to below 10% for LLM validation.
Vbert is an anomalous case among the models

for DS , with a performance of only 0.4p. Our obser-
vations indicate that Vbert tends to give lower scores
to generated values significantly shorter than the
reference text, causing an increase in false posi-
tives. Conversely, it assigns high similarity scores
to unstructured attribute values compared to the
source text, which substantially reduces recall.

The primary difference between the datasets is
their attribute types. The unstructured attributes
in DU contain substantial free-text content, differ-
ing significantly from the concise nature of struc-
tured attribute values in DS . Detecting hallucination
from unstructured attribute values poses a greater
challenge compared to structured ones. Also, the
difference between token-level and value-level ap-
proaches is larger on structured attributes than that
on unstructured attributes. This indicates that word-
to-word comparison approaches are more suitable
when the LLM-generated values are a bag of key-
words, rather than coherent paragraphs.

Combining LSS models improves performance
on DS through an AND operation on their predic-
tions. We explored every possible pairing of two
models, and Table 5 displays the top three com-
bined LSS models for DS , demonstrating notable
enhancements. Intuitively, the combined models
generated enhance precision but decreased recall.
All the optimal combined models consist of a token-
level and a text-level model. ALIGNSCORE signifi-
cantly contributed to the top combined models DS .
On the contrary, combined LSS models demon-
strated inferior performance compared to individual
models on dataset DU , as evidenced in Table 5.

Notably, this combination led to a significant reduc-
tion in recall without improving precision, resulting
in a decreased F1 score.

Dataset Combined model P/p R/r F1/f1

DS

Texact+Valign 1.12 1.06 1.09
Tedit+Valign 1.12 1.06 1.09
Tbleu+Valign 1.12 1.05 1.09

DU Tbleu+Vbert 0.23 0.31 0.26
Tedit+Vbert 0.22 0.31 0.26
Texact+Vbert 0.22 0.31 0.26

Table 5: Combination of LSS models.

4.2.2. LLM validation

Table 6 presents the F1 scores of applying LLM
validation to hallucination candidates identified by
LSS models. Overall, LLM validation enhanced
the performance on DS , while yielding marginal
improvement on DU . On DS , solely employing
zero-shot LLM validation improved the performance
for each LSS model. The CoT approach gener-
ally achieved higher F1 scores, with the excep-
tions of Tbleu, Tfasttext and Vbert, where the zero-
shot approach outperformed. For DU , LLM valida-
tion with in-context examples consistently outper-
formed zero-shot and CoT. Optimal performance
was achieved by combining LSS models with sub-
sequent LLM validation for DS , all models demon-
strated comparable F1 scores for DU post-LLM val-
idation. Selection of models can be tailored based
on specific business requirements for precision and
recall.

It is known that LLM in-context learning faces a
robustness challenge (Liu et al., 2021), with out-
comes highly depend on the chosen in-context ex-
amples. We observed this dependence in our ex-
periments. We asked domain experts to select
examples of product listings with and without hallu-
cinations. The selected examples aim to represent
different situations where hallucinations may oc-
cur. Despite efforts to cover various scenarios, it
remains challenging to encompass all possibilities
within a limited set of examples. Our observation
indicates that the LLM model tends to replicate the
behavior of the provided examples during valida-
tion response generation. Consequently, it pre-
dominantly identifies semantically-close samples
as hallucinations. A future direction would be strate-
gically select examples based on their similarity to
the query instance.

4.3. Discussions
Next, we discuss some key findings during the ex-
periments and talk about a few open questions not
covered by this work. This sheds lights on direc-
tions for future work.
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Model
DS DU

Z C I Z C I

Texact 1.08 1.09 1.08 0.37 0.36 0.37
Tedit 1.08 1.09 1.08 0.37 0.36 0.37
Trouge 1.01 1.05 1.00 0.36 0.36 0.37
Tbleu 1.08 1.07 1.05 0.36 0.36 0.37
Tmeteor 0.97 0.99 0.99 0.36 0.35 0.39
Tword2vec 1.07 1.07 1.01 0.37 0.37 0.37
Tglove 1.07 1.07 1.01 0.37 0.37 0.37
Tfasttext 1.08 1.07 1.03 0.37 0.37 0.37
VminiLM 1.01 1.01 1.02 0.37 0.37 0.37
Vmpnet 1.01 1.04 1.00 0.37 0.36 0.37
Vgtr 1.01 1.04 1.00 0.37 0.36 0.37
Vqa 1.00 1.04 1.00 0.37 0.36 0.37
Vbert 1.02 1.00 1.00 0.32 0.33 0.34
Valign 1.07 1.04 1.01 0.37 0.36 0.36
Texact+Valign 1.10 1.07 1.04 - - -

Table 6: LLM validation performance. Z denotes
zero-shot, C denotes CoT, and I denotes in-context
learning.

Factual hallucination. This study focuses on
identifying hallucinated product information that
lack support from the source input. However, not
all detected hallucinations are necessarily incor-
rect; some may align with factual information (Cao
et al., 2021). As illustrated in Figure 4(a), the LLM-
generated Color value lacks support in the source
input, but aligns with the product image. It is worth
noting that the product image was not part of the
source input but included here for illustrative pur-
poses. Conversely, the generated value of Number
of pocket for the tote bag in Figure 4(b) is both un-
supported and non-factual. In this study, we aim
to identify hallucinated content based on the given
source product listings. Distinguishing between fac-
tual and non-factual hallucinations could facilitate
taking follow-up actions on the detected hallucina-
tions. However, verifying the correctness of halluci-
nations necessitates external knowledge sources,
like supplementary product details or images. We
leave this for future work.

Figure 4: Factual and non-factual hallucination.

Common sense. We observed that annotators
relied on common sense to evaluate hallucination in
some cases. In Figure 5, LLM suggested Walking
as the Recommended use for the sandal. Human

annotators considered this non-hallucinatory, given
the common understanding that sandals are suit-
able for walking rather than activities like running
or jumping. However, our method flagged this as
hallucination because there was no corresponding
information in the source input supporting Walk-
ing, and the LLM validation step failed to capture
it. Unlike the factual hallucination in Figure 4(a),
which is clearly unfaithful to the source input even
if factual, determining hallucination becomes chal-
lenging when common sense is a factor.

Figure 5: Common sense.

Common sense is a subjective and evolving con-
cept, varying among individuals based on their
experiences and knowledge. For instance, what
is common knowledge today, such as Apple be-
ing the manufacturer of the iPhone, may not have
been widely known several years ago. To distin-
guish common sense from hallucination in LLMs,
we can leverage their hidden knowledge or external
sources. However, a precise definition of common
sense versus hallucination for different use cases
is essential for effective hallucination detection.

Hallucination in LLM validation. The LLM vali-
dation phase, like other LLM applications, is prone
to hallucinations. Instead of developing a new hal-
lucination detection solution, a potential strategy to
address this issue is to utilize multiple responses
from one or more models. However, cost is a crucial
consideration in real-world industrial applications,
particularly in large-scale e-commerce settings. An-
other alternative is fine-tuning a task-specific LLM,
but this necessitates high-quality training labels.

5. Conclusions

This paper introduces an effective approach for
identifying hallucinations from LLM-enriched prod-
uct listings. We proposed a two-phase approach,
prioritizing recall in the initial phase and enhanc-
ing precision in the subsequent phase. Our ex-
periments on two real-world e-commerce datasets
demonstrate the efficacy of our proposed approach,
with better performance observed on structured
attributes compared to unstructured ones. We
also highlight the challenge introduced by common
sense when human annotators label the data, pro-
viding valuable insights for future work.
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Abstract
Previous studies have demonstrated that proactive interaction with user reviews has a positive impact on the
perception of app users and encourages them to submit revised ratings. Nevertheless, developers encounter
challenges in managing a high volume of reviews, particularly in the case of popular apps with a substantial influx
of daily reviews. Consequently, there is a demand for automated solutions aimed at streamlining the process of
responding to user reviews. To address this, we have developed a new system for generating automatic responses
by leveraging user-contributed documents with the help of retrieval-augmented generation (RAG) and advanced
Large Language Models (LLMs). Our solution, named SCRABLE, represents an adaptive customer review response
automation that enhances itself with self-optimizing prompts and a judging mechanism based on LLMs. Additionally,
we introduce an automatic scoring mechanism that mimics the role of a human evaluator to assess the quality of
responses generated in customer review domains. Extensive experiments and analyses conducted on real-world
datasets reveal that our method is effective in producing high-quality responses, yielding improvement of more
than 8.5% compared to the baseline. Further validation through manual examination of the generated responses
underscores the efficacy our proposed system.

Keywords: Review Response Generation, LLM-as-a-Judge, Prompt Optimization, Self Improving System

1. Introduction

Large language models (LLMs) have demonstrated
remarkable performance in a wide range of tasks
related to comprehending and generating natural
language, text, and code (Devlin et al., 2019; Raf-
fel et al., 2019; Brown et al., 2020), (Zhang et al.,
2022; et al, 2022; Chung et al., 2022). The most
notable advancement is that these tasks are ex-
ecuted using few-shot or in-context learning(Xie
et al., 2022; Dong et al., 2023; Roberts et al., 2020),
reducing the need for construction of traditional la-
beled datasets for supervised learning. Through
their ability to efficiently store and apply knowledge,
LLMs have shown outstanding capabilities in tasks
involving information-seeking questions, where the
question cannot be answered easily by the person
asking it (Tunstall et al., 2022). Large Language
Models (LLMs) are advanced AI systems designed
to understand, generate, and manipulate human
language. They are trained on vast amounts of
text data, allowing them to perform a wide range
of language-related tasks. In the contemporary
digital age, customer reviews have become a cor-
nerstone of consumer decision-making. Prospec-
tive buyers frequently rely on online reviews as a
principal source for obtaining insights into various
products and services. Empirical research indi-
cates a robust and positive correlation between the
numerical rating of a mobile application and the
number of downloads it garners. Furthermore, it
has been observed that users exhibit a tendency
to modify their ratings following the reception of

*Equal contribution
†Joint supervision

responses from developers. Consequently, the act
of responding to user reviews is considered imper-
ative in the realm of app development. However,
crafting an appropriate response to an online re-
view is a complex task that demands expertise to
ensure it matches the customer’s feedback in both
content and tone. A response must cater to dif-
ferent audiences: the reviewer seeking resolution
or acknowledgment, potential customers who use
reviews to inform their buying choices, and search
engines that use this content for search ranking
purposes. The sheer volume and diversity of cus-
tomer reviews across platforms like e-commerce
sites, social media, and review websites present
both a treasure trove of information and a daunt-
ing challenge for consumers seeking answers and
for businesses. The latter often struggle with the
resources and time to manage this feedback ef-
fectively, and they may not have staff skilled in
crafting responses. In this paper, we introduce
a scalable automatic end-to-end customer review
response generation methodology based on LLMs.
We aim to get high-quality responses leveraging
an optimization strategy that relies on LLM-as-a-
Judge, capable of iteratively scoring and proposing
response improvements. Subsequently, these pro-
posals are fed into a prompt generator that gener-
ates an improved prompt for each iteration in the
response generation process. Our methodology,
which deploys custom-tailored prompts for every
customer support category, has demonstrated su-
perior performance over the general prompt as per
the research conducted by (Yuan et al., 2024).

Overall, we make the following contributions:
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• We propose (SCRABLE - Self-Improving Cus-
tomer Review Response Automation Based
on LLMs), an LLM-based approach to au-
tomatically generate high quality responses
to given user reviews. We demonstrate the
power of customized prompt engineering to
lead the LLM-based solutions to responses
that raise customer satisfaction, engagement
and delight. Furthermore, we employ auto-
matic prompt engineering, using an LLM to
improve a prompt, which is then evaluated
against an objective function evaluator. We
achieve an optimal review response prompt
for inference via a two step method, 1) Re-
view - Response generating LLM (calibrated
by human evaluation) 2) Automatic prompt op-
timization using LLM-as-a-Judge.

• We conduct both manual and automatic evalu-
ation on the performance of the proposed mod-
els and baselines. The experimental results
indicate that our optimized prompt increased
the human score of our test set response gen-
erations by more than 8.5% comapred to the
generations obtained by using our initial base
prompt.

• The results demonstrate that our proposed
LLM-as-a-Judge approach achieves 3-5 times
stronger correlation with human evaluation
compared to (Yuan et al., 2024).

The rest of this paper is organized as follows. Sec-
tion 2 surveys the related work. Section 3 intro-
duces an overview of the proposed approach and
the detailed design of the approach. Section 4
elaborates on the experimental results, including
the results from the automatic LLM based evalu-
ation and manual human evaluation. Sections 5
and 6 discuss conclude our work, summarizing the
proposed future work.

2. Related Work

2.1. Customer Reviews Analysis
As noted in Pagano et al., user feedback and user
involvement are crucial for modern software orga-
nizations (Pagano D, 2013). Data mining of user
reviews has attracted significant research attention
owing to the pivotal role reviews play in shaping
consumer perceptions and decision-making regard-
ing applications. Researchers have applied vari-
ous techniques to analyze these reviews, ranging
from fundamental structural features, such as re-
view length and TF-IDF (Term Frequency-Inverse
Document Frequency), which are frequently used
to automatically classify user review emotions at
a high level. Furthermore, more in-depth analy-
ses have been pursued through the extraction of

content features, including sentiment, topic, and
keywords, often achieved through the application
of machine learning methods(Guzman and Maalej,
2014; Martin et al., 2017; Gao et al., 2019; Palomba
et al., 2017; Bharti and Babu, 2017). Other papers
provide a unified summary of multiple customer re-
views using machine learning models (Bražinskas
et al., 2020; Brazinskas et al., 2022; Bhaskar et al.,
2023).

2.2. Customer Reviews Response
Generation

In addition to the process and analysis of the re-
views, it is crucial to properly respond to the user. In
addition to being informative, such response should
be polite, address user’s concerns, be empathic,
leave a positive impression about the product, etc.
It is important for developers to carefully respond
to each and every customer review. Hassan et al.
indicate that the chances that a user will revisit their
review score are six times higher if the review gets
a timely and to-the-point response from the prod-
uct team (Hassan et al., 2018). However, some
applications have so many users and reviews such
that human responses are not always possible for
all of the reviews. In recent years, efforts were
made to automatically generate responses to cus-
tomer reviews using machine learning techniques.
Gao et al. suggest an RNN-based model named
RRGen to encode the review with high level fea-
tures such as occurrences of specific keywords,
rating, review sentiment, review length and app
category towards an automatic response genera-
tion (Gao et al., 2020). Zhang et al.(Zhang et al.,
2023) propose a transformer (Vaswani et al., 2017)
based model named TRRGen for automatic app
review response generation. TRRGen fuses the
features of app category and ratings and demon-
strates that the fusion of app category feature and
rating feature into token semantics is helpful for
generating high-quality responses (competitive with
human app expert responses). Gao et al. aim to
address two limitations of the method they previ-
ously suggested, namely its lack of flexibility and
generalization, which often leads to the generation
of non-informative responses (Gao et al., 2021).
Their proposed solution, named CoRe, leverages
app details and responses from similar reviews.
In addition, Farooq et al. train a seq2seq model
with a retrieval component that merges user re-
views with pertinent app descriptions and known
user reviews, using specific app features to gen-
erate app-aware responses (Farooq et al., 2020).
Cao et al. evaluate the performance of selected
pre-trained language models against a transformer
model trained from scratch in the context of auto-
matic customer review response generation. They
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find that although pre-trained language models may
score lower than baseline models in their experi-
ments, they still prove effective in generating re-
sponses and show considerable robustness rela-
tive to the amount of training data used (Cao and
Fard, 2022). Finally, Chen et al. propose a multi
aspect attentive network to automatically attend dif-
ferent aspects of the review, ensuring most of the
issues are being answered (Chen et al., 2022)

2.3. Response Evaluation
Assessing the quality of generated responses in
the context of generative AI models involves mul-
tiple parameters such as relevance, coherence,
and human-likeness. In the study by Katsiuba et
al. (Katsiuba et al., 2023), an online experiment
involving 502 participants was leveraged to deter-
mine the effectiveness of large language models
(LLMs) in generating responses to customer feed-
back. The experiment’s findings indicate that LLMs’
responses were not only effective in achieving com-
municative goals but also held up well when com-
pared to responses written by humans. One key
methodology employed to evaluate the responses
was the Turing test approach (Turing, 2009), which
involves human evaluators to determine the human-
like quality of an utterance generated by an AI.
Traditional automatic evaluation metrics such as
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and METEOR (Banerjee and Lavie, 2005) often do
not correlate well with human judgment due to their
focus on lexical matching. Consequently, there
is a pressing need for more advanced automatic
evaluation techniques that better mirror human as-
sessments. One approach is to employ semantic
evaluation methods that measure the similarity be-
tween the ground truth and model-generated re-
sponses (Zhang et al., 2019; Zhao et al., 2019;
Risch et al., 2021). Another emerging strategy is
to utilize Large Language Models (LLMs) as eval-
uators to assess the quality of text and the overall
performance of language language models, a prac-
tice known as LLM-as-a-Judge (Fu et al., 2023; Gao
et al., 2023a; Chiang and Lee, 2023; Liu et al., 2023;
Shen et al., 2023; Wang et al., 2023a,c; Peng et al.,
2023; Gudibande et al., 2023; Zhou et al., 2023;
Dettmers et al., 2023; Dubois et al., 2023; Bubeck
et al., 2023; Chan et al., 2023; Yuan et al., 2021;
Li et al., 2023; Fernandes et al., 2023; Bai et al.,
2023; Saha et al., 2023; Kim et al., 2023a; Zheng
et al., 2023; Kim et al., 2023b). While the focus
has been on the automatic evaluation of responses,
the integration of retrieval-augmented generation
(RAG) frameworks (Lewis et al., 2020; Guu et al.,
2020; Izacard et al., 2022) has become increasingly
prevalent to boost LLM performance. This integra-
tion necessitates the development of an automated
evaluation system tailored for the comprehensive

RAG process (Es et al., 2023; Saad-Falcon et al.,
2023).

2.4. LLM Self Improvement
While Large Language Models (LLMs) are adept
at generating content, they may not always cater
to specific use case requirements. To tackle this
issue, enhancing LLMs through self-improvement
techniques has become a focal point of research.
Madaan et al. (Madaan et al., 2023) introduce
SELF-REFINE, a technique for the autonomous
enhancement of an LLM through cycles of feed-
back and refinement. Zhou et al. (Zhou et al.,
2022) present the Automatic Prompt Engineer, a
method for choosing prompts that optimize a par-
ticular score function. Furthermore, Yang et al.
(Yang et al., 2023) explore the application of LLMs
as optimizers with their approach, Optimization by
PROmpting. Pryzant et al. (Pryzant et al., 2023)
suggest Prompt Optimization with Textual Gradi-
ents, a non-parametric strategy influenced by gra-
dient descent to fine-tune prompts according to
a scoring function. Another study by Wang et al.
(Wang et al., 2023b) views prompt optimization as a
form of strategic planning, proposing PromptAgent
to autonomously generate expert-level prompts.
Wang et al. (Wang et al., 2022) propose Self-
Instruct, a method for bootstrapping LLMs using
instruction-response pairs that they generate them-
selves. Lastly, Yuan et al. (Yuan et al., 2024) in-
vestigate Self-Rewarding Language Models, which
are capable of self-improvement by evaluating and
training on their own outputs. These models not
only employ LLM-as-a-Judge for self-assessment;
but also use training data to create instructions that
enhance the quality of the target output. Iterative
methods use a single LLM to act as the genera-
tor, refiner, and feedback provider or to generate
and judge its own responses to improve both its
response quality and reward prediction ability. The
SELF-REFINE framework allows large language
models to iteratively improve their output by gener-
ating initial output, evaluating it, and then refining it
based on self-generated feedback, all without the
need for additional or external data or training. This
method harnesses the model’s own feedback to en-
act self-improvement, similar to human revision pro-
cesses (Madaan et al., 2023). The self-improving
process involves Self-Rewarding Language Models
(SLMs) starting with a base pre-trained language
model and a small amount of human-annotated
seed data, which then engage in self-instruction
creation to generate and judge new training data
(Yuan et al., 2024). Each iterative cycle aims to sur-
pass the previous models by using refined training
sets from the model’s own generations and evalua-
tions, leading to both improved instruction-following
abilities and a dynamic, improving reward model-

42



ing capacity. Integrating human expertise with AI,
in customer feedback management improves the
generation of human-like responses. Human-AI
collaborative configurations, such as a combination
of deep learning models with human edits, show-
cased better performance in Turing tests, suggest-
ing they were more human-like than responses
from AI alone (Katsiuba et al., 2023). The signifi-
cant amplification in communicative effectiveness,
offering responses that align more closely with cus-
tomer expectations in terms of quality, fairness, and
personalization. Our approach integrates artificial
intelligence to enhance customer review analysis
by focusing on key elements like accuracy, rele-
vance, and empathy, essential for the customer sup-
port domain. By incorporating the LLM-as-a-Judge
system, we’ve introduced an intermediate prompt
creation step, which allows for a more controlled
and nuanced adjustment process. This strategy
involves selectively choosing categories for review
and methodically suggesting on which reviews to
base new prompts, ensuring a more tailored and
impactful response to users. Moreover, our system
is designed with stability in mind; the feedback and
LLM-as-a-Judge mechanisms are fixed, eliminating
the need for generating new training data. The col-
laboration between the judge LLM and the nuanced
prompts across different categories delivers more
rounded, human-like responses. Additionally, we
have implemented an automated scoring method
for the model which correlates well with human
judgment, ensuring that our automatic assessment
and scoring align closely with human perspectives.

3. Methods

3.1. LLM as a Judge of Customer Review
Response

Due to the limited availability, the challenge of ob-
taining, and the expenses related to human eval-
uations, our aim was to create an automated sys-
tem, LLM-as-a-Judge, that is designed to evalu-
ate customer feedback responses just like a hu-
man judge would. Undoubtedly, such a tool pro-
vides us with the capability to evaluate online re-
views and enhance our services in real-time. It
not only facilitates immediate feedback but also
paves the way for ongoing enhancements in the
way we provide our services. Our approach as-
sumes that for a given collection of customer re-
views, denoted as {Ri}Ni=1, there exist correspond-
ing responses crafted by human experts, denoted
as {ExpertResponse[Ri]}Ni=1. These expert re-
sponses act as ideal examples, illustrating the opti-
mal reply for each particular review. In developing
an LLM-as-a-Judge intended to serve as a proxy to
for actual human evaluation, we initially requested

each author of the paper to evaluate the responses
based on four criteria - Relevancy - how relevant
the response is regarding to the review, Application
Specificity - how specific the response is regarding
the application, at hand, Accuracy - how accurate
the response is and Grammatical Correctness of
the response. These criteria were selected be-
cause they are widely recognized in the customer
review domain ((Zhang et al., 2023), (Gao et al.,
2020),(Gao et al., 2021), (Farooq et al., 2020)) .
Evaluators assign ratings to each aspect individu-
ally on a scale from 1 to 5. Drawing on the works
of (Liu et al., 2023) and (Yuan et al., 2024), we
devised specific evaluation prompts for each cat-
egory that reflect the guidelines given to the hu-
man responders (detailed prompts are included
in the appendix). These prompts are inputted to
the LLM-as-a-Judge, which then generates scores
and justifications for each category’s evaluation,
adopting the prompt structure of (Yuan et al., 2024).
To assess Relevancy, Application Specificity, and
Grammar, the LLM primarily considers the review
and the model’s prediction, without referencing the
expert’s answer. However, for Accuracy, the LLM
does reference the expert-provided ground truth
answer (i.e.,{ExpertResponse[Ri]}Ni=1). To further
improve the accuracy assessments by the LLM, we
integrate the knowledge base of our application and
implement the RAG pipeline outlined in 3.5, aiming
to make the judgments more credible and precise.
It is worth noting that to deploy our LLM-as-a-Judge
in real-time, where human expert responses are
unavailable, one should omit the human expert re-
sponse from the evaluation prompts.

3.2. Iterative Refinement of Customer
Review Response

Once the LLM has demonstrated its capability to
assess customer review responses with accuracy
comparable to human evaluators, we utilize our op-
timized LLM as a judge utility to enhance the quality
of response generation flow. This time around, we
iterate on only the M which represents the reviews
with the lowest scores from human evaluation, in-
dicating areas where improvement is needed. To
prevent overfitting, we also include a small propor-
tion of randomly selected reviews in this subset.
We refer to this curated set of reviews, where the
response generation process has not performed
optimally, as

{IRj}Mj=1 ⊂ {Ri}Ni=1 (1)

when IR stands for improvement required. We
iterate until the score meets the quality criteria or
we reach a fixed point.

Judge(IRj) ≥ 0.95 (2)
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Figure 1: Prompt Optimization Flow driven via feed-
back of LLM as a judge utility

At each iteration, we modify the prompt guiding
the LLM for response generation, instructing it to
enhance its performance by utilizing insights from
the human expert’s answer. This adaptive strategy
is designed with the aim that such improvements
will be applicable more broadly to the generation
of responses for future reviews.

3.3. LLM as a Response Generator
Our iterative self improving flow illustrated in Algo-
rithm 1 and Figure 1 initially generates response
predictions for all N reviews {Ri}Ni=1 via instructing
LLM (in our case GPT4) via the base prompt. The
predictions are then evaluated, with scores and
feedback, including suggestions for improvements
being collected for all reviews as depicted in Algo-
rithm 2 and Figure 2. This results in a collection of
(score, suggestions) tuples for all reviews. Reviews
with lowest scores (those for which an improvement
is required) are flagged. For these reviews, feed-
back is specifically sought to refine the responses;
denoted as {IRj}Mj=1. Following the refinement of
the prompt, we calculate the average score for new
response predictions across all reviews using this
updated prompt. The process is repeated until no
further improvements may be achieved or we have
reached the quality threshold. The end product of
this self improving iterative flow is a customized op-
timized prompt (i.e., revisedPrompt) that yields the
highest score for customer review response pre-
dictions through GPT). We adopt a dual strategy
approach 1 Aim to improve reviews with the most
need for improvement by selecting n % (in our case
n = 30) of the lowest scoring responses (based on
judge scores; 2 Incorporate stochasticity to combat
overfitting via targeting to improve m% (in our case
m = 10) additional random response predictions.

As can be seen in Algorithm 2 and respective
Figure 2, we leverage LLM both as a generator

Algorithm 1 Customer Service Chatbot Assistant -
Iteratively self improving customer review response
generation based on feedback
1: prompt← Basic Prompt Template
2: reviews← {Ri}Ni=1

3: feedback← ScoredResponseGen(prompt, re-
views)

4: # a list of score & suggestion pairs for each
review

5: avgScore← AverageScore(feedback)
6: repeat
7: suggestions← IdentifyIR(feedback)
8: # a list of suggestions for improvement
9: # for %lowest scoring response predictions

10: # and % of random predictions
11: prompt← PromptGen(suggestions)
12: feedback←

ScoredResponseGen(prompt, reviews)
13: # feedback for response gen. via the revised

prompt
14: avgScore← AverageScore(feedback)
15: until (avgScore ≥ THRESHOLD) or

MAX_ITER
16: return prompt

of response predictions (i.e., ResponseGen), and
also judge the quality of the predictions according
to four categories Relevancy, Application Speci-
ficity, Accuracy and Grammatical Correctness (i.e.,
Judge).

Algorithm 2 Get scored response predictons for
the reviews at hand including improvement sugges-
tions for each
1: function ScoredResponseGen(prompt, re-

views)
2: # Generate scored response predictions
3: feedback← Empty List
4: i← 1
5: for each Ri in reviews do
6: predictioni ← ResponseGen(Ri)
7:

(scorei, suggestionsi)
← Judge(Ri,predictioni,ExpertResponse[Ri])

8: append (scorei, suggestionsi) to feedback
9: i++

10: end for
11: return feedback

3.4. LLM as a Prompt Generator
The process of refining prompts through LLM is
preceded by a rigorous selection of inputs. Ini-
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Figure 2: ScoredResponseGen : Given reviews
of interest, a prompt and optionally respective ex-
pert responses, LLM predicts responses via (Re-
sponseGen) utility. Scoring of the quality of the
response and improvement suggestions are han-
dled via (Judge) utility. The feedback ouput is a list
of score and suggestions pairs for each review.

tially, all responses generated by the initial prompt
are inspected, and only those with the lowest av-
erage scores are chosen for further analysis, as
detailed in the previous section. To ensure focused
improvement, each response category is further
filtered to include only those areas where perfor-
mance falls below a specific threshold, indicating
considerable room for improvement. After the se-
lection has been refined, the LLM embarks on the
optimization phase, where it reassesses the origi-
nal agent’s prompt within the context of the selected
analyses. The aim here is to enhance clarity, elimi-
nate redundancy, and focus on rectifying the identi-
fied weaknesses. This custom-made optimization
ensures that the most crucial areas of communica-
tion are addressed, thereby augmenting the effec-
tiveness of future responses. By focusing on the
response’s most critical points, the refined prompt
is engineered to bolster the system’s overall per-
formance. This vital stage in the continuous loop
of prompt optimization also acts as a safeguard
against overfitting. It transforms a compilation of
specific case responses into concise, actionable
prompt instructions that can be generalized across
various interactions.

3.5. Offline and Online Information
Retrieval

In the RAG system, as can be seen in Figure 3, two
distinct yet interconnected workflows, offline and
online, are utilized to provide a seamless informa-
tion retrieval and response generation process.
Offline Flow: The offline flow is dedicated to
preparing and structuring the data for the RAG sys-
tem. This involves the following series of steps:

Figure 3: Our Retrieval Augmented Generation
Pipeline

1. Document Loading: A variety of app-related
documents are imported into the system using
LangChain Document Loaders that support
multiple formats.

2. Document Segmentation: Through the
LangChain Character Text Splitter, documents
are segmented into 500-token pieces to
facilitate easier model interpretation.

3. Generating Embeddings: The OpenAI text-
embedding-ada-002 model is employed to
transform document segments into embed-
dings for better comparison capability.

4. Storing Documents and Embeddings: Finally,
documents and embeddings are securely
stored in a vector store, with Azure AI Search
providing straightforward retrieval.

Online Flow: The online flow is activated when the
system interacts with a user’s query. It employs a
dynamic approach:

1. Hybrid Retrieval: Using Azure Cognitive
Search, the system retrieves the top four seg-
ments most relevant to the user’s query.

2. Response Generation: GPT-4 integrates the
query with the retrieved information to craft a
comprehensive and contextually accurate re-
sponse. By combining these offline and online
methods, the RAG system ensures the provi-
sion of relevant, accurate, and app-specific re-
sponses, including useful references and links,
in real-time, leveraging both the vast indexed
knowledge and the generative capabilities of
the advanced AI model.

4. Experiments and Results

In this section, we provide detailed information
about our experiments and their corresponding re-
sults. The findings from our study suggest that
employing a GPT4 LLM can effectively:
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• Generate automatic responses to customer
reviews.

• Achieve good (close to human) evaluations of
the quality of customer review responses.

• Automate the enhancement of the LLM’s ability
to generate responses to customer reviews,
ultimately competing with outcomes obtained
from human-optimized prompts.

4.1. Customer Review Data
We collected forty nine real-life customer reviews
pertaining to <OUR APP NAME >1 in addition to
expert responses from various online platforms,
and then split them into train (28 reviews) and test
(21 reviews) datasets. Additionally, we created an
extensive knowledge base that includes the appli-
cation’s documentation, such as user manuals and
instructional guides to be used in our RAG flow.

4.2. Human Evaluation
Analogous to the methodology employed by
(Bhaskar et al., 2023), the authors of the present
study were tasked with evaluating responses to cus-
tomer reviews that were produced by a manually
refined prompt. Our focus was targeted on vari-
ous key aspects, namely Relevancy, Application
Specificity, Accuracy, and Grammatical Correct-
ness. The authors received detailed instructions on
how to rate each category separately. The scores
given by the human judges are compiled in Table
1, which includes metrics such as Krippendorff’s
alpha and Fleiss kappa. Ultimately, the average
score for each category, as determined by the la-
belers, was calculated and normalized to a 0 − 1
scale using the min-max normalization.

4.3. LLM as a Judge
Like the human assessment process, the scores
from LLM-as-a-Judge are also normalized. It is
important to note, however, that while the "overall
score" from human evaluations is an average of the
four categories (after normalization), our observa-
tions indicated that placing additional emphasis on
the accuracy aspect made the LLM’s overall scores
more aligned with effective outcomes. Thus, the
"overall" score of the LLM-as-a-Judge is computed
by a weighted average of the categories, with ac-
curacy being given twice the weight of the other
categories. A comparison of our LLM and human
scores is presented in Table 2. Within the training
data set, our LLM-as-a-Judge shows moderate to
strong positive correlation with human scores in
the same category in three categories (Relevancy,

1Application name has been left out

Accuracy, and Application Specificity) and in the
overall score. The fourth category, which presents
nearly zero correlation, still exhibits a negligible vari-
ance between the LLM and human scores. More-
over, only a few human scores in the Grammar
category are less than 5, high grammatical qual-
ity generation by GPT-4. For the test dataset, the
Accuracy and the overall scores moderately cor-
relate to those from humans, paired with a nearly
exact match in Grammatical Correctness. We note
that that for the test set, all human scores were at
the 5, thus calculations of Krippendorff’s Alpha and
Fleiss Kappa are irrelevant. However, unlike the
training set, the Relevancy and Application Speci-
ficity scores of the LLM showed a weak (and neg-
ative) correlation with human assessments. To
demonstrate the strength of our LLM-as-a-Judge
we compared the overall score obtained using our
evaluation prompts and the prompt of (Yuan et al.,
2024) against the human grades (Table 3). Our
experiments imply that a tailored evaluation prompt
for each category, specifically related to customer
support, is more advantageous than a single broad
evaluation prompt. To make the comparison as fair
as possible, we made few changes to the original
prompt of (Yuan et al., 2024). First, we made the
prompt more suitable to customer review domain,
for example, we replaced the word ’question’ with
the word ’review’. We also add the product context
to the prompt, similarly to our prompt, enhancing
the judge capabilities. Lastly, we tested how adding
a reference to the ground truth expert response, af-
fect the scores. The assessment was conducted
by calculating the correlation and divergence be-
tween these LLM-assigned scores and the scores
obtained from human assessments of responses
generated by the manually optimized prompt.

4.4. LLM as a Response Generator
Our study utilized various examples to showcase
the strength of our refined response generation
mechanism. Initially, Tables 4 and 5 illustrate
that the outputs crafted using our LLM-tailored
prompts outperform responses generated with
human-tailored and foundational prompts in almost
every aspect. This superior performance is consis-
tently observed across both train and test datasets,
as evaluated by our LLM-as-a-Judge. Further, in
Figure 4 we provide an insight on the improvements
obtained in each iteration of our self-improving
response generation flow via providing details of
prompt, response, score and suggestions of the
LLM for an iteration step. To impartially assess the
improvement in the results achieved using the base
prompt versus our optimized prompt, we enlisted
four team members, unaffiliated with this project,
to manually score the test set generation obtained
using the base and optimized prompts. The scor-
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Category Krippendorff’s Alpha Fleiss Kappa Mean ± Std
App Specificity 0.13 / 0.10 0.05 / 0.02 4.61± 0.76 / 4.71± 0.59

Accuracy 0.26 / 0.44 0.15 / 0.11 3.67± 1.11 / 3.69± 1.24
Relevancy 0.17 / 0.2 0.21 / 0.05 4.90± 0.35 / 4.83± 0.48

Grammatical Correctness −0.01 / X −0.02 / X 4.98± 0.13 / 5.00± 0.00

Table 1: Train/Test Sets - Human Scores

Category Kendall’s τ Pearson Correlation Spearman Correlation l1 l2 l∞
Relevancy 0.23 / −0.24 0.46 / −0.16 0.24 /−0.25 0.67 / 1.05 0.28 / 0.42 0.19 / 0.31
Accuracy 0.51 / 0.35 0.65 / 0.49 0.67 / 0.49 3.65 / 3.69 0.94 / 1.06 0.44 / 0.63

App Specificity 0.47 / −0.23 0.82 / −0.28 0.54 / −0.24 2.29 / 1.69 0.68 / 0.52 0.50 / 0.25
Grammatical Correctness −0.05 / X −0.05 / X −0.05 / X 0.17 / 0.10 0.10 / 0.06 0.08 / 0.05

Overall 0.39 / 0.31 0.30 / 0.46 0.50 / 0.43 2.77 / 1.40 0.78 / 0.38 0.42 / 0.19

Table 2: LLM-as-a-Judge Compared to Human Scores - Train/Test Sets

Category Kendall’s τ Pearson Correlation Spearman Correlation l1 l2 l∞
Overall - (Yuan et al., 2024) 0.10 / X 0.13 / X 0.12 / X 4.55 / 3.15 0.95 / 0.78 0.33 / 0.25

Overall - (Yuan et al., 2024) + Expert Response 0.07 / −0.10 0.08 / −0.12 0.09 / −0.14 7.35 / 6.55 1.75 / 1.83 0.89 / 0.94
Overall - Ours 0.39 / 0.31 0.30 / 0.46 0.50 / 0.43 2.77 / 1.40 0.78 / 0.38 0.42 / 0.19

Table 3: LLM-as-a-Judge Prompt Comparison : Train/Test Sets

Category LLM Scoring (Base) LLM Scoring (Human Optimized) LLM Scoring (LLM Optimized)
App Specificity 0.76 0.93 0.99

Accuracy 0.72 0.78 0.84
Relevancy 0.94 0.99 0.97

Grammatical Correctness 0.98 1.00 1.00
Overall 0.81 0.87 0.91

Table 4: LLM Scores of Generated Responses - Train Set

Category LLM Scoring (Base) LLM Scoring (Human Optimized) LLM Scoring (LLM Optimized)
App Specificity 0.92 0.99 0.99

Accuracy 0.78 0.79 0.81
Relevancy 0.99 0.99 0.99

Grammatical Correctness 0.99 1.00 1.00
Overall 0.87 0.89 0.90

Table 5: LLM Scores of Generated Responses - Test Set

Category (Normalized) Averaged Human Scoring (Base) (Normalized) Averaged Human Scoring (LLM Optimized)
App Specificity 0.77 0.87 (+12.99%)

Accuracy 0.60 0.68 (+13.33%)
Relevancy 0.76 0.84 (+10.53%)

Grammatical Correctness 1 1
Overall 0.78 0.85 (+8.97%)

Table 6: Human Scores of Generated Responses - Test Set

ers were kept blind to the origin of the results, i.e.
which were derived from which prompts. Although
the LLM exhibited a slight improvement with the re-
fined prompt, Table 6 reveals a significantly larger
improvement regarding to human scoring of more
than 8.5% overall. Finally, we generated responses
for 50 new reviews and solicited a domain expert
to evaluate the results, aiming to gain a general
understanding of the result quality for new, unseen

examples. The scores obtained were noteworthy,
averaging 4.68 for relevancy, 4.8 for accuracy, 4.7
for application specificity and 4.32 for grammatical
correctness.

5. Discussion

Building on prior research in the domain of cus-
tomer review response creation, our study inte-
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Figure 4: Iterative Self-Improving Response Generation Step

grates state-of-the-art machine learning technolo-
gies, particularly LLMs. We present a novel con-
tribution with our LLM-as-a-Judge, an automated
evaluation method to assess customer review re-
sponses (vs. ground truth). Our findings support
the use of tailored evaluation prompts for each re-
view category over the application of a single, more
generic prompt. The data indicates that responses
crafted with our refined prompt align closer to hu-
man responses by 3− 5 fold in terms of correlation.
For practical application, the refined prompt can
be implemented at a production level. Considering
the frequent updates to customer support materials
and databases, we recommend regular refreshes to
provide the latest data for the RAG, thereby reduc-
ing inaccuracies in the model’s outputs. In parallel,
to adapt to the continual influx of customer reviews,
we advocate for regular retraining of the model to
derive new and improved prompts. Another insight
of our research is the potential utilization of com-
parison of LLM and human evaluation scores to let
us understand when new knowledge (data points)
need to be added to our input knowledge (i.e., RAG)
pipeline. Should the LLM as a judge score fall be-
low the human evaluation score, it indicates that the
LLM can learn how to improve by referencing the
human expert’s response. Conversly, if the LLM
as a judge significantly exceed the human evalu-
ation score; i.e., by at least 0.1, we may assume

that our LLM based response generation lacks the
needed knowledge to improve and request LLM to
create generalized new data points (i.e., Q&A data
points) leveraging the review and human expert
response. These newly created data constructs
can then be reincorporated into our generation pro-
cess to enhance the quality of responses for future
reviews.

6. Conclusions

In summary, our comprehensive preparation of cus-
tomer review data for both training and testing, com-
bined with the utilization of human evaluators, has
enabled us to thoroughly assess the ability of the
LLM (GPT4 in particular) to act as an effective re-
sponse generator to customer reviews of <OUR
APP NAME > at an app store. Our experimen-
tal results provide strong evidence of LLMs dual
functionality. Not only can they effectively generate
predictive responses to customer reviews, but they
also show a commendable capacity to evaluate the
quality of those response predictions. This dual
functionality enhances the system’s adaptability
and versatility, making it a valuable tool in the realm
of customer service and communication. The out-
comes from our assessments provide a promising
foundation for further exploration and improvement
of LLMs capabilities in practical real-world settings.
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A. Appendix

A.1. Prompts

Base Prompt

Instruction:
As a customer support chatbot assistant,
your task is to respond to the review
received on the <OUR APP NAME > appli-
cation based on the context information.
Context: context
Question: question
Answer:
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Human Optimized Prompt

As a customer support chatbot assistant,
your task is to respond to the review re-
ceived on the <OUR APP NAME > appli-
cation. Your goal is to craft a response that
will satisfy and delight the customer who
wrote the review. Please follow the steps
below:

1. Analyze the customer’s question and
the context provided.

2. Formulate a response that addresses
their concerns or queries.

3. Only for the issues that may necessi-
tate professional intervention, please
include this message in your response:
’Should the problem continue, we en-
courage you to contact our technical
support team for expert help. [support
url]’

4. If the context contains useful informa-
tion that can assist the user, incorporate
it into your response, add helpfull links
from the context, if link is added do not
add the same link again as a reference.

5. In case the context does not provide
any relevant information, use your gen-
eral knowledge to formulate a helpful
response.

6. Start your response by thanking user
for their feedback, and ensure that your
response is short and highlights the
positive features of the <OUR APP
NAME > application.

Context: {context}
Question: {question}
Answer:

LLM Optimized Prompt

Instruction:
As a customer support chatbot assistant,
your role is to respond to the feedback re-
ceived about the <OUR APP NAME > ap-
plication. Tailor your responses to the cus-
tomer’s specific issue, offering helpful solu-
tions and resources.
Context: {context}
Customer review: {question}
Answer:
In your response, ensure you address the
customer’s primary issue and provide im-
mediate, actionable solutions. Refer to the
<OUR APP NAME > app and its features,
and guide them to the technical support
team if the issue persists. Should the cus-
tomer’s query be unclear, clarify by asking
for more information. If the customer can’t
locate the <OUR APP NAME > app, provide
direct links to different app stores. Address
all potential issues related to the <OUR APP
NAME > app by providing clear troubleshoot-
ing steps. If the customer mentions bugs in
the <OUR APP NAME > app, direct them
to resources for common troubleshooting
or provide contact information for technical
support.
Remember to highlight key information such
as the app’s design to conserve resources,
its unavailability on certain platforms, and
recent updates. If the customer expresses
disappointment about certain app capabil-
ities, acknowledge their feedback, explain
the current app capabilities, and hint at fu-
ture updates if applicable. Also, don’t forget
to mention the recently added tablet sup-
port.
Your response should be grammatically cor-
rect, free of spelling errors, and maintain
a polite and professional tone. Use the
data source context effectively without be-
ing overly lengthy or repetitive. Focus on
directly addressing the user’s review and
providing a concise, relevant response.
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LLM Prompt Optimization

Your task is to enhance the effectiveness
of customer service interactions. Begin by
reviewing the original agent’s prompt and
the analysis of the responses it generated.
Use the insights from the analysis to refine
the agent’s prompt, aiming to improve
the agent’s overall performance for future
interactions.
Your revised prompt should be clear,
concise, and non-repetitive.
Your revised prompt should be focused
on addressing the identified areas for
improvement while retaining the structure
of the original prompt.
Be sure to enclose all variables in curly
brackets as in the original prompt.
Begin your revision process here:
Original Agent’s Prompt: {question}
Responses Analysis: {context}
Your Improved Prompt:

LLM-as-a-Judge - Accuracy Prompt

You get a customer review, a correspond-
ing customer service agent response, and
a best possible response designed by an
expert. Your role is to rate how accurate the
agent’s response, based on the context and
the expert response. Your score should be
based on the following criteria - Accuracy -

1. Based on the expert’s response, does
the agent’s response answer the user
concerns regarding to the <OUR APP
NAME > app accurately?

2. Does the agent’s response lack
some information from the expert’s
response?

3. Does the agent’s response aligned with
the expert response?

4. Does the agent use the Data Source
Context correctly to generate the an-
swer?

5. Does the agent use the Data Source
Context accurately when addressing
the user concerns?

Assign a score ranging from 1.0 to 5.0,
where 1.0 signifies inaccurate response and
5.0 indicates very accurate response. Dont
refer the quality of the answer, only refer to
its accuracy. Your output must be a single
number between 1.0 to 5.0.
Customer review : {query}
Agent response: {result}
Expert Response : {answer}
After examining the user’s review, the
agent’s response and the expert’s response:
Briefly justify your total score, up to 150
words. If possible, use the Data Source
Context to establish your claims. Conclude
with the score using the format: ’Total Score:
<total points>’
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LLM-as-a-Judge - Relevancy Prompt

You get a customer review and a corre-
sponding customer service agent response.
Your role is to rate the relevancy of the
agent’s response. Your score should be
based on the following criteria:

1. Is the response relevant and provides
some information related to the user’s
review ?

2. Is the response addressing the user’s
review directly?

3. If not specifically mentioned, you may
assume that the user is using the <OUR
APP FULL NAME > app.

Assign a score ranging from 1.0 to 5.0,
where 1.0 signifies a non relevant response
and 5.0 indicates a very relevant response.
Dont refer the quality of the answer, only
refer to its relevancy to the user review.
Your output must be a single number
between 1.0 to 5.0.
Customer review : query
Agent response: result
Expert Response : answer

After examining the user’s review and the
agent’s response: Briefly justify your total
score, up to 150 words. Conclude with the
score using the format: ’Total Score: <total
points>’

LLM-as-a-Judge - Grammatical Correct-
ness Prompt

You get a customer review and a corre-
sponding customer service agent response.
Your role is to rate the grammar of the
agent’s response. Your score should be
based on the following criteria:

1. Is the response grammatically correct?

2. Does the response has no spelling er-
rors?

Assign a score ranging from 1.0 to 5.0,
where 1.0 signifies a wrongly spelled,
low quality response and 5.0 indicates a
grammatically correct high quality response.
Your output must be a single number
between 1.0 to 5.0.
Customer review : query
Agent response: result
Expert Response : answer

After examining the user’s review and the
agent’s response: Briefly justify your total
score, up to 150 words. Conclude with the
score using the format: ’Total Score: <total
points>’
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LLM-as-a-Judge - App Specificity

You get a customer review and a corre-
sponding customer service agent response.
Your role is to rate the agent’s response re-
garding whether it specifically addresses to
<OUR APP FULL NAME > app. Your score
should be based on the following criteria:

1. Is the response specifically tailored to
<OUR APP FULL NAME > and its func-
tionalities?

2. Do the opening and the end of the re-
sponse relate to <OUR APP NAME >?

3. If not specifically mentioned, you may
assume that the user is using the<OUR
APP FULL NAME >

4. For your concern, <OUR APP NAME >
and <OUR APP FULL NAME > are the
acronyms.

5. If not specifically mentioned, you may
assume that the user is using the <OUR
APP FULL NAME > app.

Assign a score ranging from 1.0 to 5.0,
where 1.0 signifies a response that is not
specific to <OUR APP NAME > and 5.0
indicates a response that is very specific for
<OUR APP NAME >. Dont refer the quality
of the answer, only refer to its specifically
relates to<OUR APP NAME >. Your output
must be a single number between 1.0 to
5.0.
Customer review : query
Agent response: result
Expert Response : answer

After examining the user’s review and the
agent’s response: Briefly justify your total
score, up to 150 words. Conclude with the
score using the format: ’Total Score: <total
points>’
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Abstract
Making product titles informative and concise is vital to delighting e-commerce customers. Recent advances have
successfully applied monolingual product title summarization to shorten lengthy product titles. This paper explores
the cross-lingual product title generation task that summarizes and translates the source language product title to a
shortened product title in the target language. Our main contributions are as follows, (i) we investigate the optimal
product title length within the scope of e-commerce localization, (ii) we introduce a simple yet effective data filtering
technique to train a length-aware machine translation system and compare it to a publicly available LLM, (iii) we
propose an automatic approach to validate experimental results using an open-source LLM without human input and
show that these evaluation results are consistent with human preferences.

Keywords: E-commerce, Summarization, Machine Translation, Natural Language Generation

1. Introduction
With e-commerce shopping websites being local-
ized worldwide, products are accessible in differ-
ent languages through worldwide stores. Moreover,
customers are provided with options to browse prod-
ucts in their preferred language other than the pri-
mary language of the store. To accomplish this,
modern e-commerce stores enable multi-lingual
product discovery (Rücklé et al., 2019; Nie, 2010;
Saleh and Pecina, 2020; Bi et al., 2020; Jiang et al.,
2020; Lowndes and Vasudevan, 2021) as well as lo-
calizing product information such as titles using ma-
chine translation (MT) systems (Way, 2013; Guha
and Heger, 2014; Zhou et al., 2018; Wang et al.,
2021).

Localized catalogs (e.g. Amazon, Walmart) con-
tain a large number of products with lengthy titles
which are often difficult to read or exceed screen
size limits (Zhang et al., 2021; Rozen et al., 2021).
This can lead to poor customer experience, espe-
cially when titles are used in other contexts such
as being read aloud by voice assistants. One rea-
son why localized titles are lengthy is due to their
source title: 65% of product titles contain 15 or
more words (Rozen et al., 2021) and often inten-
tionally lengthened by online sellers by including re-
dundant keywords and additional product attributes
for the purpose of search engine optimization (Xiao
and Munro, 2019). Additionally, title length can
increase during translation depending on the lan-
guage pair. Thus, an additional step is required to
optimally localize the lengthy title by adhering to the
Grice’s maxim of quantity, i.e. to be informative as
required and no more, no less. We hereby refer to
this task as “cross-lingual product title generation”
(CPTG).

Below is an example of a CPTG task, where a
English product title is optimized to a succinct form
in Spanish. In the Spanish translation, redundant
keywords and extraneous product attributes from
the source title are removed.
Input: Rainberg 32cm Frying Pan, Granite
Frying Pan Nonstick Coating, Anti-Scratch Pans,
Non-Stick Frying Pans, Stone Frying Pan,
Induction Compatible, Best Christmas Present,
Gift Pack Box. (32cm)
Output: Rainberg Sartén de granito con
revestimiento antiadherente (32 cm)

In an industry setting, cross-lingual product title
generation (CPTG) typically consist of length op-
timization and localization as two separate steps:
1. Length optimization employs techniques such
as monolingual summarization (Sun et al., 2018;
Fetahu et al., 2023), text truncation (Wang et al.,
2020; Guan et al., 2022) and manual editing. 2.
Localization uses machine translation either before
or after length optimization.

It is desirable to combine these two steps into
one for this CPTG task to reduce operational cost
and overhead. To our knowledge the task of jointly
accomplishing summarization and machine trans-
lation for product titles in e-commerce has not been
explored. As neural machine translation (NMT) sys-
tems are common in production for localization in
e-commerce, it will be convenient to make NMT ac-
complish both translation and title length optimiza-
tion in one step. This has the benefit of reducing
business complexity and hosting costs.

Therefore in this paper, we first analyse the prod-
uct title length change during localization. Second,
we propose a simple yet effective data filtering tech-
nique to train NMT to be aware of product title length
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optimization. Moreover, multilingual large language
models (LLMs) have recently shown promising re-
sults on machine translation and summarization
tasks and have shown potential to perform both
summarization and translation as a single task for
certain language pairs. Thus, we also investigate
jointly summarizing and translating e-commerce
product titles using Large Language Models (LLMs).
To validate the effectiveness of using LLMs for the
CPTG task, we compare its performance with a
smaller NMT system trained for the CPTG task (less
than 1 billion parameters). Finally, we propose an
novel approach to validate the experimental results
using an open source LLM model without human
inputs and we show that the evaluation results are
consistent with human preferences.

For the rest of the paper, Section 2 discusses
the product title length change during localization.
Section 3 introduces the architectures we are com-
paring for the CPTG task. Section 4 proposes an
novel way to evaluate experimental results using
an LLM with human validation. Section 5 describes
the experimental setup. Section 6 presents the re-
sults. Section 7 is related work and we conclude in
Section 8.

2. Product Title Length Change
During Localization

We observe that some language pairs have longer
product title translations than the source. We sam-
pled hundreds of thousands of source product ti-
tles from catalogs, translated them, and calculated
the character length ratio of the title translation
and source title in Table 1. We find that product
title translations tend to be longer for language
pairs like English-Spanish and English-German
and shorter for pairs such as German-Italian and
English-Japanese. The length increase or de-
crease in the product title translation can be in-
fluenced by the target language’s grammar, syntax,
or even cultural differences. For example, “week-
end” in English is “el fin de semana” in Spanish.
Thus, in addition to lengthy source product title
lengths, their length can also increase during the
localization process.

Language pair
with longer title
translations

TS Ratio
Language pair
with shorter title
translations

TS Ratio

English-Spanish 1.18 German-Italian 0.98
German-Polish 1.08 German-Swedish 0.95
English-German 1.05 German-Chinese 0.52
English-Italian 1.11 English-Japanese 0.65
English-Portuguese 1.12 English-Arabic 0.95
English-Polish 1.16 French-English 0.85

Table 1: Language pairs with shorter (TS Ratio<1)
and longer (TS Ratio>1) product title translations.
TS ratio: Length of Target/Length of Source (mea-
sured in characters)

3. Architectures

3.1. Encoder-Decoder Neural Machine
Translation with Length Optimization

We propose the following mechanism to select
bilingual data and fine-tune an encoder-decoder
transformer-based Neural Machine Translation
(NMT) model to translate and summarize prod-
uct information. The data selection approach is
to grounded on the length ratio of the target text
and source text as follows:

R =
Ltgt

Lsrc
(1)

Select =

{
1 if R ≤ T

0 otherwise
where Lsrc is the length of the source text, Ltgt

the length of the target text, R the length ratio, and
T as a fixed length ratio threshold.

Intuitively, we select source and target text pairs
to fine-tune a machine translation model if the ob-
served length ratio, R, is less than a fixed threshold,
T . This allows the model to gradually learn to gen-
erate shorter translations than the source inputs,
thereby developing a tendency to optimize length.
There are two main advantages of this length ratio-
based approach over applying summarization and
translation as two steps: (i) it circumvents the need
to create bilingual data through pre-summarizing
the source input or post-summarizing the translated
output, (ii) the length ratio threshold T is adjustable
for the given language pair, enabling adaptation to
different business requirements.

3.2. Prompt-based Cross-lingual
Generation using Large Language
Models

Prompting has highlighted various emergent ca-
pabilities of Large Language Models (LLMs) (Wei
et al., 2022a,b; Kojima et al., 2023; Wang et al.,
2022). We use Mixtral-8x7B-Instruct1, a
publicly available LLM, to translate and summarize
the English source product title into the expected tar-
get language through prompting using the following
prompt template. Brackets (<>) are placeholders
and substituted with relevant text.
Prompt Template:
Below i s a product t i t l e i n Engl ish :

<source product t i t l e tex t >

Please t r a n s l a t e i t i n t o < t a r g e t language > as shor t
as poss ib le and in the f o l l o w i n g JSON format : {
" output " : "< shortened t r a n s l a t i o n >" } .

Do not inc lude other i n f o rma t i on i n the output .

1https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1
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4. Evaluation with LLM and Human
Validation

4.1. Evaluation with LLM using Test Data
without Gold Standard Labels

In an industry setting, proof-of-concept experiments
like the CPTG task often do not warrant sufficient
resources to be spent on data annotation or pur-
chases. Instead, we propose using the following in-
practice evaluation scenario when we first conduct
the CPTG task. For this task, we used Mixtral-
8x7B-Instruct, an open-source LLM chosen for
its multilingual abilities, as an evaluator by provid-
ing prompts to determine the quality of the CPTG
output using the following template.
Prompt Template:
You are a Engl ish to < t a r g e t language > t r a n s l a t i o n

exper t rev iewing product t i t l e t r a n s l a t i o n s .
Please evaluate i f the provided t i t l e i n < t a r g e t

language > i s good summary o f the Engl ish
product t i t l e .

Below i s the Engl ish t i t l e :
<Engl ish t i t l e >

Below i s the t i t l e i n < t a r g e t language > :
< t i t l e t r a n s l a t i o n >

Here are i n s t r u c t i o n s on how to evaluate :
Respond 2 i f the t i t l e i n < t a r g e t language >

t r a n s l a t i o n i s sho r te r than the Engl ish t i t l e ,
have a l l o f the key product i n f o rma t i on from
the Engl ish t i t l e , and key in fo rma t i on i n <
t a r g e t language > are c o r r e c t t r a n s l a t i o n s .

Respond 1 i f the t i t l e i n < t a r g e t language >
t r a n s l a t i o n i s sho r te r than the Engl ish t i t l e ,
have some of the key product i n f o rma t i on from
the Engl ish t i t l e , and key in fo rma t i on i n <
t a r g e t language > are c o r r e c t t r a n s l a t i o n s .

Respond 0 i f the t i t l e i n < t a r g e t language >
t r a n s l a t i o n i s sho r te r than the Engl ish t i t l e ,
have l i t t l e o f the key product i n f o rma t i on from

the Engl ish t i t l e , and key in fo rma t i on i n <
t a r g e t language > are i n c o r r e c t t r a n s l a t i o n s .

Casing i s not impor tan t .
Return your response i n JSON format w i th the ' l abe l

' key con ta in ing your answer and ' reason ' key
con ta in ing a concise j u s t i f i c a t i o n o f your
answer as { " l a b e l " : <answer> , " reason " : <your
reasoning > } , ) .

Please make sure the output i s i n JSON format .

And the expected output from the prompt above is
as follows:

{ " l a b e l " : 1 , " reason " : <reason > }

4.2. Validating a Sample of the Test Data
with Human Translators

Despite the less than standard approach to test
set evaluation in industrial systems as presented in
Section 4, we propose to monitor the systems by
periodically sampling production traffic for newer ex-
perimental systems (Cabrera et al., 2023). This de-
viates from typical offline evaluation methods where

a full gold standard corpus with human annotations
is available from the beginning of the experiment. In
practice, it is often the regular sub-sampling from
production traffic that eventually builds an incre-
mental gold standard corpus over time.2,3

5. Experimental Setup

Language pairs: To compare the architectures
described in Section 3, we evaluate them across
two language pairs for the CPTG task, English to
German (EN-DE) and English to Spanish (EN-ES).

Encoder-Decoder NMT and LLM-based models:
We refer to the length-optimized fine-tuned
Encoder-Decoder NMT model as “Summarly”, and
the LLM translator as “Mixtral”. A base neural
machine translation model (hereby referred to as
“Baseline MT”) was used to fine-tune Summarly.
Baseline MT consists of a 20 encoder and 2
decoder layer transformer trained using the
Sockeye MT toolkit (Hieber et al., 2022) using
a large quantity of bilingual generic web data
and catalogue product data (product titles, bullet
points and description). To fine-tune Summarly,
we sampled ∼800k EN-ES bilingual product titles
with a length ratio T set at 0.7 and ∼270k EN-DE
segments with T set at 0.8. Development sets of
2000 segments with respective length ratios for the
language pairs were created separately for model
validation during the fine-tuning process.

Test set for LLM evaluation and human valida-
tion: We sampled 2000 English source product
titles with more than 200 characters from the US
store. We chose this length to adhere to common ti-
tle length guidelines specified on e-commerce sites
4,5,6. Furthermore, we also sub-sampled 200 seg-
ments from the test set obtained two versions of
translated titles generated by Summarly and Mix-
tral. We then provided human raters with these
outputs and an evaluation guideline to choose the
preferred translation for each language pair.

2https://www.splunk.com/en_us/blog/it/
building-an-ai-assistant-for-splunk.html

3https://www.oreilly.com/library/
view/responsible-machine-learning/
9781492090878/

4https://sellercentral.amazon.
com/help/hub/reference/external/
GYTR6SYGFA5E3EQC

5https://www.ebay.com/sellercenter/
listings/listing-best-practices

6https://www.etsy.com/seller-handbook/
article/366470356778
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6. Results and Analysis

6.1. Length Analysis of Generated
Product Titles

Tables 2 and 3 analyze the length of the localized
titles from the two models. Both Summarly and Mix-
tral models are able to translate product titles with
shorter lengths. However the Summarly model’s
optimization is more consistent than Mixtral, with
99% and 92% of test cases being under 200 char-
acters for the two language pairs.

Baseline MT Summarly Mixtral
Avg. length (in char) 194 155 136.6
Shorter (<200 char) % 52.3% 92.8% 92.2%
Shorter (<Baseline MT) % n/a 94.1% 91.7%

Table 2: Title generation length analysis for EN-DE

Baseline MT Summarly Mixtral
Avg. length (in character) 226 127 148.8
Shorter (<200 char) % 2.6% 99.4% 83.1%
Shorter (<Baseline MT) % n/a 99.9% 92.7%

Table 3: Title generation length analysis for EN-ES

6.2. Evaluating Title Quality with an LLM
Table 4 presents the LLM evaluation result. The
table represents the number of title translations
with respective quality scores assessed by the
Mixtral LLM evaluator using the prompt template
described in Section 4. Title translations scored
with 1 or 2 are considered high-quality title trans-
lations, while those scored with 0 are considered
low-quality. Across the two language pairs, both
Summarly and Mixtral return high-quality summa-
rized titles for over 90% of the test sets. Results
show that Summarly generated high-quality title
translations for 98% and 93% of the tests set for
EN-DE and EN-ES respectively, while Mixtral gen-
erated high-quality translations for 93% and 91%
of the test set for the two language pairs. Note that
the LLM evaluator generated either empty outputs
or an invalid JSON output for a subset of evaluation
results, ranging between 1.8% and 6.3% across
the two test sets.

Examples in the Table 5 show that Summarly
not only translated product titles with a more opti-
mized length, but also learned to the summarize.
In Example 1, Summarly translates the product title
from English to German that are shorter in length
while also preserving the key product information.
Although the generated product title from Mixtral
also preserves key information, its translations are
less accurate than Summarly. Example 2 shows
Summarly’s ability to summarize explicitly for length
optimization, where “...for Kids 3 4 5 6 7 8 Years

Old” in the source title is summarized to “para niños
de 3 a 8 años” in Spanish.

EN-DE EN-ES
Summarly Mixtral Summarly Mixtral

# Score 0 0.05% 3.35% 0.65% 3.55%
# Score 1 5.15% 9.65% 40.45% 19.75%
# Score 2 92.95% 83.40% 52.60% 71.90%

High quality
(# Score 1 and 2)

98.10% 93.05% 93.05% 91.65%

No results 1.85% 3.60% 6.33% 4.80%

Table 4: Evaluation of Title Quality by Mixtral LLM

6.3. Human Validation
We sampled 200 translations from Summarly and
Mixtral from the test set and asked a human trans-
lator to choose the preferred translation for each
language pair. Translators were given similar in-
structions to those used in the prompt template for
the Mixtral LLM to evaluate these translations, fo-
cusing on translation quality and coverage of key
product information coverage. Table 6 presents the
results of the human preference of the translations
from Summarly and Mixtral. Human validation re-
sults were similar to those by the LLM in Table 4,
where Summarly’s title translations were preferred
over Mixtral. This also indicates the validity of the
evaluation method described in Section 3.2 to eval-
uate translation and summarization quality using a
LLM in lieu of human evaluations, similar to modern
neural machine translation evaluation metrics like
GEMBA (Kocmi and Federmann, 2023b,a).

Summarly Mixtral Tie
EN-DE 120 (60%) 23 (12%) 57 (28%)
EN-ES 120 (60%) 19 (10%) 60 (30%)

Table 6: Human validation of test samples

6.4. Interpretation of the LLM Evaluation
and Human Validation Results

Our analysis of LLM evaluation and human valida-
tion (Tables 4 and 6) provide insights into whether
title quality evaluations between competing models
(Summarly and Mixtral) are consistent between an
LLM and human judgment. However, this approach
has limitations. While using LLMs to automate qual-
ity evaluations of localized product titles by an LLM
can provide insights to stakeholders, they may not
accurately reflect its assessment across the en-
tire production traffic. Nevertheless, our findings
provide a signal to further invest in the industrial
capabilities of the CPTG task with the following
recommendations: (1) Deploy a baseline model
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Example 1 (English to German)
Source Title Baking Parchment Paper, Non-Stick Rounds Greaseproof Baking Sheets Cake Pans Circle

Cake Tin Liners Burger Discs Extra Thick - 100 Pcs/Pack (7.6cm(3")))
Baseline MT Backpapier, antihaftbeschichtet, rund, fettdicht, Backbleche, Kuchenformen, runde Kuchenfor-

men, Burgerscheiben, extra dick, 100 Stück/Packung (7,6 cm)
Summarly Backpapier, antihaftbeschichtet, rund, fettdicht, für Kuchenformen, extra dick, 100 Stück/Pack-

ung (7,6 cm)
Mixtral Backpapier: 100 Stück/Pack (7,6 cm), nicht-anhaftend, rund, extra dick)

Example 2 (English to Spanish)
Source Title Dinosaur Gift Toys - Dinosaur Arts and Crafts Painting kit Including 12 Cute Dinosaur Figures,

DIY Creative Toy Gift for Kids 3 4 5 6 7 8 Years Old
Baseline MT Juguetes de regalo de dinosaurio – Kit de pintura de arte y manualidades de dinosaurios que

incluye 12 lindas figuras de dinosaurio, juguete creativo de bricolaje para niños de 3, 4, 5, 6,
7, 8 años

Summarly Juguetes de pintura de dinosaurios, incluye 12 figuras de dinosaurios, juguete creativo para
niños de 3 a 8 años

Mixtral Juguetes regalo de dinosaurio para niños y niñas a partir de 3 años - Kit de pintura y artesanía
de 12 figuras de dinosaurios + juguete creativo DIY

Table 5: Cross-lingual product title generation examples

to a production setting to test actual customer ex-
perience. (2) Develop a competing newer archi-
tecture model that can be improved before it can
replace the baseline. (3) Deploy an LLM to to mon-
itor production traffic and automatically evaluate
localized title quality at scale. (4) Simultaneously,
sub-sample localized titles and assessments by
the LLM to perform human validation to ensure the
evaluation model is aligned with human judgments.

7. Related Work

To address the issue of overly lengthy titles, Sun
et al. (2018) introduced the task of Product Title
Summarization (PTS) to extract a natural represen-
tation of the product while retaining key product
details. Recent approaches also use instruction-
tuned LLMs to summarize product titles (Fetahu
et al., 2023). However, these summarization sys-
tems generally focus on the summarization task,
which are then cascaded with machine transla-
tion systems to carry out the localization task in
industry settings. Although length optimization has
been widely studied in machine translation for video
subtitle and speech-related domains (Yang et al.,
2020; Lakew et al., 2021, 2022), to the best of
our knowledge we are not aware of prior work on
length-optimized machine translation specifically
for e-commerce product catalogs.

8. Conclusion

We discussed the issue of lengthy product title
translations which can occur during the localiza-
tion process in the e-commerce domain, and pro-

posed the Cross-lingual Product Title Generation
(CPTG) task to address such cases. We introduced
an automatic, prompt-based evaluation method to
evaluate CPTG models without human inputs, us-
ing an open-source Mixtral model to compare a
length-aware, encoder-decoder transformer-based
machine translation model (Summarly) against an
LLM (Mixtral). Finally, we validated that the au-
tomatic prompt-based evaluation method results
align with human assessments, showing that lo-
calized titles generated by Summarly outputs were
overall preferred over those generated by Mixtral.

9. Bibliographical References

Tianchi Bi, Liang Yao, Baosong Yang, Haibo Zhang,
Weihua Luo, and Boxing Chen. 2020. Constraint
translation candidates: A bridge between neural
query translation and cross-lingual information
retrieval.

Ángel Alexander Cabrera, Marco Tulio Ribeiro,
Bongshin Lee, Robert Deline, Adam Perer, and
Steven M. Drucker. 2023. What did my AI learn?
how data scientists make sense of model behav-
ior. ACM Trans. Comput.-Hum. Interact., 30(1).

Besnik Fetahu, Zhiyu Chen, Oleg Rokhlenko, and
Shervin Malmasi. 2023. InstructPTS: Instruction-
tuning LLMs for product title summarization. In
Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing:
Industry Track, pages 663–674, Singapore. As-
sociation for Computational Linguistics.

62



Xinyi Guan, Shun Long, Weiheng Zhu, Silei Cao,
and Fangting Liao. 2022. Mask-based text scor-
ing for product title summarization. In 2022 8th
International Conference on Systems and Infor-
matics (ICSAI), pages 1–6.

Jyoti Guha and Carmen Heger. 2014. Machine
translation for global e-commerce on ebay. In
Proceedings of the AMTA, volume 2, pages 31–
37.

Felix Hieber, Michael Denkowski, Tobias Domhan,
Barbara Darques Barros, Celina Dong Ye, Xing
Niu, Cuong Hoang, Ke Tran, Benjamin Hsu,
Maria Nadejde, Surafel Lakew, Prashant Mathur,
Anna Currey, and Marcello Federico. 2022. Sock-
eye 3: Fast neural machine translation with Py-
Torch.

Zhuolin Jiang, Amro El-Jaroudi, William Hart-
mann, Damianos Karakos, and Lingjun Zhao.
2020. Cross-lingual information retrieval with
BERT. In Proceedings of the workshop on Cross-
Language Search and Summarization of Text
and Speech (CLSSTS2020), pages 26–31, Mar-
seille, France. European Language Resources
Association.

Tom Kocmi and Christian Federmann. 2023a.
GEMBA-MQM: Detecting translation quality error
spans with GPT-4. In Proceedings of the Eighth
Conference on Machine Translation, Singapore.
Association for Computational Linguistics.

Tom Kocmi and Christian Federmann. 2023b.
Large language models are state-of-the-art eval-
uators of translation quality. In Proceedings of
the 24th Annual Conference of the European
Association for Machine Translation, pages 193–
203, Tampere, Finland. European Association
for Machine Translation.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid,
Yutaka Matsuo, and Yusuke Iwasawa. 2023.
Large language models are zero-shot reason-
ers.

Surafel M. Lakew, Marcello Federico, Yueru
Wang, Cong Hoang, Yash Virkar, Roberto Barra-
Chicote, and Róbert Enyedi. 2021. Machine
translation verbosity control for automatic dub-
bing. In Proceedings of IEEE-ICASSP.

Surafel M. Lakew, Yogesh Virkar, Prashant Mathur,
and Marcello Federico. 2022. Isometric MT: Neu-
ral machine translation for automatic dubbing. In
Proceedings of IEEE-ICASSP.

Mike Lowndes and Aditya Vasudevan. 2021. Mar-
ket guide for digital commerce search.

Jian-Yun Nie. 2010. Cross-language information re-
trieval. Synthesis Lectures on Human Language
Technologies, 3(1):1–125.

Ohad Rozen, David Carmel, Avihai Mejer, Vitaly
Mirkis, and Yftah Ziser. 2021. Answering product-
questions by utilizing questions from other con-
textually similar products. In Proceedings of the
2021 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 242–253,
Online. Association for Computational Linguis-
tics.

Andreas Rücklé, Krishnkant Swarnkar, and Iryna
Gurevych. 2019. Improved cross-lingual ques-
tion retrieval for community question answering.
In The World Wide Web Conference, WWW ’19,
page 3179–3186, New York, NY, USA. Associa-
tion for Computing Machinery.

Shadi Saleh and Pavel Pecina. 2020. Document
translation vs. query translation for cross-lingual
information retrieval in the medical domain. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
6849–6860, Online. Association for Computa-
tional Linguistics.

Fei Sun, Peng Jiang, Hanxiao Sun, Changhua
Pei, Wenwu Ou, and Xiaobo Wang. 2018. Multi-
source pointer network for product title summa-
rization. In Proceedings of the 27th ACM Interna-
tional Conference on Information and Knowledge
Management, CIKM ’18, page 7–16, New York,
NY, USA. Association for Computing Machinery.

Haifeng Wang, Hua Wu, Zhongjun He, Liang
Huang, and Kenneth Ward Church. 2021.
Progress in machine translation. Engineering.

Manyi Wang, Tao Zhang, Qijin Chen, and Chengfu
Huo. 2020. Selling products by machine: a user-
sensitive adversarial training method for short
title generation in mobile e-commerce.

Thomas Wang, Adam Roberts, Daniel Hesslow,
Teven Le Scao, Hyung Won Chung, Iz Beltagy,
Julien Launay, and Colin Raffel. 2022. What
language model architecture and pretraining ob-
jective work best for zero-shot generalization?

Andy Way. 2013. Traditional and emerging use-
cases for machine translation. Proceedings of
Translating and the Computer, 35:12.

Jason Wei, Maarten Bosma, Vincent Y. Zhao,
Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. 2022a. Fine-
tuned language models are zero-shot learners.

63



Jason Wei, Yi Tay, Rishi Bommasani, Colin Raf-
fel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald
Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fe-
dus. 2022b. Emergent abilities of large language
models.

Joan Xiao and Robert Munro. 2019. Text summa-
rization of product titles. In eCOM@SIGIR.

Zijian Yang, Yingbo Gao, Weiyue Wang, and Her-
mann Ney. 2020. Predicting and using target
length in neural machine translation. In Proceed-
ings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Confer-
ence on Natural Language Processing, pages
389–395, Suzhou, China. Association for Com-
putational Linguistics.

Xueying Zhang, Yunjiang Jiang, Yue Shang,
Zhaomeng Cheng, Chi Zhang, Xiaochuan Fan,
Yun Xiao, and Bo Long. 2021. DSGPT: Domain-
specific generative pre-training of transformers
for text generation in e-commerce title and review
summarization. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’21, page 2146–2150, New York, NY, USA. As-
sociation for Computing Machinery.

Mingyang Zhou, Runxiang Cheng, Yong Jae Lee,
and Zhou Yu. 2018. A visual attention grounding
neural model for multimodal machine translation.
CoRR, abs/1808.08266.

64



The Seventh Workshop on e-Commerce and NLP (ECNLP 7), pages 65–73
21 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

Turkish Typo Correction for E-Commerce Search Engines

K.Elif Oral, Koray Mancuhan, Hüseyin Varol Erdem, Ece Hatipoğlu
Hepsiburada, Hepsiburada, Hepsiburada, Hepsiburada

{kadriye.oral, koray.mancuhan, varol.erdem, ece.aktan}@hepsiburada.com

Abstract
Typo correction is a challenging problem when it is developed for morphologically rich languages. The existing
approaches in the literature are successful mainly for English, leaving the problem open for such languages.
This creates an issue, because the typo correction is a critical component in practice for many systems such
as search engines. Especially, the search engines of e-commerce platforms rely heavily on typo correction for
product relevancy. A bad performing typo corrector could result in very few number of relevant products when a
user is looking for a product on an e-commerce platform, resulting in significant revenue decrease. For the first
time in the literature, this paper proposes a modern typo corrector for a morphologically rich language, Turkish;
which is integrated to the search engine of one of the leading e-commerce platforms in Turkey, Hepsiburada.
Our thorough experiments show that this new typo corrector performs very successful in practice, outperform-
ing the existing Turkish specific propositions in the literature; even if it is applied out of the context of the search engines.

Keywords: typo correction, search engines, e-commerce, deep learning

1. Introduction

The search engines play an important role for e-
commerce, providing customers an effective tool for
purchasing their desired products. As a first step of
the search experience, the typo correction is vital in
e-commerce; since it directly affects the precision
of the search outcomes in terms of the product rele-
vancy. Users often enter the search queries hastily;
this leads to unintentional misspellings. Addition-
ally, they may use different input sources (e.g., key-
word customization for different languages), which
result in completely incorrect search terms. A typo
corrector detects and corrects these errors, ensur-
ing that the search results contain the products that
the users are intended to find. Thus, it provides the
users a much better online shopping experience.

The traditional spelling corrector systems use sta-
tistical techniques (Brill and Moore, 2000; Hasan
et al., 2015; Li et al., 2012; Gupta et al., 2019) and
edit distances (Damerau, 1964; Whitelaw et al.,
2009). These methodologies have limitations in ad-
dressing the learning issues, when they are faced
with increased data sparsity. In recent years, the
deep neural models (Ye et al., 2023; Kuznetsov
and Urdiales, 2021; Jayanthi et al., 2020; Etoori
et al., 2018a) have gained considerable popular-
ity in this field by improving the accuracy despite
an important drawback: the increased inference
latency due to the model complexity. Although
spelling correction is a well-studied field encom-
passing languages with different characteristics
(Liu et al., 2021; Azmi et al., 2019; Duong et al.,
2020; Eryiğit and Torunoğlu-Selamet, 2017; Park
et al., 2021); the studies, which focus specifically on
the morphologically rich languages (MRLs), are still
in an immature state. Especially, their applications

in e-commerce are still in early stages.
Turkish, a morphologically rich and agglutinative

language with the presence of diacritized letters (e.i,
çığüö), is prone to spelling errors. This becomes
particularly important in the context of e-commerce
search. For example, the users face difficulties in
spelling the non-Turkish brands (e.g., "Lenova" in-
stead of "Lenovo"); or, use "ciguo" instead of the
Turkish letters and vice versa (e.g., İphone instead
of Iphone). Furthermore, the agglutinate nature
of the Turkish brings an additional challenge. Cor-
recting considering the inflections is crucial, as the
absence of suffixes in the search queries impacts
products matched at the retrieval level. The over-
all search relevancy is also affected significantly.
For example, we cannot correct the "banyo muslul"
as "banyo musluk" instead of the "banyo musluğu"
(bathroom faucet)1); because, (1) there is a degra-
dation in the meaning due to the absence of the
genitive marker I; and, (2) the search system could
bring different products since there may be exact
match between the word "musluk" and other prod-
uct names, under partially relevant categories such
as "banyo musluk aksesuarları" (bathroom faucet
accessories).

We group the Turkish spelling errors, encoun-
tered in e-commerce, under two subcategories: (i)
the general spelling errors (e.g., fat finger, inser-
tion/deletion.) which can be dealt with applying
general solutions proposed for English, (ii) the lan-
guage specific spelling errors (e.g., missing dia-
critics, phonetics) which necessitate the special-
ized treatments. Figure 1 shows the distribution of

1The last consonant of the word "musluk" (faucet)
becomes ğ when a genitive marker -I is attached to it, a
phenomenon called the consonant lenition.
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Figure 1: Spelling Error Distribution: The red bars
indicate the misspelling types of the language spe-
cific spelling errors, the orange ones show the sec-
ond type of the language specific spelling errors.
The misspelling type descriptions are available in
the Appendix A.1

.

searches which had bad relevancy due to the mis-
spellings errors 2. As shown in the figure, 59.58%
of total misspellings belong to the latter category.

In the latter subcategory, the proposed ap-
proaches, tailored for the languages with limited
linguistic characterization, do not fit due to the fol-
lowing factors: (1) high data sparsity due to the rich
morphology (a word may have hundreds of different
surface forms), (2) substantial edit distances due to
the absence of diacritics and phonetic spelling (e.g.,
the edit distance between the words "başlığı" (head)
and "basligi" in Turkish is 4 3). The deep models are
relatively more effective addressing these issues;
but, they are not suitable for the search engines
due to the high latency costs.

In this paper, we introduce a generalized spelling
correction method, which handles the language
specific spelling errors along with the general ones,
without additional latency. Our simple yet effec-
tive method enhances the candidate generation
through a morphology-centered approach. The
main contributions of our work are:

• A candidate generation method, which re-
lies on using a character level transformer
model with low latency; capturing the morphol-
ogy based relationships between the syntactic
word vectors.

2We collected 20k queries on our platform and an-
alyzed them based on the search relevancy. We found
that 12% of our search results had low relevancy, and
11% of this was due to the misspelling errors.

3The last consonant of the word "başlık" (head) be-
comes ğ when a genitive marker -I is attached to it due
to lenition.

• A candidate scoring function that is customized
to our morphologically rich language, Turkish.

• A blueprint methodology of forming a training
set specific to our morphologically rich lan-
guage, Turkish.

2. Related Work

The field of spelling correction has evolved from the
early work, which was based on the (Wagner and
Fischer, 1974) editing distance and the noisy chan-
nel model, (Kemighan et al., 2003; Brill and Moore,
2000) to the neural methods based approaches.
Early investigations leverage the edit distance and
its variations (Wagner and Fischer, 1974); and,
the noisy channel model (Brill and Moore, 2000;
Kemighan et al., 2003) to rectify the spelling errors.
For spelling correction, Sun et al. (2015) propose
the convolutional neural networks (CNNs) while
Jayanthi et al. (2020) introduce NeuSpell. Ghosh
and Kristensson (2017) and Etoori et al. (2018b)
extended the neural approach to address the nu-
anced challenges in the spelling correction tasks.
Along with neural models, the spelling correction
has been reformulated as a generational task (Zhou
et al., 2017; Kuznetsov and Urdiales; Zhang et al.,
2019a; Grundkiewicz et al., 2019; Sharma et al.,
2023; Zhang et al., 2023).

Spelling correction is a critical component for e-
commerce search engines, particularly in the con-
text of e-commerce. Several recent studies have
addressed the unique challenges posed by the e-
commerce search engines. Yang et al. (2022) pro-
pose a generalized spelling correction to address
the phonetic errors. Kakkar et al. (2023) and Pande
et al. (2022) improve the correction rate on tough
spelling mistakes by weakly supervised data. Ye
et al. (2023) tailor the pretrained language models
for e-commerce search queries.

Non-English languages may need additional
treatments for spelling correction due to their spe-
cific properties (Zitouni and Sarikaya, 2009; AZMI
and ALMAJED, 2015; Liu et al., 2022; Zhang et al.,
2019b; Liu et al., 2021). Turkish spelling correction
Eryiğit and Torunoğlu-Selamet (2017); Demir and
Topcu (2022); Torunoglu-Selamet et al. (2016); Akın
and Dündar (2007) has contributed significantly to
the field, providing valuable insights and method-
ologies. Safaya et al. (2022); Koksal et al. (2020)
introduced a spelling correction corpus.

3. Spelling Corrector

Our spelling corrector includes the candidate gener-
ation and the ranking steps according to the general
approach in the literature. For a given input query
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Figure 2: The Correction pipeline

Qw∗ with a misspelled word w∗, the spelling correc-
tor generates a set of words W = {w1, w2, ..., wn};
where wi is a candidate word that could be the
correction of w∗. Then, a query candidate list is
formed by replacing w∗ with wi. The corrected Qc

is obtained by the selection of a candidate with
the highest score. The score calculation uses the
following formula

Qc = wiargmax(f(Qwi
|Qw∗)) (1)

where f is the scoring function that is applied on
each query candidate (Qwi) at the ranking stage.
Our correction pipeline is depicted in Figure 2

3.1. Candidate Generation
We frame the candidate generation as a vector
search where the words are represented by the
vectors based on their syntax. The basic idea of
this is that the incorrectly spelled words should be
substantially close to their correctly spelled coun-
terparts in terms of syntax. Consequently, obtain-
ing the closest n words, which are based on the
syntax-aware vector similarity for a misspelled word,
automatically forms a candidate list; including the
potential corrections.

Syntax-aware representations have the ability to
capture the relationship between the root words
and their surface forms. Such an ability enables
to locate the inflected words close to their nomina-
tive forms. This capability provides an opportunity
to correct the words, restoring the missing word
inflections. It brings the awareness of the mor-
phology; and, allows more accurate corrections
since the inflected forms of the words can be in-
cluded among the candidates. We train a charac-
ter level transformer (Vaswani et al., 2017) model
that learns the syntax-aware representations with
a contrastive learning objective. The model aims
to create a vector space for the words by capturing
the intrinsic character patterns, which enables the
model to discover the language specific rules (e.g.,

Figure 3: An illustration of our vector space, the
similarly spelled words (i.e., word inflections) are
represented by the neighbouring vectors.

vowel harmony, lenition, phone mapping of char-
acter sequence such as ’sq‘ to ’su‘, sh to ş, etc.).
We avoided complex models due to their latency
costs; opted to design the model solely as an en-
coder layer, incorporating a feed-forward layer with
a mean pooler on top of it.

The candidate generation (illustrated in Figure 2)
starts with the extraction of vw∗ , which is the vector
of w∗. Then, the corresponding n vectors similar
to vw∗ (e.g. corresponding to n similar words) are
retrieved from the database; which holds the vec-
tors of the words extracted from the product titles.
Figure 3 illustrates the vector space with a few sam-
ples4. For example, the query "banyo muslul" has a
misspelled word "muslul"; and, its correction should
be in the inflected form ("musluğu") rather than the
nominative form ("musluk" (faucet)). Since the vec-
tors of both (vwmusluk

and vwmuslugu
) are located

close to each other, and to vw∗ ; we can generate
the candidate queries "banyo musluk" and "banyo
musluğu".

3.2. Candidate Ranking
The candidates are ranked using a score, which is
calculated by using features obtained from three dif-
ferent sources. Each source represents a different
aspect of the candidates:

• The first source (s1) is the edit distance be-
tween Qw∗ and Qwi

. This prevents Qw∗ and
Qc from being completely different queries for
the cases the input query has more than one
misspelled words.

• The second source (s2) is the vector similarity.

4One should note that this figure is only for illustration
purposes, and shows approximate distances.
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This regularizes the edit distance by consider-
ing the similar syntax aware representations.
In particular, it boosts the candidates which are
dissimilar in terms of the edit distance. The
features from the vector similarity play an im-
portant role in the correction of the phonetic
and diacritic based misspellings.

• The third source (s3) is the language score,
namely perplexity. In this case, we train two
statistical language models: one using the
search logs, and the other using the product
titles. The features derived from the perplex-
ities validate to some extent the candidates,
exhibiting a bias towards the selection of the
correct inflections.

Based on these various sources, the final form
of the scoring function f is

f(Qwi
|Qw∗) =

3∑

j=0

wsj ∗ xQwi
|Qw∗sj (2)

where sj is a feature source, xQwi
|Qw∗sj ∈ Rn , n ∈

[0, N ] is a feature vector derived form si. xQwi
|Qw∗

are extracted from the generated candidate Qwi

and the user query Qw∗ . wsj ∈ Rm , m ∈ N is a
weight vector that is learnt by a regression model.

4. Data Generation

We create the training data from the search logs by
leveraging the user interactions (e.g., clicks). All the
training data is automatically generated, eliminat-
ing the need for human annotations. The training
data contains samples (< wk, wj >, lkj), where
< wk, wj > is a word pair and lkj is the correspond-
ing label of the pair.

We have two sources of obtaining the positive
pairs: the users’ feedback and the synthetic data.
When lkj is equal to 1, namely positive samples,
wk and wj are expected to possess similar vectors
since wk represent the misspelled version of wj .
To enhance the syntax awareness, we introduce
additional morphology-based < w,winf > pairs;
where winf denotes the inflection of w. This aug-
mentation aims to ensure that the stems and their
inflections have similar vectors by providing the
syntactic variations of the words. Consequently,
it makes our representations more resilient to the
syntactic changes. Negative samples (lkj is equal
to 0), on the other hand, are expected to have dis-
similar vectors for the words wk and wj . They are
generated by the outer cross join of the positive
pairs.

In the following, we explain the used methodolo-
gies to form all the pairs.

4.1. User Feedback Chain

We trace the users’ specific action sequences and
use their interactions as a feedback to generate
the positive samples. Qwk

denotes ‘the query with
the misspelled word wk’, Qwj denotes ‘the query
with the corrected word wj ’; and, Pwj

denotes ‘the
product title containing the word wj ’. We extract
the correctly spelled-misspelled word pairs from the
Qwk

and Pwj
(Qwj

), where we add several check
conditions to exclude the drastically different word
pairs. The considered action sequences are ex-
plained below.

4.1.1. Query Refinement Chain

Users may correct their misspelled queries in the
consecutive searches. For example, a user could
search Qwk

, then correct it himself/herself and
make a subsequent search with Qwj . We lever-
age such behaviour sequences and match wk with
wj to form a pair if and only if the elapsed time
between two consecutive searches, Qwk

and Qwj
,

is less than 10 minutes; and, the edit distance be-
tween them is less than 5.

4.1.2. Fuzzy Match and Click

The retrieval systems may bring relevant products
with their fuzzy match abilities, even if the queries
have misspelled words. In such cases, the users
may still click on the relevant products which are
not affected by the incorrect search terms. Assum-
ing that a user searched Qwk

, and subsequently
clicked on Pwj ; we can extract < wk, wj > if the
edit distance between wk and wj is less than 4.

4.1.3. Click on Suggestion or Rejection

Users’ clicks can be considered a reliable source
for forming pairs, because they serve as a natural
labeling mechanism for our system. Specifically,
their clicks on ‘did you mean’ (suggestion of the cor-
rector) or ‘return to the initial query’ (rejection) auto-
matically labels the outputs of the spelling corrector.
A click on the suggestion indicates a successful
acceptance of the correction, meaning that the cor-
rector successfully updates the given query. Con-
versely, the rejection clicks imply that the corrector
is unable to achieve the correction. We collect the
users’ feedback clicks and use the click rates to
filter out the unintentional clicks. One should note
that this feedback mechanism, complemented with
the other twos, plays a crucial role in gradually im-
proving the spelling corrector’s performance; as,
the training data is continuously updated with the in-
sights from the unsuccessful corrections. However,
this is not initially available.
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4.2. Synthetic Data Generation
We generate the synthetic data for two purposes:
(1) increase the representation of the most com-
mon user mistakes in the training data, (2) form
effortlessly the morphology based pairs. For the
first purpose, we create the artificial misspellings
by

• deacritization: removing deacritics of the Turk-
ish characters, e.g., "yılbaşı çam ağacı" (Christ-
mas pine tree) to "yilbasi cam agaci"

• insertion: adding adjacent characters on the
keyboard, e.g., "yılbaşı çam ağacı" to "yıolbaşı
çam ağascı"

• deletion: removing the random vowels5, e.g.,
"yılbaşı çam ağacı" to "ylbaşı çam ağacı"

• replacement: replacing the characters with the
ones neighbouring on the keyboard, e.g., "yıl-
başı çam ağacı" to "yıkbaşı çam ağacu"

• swapping: swapping the adjacent characters,
e.g., "yılbaşı çam ağacı" to "yılbaşı çma ağacı"

The meaning of the words might deteriorate if the
excessive distortion is applied. Therefore, we allow
two artificial distortions on a given word.

4.3. Morphology-based Pairs Generation
Generating the morphology-based pairs
(< w,winf >) with the predefined rules is a
challenging task due to the grammar rules of Turk-
ish (e.g., lenition, consonant and vowel harmonies,
etc.). We employ the n-gram based word embed-
dings to generate such kind of pairs, leveraging
their ability to approximate the morpheme length.
As the n-gram size decreases, these embeddings
capture the syntactic variation of the words in
the agglutinative languages. This allows us to
form the meaningful morphology-based pairs that
comply with the rules of the Turkish grammar. We
train a Fasttext (Bojanowski et al., 2017) model
for these embeddings using our search logs and
product titles, because it was shown to capture the
morphological variations for Turkish (). Thus, the
overall morphology-based pair generation process
can be summarized in three steps.

1. We collect a set of correctly spelled high im-
pression queries from the search logs.

2. We build a word vocabulary from the former
query set.

5We observed that the users tend to skip the wovels
while writing

3. We generate 20 most similar words for each
word (w) within the vocabulary using the Fast-
text embeddings. If the edit distance between
the generated word and the word w is less than
4, they form the pair < w,winf >.

5. Experiments

We conducted the evaluations for our corrector in
both offline and online experiments. We also did a
final error analysis to identify the limitations of our
corrector, for determining the future steps.

5.1. Offline Experiments
5.1.1. Accuracy Based Evaluations

The first type of evaluation focused on the correc-
tion accuracy of the corrector, which was assessed
through the in-domain and out-of-domain settings.
The in-domain setting was performed using the
data from the e-commerce domain, while the out-
of-domain setting was performed using the data
prepared for general purposes. This allowed us to
compare our corrector with others in the literature
and evaluate its performance beyond the specific
domain.

We adopt the evaluation metrics precision and
recall by defining the following terms:

1. True Positive (TP): The successful misspelling
identification and correction cases

2. False Positive (FP): The false misspelling iden-
tification and correct word distortion cases

3. False Negative (FN): The misspelling identifi-
cation and correction failure cases

4. True Negative (TN): The correct identification
cases of the correctly spelled words

While the precision represents how many of the cor-
rected queries are successfully corrected, the recall
represents how many of the misspelled queries are
successfully corrected.

For the in-domain evaluation, we created a gold
standard test set; which contains 5.6K queries.
Here, the data is collected from both short and
long tail queries. Then, the data was manually an-
notated in two iterations by three native-speaking
annotators; who have the domain expertise and the
NLP background. In the first iteration, the samples
were annotated from scratch separately by two an-
notators. In the second iteration, the third annotator
checked the data quality by validating the labeled
samples’ accuracy. Our corrector achieves an F1-
score of 86% on this data, with a precision of 89%
and a recall of 83%.

For the out-of-domain evaluation, we evaluated
our corrector on trspell-10 (Safaya et al., 2022). To
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Corrector SCA F1
HUNSPELL-TR (Zafer, 2017) 25.52 86.52
ZEMBEREK (Akın and Dündar, 2007) 62.12 96.56
Safaya et al. (2022) 71.72 99.62
ours 83.3 98.18

Table 1: Results on trspell10.

be inline with the mentioned study, we reported
the spell correction accuracy (SCA) and the macro-
averaged F1 score of misspellings detection. Ta-
ble 1 shows the results. While our corrector per-
forms relatively close to others in detecting the mis-
spellings, it outperforms them with a significant mar-
gin in SCA; improving the number of successfully
corrected words.

5.1.2. Search Relevancy Based Evaluations

The second type of evaluation focused on the
impact of the corrector on the search relevancy.
We established an experimental setup, where we
compare the change in Normalized Discounted
Cumulative Gain (NDCG) for the same dataset
after correction intervention. We selected 1000
queries, of which 14% are misspelled to reflect
the overall misspelling rate in our search en-
gine. Firstly, top 12 products for each of these
queries were retrieved and annotated with Ex-
act/Substitute/Complement/Irrelevant (ESCI) la-
bels. Using these labels, we calculated the NDCG6

score which is 90.9. Secondly, we fed all the 1000
queries to our corrector model and repeated the
same labeling process. After the correction, the
NDCG score reached 91.2; where we improved the
score of the misspelled samples from 87.8 to 89.7.

5.2. Online Experiments
To be able to correlate our offline evaluation with
the main business metric of our search engine (i.e.,
Conversion Rate (CR)7), we launched an A/B test.
Our old in-house model was used in the control
bucket, while our new in-house model was used
in the treatment bucket. 100% of the users were
randomly assigned to both control and treatment
buckets. The experiment was run for 4 weeks to
ensure the statistically significant results. The re-
sults showed that the treatment bucket achieved a
CR of 4.84%, while the control bucket had a CR of
4.52%; resulting in a 6.99% CR increase between
the buckets.

6Weights used in our NDCG calculations are 4, 3, 2, 1
for the labels Exact, Substitute, Complement, Irrelevant;
respectively

7CR is a metric that represents the percentage of
users who have completed a desired action, which is the
purchase for our domain.

5.3. Error Analysis
We also made an error analysis to identify the weak-
nesses of our corrector. One limitation is that our
corrector operates at the word level, rather than the
sequence level. This results in a sub-optimal per-
formance when the context information is crucial for
the corrections. Additionally, it has relatively poor
performance in the correction of words that are
typically Turkish adaptations of the foreign words,
deviating from the Turkish harmonies (e.g., palatal
harmony, rounding harmony, etc.)

6. Conclusions and Future Work

In this paper, we proposed a typo corrector which
was specific to a morphologically rich language,
Turkish. We addressed the data related challenges
specific to Turkish; in particular, for training and
evaluation data creation. We implemented our ap-
proach end-to-end, and integrated it to our search
engine. The implementation was evaluated using
online and offline experiments. In both offline and
online experiments, our corrector outperformed the
old default corrector that had been deployed. More-
over, our proposed corrector outperformed the ex-
isting best Turkish corrector in the literature; when
it was used separately from our search engine.

In future, we are planning to modify the candi-
date generation of our corrector from the word level
model to the sequence level model; so, it captures
the context in the corrections. We are also plan-
ning to adapt our approach to develop the corrector
models in Russian and Arabic.
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A. Appendix

A.1. Misspelling Types
• missing whitespace: it appears when there

is an missing space in the user query, e.g.,
"banyomusluğu" instead of "banyo musluğu"

• brand misspellings: it appears when brand
names have a typo, which may occur since
users may not know the correct spelling of the
non-Turkish brands., e.g., "lenova" instead of
"lenovo"

• phonetic: it appears when the non-Turkish
words are written using their Turkish phones.,
e.g., "iyfon" instead of "iPhone"

• missing diacratics: it appears when Turkish
specific letters (ö,ı,ü,ç,ş,ğ) are replaced with
their english counterparts., e.g., "banyo mus-
lugu" instead of "banyo musluğu"

• fat finger: it appears when keyboard an input
mistake occurs, e.g., "bsnyo muskuğı" instead
of "banyo musluğu"

• hard-to-write words: It appears when users
does not know the correct spelling of the words
adapted from other languages (e.g., french,
persian, arabic) through time, e.g., "hoporlör"
instead of " hoparlör"

• lazy writing: It appears when there is a
missing or extra letter in the user query, e.g.,
"baanyo msluğu" instead of "banyo musluğu"

A.2. Training Setup & Inference
We trained the transformer model from scratch, em-
ploying 8 attention heads with dimensions of 128
for hidden layers and 64 for output layers. The
training process utilized the Adam Optimizer and
Cosine learning rate scheduler with warm-up. The
learning rate was set to 0.001, and β1 and β2 were
configured as 0.8 and 0.998, respectively. The
sequence length was determined to be 19, consid-
ering the average character length of words within
the search queries. For the training phase, we
utilized an NVIDIA T4 GPU. It took 29 hours to
complete. The inference phase was executed on a
CPU setup. The response time <17.3 ms query on
average under single concurrency.
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Abstract

Opinion spamming is the posting of fake opinions or reviews to promote or discredit target products, services, or
individuals. The concern surrounding this activity has grown steadily especially because of the development of
automated bots for this purpose (“spambots"). Nowadays, Large Language Models (LLMs) have proved their ability
to generate text that is almost indistinguishable from human-written text. Therefore, there is a growing concern
regarding the use of these models for malicious purposes, among them opinion spamming. In this paper, we carry
out a study on LLM-generated reviews, in particular hotel reviews as we chose the well-known Opinion Spam corpus
by Myle Ott as the seed for our dataset. We generated a set of fake reviews with various models and applied different
classification algorithms to verify how difficult is it to detect this kind of generated content. The results show that by
providing enough training data, it is not difficult to detect the fake reviews generated by such models, as they tend to
associate the aspects in the reviews with the same attributes.

Keywords: artificially generated text, detection, classification, opinion spam

1. Introduction

Opinion spamming encompasses the dissemina-
tion of counterfeit reviews or opinions for the pur-
pose of promoting or discrediting products, ser-
vices, or individuals (Liu, 2012). Fake reviews can
be generated either by humans or by using text-
generating algorithms to automate the process. His-
torically, the detection of automated spamming has
been relatively straightforward, largely due to the
mechanical and less expressive nature of machine-
generated text compared to human-authored con-
tent. Nonetheless, the advent of Large Language
Models allowed for a paradigm shift, as these mod-
els have demonstrated a remarkable capability to
produce text that closely mimics human writing.
Consequently, there is a growing unease surround-
ing the potential misuse of these advanced models,
one of which involves their deployment in opinion
spamming.

Numerous studies have leveraged Natural Lan-
guage Processing (NLP) techniques to detect fake
reviews. Researchers have explored sentiment
analysis, textual patterns, and linguistic features
to distinguish between genuine and artificially gen-
erated content. (Martinez-Torres and Toral, 2019)
successfully employed machine learning methods
for sentiment analysis to identify deceptive hotel
reviews. (Elmogy et al., 2021) utilized supervised
machine learning classifiers, including Random For-
est and Support Vector Machines (SVM), to clas-
sify fake hotel reviews. They demonstrated the

effectiveness of these algorithms in achieving high
precision and recall rates.

Recent advancements in synthetic text genera-
tion models, in particular the Generative Pretrained
Transformer (GPT) family of language models (Rad-
ford et al., 2019), have introduced new challenges
in fake review detection. Researchers have begun
to adapt their detection methods to identify reviews
generated by these sophisticated models. One of
the first works to address this problem is the one by
(Salminen et al., 2022). In their work, they found
out that human accuracy in detecting fake reviews
is only slightly higher than random chance, and
that when applying text-based fake-review detec-
tion, the more words a review has, the higher the
chance of detecting its true label (fake or real).

In this paper, we tackle this problem from an NLP
perspective to understand what are the linguistic
features that allow text-based classification models
to distinguish between generated and original text.
We explain our approach in building corpora com-
posed of artificially generated hotel reviews leverag-
ing smaller Large Language Models (LLMs), such
as GPT-2, GPT-3, and TinyLLama. In our opinion,
this would match the choice of malicious spammers,
as these models do not require demanding hard-
ware and produce tokens at a fast rate. After some
preliminary tests, we discarded ChatGPT because
on one hand it refused to follow the instruction and
on the other one, when it did, it produced the same
review over and over. Besides, we evaluate the de-
tectability of the generated contents by employing
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statistical as well as deep learning-based classifi-
cation models.

2. Datasets

As a set of original “seed" reviews to reproduce with
the LLMs we used 400 truthful positive reviews from
TripAdvisor and 400 truthful negative reviews from
Expedia, Hotels.com, Orbitz, Priceline, TripAdvisor
and Yelp which compose the “truthful" subset of
the well-known Myle Ott’s Opinion Spam corpus
(Ott et al., 2011). These reviews were written for
20 Chicago hotels: each hotel has 20 positive and
20 negative reviews.

Initially, we used the GPT-3 DaVinci model to
generate for each of the original reviews a faked
equivalent one. We fed to the model the prompt
“Generate a {%polarity} review completing the fol-
lowing text:", where {%polarity} is replaced either
by “negative" or “positive", and the sequence com-
posed by the first 10 words of the genuine review
and asked to complete and generate text up to the
same length of the original one. We used tempera-
ture 0.9 to ensure a certain creativity by the model.
Similarly, we created a set of reviews using the
TinyLlama model (Zhang et al., 2024), one of the
latest and smallest available LLMs.

Subsequently, we created another set with the
objective of creating reviews that were more sim-
ilar to the human-written ones. A way to do this
is to fine-tune the language model with the set of
genuine reviews. In this way, the model will tend to
generate text that fits better the probability distribu-
tion of the tokens in the genuine set. Since we didn’t
have the resources to fine-tune GPT-3 we switched
to GPT-2 with 355M parameters. Again we fed a
sequence of 10 words as seed text, including the
hotel name.

Finally, following the counter-detection strategy
applied by (Sadasivan et al., 2023), we built a fi-
nal set by using paraphrasing. The paraphras-
ing model chosen was a T5 model fine-tuned on
chatGPT-generated paraphrases available on Hug-
gingface 1. For each original review, we generate
5 different paraphrases and we randomly pick one
of them. With this strategy, we paraphrased the re-
views from the GPT-3 model and obtained another
set of 800 fake reviews.

Below are examples of negative reviews refer-
ring to the same example, the original one and the
generated ones:

• Original review: This hotel must have orig-
inally been an ordinary downtown hotel in a
not very nice neighborhood. The owners have
painted it over and fixed up the lobby to make

1https://huggingface.co/humarin/
chatgpt_paraphraser_on_T5_base

it an "upscale" overpriced boutique hotel. But
it’s still just an ordinary hotel with a paint job.
Stay here if you want to experience staying in
a flophouse, but with all the sleaze removed.
Definitely stay at the chain’s other location, the
Burnham, for a much, much nicer hotel.

• Fine-tuned GPT-2 generated review: We
stayed in hotel Allegro and it was bad. Al-
though the rooms are decent, they are not
called “The Best in a Hilliard" and are not suited
with insole. The bathroom was very small and
has anearth and mineral salts. The pipes and
sinks were old and the shower and tub are in
need of a major overhaul. The hotel charges
for internet and/or rental for 5 internet sessions
a day. If you sign up for wireless internet, they
do not fund wireless internet so slow and un-
favorable wireless speeds.

• Pre-trained GPT-3 generated review: This
hotel must have originally been an ordinary
downtown hotel but now it is hardly more than
a shabby motel. The walls are dirty and the
furniture is worn, with some broken pieces.
My room smelled musty and the carpets had
stains. The bed was uncomfortable and the
linen was old and threadbare. The staff were
not particularly helpful and I felt like I was an
inconvenience to them.

• TinyLlama generated review: This hotel
must have originally been an ordinary down-
town hotel. The rooms are a little too tiny and
they lack basic amenities, including a pool.
However, the location is very convenient as
it is just a few minutes walk from Central Park.

• Paraphrased GPT-3 review: I’m sure the ho-
tel was once a regular downtown hangout, but
it’s now resembles ruins. The walls are un-
clean, the furniture is old and scratchy, there
are stains in every room, an uncomfortable
bed, and lifeless linens.

The datasets are available at the following repos-
itory: https://github.com/dbuscaldi/op_
spam_AI.

In Table 1 we show the average perplexities for
each of the datasets. Perplexity is defined as:

PPL(X) = exp{−1

t

t∑

i

log pθ(xi|x<i)}

where X = (x0, . . . , xt) is the input sentence and
pθ is the estimated probability by a LLM (in our case,
we chose the GPT-2 probabilities, as in the GLTR
paper (Gehrmann et al., 2019)). Perplexity is used
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by some commercial detectors, notably GPTZero2,
as a feature to detect whether a text is generated or
not. The principle of perplexity is that it measures
the “randomness" of a text sequence. For instance,
a perplexity of 3 means that after every word in the
text, there are on average 3 choices to continue
the sentence. The perplexity values obtained on
our datasets show that GPT-3 pre-trained has the
lowest variability among all generated ones. On the
other hand, we can see that the TinyLlama and the
paraphrase one have higher perplexity, confirming
the hypothesis that paraphrasing and changing the
generating model may help confuse detectors that
are based on a specific model.

3. Experiments and Results

To evaluate the detectability of the fake reviews, we
employed a variety of classification models. First
of all, we started with a basic Multinomial Naïve
Bayes with tf.idf weights, without lemmatization and
stopwords removal. We evaluated the model on a
random split of 80:20 for training and testing. The
results with this model were already very good, ob-
taining a F-1 score of 96%, indicating that the task
could be solved just by looking at the vocabulary.
Therefore, we compared the log-probabilities of the
words in the generated and non-generated class,
calculating their difference. We show in Table 2 the
10 most discriminating words for both classes.

It can be observed how the most discriminat-
ing words for the generated category tend to be
attributes (“unhelpful", “terrible", “delicious", “out-
dated", ...) while the ones for the non-generated
category seem more related to objects or places
(“door", “floor", “coffee", “michigan", “ave", ...) and
personal pronouns (“she", “he", “your", ...). Similar
results are obtained with TinyLlama, with some vari-
ations on the attributes (“stunning" is more preva-
lent among generated texts). We tried similar ex-
periments with bi-grams and tri-grams as features
instead of words and this difference in style is even
more clear: in the most important trigrams for the
generated class we find tri-grams that match a pat-
tern “X was/were Y" where X is usually a service
or an aspect of the hotel and Y an adjective. In
the non-generated most representative tri-grams
we find tri-grams such as “in the room", “in the
bathroom", “the first night". The difference in style
was expected as other works about generated text
detection (Antoun et al., 2023) have noticed the
tendency of LLMs to produce recurrent patterns in
the output.

To verify the importance of vocabulary overlap
for detection, we carried out an experiment in which
we varied the proportion of training and test data.

2https.//gptzero.me

Note that in a realistic scenario training data would
not be balanced, as annotated corpora have sizes
that are only a small fraction of the total number
of reviews on platforms. We carried out 10 experi-
ments for each proportion of test and training data.
The results, separating recall and precision for each
class, are presented in Figure 1.

As can be seen, the precision for non-generated
texts tends to be lower than for generated texts,
while the recall shows the inverse. This indicates
the presence of many false negative examples, i.e.
the model is prone to classify machine-generated
text as human-written, especially when training
data are few. This phenomenon has also been
observed by (Wang et al., 2023) in experiments
on cross-domain classification. Scores for TinyL-
lama are lower than for GPT-3, indicating that these
generated texts are more difficult to detect.

If we take into account the paraphrased corpus,
both precision and recall are high, but the accuracy
of the detection is more sensible to the availability
of training data, as can be seen in Figure 2. There-
fore paraphrasing makes it slightly more difficult
to detect fake reviews when there is not enough
training data.

Finally, we made some experiment with state-
of-the-art classification algorithms based on trans-
formers models, specifically BERTbase, SciBERT,
XLNetlarge, and ELECTRAsmall. These models
were imported as pre-trained models from Hug-
ging Face (Wolf et al., 2020) and fine-tuned using
Simple Transformers 3. We employed the BERT
tokenizer across all models. The fine-tuning pro-
cess included 10 epochs, a batch size of 16, and a
maximum sequence length of 128. For standalone
models, we used unprocessed text as input.

The dataset was split into an 80:20 ratio for train-
ing and testing. Each model underwent three ex-
perimental iterations, and the average F1 scores
resulting from these experiments are provided in
Table 3. Among all detection models, BERTbase

seems to be the most effective in detecting the gen-
erated content. GPT-2 reviews are the least pre-
dictable, given the fine-tuning process that made
them more similar to the human-written ones. The
pre-trained models seem rather easy to detect with
any of the Transformer-based models.

4. Conclusions

In this work, we created various collections of auto-
matically generated reviews for automated detec-
tion, based on the Opinion Spam corpus by (Ott
et al., 2011). The results show that the vocabu-
lary and style of generated reviews is very different
from the one used in the authentic ones, making
it relatively easy to detect the fake ones, provided

3https://simpletransformers.ai
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original GPT-2 fine-tuned GPT-3 pretrained paraphrased TinyLlama
60.433 26.401 20.102 32.828 43.820

Table 1: Average perplexity for each collection.

Figure 1: Precision and recall for each class on the GPT3 dataset vs. original reviews, and TinyLlama vs.
original reviews, varying the proportion of test and training data. The error bar indicates the standard
deviation calculated over 10 experiments.

Figure 2: Precision and recall for each class on the paraphrased dataset vs. the original reviews, varying
the proportion of test and training data.

Generated Authentic
Word delta Word delta
unhelpful 2.889 door -1.694
incredibly 2.620 floor -1.680
delicious 2.609 coffee -1.656
outdated 2.402 next -1.636
terrible 2.306 your -1.557
accommodating 2.257 concierge -1.513
anyone 2.229 she -1.478
uncomfortable 2.129 ave -1.468
amenities 1.907 mile -1.420
musty 1.873 etc -1.402

Table 2: The 10 most discriminating words for
each category (GPT-3 dataset) sorted by their log-
probability difference (delta).

Model GPT-2 GPT-3 para Llama
BERTbase 97.83 99.38 98.29 99.74
SciBERT 93.66 93.75 97.62 99.35
XLNetlarge 87.87 92.70 95.32 98.57
ELECTRA 92.49 93.49 95.37 99.34

Table 3: F1 Scores obtained by Transformer-based
Classification Models. “para" indicates the para-
phrased corpus.

that a large and varied enough training data set is
available.

These results are partially comforting as it looks
like it is not possible to use LLMs to automatically
produce undetectable fake reviews without the in-
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tervention of a human, lowering the harm potential
of these models. We didn’t test how often neu-
ral hallucinations occur in these reviews, but after
inspection we could observe that some reviews
mention features that are not present in the tar-
geted hotel. For future works, we plan to extend
our tests with models with higher temperatures and
to measure the hallucination phenomenon.
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Abstract 
In this study, we present a novel evaluation framework for image-captioning models that integrate statistical analysis 
with common evaluation metrics, utilizing two popular datasets, FashionGen and Amazon, with contrasting dataset 
variation to evaluate four models: Video-LLaVa, BLIP, CoCa and ViT-GPT2. Our approach not only reveals the 
comparative strengths of models, offering insights into their adaptability and applicability in real-world scenarios but 
also contributes to the field by providing a comprehensive evaluation method that considers both statistical 
significance and practical relevance to guide the selection of models for specific applications. Specifically, we 
propose Rank Score as a new evaluation metric that is designed for e-commerce image search applications and 
employ CLIP Score to quantify dataset variation to offer a holistic view of model performance. 

Keywords: image-captioning model, image-based search, evaluation metric 

1. Introduction 
Image-captioning, the process of generating 
descriptive textual summaries for visual content, 
has emerged as an important AI capability with 
applications such as providing context for visually 
impaired users, automated alt-text generation, 
and enhanced image search. However, rigorously 
evaluating image-captioning models remains 
challenging. Traditionally, evaluating these 
models has involved using several evaluation 
metrics to score their performance, followed by 
comparing which model leads in these metrics to 
determine superiority.  
Besides, as is known to all, each evaluation metric 
has its own focus, only a model that matches an 
evaluation metric’s preference could get high 
scores. But it's increasingly clear that no single 
model could consistently outperform others 
across all metrics and datasets. This divergence 
highlights the challenge in declaring one model 
definitively superior to others. On the other hand, 
now that a single model cannot win all, we could 
only identify each model’s comparative strengths 
when evaluating several models simultaneously, 
acknowledging each one’s pros and cons. This full 
understanding is essential, as different application 
scenarios may require different strengths, making 
it imperative to match a model from several 
potential one to the situation where it’s 
comparatively more suitable. 

Furthermore, the choice of benchmark dataset 
influences evaluation outcomes. To take 
advantage of model potential, we generally need 
to finetune or train models on the target dataset. 
However, in practical situations, image-caption 
alignment can diverge across datasets, 
influencing final results. We account for this by 
employing CLIP Score to quantify dataset 

variation, that is, the overall alignment between 
images and corresponding captions within the 
dataset. By measuring dataset variation, we gain 
insights into dataset complexity and noise levels. 
This allows us to deduce model ability based on 
dataset qualities, and then figure out comparative 
model strengths. 

In this paper, we propose an integrated evaluation 
framework that combines the statistical analysis 
of various metrics to identify models with 
comparative strengths. By analyzing statistical 
significance across metric results, we reveal 
relative advantages of models and suitable 
applications based on evaluation metric patterns. 
We summarize our primary contributions as 
follows: 

• We utilize CLIP Score to assess dataset 
variation in overall image-caption alignment, 
providing a basis for model evaluation. 

• We come up with a novel evaluation 
framework that merges statistical 
significance with reverse reasoning from 
metric patterns, extracting comparative 
model strengths. 

• We introduce a novel Rank Score metric, a 
simple yet powerful metric to evaluate 
image-captioning models by assessing 
generated text quality through comparative 
ranking against reference captions. 

2. Related Work 
Recent years have seen diverse image-
captioning models developed based on 
generative techniques. Representative examples 
include Video-LLaVa (Lin et al., 2022), BLIP (Li et 
al., 2021), CoCa (Yao et al., 2021), and ViT-GPT2 
(Kumar, 2022). Among these, Video-LLaVa 
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extends language models to video for dynamic 
content understanding, BLIP uses bootstrapped 
pre-training for improved visual-language 
synergy, CoCa utilizes cross-modal contrastive 
learning to enhance image understanding and 
caption generation, and ViT-GPT2 combines 
Vision Transformer (ViT) (Dosovitskiy et al., 2021) 
and GPT-2(Radford, Alec, et al., 2019) for efficient 
image and text processing. While adopting 
different approaches, rigorous comparative 
evaluation is needed to reveal the comparative 
strengths of these models to match them to 
suitable applications. 

A range of automated metrics have been 
proposed for evaluating image-captioning models 
by comparing candidate captions to references. 
Popular metrics include BLEU (Papineni et al., 
2002), ROUGE (Lin, 2004), CIDEr (Vedantam et 
al., 2015), (Anderson et al., 2016), and METEOR 
(Banerjee & Lavie, 2005). These measures rely 
on lexical, grammatical and semantic similarities. 
CLIP Score (Hessel et al., 2021) supplements 
these by comparing captions directly to images. 
However, no single model consistently 
outperforms across all metrics. 

Our hypothesis is that different models may 
exhibit comparative strengths aligning with 
particular use cases based on precision, 
efficiency, adaptability etc. This work provides a 
comprehensive framework combining statistical 
analysis and tailored datasets to reveal model 
capabilities, guiding selection for applications 
using different metrics. 

3. Methodology 
The methodology involves using CLIP Score to 
quantify dataset variation based on the alignment 
between images and captions of each data set. 
For model evaluation, a set of metrics including 
BERT Score, BART Score, METEOR, SPICE, 
BLEU, CLIP Score, and the proposed Rank Score 
are applied on the output of each image-
captioning model on each data set. Statistical 
analysis using paired t-tests with Bonferroni 
correction is then conducted on the evaluation 
results to identify models with comparative 
strengths based on statistically significant 
performance. The preferences of metrics are 
analyzed to infer model capabilities. By combining 
statistical significance with reasoning from 
evaluation patterns, the framework identifies 
specialized strengths of models and their suitable 
applications. 
3.1 Evaluation Metrics and Preferences 
3.1.1   BLEU (Bilingual Evaluation Understudy) 
BLEU measures the precision of n-grams in the 
generated text compared to the reference texts, 
adjusting for the proper length and penalizing 
overly short translations (Papineni et al., 2002). It 

does this by calculating the n-gram precision for 
several n-gram lengths (usually 1 to 4) and then 
combining these precisions geometrically, 
applying a brevity penalty for translations that are 
too short. 
The BLEU is calculated as: 
• N-gram Precision (𝑃! ): For each n-gram 

length (n=1 to 4), calculate the count of n-
grams in the candidate translation that 
appear in any reference translation, divided 
by the count of all n-grams in the candidate 
translation. 

• Brevity Penalty (BP): To penalize short 
machine-generated translations, a brevity 
penalty is applied. If the length of the 
candidate translation is less than the 
effective reference corpus length, the 
brevity penalty applies: 

𝐵𝑃 =	 %
1													𝑖𝑓	𝑐 > 𝑟

𝑒(#$
%
&)				𝑖𝑓	𝑐 ≤ 𝑟

 

𝑐: 𝐿𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒	𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 
											𝑟: 𝐿𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑡ℎ𝑒	𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑐𝑜𝑟𝑝𝑢𝑠 

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∙ exp	(C𝑤!𝑙𝑜𝑔𝑃!

(

!)#

) 

𝑤!:	𝑤𝑒𝑖𝑔ℎ𝑡𝑠	𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑛 − 𝑔𝑟𝑎𝑚	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
𝑃!:	𝑡ℎ𝑒	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑓𝑜𝑟	𝑛 − 𝑔𝑟𝑎𝑚𝑠 
𝑁: 𝑡ℎ𝑒	𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑛 − 𝑔𝑟𝑎𝑚	𝑙𝑒𝑛𝑔𝑡ℎ 

Preferences: BLEU calculates the score by 
matching the n-grams of the candidate text with 
the reference texts and applying a brevity penalty 
for short candidate texts. This method, focusing 
on surface lexical matches without considering 
semantic context or synonyms, inherently favors 
models that are excellent at producing exact n-
gram matches with the reference texts.  
3.1.2 METEOR (Metric for Evaluation of 
Translation with Explicit Ordering) 
Meteor is a machine translation evaluation metric, 
which is calculated based on the harmonic mean 
of precision and recall, with recall weighted more 
than precision (Banerjee & Lavie, 2005). 
The METEOR is calculated as: 

F-Score: The harmonic mean of Precision 
and Recall, given more importance to 
recall. It's calculated as: 

𝐹*&+%, =
10 ∙ 𝑃 ∙ 𝑅
𝑅 + 9 ∙ 𝑃 

Penalty: A penalty is applied for poor 
word order, computed based on the 
largest common subsequence of 
matched words between the candidate 
and the reference: 
𝑃𝑒𝑛𝑎𝑙𝑡𝑦

= 0.5 ∙ (
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐ℎ𝑢𝑛𝑘𝑠

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠	𝑚𝑎𝑡𝑐ℎ𝑒𝑑)
- 

𝑀𝐸𝑇𝐸𝑂𝑅 =	𝐹*&+%, ∙ (1 − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦) 
Preferences: METEOR assesses translations by 
accounting for exact word matches, synonyms, 
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stemming, and word order, calculating a harmonic 
mean of precision and recall adjusted for these 
factors. This approach indicates a preference for 
models that understand and utilize linguistic 
nuances, including synonymy and grammatical 
structure.  

3.1.3 ROUGE (Recall-Oriented Understudy 
for Gisting Evaluation) 
ROUGE is a set of metrics used for evaluating 
automatic summarization and machine translation 
software in natural language processing (Lin, 
2004). It works by comparing an automatically 
produced summary or translation against a 
reference or a set of reference summaries 
(typically human-produced). It includes several 
variants, such as ROUGE-N, ROUGE-L, and 
ROUGE-W, each focusing on different aspects of 
the comparison: 

ROUGE-N measures the overlap of n-grams 
between the system-generated text and the 
reference texts. It is defined as: 
𝑅𝑂𝑈𝐺𝐸 − 𝑁

=
Σ*∈{0,1,%,!&,	34556%7,*}Σ9%65!∈*𝐶𝑜𝑢𝑛𝑡56:&;(𝑔𝑟𝑎𝑚!)
Σ*∈{0,1,%,!&,	34556%7,*}Σ9%65!∈*𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚!)

 

𝐶𝑜𝑢𝑛𝑡56:&;(𝑔𝑟𝑎𝑚!):  max number of n-
grams co-occurring in a candidate 
summary and and reference summary. 
𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚!): the count of n-grams in 
the reference summaries. 

ROUGE-L measures the longest common 
subsequence (LCS) between the system-
generated summary and the reference 
summaries. It considers sentence-level structure 
similarity naturally and identifies the longest co-
occurring in-sequence n-grams of words. 
ROUGE-L is defined as: 

𝑅𝑂𝑈𝐺𝐸 − 𝐿 =	
(1 + 𝛽<) ∙ 𝑅𝑒𝑐𝑎𝑙𝑙=>3 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛=>3
𝑅𝑒𝑐𝑎𝑙𝑙=>3 + 𝛽< ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛=>3

 

Where:  
𝑅𝑒𝑐𝑎𝑙𝑙=>3
=
𝐿𝐶𝑆(𝑆𝑦𝑠𝑡𝑒𝑚	𝑆𝑢𝑚𝑚𝑎𝑟𝑦, 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑆𝑢𝑚𝑚𝑎𝑟𝑦)

𝐿𝑒𝑛𝑔𝑡ℎ(𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑆𝑢𝑚𝑚𝑎𝑟𝑦)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛=>3
=
𝐿𝐶𝑆(𝑆𝑦𝑠𝑡𝑒𝑚	𝑆𝑢𝑚𝑚𝑎𝑟𝑦, 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑆𝑢𝑚𝑚𝑎𝑟𝑦)

𝐿𝑒𝑛𝑔𝑡ℎ(𝑆𝑦𝑠𝑡𝑒𝑚	𝑆𝑢𝑚𝑚𝑎𝑟𝑦)  

𝛽	𝑖𝑠	𝑡ℎ𝑒	𝑠𝑒𝑡	𝑡𝑜	𝑓𝑎𝑣𝑜𝑟	𝑟𝑒𝑐𝑎𝑙𝑙(𝑒. 𝑔. , 𝛽<
= 1.2), 𝑏𝑒𝑐𝑎𝑢𝑠𝑒	𝑟𝑒𝑐𝑎𝑙𝑙	𝑖𝑠	𝑚𝑜𝑟𝑒	𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡. 

ROUGE-W is based on the weighted longest 
common subsequence, which considers the 
length of the LCS and the gaps between 
consecutive LCS matches. It is defined as:  

𝑅𝑂𝑈𝐺𝐸 −𝑊

=
(1 + 𝛽<) ∙ 𝑅𝑒𝑐𝑎𝑙𝑙?=>3 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛?=>3
𝑅𝑒𝑐𝑎𝑙𝑙?=>3 + 𝛽< ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛?=>3

 

Where: 
𝑅𝑒𝑐𝑎𝑙𝑙?=>3: 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑅𝑒𝑐𝑎𝑙𝑙=>3 

			𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛?=>3: 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛?=>3 

Preferences: ROUGE measures the overlap of n-
grams and the longest common subsequences 
between the generated text and reference texts, 
primarily focusing on recall. This metric's 
emphasis on recall over precision suggests a 
preference for models that ensure no information 
is lost in summarization, even if it leads to less 
concise outputs. Therefore, models that excel 
under ROUGE are those capable of capturing the 
breadth of content in reference texts, making them 
particularly suitable for summarization tasks 
where the completeness and coverage of the 
source material are paramount, rather than 
stylistic conciseness or linguistic innovation. 

3.1.4 CIDEr (Consensus-based Image 
Description Evaluation) 
CIDEr is a metric used to evaluate the quality of 
generated textual descriptions of images 
(Vedantam et al., 2015). It measures the similarity 
between a generated caption and the reference 
captions. 
The CIDEr is calculated as: 

𝐶𝐼𝐷𝐸𝑟(𝑐7 , 𝑆7) =C 𝑤! ∙ 𝑠𝑖𝑚!(𝑐7 , 𝑆7)
(

!)#
 

Where: 
									𝑐7: 𝑇ℎ𝑒	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒	𝑐𝑎𝑝𝑡𝑖𝑜𝑛	𝑓𝑜𝑟	𝑖𝑚𝑎𝑔𝑒	𝑖. 
				𝑆7: 𝐴	𝑠𝑒𝑡	𝑜𝑓	𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑐𝑎𝑝𝑡𝑖𝑜𝑛𝑠	𝑓𝑜𝑟	𝑖𝑚𝑎𝑔𝑒	𝑖 

								𝑁:𝑀𝑎𝑥	𝑛 − 𝑔𝑟𝑎𝑚	𝑙𝑒𝑛𝑔𝑡ℎ. 
								𝑤!: 𝑇ℎ𝑒	𝑤𝑒𝑖𝑔ℎ𝑡	𝑜𝑓	𝑒𝑎𝑐ℎ	𝑛 − 𝑔𝑟𝑎𝑚	𝑙𝑒𝑛𝑔𝑡ℎ. 

𝑠𝑖𝑚!: The cosine similarity between the 
tf-idf weighted n-gram vectors of the 
candidate caption and the reference 
captions. 

Preferences: CIDEr evaluates image-captioning 
quality by calculating the consensus between a 
candidate caption and reference captions using 
term frequency-inverse document frequency (TF-
IDF) weighting for n-grams. This approach 
emphasizes the importance of unique and 
descriptive terms that are relevant to the image, 
favoring models that generate detailed and 
image-specific captions.  

3.1.5 SPICE (Semantic Propositional Image 
Caption Evaluation) 
SPICE is an automated caption evaluation metric 
that uses scene graphs to measure the semantic 
similarity of reference and candidate captions 
(Anderson et al., 2016). The SPICE score is 
calculated as the F1 score between the sets of 
tuples extracted from the candidate and reference 
captions' scene graphs. The tuples represent 
objects, attributes, and relations.  
The SPICE is calculated as: 

𝑆𝑃𝐼𝐶𝐸 = 2 ∙
𝑃 ∙ 𝑅
𝑃 + 𝑅 

𝑃:	𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡𝑢𝑝𝑙𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒	𝑐𝑎𝑝𝑡𝑖𝑜𝑛	 
					𝑡ℎ𝑎𝑡	𝑎𝑙𝑠𝑜	𝑎𝑝𝑝𝑒𝑎𝑟	𝑖𝑛	𝑡ℎ𝑒	𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑐𝑎𝑝𝑡𝑖𝑜𝑛𝑠. 
𝑅:	𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡𝑢𝑝𝑙𝑒𝑠	𝑖𝑛	𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑐𝑎𝑝𝑡𝑖𝑜𝑛𝑠	 
					𝑡ℎ𝑎𝑡	𝑎𝑟𝑒	𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑	𝑖𝑛	𝑡ℎ𝑒	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒	𝑐𝑎𝑝𝑡𝑖𝑜𝑛. 
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Preferences: SPICE evaluates image captions 
based on semantic fidelity, comparing structured 
scene graphs derived from candidate and 
reference captions to assess the presence and 
accuracy of depicted objects, attributes, and 
relationships. This focus on semantic content 
leads SPICE to favor models adept at deep visual 
understanding and generating captions that 
accurately reflect complex visual scenes in 
natural language.  

3.1.6 BERT Score 
BERT Score evaluates the quality of text by 
calculating the cosine similarity between the 
BERT embeddings (Devlin et al., 2019) of the 
candidate text and the reference text (Zhang et al., 
2020). 
The BERT Score is calculated as: 

𝐵𝐸𝑅𝑇	𝑆𝑐𝑜𝑟𝑒 = 	2 ∙
𝑃 ∙ 𝑅
𝑃 + 𝑅 

𝑃(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) = 	
1
|𝐶| Σ&∈>𝑚𝑎𝑥%∈0𝑐𝑜𝑠𝑖𝑛𝑒

(𝑐, 𝑟) 

𝑅(𝑅𝑒𝑐𝑎𝑙𝑙) = 	
1
|𝑅| Σ%∈0𝑚𝑎𝑥&∈>𝑐𝑜𝑠𝑖𝑛𝑒

(𝑟, 𝑐) 

										𝐶: 𝐶𝑎𝑑𝑖𝑑𝑎𝑡𝑒	𝑡𝑒𝑥𝑡;   𝑅:𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑡𝑒𝑥𝑡 
Preferences: BERT Score leverages the 
contextual embeddings from BERT model to 
compare the semantic similarity between 
candidate and reference texts, focusing on the 
match at a deeper semantic level rather than 
surface lexical similarity. This metric's design 
prefers models that generate contextually rich and 
semantically accurate text, reflecting a deep 
understanding of language nuances.  

3.1.7 BART Score 
BART Score, which stands for BLEU Artifact 
Reduction Test score, is a metric for evaluating 
the quality of text generation models (Yuan et al., 
2021). It focuses on measuring how well a 
model's generated text preserves the factual 
content and overall meaning of a reference text. 
The BART Score is calculated as: 

𝐵𝐴𝑅𝑇	𝑆𝑐𝑜𝑟𝑒 = 	𝑤# ∙ 	BLEU-4+𝑤< ∙ 	ROUGE-
L +𝑤- ∙ 𝐵𝐸𝑅𝑇	𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 +
𝑤@ ∙ 𝐹𝑎𝑐𝑡𝑢𝑎𝑙	𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 + 𝑤A ∙
𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠; 
𝑤#~𝑤A: 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑠𝑐𝑜𝑟𝑒	𝑡𝑜	𝑒𝑎𝑐ℎ	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡,	 
𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑙𝑦	𝑡𝑎𝑘𝑒	𝑡ℎ𝑒	𝑎𝑣𝑒𝑟𝑎𝑔𝑒. 
BLEU-4: This component measures n-
gram overlap between the generated and 
reference texts, similar to traditional 
BLEU score.  
ROUGE-L: This part assesses the 
longest matching subsequences between 
the texts, capturing more meaningful 
phrases. 
BERT Embedding Similarity: This 
measures the semantic similarity 
between the generated and reference 

texts using pre-trained language models 
like BERT. 
Factual Consistency: This component 
analyzes the factual inconsistencies 
between the texts, ensuring generated 
information aligns with the reference. 
Informativeness: This portion gauges the 
level of new information added by the 
generated text compared to the reference. 

Preferences: BART Score leverage BART's 
architecture to assess coherence, fluency, and 
contextual relevance of generated text against 
reference texts. It would naturally prefer models 
that are adept at producing text that is contextually 
relevant, coherent across longer passages, and 
syntactically fluent.  

3.1.8  BLEURT (Bilingual Evaluation Understudy 
with Representations from Transformers) 
BLEURT is an evaluation metric for Natural 
Language Generation (Sellam et al., 2020). It 
takes a pair of sentences as input, a reference 
and a candidate, and it returns a score that 
indicates to what extent the candidate is fluent 
and conveys the meaning of the reference. 
Calculation procedure: 

1. Feature Extraction: The model takes a 
pair of sentences (a reference and a 
candidate) as input and passes them 
through a BERT model to obtain their 
embeddings. These embeddings are 
high-dimensional feature vectors that 
capture the semantic information of the 
sentences. 

2. Regression Model: The regression 
model compares the embeddings of the 
reference and candidate sentences to 
calculate a similarity score. This 
comparison is done using a linear layer 
that predicts the similarity between the 
feature vectors of the original sentence 
and its re-translation. 

3. Training: The regression model is trained 
on a dataset of human ratings. The 
training process involves adjusting the 
parameters of the model to minimize the 
difference between the model’s 
predictions and the actual human ratings. 

4. Output: The model returns a score that 
indicates to what extent the candidate is 
fluent and conveys the meaning of the 
reference. 

Preferences: BLEURT scores texts by leveraging 
a BERT-based model fine-tuned on human 
judgment data, evaluating semantic similarity and 
naturalness of language. This mechanism inclines 
BLEURT to prefer models that produce text 
closely mirroring human writing styles and 
semantic richness, capturing nuances in meaning 
and context.  
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3.1.9 CLIP Score 
CLIP Score is a reference free metric that can be 
used to evaluate the correlation between a 
generated caption for an image and the actual 
content of the image. It has been found to be 
highly correlated with human judgement (Hessel 
et al., 2021). 
The CLIP Score is calculated as: 

𝐶𝐿𝐼𝑃	𝑆𝑐𝑜𝑟𝑒(𝐼, 𝐶) = 𝑐𝑜𝑠𝑖𝑛𝑒	(𝐸B , 𝐸>) 
𝐸B: 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝑓𝑜𝑟	𝑖𝑚𝑎𝑔𝑒	𝐼	𝑏𝑦	𝐶𝐿𝐼𝑃	𝑀𝑜𝑑𝑒𝑙 
𝐸>: 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝑓𝑜𝑟	𝑐𝑎𝑝𝑡𝑖𝑜𝑛	𝐶	𝑏𝑦	𝐶𝐿𝐼𝑃	𝑀𝑜𝑑𝑒𝑙 

Preferences: CLIP Score uses the cosine 
similarity between the embeddings of images and 
corresponding textual descriptions generated by 
the CLIP model, this score would measure how 
well the text describes the image, considering 
both semantic content and visual details. Given 
this approach, CLIP Score would favor models 
that excel in generating accurate, detailed, and 
semantically rich descriptions of images. These 
models are able to understand and interpret 
complex visual scenes and translate this 
understanding into coherent, contextually relevant 
text. 

3.1.10 Rank Score 
Rank Score is designed to evaluate image-
captioning models for the application of image-
based product search. Given a query product 
image, the model generates a text caption. This 
caption is then used to retrieve relevant products 
textually, and the rank of the original queried 
product in the results list is used to calculate the 
Rank Score. 

Specifically, the candidate caption for the query 
image is compared against product captions in the 
dataset via BERT embeddings to retrieve a 
ranked list of products by similarity. If the original 
product image ranks 1st, the Rank Score is 1, 
indicating the highest performance in returning 
the queried product. If the product ranks last, the 
Rank Score is close to 0. Other ranks will have 
values between 0 and 1, with higher values 
indicating better performance in retrieving the 
original product. 

The Rank Score is calculated as: 

𝑅𝑎𝑛𝑘	𝑆𝑐𝑜𝑟𝑒 = 	1 −	
𝑇𝑟𝑢𝑒	𝑅𝑎𝑛𝑘 − 1

𝑁  
𝑁:𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚	𝑜𝑓	𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑡𝑒𝑥𝑡𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑑𝑎𝑡𝑎𝑠𝑒𝑡 
𝑇𝑟𝑢𝑒	𝑅𝑎𝑛𝑘: 𝑡ℎ𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑡𝑟𝑢𝑒	𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	 

																												𝑡𝑒𝑥𝑡	𝑖𝑛	𝑡ℎ𝑒	𝑙𝑖𝑠𝑡	𝑠𝑜𝑟𝑡𝑒𝑑	𝑏𝑦	𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔	 
																							𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝑡𝑜	𝑡ℎ𝑒	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑	𝑡𝑒𝑥𝑡. 

Preferences: This approach aims to quantify how 
well the generated caption captures the visual 
essence of the query image in a way that enables 
accurate text-based retrieval of the original 
product. The metric favors models that produce 
captions semantically aligned with the visual 
content to support precise image search. 

3.2 Dataset Variation with CLIP Score 
In evaluating image-captioning models, the 
quality of benchmark datasets greatly influences 
the outcomes. To address this, we employ CLIP 
Score (Hessel et al., 2021) to measure the 
congruence between images and captions, 
offering a method to assess the dataset's overall 
alignment, shown in Figure 1. By calculating the 
standard deviation of these scores for each 
dataset, we can get comparative variations of 
datasets. A dataset with lower standard deviation 
indicates less variation, and higher standard 
deviation points to greater variation. In general, a 
model performs better in a dataset with less 
dataset variation is inclined to have more 
precision and efficiency; and a model performs 
better in dataset with more dataset variation is 
inclined to have more robustness and adaptability. 
We could extract more model patterns and 
suitable applications based on comparative 
dataset variations and evaluation metric patterns, 
shown in TABLE I. 

 
Figure 1: Check dataset variation with CLIP Score 

 

Metrics Less Variation More Variation

BLEU

Strength: High lexical matching 
precision. Applications: Formal 
document translation, legal 
document replication.

Strength: Adaptability to lexical 
diversity. Applications: Multilingual 
social media content translation, 
diverse genre text localization.

ROUGE

Strength: Detailed content 
coverage. Applications: 
Executive summary generation 
for business reports, focused 
news article summarization.

Strength: Flexibility in content 
extraction. Applications: 
Summarizing user-generated content, 
variable style news aggregation.

METEOR

Strength: Precision in detailed 
captions. Applications: Ideal for 
archival systems where accuracy 
is paramount.

Strength: Versatility in language 
adaptation. Applications: Suited for 
dynamic content such as diverse 
social media platforms.

SPICE

Strength: In-depth scene 
analysis. Applications: Suitable 
for educational tools requiring 
detailed image explanations.

Strength: Recognition of features in 
complex visuals. Applications: E-
commerce platforms, highlighting 
product features amidst visual clutter.

BLEURT

Strength: Nuanced tone and 
language detection. 
Applications: Luxury branding 
where subtlety in captions can 
influence perception.

Strength: Adaptability to a range of 
linguistic styles. Applications: User-
generated content platforms needing 
accurate captions for diverse 
submissions.

BERT Score

Strength: Deep semantic 
alignment with reference texts. 
Applications: Content-centric 
websites that require aligned 
thematic narratives.

Strength: Robust contextual 
understanding. Applications: News 
and information sites with varied 
topical content.

CIDEr

Strength: Precision in detail-
oriented image description. 
Applications: Cataloging for 
digital archives, precise product 
descriptions for e-commerce.

Strength: Ability to highlight unique 
image features. Applications: 
Dynamic caption generation for social 
media platforms, interactive 
educational content.

BART Score

Strength: Mastery in generating 
coherent, contextually relevant 
text. Applications: Narrative-
driven media, adding depth to 
visual stories.

Strength: Flexibility in text 
generation across diverse styles and 
formats. Applications: Creative 
writing tools, adaptive marketing 
content generation across various 
platforms.

CLIP Score

Strength: Precise visual-text 
alignment. Applications: Art 
galleries or databases requiring 
accurate image cataloging.

Strength: Creativity and adaptability 
in describing diverse visual content. 
Applications: Social media content 
generation and enhancement.

Rank Score

Strength: Precision in semantic 
alignment with target texts. 
Applications: Customized news 
feed generation, precise 
document retrieval in legal and 
academic research databases.

Strength: Adaptability in 
understanding and matching a wide 
range of semantic contexts. 
Applications: Chatbots and virtual 
assistants tailored to diverse user 
queries.

83



TABLE 1:   Model’s Comparative Strength and 
Suitable Applications under Each Evaluation 
Metric 
3.3   Comparative Evaluation with 
Statistical Analysis  
Our method employs t-tests with Bonferroni 
correction on model results across various 
evaluation metrics. This determines if there is a 
model that achieves higher scores with statistical 
significance than others in a specific evaluation 
metric. If there exists such a model, we harness 
the specific preferences of that metric and 
corresponding benchmark dataset variation to 
infer the model's comparative strengths. The 
whole procedure is shown in Figure 2. 

 
Figure 2: Procedure of Comparative Evaluation 
with Statistical Analysis 

4. Experiments 
We conduct experiments on two distinct datasets 
to validate the real-world efficacy of our novel 
evaluation framework for enhanced evaluation of 
image-captioning models. 
4.1 Datasets 
FashionGen (Rostamzadeh et al. 2022) - This 
dataset contains 360K apparel image-text pairs 
with high alignment. Typically, a product could 
have several different images but the same 
caption. This dataset features images of clothing 
items worn by models against clean backgrounds 
and consistent captions detailing visual attributes 
of clothing items. We randomly sample a subset 
of 50,000 rows for training and 500 rows for 
testing, which are mutually exclusive. 

Amazon Product Dataset (Tools and Home 
Improvement) (Ni et al., 2019) - The home & 
kitchen product dataset of 51K rows from Amazon 
consists of seven subcategories, exhibiting 
greater noise - multiple images per product with 
different perspectives, backgrounds, and even 
sketch maps. Captions could contain peripheral 
details less related to corresponding products, 
such as product histories and usage scenarios not 
directly extractable from images alone. Our 
experiment uses 500 rows proportionally sampled 
across subcategories for testing, with the 
remainder forming the training dataset. 

4.2 Evaluation Metrics 
For our experiments, we specifically chose not to 
use BLEU, ROUGE, and CIDEr due to their 
limitations. BLEU, primarily focused on n-gram 
overlap, is adept at evaluating literal translations 
but falls short in assessing the contextual 
alignment in image-captioning. ROUGE, while 
valuable for summarization tasks, does not cater 
to our objective of generating descriptive captions 
to describe images. Lastly, CIDEr, despite its 
utility in comparing a generated caption against a 
set of references, does not suit our model's aim of 
producing a singular, optimal caption for each 
image. 
4.3 Models  
CoCa(Contrastive Captioners) (Yao et al. 2021) 
- a state-of-the-art model designed to excel in both 
image understanding and captioning tasks by 
leveraging contrastive learning. It combines the 
strengths of powerful visual encoders with 
language models to generate descriptive, 
accurate captions for images. 

Video-LLaVa (Video Language-Large Model) 
(Lin et al. 2022) - extends the capabilities of 
language models to the domain of video 
understanding and captioning. By processing 
video inputs alongside textual descriptions, 
Video-LLaVa aims to capture the dynamic 
aspects of video content, translating them into 
coherent and comprehensive text. 

BLIP (Bootstrapped Language Image Pre-
training) (Li et al. 2021) - a model that 
emphasizes the pre-training phase to enhance 
the synergy between visual perception and 
language understanding. By bootstrapping from 
large-scale datasets, BLIP learns to generate 
captions that are not only accurate in depicting the 
visual content but also engaging and informative. 

ViT-GPT2 - it combines the Vision Transformer 
(ViT) (Dosovitskiy et al. 2021) with the GPT-2 
(Radford, Alec, et al. 2019) language model to 
create a hybrid system capable of processing 
images and generating corresponding captions. 
ViT extracts and processes visual information 
from images, transforming it into a format that the 
GPT-2 model can use to generate textual 
descriptions. 
4.4 Experimental Procedure 
To fully leverage each model's capabilities and 
provide a robust evaluation, we adopted distinct 
measures tailored to each model.  

For CoCa, it’s a structural model without prior 
training, we train it from scratch separately on 
both the FashionGen and Amazon training 
datasets. 

For BLIP, to sharpen their domain knowledge and 
optimize performance for our specific datasets, 
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we finetune the pretrained model (Salesforce/blip-
image-captioning-large) from HuggingFace, 
separately on both the FashionGen and Amazon 
training datasets and rename it Finetuned-BLIP. 

For ViT-GPT2, same as BLIP, we finetune the 
pretrained model (vit-gpt2-image-captioning) from 
HuggingFace, separately on both the FashionGen 
and Amazon training datasets and rename it 
Finetuned-ViT. 

For Video-LLaVa, it is a LLM with extensive pre-
training. Given its big size and intricate internal 
structure, fine-tuning was not a viable option. 
Instead, we utilize prompting to direct it to 
generate appropriate captions. The respective 
prompts as shown below: 

 

Having generated candidate captions from these 
4 models for both test datasets, we next apply our 
suite of evaluation metrics, including BERT Score, 
BART Score, METEOR, SPICE, BLEU, CLIP 
Score, Rank Score, to get results. 

After getting results, we then conduct paired t-
tests with Bonferroni correction separately on the 
evaluation results of these two testing datasets, 
shown in Figure 3 and Figure 4. We collect results 
for each metric to check whether there exists a 
significant leading model on an evaluation metric, 
the results are shown in TABLE 2 and TABLE 3, 
and the statistical significance criteria is (p-value 
< 0.01). 

Given the divergence across different datasets, 
we use CLIP Score to evaluate the overall 
alignment of training datasets, shown in Figure 5. 
FashionGen shows an approximately normal 
distribution with a lower standard deviation, 
indicating less dataset variation. Conversely, the 
Amazon dataset displays a wider distribution with 
a higher standard deviation, reflecting more 
dataset variation. 

 
Figure 3: Results of Statistical Analysis with Statistical Significance (FashionGen) 

 
Figure 4: Results of Statistical Analysis with Statistical Significance (Amazon)

 

 
TABLE 2: Statistical Analysis OF Evaluation            
Metric Scores IN FashionGen Testing Dataset.  

 
TABLE 3: Statistical Analysis OF Evaluation 
Metric Scores IN Amazon Testing Dataset  
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  Figure. 5:  Distribution Plot of CLIP Scores across Two Benchmark Datasets 

4.5 Experimental Results 
Table 2 and Table 3 present significant leading 
models on metrics across the FashionGen and 
Amazon Product test datasets. Observed results 
include: 

• Video-LLaVA demonstrates top 
performance on BART Score in 
FashionGen dataset while CoCa leads on 
BART Score in Amazon dataset. 

• Fine-tuned ViT takes the lead on CLIP 
Score of FashionGen dataset. 

• CoCa shows dominance in other metrics 
with statistical significance across 
datasets. 

• Fine-tuned BLIP consistently beat others 
on Rank Score metric in both datasets. 

4.6 Model Analysis on Evaluation Results 
Analyze the experimental results and refer to 
TABLE 1, we get insights below: 

CoCa: CoCa takes the lead in various metrics 
across both datasets, reflecting its 
comprehensive understanding of image-caption 
relationships. Its success could be attributed to its 
contrastive learning framework, enabling 
interpretation and generation of captions that are 
both contextually relevant and linguistically 
precise. From these results, we conclude that 
CoCa is exceptionally capable of adapting to 
diverse dataset qualities, making it a versatile 
choice for applications requiring detailed and 
accurate image captions, from content creation to 
archival description. 

Video-LLaVa: Video-LLaVa's stands out on 
BART Score in FashionGen dataset, 
demonstrating its ability to generate coherent and 
contextually relevant text. This proficiency 
suggests that Video-LLaVa effectively interprets 
and translates visual content into meaningful 
captions, leveraging its advanced understanding 

of both visual elements and textual narrative. 
From this result, we conclude that Video-LLaVa is 
well-suited for enriching narrative-driven media 
and adding depth to visual stories, making it a 
valuable tool for applications aiming to provide 
engaging and enriched content narratives. 

ViT-GPT2: ViT-GPT2 excels in the FashionGen 
dataset on the CLIP Score, showcasing its 
strength in precise visual-text alignment. This 
performance could be attributed to its use of 
Vision Transformer for visual analysis combined 
with GPT-2 for text generation, ensuring accurate 
and relevant captions for images. Consequently, 
we conclude that ViT-GPT2 could be effective for 
applications like art gallery databases or 
specialized image catalogs, where accurate and 
detailed image descriptions are crucial for user 
engagement and information retrieval. 

BLIP: BLIP excels in the Rank Score metric 
across datasets, showcasing its precision and 
adaptability in semantic alignment. This 
performance indicates BLIP's robust capability for 
detailed semantic interpretation and flexible 
application across different content needs. 
Consequently, BLIP is ideal for creating precise, 
customized content in areas like news feeds and 
document retrieval, as well as for developing 
responsive chatbots and virtual assistants 
capable of handling a wide range of queries.  

Our research, informed by experimental results 
and analysis to evaluation metrics, aimed to 
evaluate, not rank, various image-captioning 
models to discern their comparative strengths and 
suitable applications. This methodology highlights 
comparative advantages of each model, 
facilitating an informed selection for specific 
image-captioning needs. The findings offer a 
strategic framework for choosing models that best 
match the required competencies for targeted 
applications. 
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5. Conclusion 
In our paper, we introduced a handy framework to 
evaluate image-captioning models. By conducting 
experiments on two datasets with contrasting 
variation in image-caption alignment, we 
demonstrated how our approaches can reveal the 
inherent strengths and practical applicability of 
different models. Our integration of statistical 
analysis with reverse reasoning on evaluation 
metrics, providing a comprehensive framework 
that not only assesses accuracy but also provides 
practical applications. The insights extracted from 
this procedure underscore the versatility of our 
evaluation framework in discerning the 
comparative capabilities of image-captioning 
models in varied contexts. 

Future work: Future efforts could aim to expand 
the range of evaluation metrics for a deeper 
analysis of model capabilities. There is also 
significant potential in refining the training or 
finetuning procedures for the image-captioning 
models under study. Perfecting these models to 
their optimal performance is key to accurately 
harnessing their full potential in real-world 
applications. Besides, our method shall not be 
limited to image-captioning, once there are 
multiple evaluation metrics, we could always 
apply the framework, such as evaluations on 
video-captioning and text-to-image under e-
commerce industry. 
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Abstract

In the dynamic marketplace, vendors continuously seek innovative ideas for new products and ways to improve
existing ones. These ideas can be uncovered by analyzing text data, such as product descriptions and customer
reviews. However, the ever-increasing volume of text data poses a challenge in extracting meaningful insights.
Therefore, this study addresses the challenge of extracting actionable insights from the growing volume of text
data, with a specific focus on product descriptions. To this end, we investigate two primary research questions:
the predictive power of product descriptions for product success, and the capability of style transfer to highlight
the successful factors of these descriptions. In response to the first question, our findings validate that product
descriptions are indeed reliable indicators of product success. Addressing our second question, we propose a
Successful Style Transfer Variational Autoencoder (SST-VAE), a VAE-based language model designed for effective
successful style transfer. Qualitative analysis indicates that the SST-VAE effectively enables successful style transfer
conditional on a given label. In addition, case studies suggest that the proposed approach could be useful in gaining
insights about product success, by highlighting key factors that may contribute to their success. On the other
hand, our approach confronts issues such as hallucinations and the need for factual accuracy. These challenges
underscore the necessity for continued research in the field of e-commerce natural language processing.

Keywords: generative model, product description, natural language processing

1. Introduction

In the dynamic marketplace, vendors continuously
seek innovative ideas for new products and ways
to improve existing ones. This valuable knowledge
could be revealed through the analysis of textual
data, including product descriptions and consumer
reviews. Yet, the rapid expansion of textual data
volume poses a significant challenge in manually
analyzing them. Accordingly, natural language pro-
cessing (NLP) is utilized to extract meaningful in-
sights from textual data, which has resulted in ex-
tensive research in the field of e-commerce NLP.

In the domain of e-commerce NLP, a significant
body of work focuses on product descriptions, rec-
ognizing their crucial role in providing a competi-
tive customer experience (Wang et al., 2017; Chen
et al., 2019; Chan et al., 2019; Zhang et al., 2019;
Zheng et al., 2018). In this realm, a considerable
portion of the current research focuses on text gen-
eration for product descriptions. This focus has
given rise to unique challenges, including person-
alized generations (Chen et al., 2019) and fidelity-
oriented generations (Chan et al., 2019). However,
there has been little research aimed at extracting
valuable insights about product success.

Addressing this research gap, the primary aim
of this study is to extract insights regarding product
success from product descriptions. Following this
direction, two key questions emerged.

Initially, there is uncertainty regarding the extent
to which product descriptions contain insights into
a product’s success. Figure 1 presents a compari-
son between the description of a successful product
(which has a higher rating) and that of an unsuc-
cessful product (which has a lower rating). From
this figure, it remains unclear to what extent these
descriptions capture information pertinent to prod-
uct success, especially given that product success
is often influenced by various factors, including ex-
ternal trends and events. Therefore, it is worthwhile
to determine the degree to which these descriptions
encompass relevant information. This considera-
tion guides us to our first research question: “To
what extent can product descriptions accurately
indicate a product’s likelihood of success?”

The second question emerges from the difficulty
of manual dataset collection. Typically, extracting
product success factors from product descriptions
entails annotating these successful elements in
product descriptions. Nevertheless, as Figure 1
illustrates, identifying the key elements that con-
tribute to a product’s success from its descriptions
is quite challenging, which significantly complicates
the manual development of a dataset. In response
to these complexities, we consider that a style trans-
fer approach could mitigate these challenges (Jin
et al., 2022). It enables comparisons between orig-
inal texts and those transformed into a successful
style without the challenges of manual annotation.
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Figure 1: Two Product Examples with Similar Features but Varying Success: The Product On The Left
Has A Higher Customer Rating, While The Product On The Right Has A Lower Customer Rating.

These comparisons will be beneficial in uncovering
product success factors. This leads to our second
research question: “Can we transform text descrip-
tions from unsuccessful to successful ones, or vice
versa?”

In summary, we formulated the following re-
search questions

• RQ1: To what extent can product descriptions
accurately indicate a product’s likelihood of
success?

• RQ2: Can we transform text descriptions
from unsuccessful to successful ones, or vice
versa?

This paper addresses these research questions.
Firstly, we examine the potential of product descrip-
tions as predictors of product success in response
to the first research question. To this end, we in-
troduce a success prediction task from product de-
scriptions to assess the extent to which product
descriptions can predict success.

Subsequently, we introduce a novel task involv-
ing the style transfer of product descriptions for
the second research question. To address this
challenge, we propose a Successful Style Trans-
fer Variational Autoencoder (SST-VAE), a model
designed to generate product descriptions condi-
tional on the product’s success. We assess the
proposed model’s output in qualitative analysis and
case studies based on two perspectives: first, its
ability to highlight factors of product success; sec-
ond, its effectiveness in enhancing original descrip-
tions through successful text transformations. Our
results indicate that the proposed model success-
fully transforms the product descriptions from un-
successful to successful and vice versa. In addition,

our results suggest that the successful style trans-
fer method can be effective in extracting insights
about products by emphasizing the potential fac-
tors that could contribute to their success. On the
other hand, we also reveal several issues, such
as hallucinations, particularly when applied to en-
hance the product descriptions themselves, laying
out a path for future research opportunities in this
domain.

2. Related Work

2.1. Text Style Transfer

Text style transfer, an important task in natural lan-
guage generation, focuses on modifying attributes
like sentiment and politeness in text. It has regained
notable attention in natural language processing
due to the impressive results achieved with recent
deep neural models (Jin et al., 2022). The chal-
lenge in text style transfer lies in the ambiguity of
“style” in NLP and many works are tackling the prob-
lem. Some works deal with the sentiment of a text
as a style of the text. Hu et al. (2017) proposes
to control the sentiment of a text by using discrimi-
nators to reconstruct sentiment and content. Also,
John et al. (2019) tackles the problem of disentan-
gling the latent representations of style and content
by proposing a multi-task loss to achieve the style
transfer in terms of sentiment on non-parallel cor-
pora. Additionally, Vasilakes et al. (2022) advances
the field by enabling style transfer specifically in the
realms of negation and uncertainty. Despite the ex-
tensive research in NLP style transfer, no existing
study has explored text style transfer in the context
of a product’s success.
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2.2. NLP in E-commerce
The NLP research in the e-commerce domain has
shown considerable interest in product descriptions,
with numerous studies addressing challenges such
as text generation and attribute extraction (Wang
et al., 2017; Chen et al., 2019; Chan et al., 2019;
Zhang et al., 2019; Zheng et al., 2018). Especially,
text generation task draws attention as quality prod-
uct descriptions are important for providing a com-
petitive customer experience in e-commerce stores.
For instance, Wang et al. (2017) introduces a sta-
tistical model capable of producing accurate and
fluent descriptions of product attributes. Further ad-
vancing the field, Chen et al. (2019) delves into gen-
erating personalized product descriptions using a
knowledge base and neural networks. Additionally,
Zhang et al. (2019) explores a pointer-generator
neural network to generate product descriptions
where the output patterns are controlled. Chan
et al. (2019) emphasizes the fidelity of content in
their approach to product description generation.
Despite these advancements, most text generation
research in this area has primarily focused on au-
tomating the product description writing process.
There has been little emphasis on obtaining insights
from descriptions or enhancing them.

Recognizing the importance of extracting mean-
ingful insights from these text data, we propose
a novel approach, employing a style transfer ap-
proach to gain insights into what drives product
success.

3. RQ1: Can we predict products’
success from product description?Success prediction task: RQ1 

28

Product 
Description Classifer Success 

Or Not ?

Figure 2: An Illustration of the Success Prediction
Task.

3.1. Success Prediction Task
The initial research question we address is, "Can
we predict a product’s success from its descrip-
tions?" To tackle the question, we introduce a suc-
cess prediction task based on product descriptions,
as depicted in Figure 2. In this task, we train a nat-
ural language processing model to predict whether
a product will be successful or not given product
descriptions. The reasoning behind establishing
this task for RQ1 is that if the model can predict
success to a reasonable degree, it indicates the
presence of significant information within product

Experimental settings: RQ1
▷ Prediction problem

○ Defining success:
■ Success (Label 1): Average product rating 

above a certain threshold (e.g., 3 or 4 out of 5)
■ Non-success (Label 0): Average rating below 3

○ Data splitting strategy:
■ Random split 
■ Group shuffle split (to mitigate potential 

leakage)
○ Model:

■ BERT (Bidirectional Encoder Representations 
from Transformers) (Devlin et al,.2019)

○ Evaluation metrics:
■ Accuracy, Recall, Precision, F1

▷ Amazon Public Data*1

○ Large crawl of product 
revies from Amazon

○ Timespan: May 1996 –
Jul 2014 

○ Sample size# 269,469 

23*1 https://cseweb.ucsd.edu/~jmcauley/datasets.html#amazon_reviewsFigure 3: Histogram Displaying the Average Rat-
ings Following Data Preprocessing.

descriptions that correlates with the product’s suc-
cess. In our experiments, we utilize a pre-trained
BERT (Devlin et al., 2019) model to predict product
success.

3.2. Evaluation Settings
In our experiments, we utilize the Amazon Public
Dataset 1, which comprises a substantial collec-
tion of product data from Amazon. We focus our
experiments on a single category, as we consider
that the factors driving success vary significantly
across different categories. Specifically, our experi-
ments employ data from the Electronics category.
For data processing, we exclude products with less
than 5 ratings as well as those with duplicated de-
scriptions, amounting to a total of 269,469 products.
We define a product’s success based on its aver-
age rating. Specifically, a product is labeled as
successful if its average rating exceeds a certain
threshold (for our study, thresholds are set at 3 or 4
out of 5 stars), and as unsuccessful if the average
rating falls below 3. Figure 3 shows the distribution
of average product review ratings.

We implement two data-splitting strategies to mit-
igate potential data leakage. The first approach is
a random split, where data is divided randomly into
training and test sets. In the random splitting strat-
egy, we observe some instances where product
descriptions share identical beginnings as shown
in Table 1, and that the model often assigns the
same labels to them. This raises concerns about
data leakage, where the model’s predictions for the
test dataset might be influenced by the recurring
text in the training dataset. To address this, we
also adopt the group stratified data splitting strat-
egy. Here, products sharing the first x characters
(a predetermined threshold) in their descriptions

1https://cseweb.ucsd.edu/~jmcauley/
datasets.html#amazon_reviews
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Table 1: Examples of Two Product Descriptions with Identical Initial Sentences (Italicized) to Highlight
Shared Content.

Description
D1 Bring your digital camera back to life with a new battery. Make sure you never

miss another once-in-a-lifetime moment by having a new, battery specifically
designed for your Canon Rebel T2i T3i T4i T5i digital SLR camera. BM Premium
rechargeable batteries are engineered to meet or exceed OEM specifications
and feature the latest battery technology, including advanced circuitry, voltage
regulation, and thermal circuit protection. BM Premium batteries include a
one-year warranty.

D2 Bring your digital camera back to life with a new battery. Make sure you never
miss another once-in-a-lifetime moment by having a new, LPE-10 battery specif-
ically designed for your Canon Rebel digital SLR camera. LPE10 rechargeable
batteries are engineered to meet or exceed OEM specifications and feature the
latest battery technology, including advanced circuitry, voltage regulation, and
thermal circuit protection. This battery includes a one-year warranty.

Table 2: Results of the Success Prediction Task.
Splitting strategy Random Group shuffle with threshold
Success label Higher than 3 Higher than 4
Threshold - 50 100 300 500 100
Accuracy 0.71 0.69 0.69 0.70 0.70 0.88
F1 0.75 0.74 0.74 0.74 0.74 0.94
Precision 0.72 0.69 0.71 0.72 0.72 0.90
Recall 0.79 0.79 0.77 0.76 0.77 0.97

are grouped together. We then ensure that descrip-
tions from the same group are exclusively assigned
to either the training or the test dataset, but not
both.

As for evaluation metrics, we utilize accuracy,
recall, precision, and F1 score. In the training, we
finetune the BERT model for 3 epochs with learning
rate 0.001.

3.3. Result and Discussion
The results of the success prediction task, pre-
sented in Table 2, indicate that product descriptions
effectively predict a product’s success, achieving
around 70% accuracy in most scenarios. More-
over, this consistency in prediction accuracy per-
sists across various experimental settings and dif-
ferent data-splitting strategies, including variations
in the threshold value x.

Additionally, the model achieves greater perfor-
mance when defining success at a level higher than
4, compared to a threshold higher than 3. This out-
come indicates that there are meaningful distinc-
tions within product descriptions that contribute to
the successful differentiation between successful
and unsuccessful products.

On the other hand, the precise reasons for the
model’s effective prediction of product success are

not clear. We hypothesize two possible scenarios.
Firstly, there may be a distinct style of writing in
product descriptions that contributes to their suc-
cess. Secondly, it is possible that successful prod-
ucts possess appealing features, and the model
captures these features within the product descrip-
tions. Investigating these hypotheses will be re-
served for future research.

4. RQ2: Can we transfer the text
description from unsuccessful to

successful one or vice versa?
Model idea

19

Product 
Description Model

Successful 
Description

Unsuccessful 
Description

Figure 5: An illustration of the Successful Style
Transfer Task.
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Figure 6: The Overview of Proposed SST-VAE Model.

4.1. Successful Style Transfer Task
Having confirmed that product descriptions are in-
deed reliable predictors of product success, we
then move on to address the second research ques-
tion: "Can we transform text descriptions from un-
successful to successful ones, or vice versa?" To
validate this question, we introduce a successful
style transfer task, where an NLP model is trained
to generate either more successful or less success-
ful product descriptions as depicted in Figure 5.
The underlying motivation for this task is that by
shifting from successful to unsuccessful descrip-
tions or the reverse, we can gain insights into the
factors driving product success.

4.2. Method
For the successful style transfer task, we employ
VAEs as text autoencoders due to their provision
of smooth latent space, facilitating the transfer of
texts conditioned on a label (Kingma and Welling,
2014; John et al., 2019). The basic VAE objective
(i.e., the reconstruction loss with KL divergence)
can be written as follows.

Lβ = LE + βLR (1)

LE = − E
qϕ(z|x)

[log pθ(x|z)] (2)

LR = KL(qϕ(z|x)∥p(z)) (3)

where LE represents the reconstruction loss, while
LR denotes the KL divergence loss. The loss func-
tion Lβ is a weighted combination of the recon-
struction loss and KL divergence, with the β coef-
ficient determining the influence of KL divergence
on the overall loss. Typically, qϕ(z|x) is modeled as
a Gaussian distribution with model parameters ϕ,
and the re-parametrization trick is employed during
training (Kingma and Welling, 2014). Additionally,
log pθ(x|z) is a conditional probability of the data
x given latent variables z with model parameters

θ. For the prior distributions p(z), we employ the
standard Gaussian distribution N (0, I).

In this study, we employ Optimus, a large-scale
language VAE model as our baseline model (Li
et al., 2020). Optimus is a Transformer-based
VAE model that incorporates BERT (Devlin et al.,
2019) as its encoder and GPT-2 (Radford et al.,
2019) as its decoder, achieving higher performance
among VAE language models. In the Optimus
framework, the functionalities of BERT and GPT-2
are integrated as follows: within the BERT struc-
ture, the first token of each sentence is assigned
as a unique classification token, marked by [CLS].
The final layer’s hidden state, h[CLS] ∈ RH acts as
the sentence-level representation. This representa-
tion is subsequently converted into a latent space,
forming the latent variable z = WEh[CLS]. Here, z is
a P -dimensional vector in RP , and WE is the trans-
formation matrix in RP×H . The latent variable z is
then integrated into the GPT-2 model to facilitate
its decoding function.

To tackle the successful style transfer task, we
propose the Successful Style Transferred Varia-
tional Autoencoder (SST-VAE). An overview of the
model is depicted in Figure 6. The SST-VAE is
based on on Optimus framework. The loss func-
tions of SST-VAE are shown as follows.

LSST = LE + αLsuccess + βLinverse (4)

where LE represents the reconstruction loss,
Lsuccess denotes the success prediction loss,
Linverse refers to the inverse success prediction
loss, and α and β are the weights assigned to these
losses.

In SST-VAE, we freeze and retain the parameters
of the encoder and decoder from fine-tuned Opti-
mus, utilizing them in their existing states. For the
latent variables, we add a single-layer neural net-
work, enabling the latent variables to incorporate
information related to the success label as follows.

z′ = WAz (5)
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where WA is the transformation matrix in RP×P .

39

PCA

PCA

t-sne

t-sne

Figure 7: 2D Latent Embedding Plot: Top Row
Shows SST-VAE, Bottom Row Baseline Models
(Finetuned Optimus). Left Plots Utilize Principal
Components, Right Plots Employ t-SNE for Di-
mension Reduction. The Yellow Labels Denote
Successful Products, Blue Labels Indicate Non-
Successful Products.

The success prediction loss is derived as follows.

x̂ = Dec(x, z′) (6)

hx̂ = BERT (x̂) (7)
ŝ = fω(hx̂) (8)

Lsuccess = −s log(ŝ)− (1− s) log(1− ŝ) (9)
First, we acquire the reconstructed text x̂ from the
original text x and latent variables z′ using the
frozen decoder Dec. Then, we acquire the em-
beddings hx̂ of the reconstructed text with frozen
BERT. Subsequently, we use a single-layer neural
network fω to obtain the predicted success label
ŝ. Finally, we calculate the success prediction loss
with a cross-entropy loss with the success label
s ∈ {0, 1}.

The inverse success prediction loss is derived
as follows.

l′ = (1− 2s)l (10)
x′ = Dec(x, z′ + l′) (11)

s′ = fω(x
′) (12)

Linverse = −s log(s′)− (1− s) log(1− s′) (13)
where l is a learnable vector that represents the
direction of success within the latent space, and l′

is a vector that represents the opposite direction

of success from the original success label s. The
term (1− 2s) assigns a sign based on the success
label s ∈ {0, 1}. When s is 1, l′ becomes −l and
when s is 0, l′ becomes l, reversing the sign of the
embeddings. Then, we derive the style transferred
text x′ from the original text and the value of z′ after
adding l. This process is to shift the latent variables
in the direction opposite to the given success label,
thereby generating descriptions with the inverse
success label. Then, we utilize fω to predict the
inverse success label. Finally, we obtain the inverse
success prediction loss with a cross-entropy loss.

During inference, we can either add or sub-
tract label embeddings to produce text with either
more successful or less successful descriptions by
Dec(x, z′ ± l).

4.3. Evaluation Settings

For data processing, similar to the success pre-
diction task, we eliminate products with less than
5 ratings and those with duplicated descriptions.
Additionally, we eliminate product descriptions ex-
ceeding 64 tokens, in line with the preprocessing
procedures in Optimus (Li et al., 2020). For data
splitting, we utilize a stratified group shuffle method
with a threshold set at 100.

As our baseline model, we fine-tune Optimus with
a latent size of 768 and beta set to 1.0 2, using our
training corpus. Subsequently, the SST-VAE model
is trained with the frozen weights of the encoder
and decoder from the fine-tuned baseline model.

We assess our models’ effectiveness in two ap-
proaches. Initially, we compare the latent embed-
dings of our model with those of the baseline model
by projecting these embeddings into a 2D space
through dimensionality reduction techniques such
as principle component analysis and t-sne (van der
Maaten and Hinton, 2008). Our second method
involves qualitative evaluations through case stud-
ies. We generate style-transferred texts using both
SST-VAE and a baseline model, then analyze the
outcomes based on two viewpoints: assessing
whether the results highlight factors behind prod-
uct success and whether the transformed text en-
hances the original descriptions.

In our experiments, we chose hyperparameters
as follows: The number of training epochs was set
to 10. The loss weights were adjusted, with a ratio
of 1/100 assigned to the reconstruction loss and a
weight of 1 for the other two loss components. All
models were trained on an NVIDIA V100 GPU.

2https://github.com/ChunyuanLI/
Optimus/blob/master/doc/optimus_
finetune_language_models.md
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Model output: Style transfer

Original

34

This high-quality power cord 
is suitable as a replacement 
to replace the power cord of 

a monitor or desktop 
computer. The cable is 
made of high-quality 

materials.

This high-quality power cord 
is ideal to replace the power 
cord of a monitor or monitor 

stand. The cable can be 
used as a replacement to 

power cords of various 
brands.

This high-quality power 
cable is suitable as a 

replacement cord for a 
monitor monitor or to 

replace the power cord of a 
personal computer. The 

cable adopts a high-quality 
material.

SuccessfulUnsuccessful

Figure 8: Example Output from SST-VAE Demonstrating Successful Style Transfer Task.

Style Description
Original Built-in Quick Operation Acoustic Engine for Sync and Phone Call Con-

nectivity Advanced TX-Link for Listening to Music Auto-tuning LED-lit
LCD TV 3.5mm Auxiliary Input for iPod Touch screen White Color with
Built-in Dual Playback Jack PS 5 Input for Auxiliary Buit-in USB-C Audio
Input Standard Apple iPod Touch 5intrusion 8x.

Unsuccessful This high-quality power Opening-out Timer for Handsfree Android Auto
Built-in Bluetooth 5.0 Microphone Input 3 Built-in USB Male Compatible
with ALL Digital TV for Visual Pronotomic and Other Equinox RCA Light-
Up Function iPod Controls 4 Touch for Enhanced Control of Control
Skip-Forward/Forward Automatic Take-Down Timer .

Table 3: 1st Pattern: Describing Different Products.

4.4. Result and Discussion

The results of the embedding comparisons are pre-
sented in Figure 7. As Figure 7 demonstrates, the
SST-VAE model exhibits clearer distinctions in the
embedding space, suggesting that the latent em-
beddings from our proposed model provide more
informative insights regarding the success of the
product.

Figure 8 illustrates an example of the output gen-
erated by our model when it performs style transfer
tasks. For a successful output, our model adds
the successful label embeddings l to the latent vari-
ables z′. Conversely, an unsuccessful output is
generated when the model subtracts these label
embeddings. Figure 8 presents the example of a
power cord. When our model applies a successful
style transfer, the description evolves to indicate
the cord’s compatibility with various brands, thereby
suggesting its versatility. In contrast, an unsuccess-
ful style transfer alters the description to specify the
cord’s exclusive use with personal computers, im-
plying a more restricted utility.

Through qualitative analysis, we identified three
distinct patterns in the output. The first pattern ob-
served is a tendency to describe different products,
as exemplified in Table 3. In this example, while

the original text mentions Apple products like iPods,
the descriptions shift to discussing Android when
moved in the direction of unsuccessful styling. For
automated product description generation, this devi-
ation is not ideal, as the focus should remain on the
specific features of the target product. Conversely,
this tendency can be beneficial for understanding
which brands or features might be more or less suc-
cessful. This aspect is a unique point in extracting
insights from product descriptions, as opposed to
the automated generation where factual accuracy
is paramount (Chan et al., 2019).

The second pattern we observed is that the
model occasionally does not alter the output at
all, even when we adjust the descriptions towards
more successful or unsuccessful directions, as il-
lustrated in Table 4. As the example indicates,
this is problematic from both perspectives, as it
neither facilitates automation nor provides insights
into product success. We attribute this issue to the
dominance of reconstruction loss in the loss func-
tions. Upon examining the magnitude of the losses,
we found that the reconstruction loss significantly
outweighs others, such as success prediction and
inverse success prediction losses. This remains
true even when applying a weight of 0.01 to the
reconstruction loss. On the other hand, using even
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Style Description
Original You MUST RE-USE: your existing cabling and hardware. It is your

responsibility to verify the batteries being ordered match the batteries in
your unit prior to placing your order. Our products are not affiliated with
or authorized by APC.

Successful You MUST RE-USE: your existing cabling and hardware. It is your
responsibility to verify the batteries being ordered match the batteries in
your unit prior to placing your order. Our products are not affiliated with
or authorized by APC.

Unsuccessful You MUST RE-USE: your existing cabling and hardware. It is your
responsibility to verify the batteries being ordered match the batteries in
your unit prior to placing your order. Our products are not affiliated with
or authorized by APC.

Table 4: 2nd Pattern: Generating the Same Descriptions.

Style Description
Original Higher capacity will takes 3-4 hours to fully charge the battery.
Successful High capacity can replace the battery to charge large volumes of batteries

quickly.
Unsuccessful High-capacity battery will takes more time to fully charge.

Table 5: 3rd Pattern: Hallucinations.

smaller weights for the reconstruction loss resulted
in outputs that were grammatically incorrect and
not viable as sentences. Therefore, balancing the
generation of valid sentences with the capability to
modify texts towards more successful or unsuccess-
ful versions presents a key area for future research.

The third observed pattern is a tendency towards
hallucinations, as shown in Table 5. In the provided
example, the original text states that charging the
battery takes 3 or 4 hours. However, when we
transform the text into a more successful descrip-
tion, it incorrectly claims that the charge will finish
quickly. This pattern, akin to the first one, poses
challenges for automating product description writ-
ing. On one hand, the features emerging in the
successful direction could be leveraged for product
improvement.

5. Conclusion

In conclusion, this study contributes to the evolv-
ing field of e-commerce NLP by taking initial steps
in extracting insights about product success from
product descriptions.

Our research addressed two research questions:
“To what extent can product descriptions accurately
indicate a product’s likelihood of success?” and
“Can we transform text descriptions from unsuc-
cessful to successful ones, or vice versa?”

Our findings for the first research question re-
vealed that product descriptions were indeed good

predictors of the products’ success with an accu-
racy of around 70% in success prediction tasks,
showing that they contain meaningful information
about the product’s success. On one hand, the ex-
act mechanisms behind this successful prediction
remain an area for future exploration.

Regarding the second research question, we pro-
posed a Successful Style Transfer Variational Au-
toencoder (SST-VAE). Our findings indicated that
the proposed model successfully transforms the
product descriptions from unsuccessful to success-
ful and vice versa through qualitative analysis and
case studies. Also, we showed that the proposed
model is effective in extracting insights about prod-
ucts by highlighting the successful factors. On one
hand, qualitative analysis revealed challenges such
as hallucinations and the balance between factual
accuracy and style transformation in the generated
text. These findings pave the way for future re-
search focused on addressing these challenges to
progress the domain of e-commerce NLP.
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Abstract
Despite recent advancements in Machine Learning, many tasks still involve working in low-data regimes which can
make solving natural language problems difficult. Recently, a number of text augmentation techniques have emerged
in the field of Natural Language Processing (NLP) which can enrich the training data with new examples, though they
are not without their caveats. For instance, simple rule-based heuristic methods are effective, but lack variation in
semantic content and syntactic structure with respect to the original text. On the other hand, more complex deep
learning approaches can cause extreme shifts in the intrinsic meaning of the text and introduce unwanted noise into
the training data. To more reliably control the quality of the augmented examples, we introduce a state-of-the-art
approach for Self-Controlled Text Augmentation (STA). Our approach tightly controls the generation process by
introducing a self-checking procedure to ensure that generated examples retain the semantic content of the original
text. Experimental results on multiple benchmarking datasets demonstrate that STA substantially outperforms
existing state-of-the-art techniques, whilst qualitative analysis reveals that the generated examples are both lexically
diverse and semantically reliable.

Keywords: Natural language processing, text generation, data augmentation

1. Introduction

A variety of tasks such as Topic Classification
(Li and Roth, 2002), Emotion Detection (Saravia
et al., 2018) and Sentiment Analysis (Socher et al.,
2013) have become important areas of research
in NLP. Such tasks generally require a consider-
able amount of accurately labelled data to achieve
strong performance. However, acquiring enough
such data is both costly and time-consuming,
hence making it rare in practice. This has moti-
vated a vast body of research in techniques that
can help alleviate issues associated with low-data
regimes.

A popular augmentation approach involves the
use of rule-based transformations, which employ
intuitive heuristics based on well-known paradig-
matic relationships between words. For instance,
by using a lexical-semantic database such as
WordNet (Miller, 1995), researchers can make ra-
tional and domain-specific conjectures about suit-
able replacements for words from lists of known
synonyms or hyponyms/hypernyms (Wang and
Yang, 2015; Wei and Zou, 2019; Feng et al., 2020).
Whilst these substitution-based approaches can
result in novel and lexically diverse data, they also
tend to produce highly homogeneous structures,
even when context-free grammars are used to gen-

*The author completed this work during his intern-
ship at Huawei Ireland Research Center.

erate more syntactically variable examples (Jia and
Liang, 2016).

The recent success of pretrained transformer lan-
guage models such as BERT (Devlin et al., 2019)
and GPT-2 (Radford et al., 2019) has helped facil-
itate more robust strategies for dealing with low-
resource scenarios: Conditional text generation.
Large language models — typically trained on a
vast corpus of text — contain a rich understanding
of syntactic structure and semantic phenomena
and thus are well suited for faithful domain-specific
generation (Petroni et al., 2019). Indeed, large
language models have been employed to great
success (Kobayashi, 2018; Wu et al., 2019; Anaby-
Tavor et al., 2020; Kumar et al., 2020) to synthe-
size highly diverse training examples resulting in
stronger downstream performance in low-resource
settings. However, the use of diverse neurally-
generated data may come at the cost of introducing
semantic discrepancies, which can cause misalign-
ment between the generated samples and their
intended labels. Ideally, the optimal augmenta-
tion method would be one that satisfies both Lex-
ical/Syntactic Diversity and Semantic Fidelity
(reliable alignment between semantic meaning and
class label).

In this paper, we propose a novel strategy —
self-controlled text augmentation (STA) that aims
to tightly control the generation process in order to
produce diverse training examples which retain a
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high level of semantic fidelity. Following previous
work, we fine-tune a state-of-the-art sequence-to-
sequence transformer model, in this case T5 (Raf-
fel et al., 2020), using a dataset containing only
a limited number of samples and generate new
samples using task-specific prompting, which has
been shown to be effective in low-resource sce-
narios (Le Scao and Rush, 2021). While similar
approaches have been deployed in previous work
(Anaby-Tavor et al., 2020), our novel strategy ef-
fectively utilizes Pattern-Exploiting Training (Schick
and Schütze, 2021a,b) by employing templates
of verbalization-patterns that simultaneously direct
the generation process and filter noisy labels within
a single unified framework. Experimental results on
multiple benchmarks demonstrate that STA outper-
forms existing state-of-the-art augmentation tech-
niques. Furthermore, examining the quality of the
augmented data reveals better diversity and fidelity
as compared to the existing techniques.

2. Related Work

Various text augmentation techniques have been
proposed in the literature (Feng et al., 2021).
Zhang et al. (2015) and Wei and Zou (2019) use
simple operations like synonym replacement, ran-
dom insertion, swap, and deletion to generate new
samples. Feng et al. (2020) further explores these
substitution techniques for text generation. In con-
trast, Wang and Yang (2015) and Kobayashi (2018)
use word embeddings and contextual language
models, respectively, to replace words or phrases
with semantically similar concepts.

Back translation is another effective method for
text augmentation, transforming sentence between
languages (Sennrich et al., 2016; Shleifer, 2019).
Recently, researchers have explored the use of
pretrained transformer-based language models for
conditional text augmentation to generate novel
sentences from the original data (Wu et al., 2019;
Anaby-Tavor et al., 2020; Kumar et al., 2020).
For instance, Wu et al. (2019) leveraged BERT’s
masked language model, while Anaby-Tavor et al.
(2020) fine-tuned GPT-2 to generate novel sen-
tences and filter out noisy ones using a jointly
trained classifier with some success in tackling
the label misalignment problem. Similarly, Kumar
et al. (2020) studied conditional text augmentation
using transformer-based models, with BART out-
performing other methods in low-resource settings

Building upon ideas presented in the GPT series
(Radford et al., 2018, 2019; Brown et al., 2020;
Ubani et al., 2023), prompt-based templates have
become and effective approach for eliciting latent
knowledge from language models to great success
(Trinh and Le, 2018; Petroni et al., 2019; Davison
et al., 2019; Talmor et al., 2020; Le Scao and Rush,

2021). For example, Wang et al. (2021) proposed
using GPT-3 for text augmentation with zero-label
learning, with results that were competitive when
compared to fully supervised approaches. Yoo
et al. (2021a) instead generate augmented text
examples by using soft-labels from GPT-3 to distil
the knowledge. More recently, (Ubani et al., 2023)
investigated the use of ChatGPT-generated data
for augmenting training data via prompting in low-
resource scenarios, surpassing existing methods
with task-specific prompts. More closely related to
our instruction-based generation strategy, Schick
and Schütze (2021b) propose GenPet which is
used to directly tackle a number of text generation
tasks rather than text augmentation itself. In their
work, which builds upon previous research PET
(Schick and Schütze, 2021a), the authors alter the
text inputs to form cloze-style questions known as
prompting training (Liu et al., 2021), demonstrating
improved performance on few-shot downstream
tasks. Finally, researchers have proposed an array
of techniques aiming to systematically engineer
the structure of these templates beyond ad hoc
human intuitive reasoning: For example, using au-
tomated template generation for the tasks (Shin
et al., 2020; Gao et al., 2021), trained end-to-end
with soft-prompts (Lester et al., 2021; Gu et al.,
2022) or designed from sub-prompts created by
decomposing prior task knowledge into rules (Han
et al., 2022).

Our approach differs from prior work by using
task-specific templates as verbal prompts for gen-
eration and classification which signal the model’s
objective. The model itself is self-controlling, gen-
erating novel data and retaining only the most con-
vincing examples using a classification template to
ensure semantic fidelity.

3. Method

In this section, we describe our novel self-
controlled approach for text augmentation in text
classification (STA). Figure 1 illustrates the work-
flow of STA and Algorithm 1 states STA in simple
terms. At a high level, STA first finetunes a pre-
trained sequence-to-sequence (seq2seq) model
using a dataset which implicitly includes genera-
tion and classification tasks.

3.1. Pattern-Exploiting Training in
seq2seq Models

PET is a finetuning technique for text classifica-
tion tasks in masked language models, as demon-
strated in (Schick and Schütze, 2021a). By convert-
ing inputs into cloze questions, PET enables accu-
rate classification with minimal labeled data. In this
paper, we extend the principles of PET to seq2seq
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Figure 1: The architecture of our Self-controlled Text Augmentation approach (STA). The upper portion
outlines the finetuning component of our method (Training), whilst the lower portion demonstrates our
procedure for generating novel data (Inference). STA is highlighted by using the generation template and
classification template for fine-tuning a seq2seq transformer model. The generation template is used for
generating samples and the classification template is used for self-controlling and selecting the generated
samples.

Algorithm 1 :Self-Controlled Text Augmentation

Require: Original dataset Do. Generative model
M . Generation template G. Classification tem-
plate C.

1: Convert Do to training dataset Dt via G and C.
2: Finetune M on Dt in a generation task and a

classification task jointly to obtain Mt.
3: Use G and Mt to generate candidate dataset
Dc.

4: Apply Mt to do classification inference on Dc

with C to select the most confident examples.
5: Form the final generated dataset D∗ with the

selected examples.

autoregressive models, presenting a novel strategy
for prompting-based generation and our innovative
self-controlled approach.

Consider a pretrained seq2seq autoregressive
transformer model denoted as M (we use T5 (Raf-
fel et al., 2020) in our experiments). This type
of model comprises an encoder-decoder pair,
where the encoder takes an input sequence s and
generates a contextualized encoded sequence s.
The decoder then takes the encoded sequence
and the current subsequence t : {t1, t2, ..ti−1}
as input to compute the conditional distribution
pM (ti|t1:i−1, s) for the subsequent token in the se-
quence. Given s, the possible target sample (a
sequence) t : {t1, t2, ..., tm} can be obtained via
the factorization:

pM (t1:m|s) =
m∏

i=1

pM (ti|t1:i−1, s) (1)

Let Do = {(xi, yi)}|ni=1 be a dataset for text clas-
sification where xi ∈ X and yi ∈ L are text and
label respectively. The goal is to produce a derived
dataset Dt to finetune M and ensure it is primed
for generating diverse and (label) faithful examples
by leveraging a set of prompt templates.

Formally, a template is a function T : V ∗ × L →
V ∗ × V ∗ where V is the vocabulary of M and V ∗

denotes the set of finite sequences of symbols in
V . Of course, the structure of these templates
can be quite malleable. For example, a template
could be constructed through human interpretable
verbalizable terms, optimized automatically for the
task, fine-tuned with soft prompts or made up of
sequentially intuitive sub-prompts. Regardless of
the approach, the process is the same.

Given a family of templates T , we set Dt =
T (Do) =

⋃
T∈T T (Do). That is, we convert each

sample (xi, yi) ∈ Do to |T | samples in the derived
dataset Dt. In the field of synthetic data generation
for low-resource scenarios, these templates gener-
ally belong to the collection of templates capable
of generating novel examples. Crucially, we extend
these templates to consider two types of template
families: generation templates G and classification
templates C, such that T = C ∪ G. As we shall
demonstrate, by carefully considering these tem-
plates, we can produce a dataset Dt (generated
from these templates T applied to the dataset D)
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that is designed in such as way that the model can
learn to directly optimize for key characteristics:
High semantic fidelity and lexical diversity.

3.1.1. Generation templates

Though not exclusive to the field, these templates
are commonplace within the synthetic data gen-
eration literature for creating novel training exam-
ples. Since our work focuses on encoder-decoder
models, the templates take the form g(x, y) =
(fs(x, y), ft(x)), where fs and ft denote functions
that map a piece of text to a source sequence
and target sequence respectively. Concretely, the
source function fs is a verbalizable mapping which
depends on the text x ∈ X and label y ∈ L, the
latter of which conditions the model to align the
generated text with the labels. The target function
ft on the other hand, represents the desired out-
put of the model, which depends on the text, and
typically corresponds to the identity function.

Diverse Generation. Without loss of gen-
erality, for a given downstream task {Task},
we could choose the primary template fs =

Description: {yi} {Task}. Text: as our source

function and ft = {xi} as the desired target for
fine-tuning to facilitate the generation process, fol-
lowing previous work (Anaby-Tavor et al., 2020;
Schick and Schütze, 2021b,a). Here the goal
of Task is to provide context about the dataset,
since providing this sort of information helps when
there are limited training examples (Schick and
Schütze, 2021b). In this work, our goal is not
only to generate novel sythetic examples for few-
shot classification, but to generate a diverse vari-
ety of these samples. To ensure the model pro-
duces lexically diverse text, we propose a simple
yet effective generation strategy which addition-
ally includes an auxiliary template for generation
by including prior knowledge, somewhat similar to
Paragraph2Paragraph and Shard2Shard settings
from (Chen and Liu, 2022). Given some data point
(xi, yi) we achieve diversity by modifying two com-
ponents to our source and target functions.

• Memory: We add a previous example of text
xj which share the same label as an input to
the source function, j ∈ N such that yj = yi.

• Priming: We instantiate the source function
with some of the target output x0−n

i , n < |xi| ∈
N , which further constrains the model to avoid
the generation of non-factual hallucinations
(Cao et al., 2022).

Concretely, we define a second auxiliary
template function for generation g′(xi, xj , yi) =
(f ′

s(xi, xj , yi), f
′
t(xi)), with the source function f ′

s =

fs(xj , yi). Another text: {x0−2
i } and target func-

tion f ′
t = {x3...

i } where yj = yi, facilitating these
modifications. Intuitively, we use a previous ex-
ample as prior knowledge before concatenating
them with the new template to ensure the model
produces distinct examples as opposed to repeti-
tions, with similar findings demonstrated by Chen
and Liu (2022). It’s worth mentioning that the g′

function can be employed multiple times to create
various examples by sampling different texts dur-
ing the conversion of a single training example (we
present an example of how an original training sam-
ple is converted by the templates in Appendix B).
For generation, we include both templates g and g′

for tuning our model. These templates are further
outlined in Table 1.

3.1.2. Classification templates

Classification has been employed as an additional
processing step to filter synthetic examples which
do not align with the generated label (Anaby-Tavor
et al., 2020). In previous work, a separate net-
work is trained using the original data to classify
the examples, based on the intuition that checking
the results is easier than producing new examples.
One problem that emerges from adding a filter in
low-resource settings is that it creates an addi-
tional layer of complexity within the system: Not
only must the generator predict the correct label
from limited data, but so must the classifier. These
templates take the form c(x, y) = (fs(x), ft(y))
where ft and fs similarly denote the source se-
quence and target sequence functions respec-
tively. In this case, the source functions are sim-
ilar to the generation templates (the text can be
conditioned on the labels or be completely inde-
pendent), although the target function instead re-
lates to the label or some semantically compati-
ble class. In this case we set the source function
as fs(xi) = Given {Task}: {L}. Classify: {xi} and
target function as ft(yi) = yi , with L providing
context to the possible labels.

Semantic Fidelity. Although prompt-based
tuning has proven to work better in limited data
settings than simple feed-forward approaches
(Le Scao and Rush, 2021), we further supple-
ment the template dataset by generating multiple
intuitive patterns following previous work (Schick
and Schütze, 2021a). To achieve this, we ex-
tend our base classification templates with two
more auxiliary templates which we refer to as
cpos and cneg in the vein of cloze-style questions.
Concretely, we define cpos = (fs(xi), ft(yi)) such
that fs = Text: {xi}. Is this text about {yi} {Task}?
and ft= yes , with the goal of classifying
whether the correct label conforms to the
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Template Source seq. (s) Target seq. (t)

Classification
Primary c Given {Task}: {L}. Classify: {xi} {yi}

Auxiliary cpos Text: {xi}. Is this text about {yi} {Task}? yes

Auxiliary cneg Text: {xi}. Is this text about {yi} {Task}? no

Generation Primary g Description: {yi} {Task}. Text: {xi}

Auxiliary g′ Description: {yi} {Task}. Text: {xj}. Another text: {x0-2
i } {x3...

i }

Table 1: Prompt templates for training sequences conversion. “Task” refers to a simple keyword describing
the dataset e.g. “Sentiment” or “Emotion” and L is the list of all class labels in the dataset. The symbol yi
in cneg stands for any label in L \ {yi}, chosen randomly. In g′, the xj denotes another sample from the
same class as xi (i.e. yj = yi) chosen randomly.

text. Furthermore, we generate a counter
template cneg = (fs(xi), ft(yi)) such that
fs = Text: {xi}. Is this text about {ŷi} {Task}? and
ft = no , ŷi ∼ L\{yi}, with the goal of determining
that the incorrectly sampled label does not conform
to the text. These templates are given in detail in
Table 1.

Self-Checking. We note that these auxillary
verbalizable patterns for classification are simply
meant to supplement and do not represent the opti-
mal solution for eliciting important knowledge from
the network (Gao et al., 2021). We instead wish
to avoid cascading errors between the generation
and classification template: The classification net-
work’s performance should be within an acceptable
tolerance. In order to extract synthetic examples
with high levels of semantic alignment between
the generated text and labels, we propose a novel
strategy for controlled self-supervised data gen-
eration, which we refer to as Self-Checking. Dif-
ferent from previous work, we perform generation
and classification filtering within a single unified
neural framework. We hypothesise that this mul-
tiview learning process should allow the network
to discover the semantic relationship between the
labels and text, further preventing non-factual hallu-
cinations of incorrect labels during the generation
process.

3.2. Data Generation, Self-checking and
Selection

We follow a two-step process: first we generate
candidates and second we select a fraction of the
candidates to be included as augmentations. This
processes is conducted for each class separately
so we may assume for the remainder of this section
that we have fixed a label y ∈ L.

That is, first, we generate α×ny samples where
ny is the original number of samples in Do for label
y and then select the top β×ny samples (β < α). In
our experiments, we call β the augmentation factor
and set α = 5 × β. Namely, our self-checking

technique selects the top 20% of the candidate
examples per class 1 to form the final generated
D∗ that is combined with the original dataset Do

for downstream model training.
For the generation task, we need to choose a

prefix/source sequence s and proceed autoregres-
sively using Equation 1. Referring back to Table 1,
there are two choices g and g′ that can be used to
construct s. In this work, we employ g for generat-
ing examples because it allows for greater flexibility
in generating diverse examples. We aim to gener-
ate as many diverse examples as possible at this
stage (rather than selecting g′, which requires a
few initial words from an existing example as the
context and can restrict the freedom of generating
diverse examples). Nevertheless, all generated
samples will be self-checked for semantic fidelity
next. Here we generate α × ny samples using
the finetuned encoder-decoder model Mt where
α is the factor controlling the size of our synthetic
dataset of generated examples in comparison to
the original dataset.

Now that we have gathered a synthetic candi-
date dataset Dy

c = {(xi, y)}|α×ny

i=1 , we will further
refine these examples using a self-checking strat-
egy for selecting the generated samples based
on the confidence estimated by the model Mt it-
self. For each synthetic sample (x, y), we construct
a source sequence using the classification tem-
plate c(x, y) as described in Table 1 to generate
the source s. Given the source s, we define a score
function u:

u(y|s) = log pMt({y}|s)
equivalently this is the logit computed by Mt for
the sequence {y}. We then renormalize over the
labels in L by applying a softmax over each of the
scores u(·|s):

q(y|s) = eu(y|s)∑
l∈L eu(l|s)

1This is based on our experimental search over {10%,
20%, 30%, 40%, 50%}.
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Finally, we rank the elements of Dy
c by the value

of q and select the top β × ny samples to form the
dataset Dy

∗ and set D∗ =
⋃

y∈L Dy
∗

4. Experiments

Next, we conduct extensive experiments to test the
effectiveness of our approach in low-data regimes.
This section first describes the datasets choices,
and then presents the baselines for comparison.

Regarding experimental setup, we select the
pre-trained T5 base checkpoint as the generation
model and BERT base as the classification model.
For the augmentation factor (i.e., β in Section 3.2),
the augmentation techniques including ours and
the baselines are applied to augment 1 to 5 times
of original training data. To be in low-data settings,
we sampled 5, 10, 20, 50 and 100 examples per
class for each training dataset as per Anaby-Tavor
et al. (2020). To alleviate randomness, we run
all experiments 10 times so the average accuracy
along with its standard deviation (std.) is reported
on the full test set. We report more experimental
details for reproducibility in Appendix D.

4.1. Datasets

Following previous work in the augmentation lit-
erature (Kumar et al., 2020; Anaby-Tavor et al.,
2020), two bench-marking datasets are used in
our experiments: SST-2 (Socher et al., 2013) and
TREC (Li and Roth, 2002). We also include EMO-
TION (emotion classification) (Saravia et al., 2018)
and HumAID (crisis tweets categorisation) (Alam
et al., 2021) to extend the domains of testing STA’s
effectiveness. More details about the datasets refer
to Appendix C.

4.2. Baselines

We evaluate our novel strategy against a set of
state-of-the-art techniques found within the litera-
ture. These approaches include a variety of aug-
mentation procedures from rule-based heuristics
to deep neural text generation. We compare STA
to the augmentation techniques as they are directly
related to our method in generating samples that
can be used in our subsequent study for examining
the quality of generated examples2.

Baseline: No data augmentation is applied to
the original training data.

EDA (Wei and Zou, 2019): Easy Data Augmen-
tation involves applying local word-level changes

2We have gathered the results of a direct comparison
between STA and existing non-augmentation few-shot
baselines on downstream classification tasks and report
them in Appendix E.

to an existing example, such as synonym replace-
ment and random insertion.

BT and BT-Hops (Edunov et al., 2018; Shleifer,
2019): Back-translation techniques involve trans-
lating from English to one (BT) or more randomly
selected languages (BT-Hops) using a pre-trained
translation model.

GPT-2 (Kumar et al., 2020) and GPT-2-
λ (Anaby-Tavor et al., 2020): GPT-2 generates
new examples conditioned on the label descrip-
tion and the first three words of an existing exam-
ple. GPT-2-λ adds the LAMBDA technique, which
selects generated examples based on the perfor-
mance of the downstream classification model on
the original training data.

CBERT (Wu et al., 2019): it is a strong word-
replacement based method for text augmentation
that replaces words in the original examples while
conditioning on the labels.

BART-Span (Kumar et al., 2020): it finetunes
the large model BART (Lewis et al., 2020) based on
the label names and the texts of 40% consecutive
masked words to generate new examples.

5. Results and Discussion

5.1. Classification Tasks

Table 2 demonstrates the results of STA in com-
parison to baselines under low-data conditions for
the SST-2 classification task. The results of the
remaining three classification tasks can be inter-
preted similarly3In all cases, our approach provides
state-of-the-art performance for text augmentation
across all low-resource settings. When a higher
number of samples (50-100)4 are used for training
we see that STA is better, as in the cases of SST-2,
EMOTION and HumAID tasks, or competitive, as
in the case of TREC. Furthermore, we can see that
STA is superior to other augmentation techniques
when only a small number of examples are used
to train the generator (5-10-20). In fact, STA on
average demonstrates a difference of +9.4∆ and
+4.7∆ when trained on only 5 and 10 samples per
class respectively, demonstrating its ability to gen-
erate salient and effective training examples from
limited amounts of data.

3Due to page constraints, we have these results in
Appendix F. If accepted, we will move these results to
the main paper

4We note that around 100 examples per class, all tech-
niques tend to approximate no augmentation baselines,
indicating that most likely constitute something more
equivalent to full data training rather than a low-resource
setting
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Augmentation Method 5 10 20 50 100

Baseline (No Aug.) 56.5 (3.8) 63.1 (4.1) 68.7 (5.1) 81.9 (2.9) 85.8 (0.8)

EDA (Wei and Zou, 2019) 59.7 (4.1) 66.6 (4.7) 73.7 (5.6) 83.2 (1.5) 86.0 (1.4)
BT (Edunov et al., 2018) 59.6 (4.2) 67.9 (5.3) 73.7 (5.8) 82.9 (1.9) 86.0 (1.2)
BT-Hops (Shleifer, 2019) 59.1 (4.6) 67.1 (5.2) 73.4 (5.2) 82.4 (2.0) 85.8 (1.1)
CBERT (Wu et al., 2019) 59.8 (3.7) 66.3 (6.8) 72.9 (4.9) 82.5 (2.5) 85.6 (1.2)
GPT-2 (Kumar et al., 2020) 53.9 (2.8) 62.5 (3.8) 69.4 (4.6) 82.4 (1.7) 85.0 (1.7)
GPT-2-λ (Anaby-Tavor et al., 2020) 55.4 (4.8) 65.9 (4.3) 76.2 (5.6) 84.5 (1.4) 86.4 (0.6)
BART-Span (Kumar et al., 2020) 60.0 (3.7) 69.0 (4.7) 78.4 (5.0) 83.8 (2.0) 85.8 (1.0)

STA w/o Self-Checking 66.7 (5.0) 77.1 (4.7) 81.8 (2.1) 84.8 (1.0) 85.7 (1.0)
STA w/o Auxiliary Prompts 69.8 (4.9) 79.1 (3.4) 81.7 (4.5) 86.0 (0.8) 87.5 (0.6)
STA (ours) 72.8 (6.2) 81.4 (2.6) 84.2 (1.8) 86.0 (0.8) 87.2 (0.6)

Table 2: STA on SST-2 in 5, 10, 20, 50, 100 examples per class. The results are reported as average (std.)
accuracy (in %) based on 10 random experimental runs. Numbers in bold indicate the highest in columns.

Figure 2: Graph showing the average difference
between STA w/o Self-Checking to STA w/o Aux-
iliary Prompts, STA w/o Auxiliary Prompts to
STA and STA w/o Self-Checking to STA, as the
number of examples per class varies.

5.2. Ablation Studies: Self-Checking and
Auxiliary Prompts

To demonstrate the importance of our self-checking
procedure, we performed our empirical investi-
gations on STA both with and without the self-
checking step, denoted as STA w/o Self-Checking
in Table 2, 7, 8 and 9. Furthermore, we investigate
STA within a minimal template setting where we
only include the templates c and g in Table 1, omit-
ting our proposed auxiliary templates, denoted as
STA w/o Auxiliary Prompts, to empirically sepa-
rate the contribution of these components. Com-
paring our model with no self-checking (STA w/o
Self-Checking) against other state-of-the-art ap-
proaches, we see that the model provides the best
performance particularly when the data is more
sparse (5-10-20), with the exclusion of TREC. How-
ever, when we add self-checking with only basic
generation and classification templates (STA w/o
Auxiliary Prompts), we see a significant improve-

ment, indicating that self-checking is more impor-
tant to the downstream performance. We also com-
pare the average difference between these models
across all datasets with altering components in Fig-
ure 2. Looking at Figure 2 we see that the inclusion
of self-checking provides the greatest increase in
performance, while the contribution of our auxiliary
prompts, including our novel generation template,
decreases with larger examples per class. How-
ever, we note that the inclusion of both templates
and self-checking provides the best performance,
particularly in lower data regimes.

5.3. Lexical Diversity and Semantic
Fidelity

To further analyse the quality of the generated data,
we measure its lexical diversity and semantic fi-
delity (i.e., its ability to align the synthetic exam-
ples with the correct labels). Diversity is assessed
using the UNIQUE TRIGRAMS metric (Feng et al.,
2020; Kumar et al., 2020), which calculates the ra-
tio of unique tri-grams to total tri-grams in a popula-
tion consisting of both original and generated train-
ing data. To coincide with the previous work (Ku-
mar et al., 2020), semantic fidelity is determined
by fine-tuning a “BERT-base-uncased” model on
100% of the original training data for each classi-
fication task and measuring the accuracy of the
generated data predictions by this model (91.8,
93.5, 96.6 and 89.7 accuracy on SST2, EMOTION,
TREC and HumAID respectively). A higher score
indicates better diversity or fidelity.

To present the quality of generated data in terms
of diversity and fidelity, we take the training data
(10 examples per class) along with its augmented
data (β = 1) for investigation. Figure 3 depicts
the diversity versus semantic fidelity of generated
data by various augmentation methods across
three datasets. We find that generation-based
approaches such as GPT-2 or GPT-2-λ, achieve
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Figure 3: Diversity versus semantic fidelity of generated texts by various augmentation methods. The
average scores over 10 runs are reported.

strong diversity but less competitive fidelity. On the
contrary, rule-based heuristics methods such as
EDA perform well in retaining the semantic mean-
ing but not in lexical diversity. The merit of STA is
that it is good in both diversity and fidelity, as seen
from its position at the top-right of Figure 3a, 3b, 3c
and 3d. Finally, if we compare our STA approach
with and without self-checking, we see that each
approach produces highly diverse examples, al-
though only self-checking STA retains a high level
of semantic fidelity. Comparing with GPT-2 and
GPT-2-λ — the other sample filtering approach —
we see that the inclusion of a separate classifier
results in an average increase of 18.3% in fidelity.
However, if we compare our STA approach with
and without self-checking, we see an average in-
crease of 32.38% in fidelity, further demonstrating
the validity of our joint generation and classification
approach as opposed to an independent classifica-
tion module. As previously suggested, this ability to
align the semantic content of generated examples
with the correct label is the most probable reason
for the increase in downstream classification per-
formance when self-checking is employed. This
supports the notion that our generation-based ap-
proach is able to produce novel data that is lexically
diverse, whilst the self-checking procedure can en-
sure consistent label retention, which guarantees a
high semantic fidelity in the generated examples5.

5.4. Comparison Against ChatGPT

In addition to comparing STA and examining its
augmented data quality with augmentation base-
lines in the literature, we are also interested in eval-
uating the performance of STA against ChatGPT
(using GPT 3.5 (Ouyang et al., 2022) and GPT-4
(OpenAI, 2023)). Because of the limited context
length in GPT-3.5 and restricted access to GPT-4,
we designed this experiment to operate within a
highly constrained, very low-data regime. Specifi-
cally, we sampled a mere five examples per class
from SST2, EMOTION, TREC, and HumAID. Util-

5We provide a comparative demonstration of the texts
generated by different methods in the Appendix G

SST2 EMOTION TREC HumAID

GPT(3.5) 64.6(4.0) 40.4(7.8) 32.2(12) 58.8(18)
GPT(4.0) 71.9(5.0) 42.5(7.8) 100.0(0.0) 68.8(4.4)
STA 72.8(6.2) 43.8(6.9) 59.6(7.4) 69.0(3.9)

Table 3: Comparing STA with ChatGPT (GPT-3.5
and GPT-4). Average (std.) accuracy (in %) over
multiple runs is reported.

ising these samples as input prompts, we tasked
GPT-3.5 and GPT-4 with generating predictions for
a number of randomly selected test set examples.
Essentially, we are evaluating their performance
as classifiers. In this study, we’re assessing Chat-
GPT’s direct (few-shot) prediction capabilities in
situations with limited data. Meanwhile, STA em-
ploys augmentation strategies in similar low-data
scenarios but with significantly smaller models. To
account for the inherent randomness in both the
sampling and generation processes of GPT-3.5
and GPT-4, we conducted multiple iterations of the
experiments. This allowed us to calculate the aver-
age accuracy (std.) in relation to the actual labels
and predictions made by GPT-3.5 and GPT-4. The
comparative analysis between STA and GPT-3.5
and GPT-4 across the four datasets is presented in
Table 3. The results showcased STA’s consistent
superiority over GPT-3.5 across all datasets. Fur-
thermore, STA demonstrated competitive perfor-
mance with GPT-4 on three of the four datasets as
STA competes closely with GPT-4 in SST2, EMO-
TION, and HumAID. However, GPT-4 exhibits un-
expectedly high performance in TREC, with an
average accuracy of 100.0 (std: 0.0), suggesting a
potential issue with data contamination, something
that the original authors were also extremely con-
cerned about in their evaluations (OpenAI, 2023).
These findings reinforce STA’s potential as a aug-
mentation solution for text classification in data-
constrained scenarios, while also highlighting its
computational efficiency and speed of inference in
comparison to GPT-3.5 and GPT-4.
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6. Conclusion

We propose a novel strategy for text-based data
augmentation that leverages prompt templates to
generate training examples and ensure better label
alignment. Our approach substantially outperforms
the previous state-of-the-art on a variety of down-
stream classification tasks and across a range of
low-resource scenarios. Furthermore, we provide
an analysis of the lexical diversity and label consis-
tency of generated examples, demonstrating that
our approach produces uniquely varied training ex-
amples with more consistent label alignment than
previous work. In the future, we hope to improve
this approach in rich-data regime and extend it to
other downstream natural language tasks.
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A. Limitations

Our work explores the possibility of data augmen-
tation for boosting text classification performance
when the downstream model is finetuned using
pre-trained language models. The results show
that STA consistently performs well across different
bench-marking tasks using the same experimen-
tal setup, which addresses the limitation stated in
the previous work (Kumar et al., 2020) calling for
a unified data augmentation technique. However,
similar to Kumar et al. (2020), although STA can
achieve improved performance as the data size
goes up to 100 examples per class in some cases
(such as 100 examples per class in EMOTION, Ta-
ble 7 and HumAID, Table 9), the absolute gain in
performance plateaus when the training data be-
comes richer (such as 100 examples per class in
SST-2 and TREC). This suggests that it is challeng-
ing for STA to improve pre-trained classifier’s model
performance in more abundant data regimes.

It’s also worth noting that STA currently applies to
text classification exclusively using T5 and doesn’t
extend to other general NLP tasks without gener-
ative models. However, our approach, centered
around text classification, holds the potential to ex-
pand beyond this narrow scope and encompass
a wider array of NLP tasks. This flexibility arises
from our use of generative models like T5 in our
research. For instance, to consider the adaptation
of our templates for question answering tasks, the
templates used in our method can be modified to
be like question-answer format. For instance, tem-
plate c in Table 1 could be transformed to read,
“Given Text. Provide answer to this question: Ques-
tion.” Furthermore, our generation template can
be suitably tailored to produce text based on a
given question description. The capacity to adjust
both classification and generation templates un-
derpins the applicability of our approach across
diverse NLP tasks. Thus, in the future, we aim to
extend our approach to other downstream natural
language tasks, incorporating different generation
models alongside T5.

Another important consideration is the choice
of templates used in STA. Ablation experiments in
Section 5.2 show that our chosen set of templates
yields better performance than a ‘minimal subset’
consisting of the two simplest templates; the ques-
tion as to how to choose optimal templates for
this augmentation scheme remains unanswered.
Hence, in future work, we will explore better meth-
ods for constructing the prompt templates, aiming
to reduce the dependency on the manual work at
this step.
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B. Template Example

Table 4 presents how an original training example
is converted to multiple examples in STA using the
prompt templates from Table 1.

C. Datasets

Table 5 lists the basic information of the four
datasets used in our experiments and they are
shortly described as follows.

• SST-2 (Socher et al., 2013) is a binary sen-
timent classification dataset that consists of
movie reviews annotated with positive and
negative labels.

• EMOTION (Saravia et al., 2018) is a dataset
for emotion classification comprising short
comments from social media annotated with
six emotion types, such as, sadness, joy, etc.

• TREC (Li and Roth, 2002) is a dataset for
question topic classification comprising ques-
tions across six categories including human,
location, etc.

• HumAID (Alam et al., 2021) is a dataset
for crisis messages categorisation comprising
tweets collected during 19 real-world disaster
events, annotated by humanitarian categories
including rescue volunteering or donation ef-
fort, sympathy and support, etc.

D. Training Details

When finetuning the generation model, we select
the pre-trained T5 base checkpoint as the starting
weights. For the downstream classification task,
we finetune “bert-base-uncased”6 on the original
training data either with or without the augmented
samples. Regarding the pre-trained models, we
use the publicly-released version from the Hug-
gingFace’s transformers library (Wolf et al., 2019).
For the augmentation factor (i.e., β in Section 3.2),
the augmentation techniques including ours and
the baselines are applied to augment 1 to 5 times
of original training data. In the experiments, it is
regarded as a hyper-parameter to be determined.
Since our work focuses on text augmentation for
classification in low-data settings, we sampled 5,
10, 20, 50 and 100 examples per class for each
training dataset as per Anaby-Tavor et al. (2020).
To alleviate randomness, we run all experiments
10 times so the average accuracy along with its
standard deviation (std.) is reported on the full test
set in the evaluation.

6https://huggingface.co/
bert-base-uncased

To select the downstream checkpoint and the
augmentation factor, we select the run with the
best performance on the development set for all
methods. The hyper-parameters for finetuning the
generation model and the downstream model are
also setup based on the development set. Al-
though using the full development set does not
necessarily represent a real-life situation in low-
data regime (Schick and Schütze, 2021a; Gao
et al., 2021), we argue that it is valid in a research-
oriented study. We choose to use the full develop-
ment set since we aim to maximize the robustness
of various methods’ best performance given small
training data available. As all augmentation meth-
ods are treated the same way, we argue this is valid
to showcase the performance difference between
our method and the baselines.

For all experiments presented in this work, we
exclusively use Pytorch7 for general code and
Huggingface8 for transformer implementations re-
spectively, unless otherwise stated. In finetuning
T5, we set the learning rate to 5 × 10−5 using
Adam (Kingma and Ba, 2014) with linear scheduler
(10% warmup steps), the training epochs to be 32
and batch size to be 16. At generation time, we
use top-k (k = 40) and top-p (p = 1.0) sampling
technique (Holtzman et al., 2019) for next token
generation. In finetuning downstream BERT, the
hyper-parameters are similar to those of T5 fine-
tuning, although the training epoch is set to be 20.
We set the training epochs to be as large as pos-
sible with the aim of finding the best model when
trained on a small dataset, where the quality is
based on performance on the development set. In
our experiments, for a single run on all datasets,
it takes around one day with a single Tesla P100
GPU (16GB) and thus estimated 10 days for 10
runs. To aid reproducibility, we will release our
experimental code to the public at 9.

E. Comparing to Few-shot Baselines

Since our work explores a text augmentation ap-
proach for improving text classification in low-data
regime, it is also related to few-shot learning meth-
ods that use few examples for text classification.
We further conduct an experiment to compare
STA to three state-of-the-art few-shot learning ap-
proaches: PET (Schick and Schütze, 2021a), LM-
BFF (Gao et al., 2021), and DART (Zhang et al.,
2022). For fair comparison, we set the experi-
ment under the 10 examples per class scenario
with 10 random seeds ensuring the 10 examples

7https://pytorch.org/
8https://huggingface.co/
9https://github.com/wangcongcong123/

STA
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An example from SST-2 a sentiment classification dataset where the classes (L): negative, positive
Text (x) top-notch action powers this romantic drama.

Label (y) positive

Converted examples by classification templates (C: c, cpos and cneg): source(s), target(t)
Given sentiment: negative, positive. Classify: top-
notch action powers this romantic drama.

positive

Text: top-notch action powers this romantic drama. Is
this text about positive sentiment?

yes

Text: top-notch action powers this romantic drama. Is
this text about negative sentiment?

no

Converted examples by generation templates (G: g and g′): source(s), target(t)
Description: positive sentiment. Text: top-notch action powers this romantic drama.
Description: positive sentiment. Text: top-notch ac-
tion powers this romantic drama. Another text: spiel-
berg ’s realization of

a near-future america is masterful .

Description: positive sentiment. Text: top-notch ac-
tion powers this romantic drama. Another text: a
movie in

which laughter and self-exploitation merge into jolly
soft-porn ’em powerment . ’

Description: positive sentiment. Text: top-notch ac-
tion powers this romantic drama . Another text: a
tightly directed

highly professional film that ’s old-fashioned in all the
best possible ways .

Table 4: The demonstration of an example conversion by the prompt templates in Table 1 where the
example’s text is highlighted in blue and label is highlighted in red for readability.

Dataset # Train # Dev # Test # Classes

SST-2 ∼6k 692 ∼1.8k 2
EMOTION 16k 2k 2k 6
TREC ∼5k 546 500 6
HumAID ∼40k 6k ∼11k 8

Table 5: Datasets statistics

per class are sampled the same across the meth-
ods. Besides, we use bert-base-uncased10

as the starting weights of the downstream classi-
fier. The results are shown in Table 6. We found
that although STA loses the best score to DART
and LM-BFF on the TREC dataset, it substantially
outperforms the few-shot baselines on SST-2 and
EMOTION. This tells us that STA is a competitive
approach for few-shot learning text classification.

F. More Results of Classification
Tasks

Table 7, Table 8 and Table 9 present the results of
STA comparing to baselines in low-data settings for
the EMOTION, TREC and HumAID classification
tasks respectively.

10https://huggingface.co/
bert-base-uncased

SST-2 EMOTION TREC

DART 66.5 (5.8) 26.7 (3.0) 74.0 (2.7)
LM-BFF 71.1 (9.5) 30.2 (3.8) 77.1 (3.0)
PET 56.7 (0.8) 28.4 (1.0) 69.1 (1.1)

STA (ours) 81.4 (2.6) 57.8 (3.7) 70.9 (6.6)

Table 6: The comparison between STA and few-
shot baselines using 10 examples per class on
SST-2 and EMOTION and TREC. The results are
reported as average (std.) accuracy (in %) based
on 10 random experimental runs. Numbers in bold
indicate the highest in columns.

G. Demonstration

Table 10 and Table 11 demonstrate some original
examples and augmented examples by different
methods. In comparison, the examples generated
by STA tend to be not only diverse but also highly
label relevant (semantic fidelity).
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Augmentation Method 5 10 20 50 100

Baseline (No Aug.) 26.7 (8.5) 28.5 (6.3) 32.4 (3.9) 59.0 (2.6) 74.7 (1.7)

EDA 30.1 (6.2) 33.1 (4.3) 47.5 (5.0) 66.7 (2.7) 77.4 (1.8)
BT 32.0 (3.0) 37.4 (3.0) 48.5 (5.1) 65.5 (2.0) 75.6 (1.6)
BT-Hops 31.3 (2.6) 37.1 (4.6) 49.1 (3.5) 65.0 (2.3) 75.0 (1.5)
CBERT 29.2 (6.5) 32.6 (3.9) 44.1 (5.2) 62.1 (2.0) 75.5 (2.2)
GPT-2 28.4 (8.5) 31.3 (3.5) 39.0 (4.1) 57.1 (3.1) 69.9 (1.3)
GPT-2-λ 28.6 (5.1) 30.8 (3.1) 43.3 (7.5) 71.6 (1.5) 80.7 (0.4)
BART-Span 29.9 (4.5) 35.4 (5.7) 46.4 (3.9) 70.9 (1.5) 77.8 (1.0)

STA w/o Self-Checking 34.0 (4.0) 41.4 (5.5) 53.3 (2.2) 65.1 (2.3) 74.0 (1.1)
STA w/o Auxiliary Prompts 41.8 (6.1) 56.2 (3.0) 64.9 (3.3) 75.1 (1.5) 81.3 (0.7)
STA (ours) 43.8 (6.9) 57.8 (3.7) 64.1 (2.1) 75.3 (1.8) 81.5 (1.1)

Table 7: STA on EMOTION in 5, 10, 20, 50, 100 examples per class. The results are reported as average
(std.) accuracy (in %) based on 10 random experimental runs. Numbers in bold indicate the highest in
columns.

Augmentation Method 5 10 20 50 100

Baseline (No Aug.) 33.9 (10.4) 55.8 (6.2) 71.3 (6.3) 87.9 (3.1) 93.2 (0.7)

EDA 54.1 (7.7) 70.6 (5.7) 79.5 (3.4) 89.3 (1.9) 92.3 (1.1)
BT 56.0 (8.7) 67.0 (4.1) 79.4 (4.8) 89.0 (2.4) 92.7 (0.8)
BT-Hops 53.8 (8.2) 67.7 (5.1) 78.7 (5.6) 88.0 (2.3) 91.8 (0.9)
CBERT 52.2 (9.8) 67.0 (7.1) 78.0 (5.3) 89.1 (2.5) 92.6 (1.1)
GPT-2 47.6 (7.9) 67.7 (4.9) 76.9 (5.6) 87.8 (2.4) 91.6 (1.1)
GPT-2-λ 49.6 (11.0) 70.2 (5.8) 80.9 (4.4) 89.6 (2.2) 93.5 (0.8)
BART-Span 55.0 (9.9) 65.9 (6.7) 77.1 (5.5) 88.38 (3.4) 92.7 (1.6)

STA w/o Self-Checking 45.4 (3.2) 61.9 (10.2) 77.2 (5.5) 88.3 (1.2) 91.7 (0.8)
STA w/o Auxiliary Prompts 49.6 (9.0) 69.1 (8.0) 81.0 (5.9) 89.4 (3.0) 93.1 (0.9)
STA (ours) 59.6 (7.4) 70.9 (6.6) 81.1 (3.9) 89.1 (2.7) 93.2 (0.8)

Table 8: STA on TREC in 5, 10, 20, 50, 100 examples per class. The results are reported as average (std.)
accuracy (in %) based on 10 random experimental runs. Numbers in bold indicate the highest in columns.

Augmentation Method 5 10 20 50 100

Baseline (No Aug.) 29.1 (6.6) 37.1 (6.4) 60.7 (4.0) 80.0 (0.9) 83.4 (1.0)
EDA 49.5 (4.5) 64.4 (3.6) 74.7 (1.5) 80.7 (1.0) 83.5 (0.6)
BT 45.8 (5.7) 59.1 (5.2) 73.5 (2.1) 80.4 (1.2) 83.1 (0.7)
BT-Hops 43.4 (6.4) 57.5 (5.2) 72.4 (2.8) 80.1 (1.1) 82.8 (1.4)
CBERT 44.8 (7.6) 59.5 (4.8) 73.4 (1.7) 80.3 (0.8) 82.7 (1.2)
GPT-2 46.0 (4.7) 55.7 (5.7) 67.3 (2.6) 77.8 (1.6) 81.1 (0.6)
GPT-2-λ 50.7 (8.6) 68.1 (6.2) 78.5 (1.3) 82.1( 1.1) 84.2 (0.8)
BART-Span 42.4 (7.3) 58.6(7.0) 70.04 (3.7) 79.3 (1.4) 83.33 (0.9)
STA w/o Self-Checking 56.4 (7.0) 70.2 (4.3) 76.3 (3.3) 79.4 (4.5) 81.8 (1.3)
STA w/o Auxiliary Prompts 68.7 (10.9) 77.6 (3.6) 80.1 (1.7) 82.9 (1.6) 84.3 (0.7)
STA (ours) 69.0 (3.9) 75.8 (3.3) 80.2 (1.6) 83.2 (0.5) 84.5 (1.1)

Table 9: STA on HumAID in 5, 10, 20, 50, 100 examples per class. The results are reported as average
(std.) accuracy (in %) based on 10 random experimental runs. Numbers in bold indicate the highest in
columns.
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Original training examples and augmented examples for “Sadness" of EMOTION

Original

i sit here feeling blank about this
i feel ashamed that i so readily turn it aside
i feel positively ashamed when i look out of the window and see the state of things
i had just lost my uncle i would be sad but i feel as if i am devastated
i was feeling kind of discouraged because nothing happened

EDA

i sit here opinion blank about this
i feel that ashamed i so readily turn it aside
i feel positively ashamed when i look out of the window and construe the state of things
i had just lost my uncle i would be pitiful but i feel as if i am devastated
i happened feeling kind of discouraged because nothing was

GPT-2-λ

ive seen so many girls walk around feeling ashamed of their bodi
ive got to admit that i feel a little weird for a moment seeing her standing in front of my face when i
walk into the shop
ive always wondered what im doing right now im feeling
ive read many blogs about her and how much she hates those who don’t admit to being kind or
caring about others but instead blame them for not doing something about it
ive never felt sympathetic towards people because of the way they look and act because of their
skin to

STA-noself

i feel like the whole world is watching and feeling it’s failing me
i want people to know i am not alone
i feel ashamed when i look out of the window and see the state of things
i walked away feeling disappointed because i don t know the answer
i drank some cold drink or find some ice dessert such as chendol or ice kacang

STA

i feel sad seeing people who have to work harder to cope
i walked away feeling disappointed because i don t know the answer
i was feeling sad seeing the state of things that i never did i really want to see if it lasted
i feel sad seeing the state of things but the truth is im not sure how to express it gracefully
i feel like the whole world is watching and feeling it’s failing me

Table 10: The demonstration of original training examples and augmented examples for “sadness” of
EMOTION. It is noted that the 5 augmented examples in each block are randomly selected instead of
cherry-picked. This reveals some difference between the original training examples and the augmented
examples by our STA and other methods (Here we use a rule-based heuristics method EDA, a generation-
based method GPT-2-λ and STA-noself for comparison).
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Original training examples and augmented examples for “missing or found people" of HumAID

Original

UPDATE: Body found of man who disappeared amid Maryland flooding
Open Missing People Search Database from Mati and Rafina areas #Greecefires #PrayForGreece
#PrayForAthens
@ThinBlueLine614 @GaetaSusan @DineshDSouza case in point, #California Liberalism has
created the hell which has left 1000s missing 70 dead,...
Heres the latest in the California wildfires #CampFire 1011 people are missing Death toll rises to 71
Trump blames fires on poor ...
#Idai victims buried in mass grave in Sussundenga, at least 60 missing - #Mozambique #CycloneIdai
#CicloneIdai

EDA

update flooding found of man who disappeared amid maryland boy
open missing people search database from mati escape and rafina areas greecefires prayforgreece
prayforathens
created gaetasusan dineshdsouza hell in point california missing has thinblueline the case which
has left s liberalism dead an countless people...
heres blames latest in the california wildfires campfire people are missing death toll rises to trump
more fires on poor...
idai victims buried in mass grave in sussundenga at mozambique missing least cycloneidai ciclonei-
dai

GPT-2-lambda

@KezorNews - Search remains in #Morocco after @deweathersamp; there has been no confirmed
death in #Kerala
#Cambodia - Search & Rescue is assisting Search & Rescue officials in locating the missing 27
year old woman who disappeared in ...
@JHodgeEagle Rescue Injured After Missing Two Children In Fresno County
#Florence #Florence Missing On-Rescue Teams Searching For Search and Rescue Members
#Florence #Florence #DisasterInformer #E
RT @LATTAODAYOUT: RT @HannahDorian: Search Continues After Disappearance of Missing
People in Florida

STA-noself

Search Database from Matias, Malaysia, missing after #Maria, #Kerala, #Bangladesh #KeralaKerala,
#KeralaFloods, ...
RT @hubarak: Yes, I can guarantee you that our country is safe from flooding during the upcoming
weekend! Previous story Time Out! 2 Comments
The missing persons who disappeared amid Maryland flooding are still at large. More on this in the
next article.
the number of missing after #CycloneIdai has reached more than 1,000, reports CNN.
RT @adriane@przkniewskiZeitecki 1 person missing, police confirm #CycloneIdai. #CicloneIdai

STA

The missing persons who disappeared amid Maryland flooding are still at large. More on this in the
next article.
Search Triangle County for missing and missing after #Maria floods #DisasterFire
Just arrived at San Diego International Airport after #Atlantic Storm. More than 200 people were
missing, including 13 helicopters ...
Search Database contains information on missing and found people #HurricaneMaria, hashtag
#Firefighter
Were told all too often that Californians are missing in Mexico City, where a massive flood was
devastating. ...

Table 11: The demonstration of original training examples and augmented examples for “missing or found
people” of HumAID. It is noted that the 5 augmented examples in each block are randomly selected
instead of cherry-picked. This reveals some difference between the original training examples and the
augmented examples by our STA and other methods (Here we use a rule-based heuristics method EDA,
a generation-based method GPT-2-λ and STA-noself for comparison).
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Abstract
Product search is uniquely different from search for documents, Internet resources or vacancies, therefore it requires
the development of specialized search systems. The present work describes the H1 embdedding model, designed
for an offline term indexing of product descriptions at e-commerce platforms. The model is compared to other
state-of-the-art (SoTA) embedding models within a framework of hybrid product search system that incorporates
the advantages of lexical methods for product retrieval and semantic embedding-based methods. We propose
an approach to building semantically rich term vocabularies for search indexes. Compared to other production
semantic models, H1 paired with the proposed approach stands out due to its ability to process multi-word product
terms as one token. As an example, for search queries ”new balance shoes”, ”gloria jeans kids wear” brand entity
will be represented as one token - ”new balance”, ”gloria jeans”. This results in an increased precision of the system
without affecting the recall. The hybrid search system with proposed model scores mAP@12 = 56.1% and R@1k =
86.6% on the WANDS public dataset, beating other SoTA analogues.

Keywords: semantic product search, entity recognition, SentencePiece, transformers, ColBERT

1. Introduction

Product search systems are required to operate
with both low latency and high recall, since they
scan the whole product catalog of billions of items.
Common product search methods initially used lex-
ical search models. These models calculate the
relevance metric based on heuristics that measure
exact word match between the search query and
textual product representations. Lexical search
models such as BM25 (Robertson and Walker,
1994) have been relevant for decades, and are
still widely used today. The recent alternatives,
neural extraction methods, demonstrate increased
search effectiveness metrics, but also possess
their own flaws (Zeng et al., 2022, 2023; Pan
et al., 2024; Hofstätter et al., 2020). Naturally,
the research gravitates towards the hybridization
of the two approaches, combining the advantages
of each.

The disadvantages of lexical models are well-
researched: (E1) a possible mismatch between
query and document vocabularies (Furnas et al.,
1987; Zhao and Callan, 2010) leads to search re-
call degradation; (E2) lack of semantic understand-
ing of queries and documents (Li and Xu, 2014)
decreases search precision. These described lim-
itations result in failures to retrieve relevant doc-
uments using lexical methods for information re-
trieval. To resolve these issues a number of exten-
sions to the lexical model have been introduced
in the past decades, including, but not limited to:
query expansion (Lavrenko and Croft, 2001; Lesk,
1969; Qiu and Frei, 1993; Xu and Croft, 2017),
document expansion (Efron et al., 2012; Liu and
Croft, 2004; Gao et al., 2004), term dependen-

cies model (Metzler and Croft, 2005; Xu et al.,
2010), topic modeling (Deerwester et al., 1990;
Wei and Croft, 2006), machine translation mod-
els for information retrieval (Berger and Lafferty,
1999; Karimzadehgan and Zhai, 2010). Despite
mentioned advances, the research in lexical mod-
els for information retrieval progresses relatively
slowly, since the majority of these methods work
with discrete, sparse lexical representations and
inevitably inherit their limitations.

With the development of representation learn-
ing in information retrieval, semantic search mod-
els at the offline information extraction stage of the
search have seen an increased research interest
in recent years. During this stage the indexes are
built for matching queries with the documents. The
Figure 1 schematically describes an example prod-
uct search system that uses indexes built during
the information extraction stage for fast responses
to queries.

Starting in 2013, the improvement of word em-
beddings (Bravo-Marquez et al., 2013; Mikolov
et al., 2013; Pennington et al., 2014) has led to
a number of studies using embeddings for the
extraction stage (Clinchant and Perronnin, 2013;
Ganguly et al., 2015; Vulić and Moens, 2015). Un-
like discrete lexical representation, word embed-
dings offer a continuous representation that can
help with the problem of query and document vo-
cabularies mismatch to some extent. After 2016,
a spike of research attention to the application of
deep learning methods to the information extrac-
tion stage is seen (Boytsov et al., 2016; Hender-
son et al., 2017). These methods are applied ei-
ther for improving document representation within
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Figure 1: The indexes and a tokenization model built during offline information extraction are used in
online setting to respond to queries with low latency. The quality of built index is detrimental to the
performance of the search system.

the framework of the traditional paradigm of dis-
crete lexical representation (Bai et al., 2020; Dai
and Callan, 2019; Nogueira et al., 2019), or directly
for forming novel semantic search models within
the sparse/dense representation paradigm (Gillick
et al., 2018a; Jean et al., 2015; Khattab and Za-
haria, 2020; Zamani et al., 2018).

While closely related to document information re-
trieval, the product search problem is uniquely dif-
ferent in a few aspects:

• Ranking mechanisms based on weighing tex-
tual features (TF/IDF, BM25) differ in product
search. For example, the token frequency in
the product title does not affect the query rel-
evancy.

• Products are multimodal. A product page in-
cludes a title, description, characteristics, im-
ages, videos, etc. The search system can
take into account multiple modalities of a
page.

• Search queries are motivated by an interest
in purchasing a product. Customer behavior
differs significantly from vacancy search or In-
ternet resource search behavior.

• Product search effectiveness is evaluated on
a modality-wise basis.

The primary research question of the present pa-
per is to evaluate the impact of the semantic model
and tokenization architectures on offline metrics of
a hybrid product search system.

In the following sections, we describe in de-
tail the research methodology, conducted experi-
ments and conclusions.

2. Related work

2.1. Neural Information Retrieval
Similar to document information retrieval trends,
the development of product search systems has
transitioned from lexical retrieval methods to neu-
ral retrieval methods (Li et al., 2021; Magnani et al.,
2022; Nigam et al., 2019). DSSM (Huang et al.,
2013), being one of the most popular neural net-
work architectures, is based on a Dual Encoder
paradigm (Gillick et al., 2018b; Yang et al., 2019;
Karpukhin et al., 2020). The two independent “tow-
ers” of encoders—one for search queries and the
other for product representation—embed queries
and products into a shared space of fixed dimen-
sionality. The shared space is used for similarity
search (Vanderkam et al., 2013; Johnson et al.,
2017) to retrieve products that are relevant to a
search query. Thus far, the most promising results
have been achieved by using the BERT model in
a Dual Encoder architecture (Chang et al., 2020;
Xiong et al., 2021; Lu et al., 2020). The general
operating principle of these models is described in
Eqs. (1) to (3).

−→q = AvgPool
[
BERT l

θ(q)
]

(1)
−→p = AvgPool [BERT r

θ (p)] (2)
sBERT (

−→q ,−→p ) = −→q T · −→p (3)

116



Where BERT t
θ and BERT r

θ are the “left” and
“right” encoders, respectively, transforming texts q
and p into a shared space θ. The similarity function
sBERT (·, ·) is implemented with a scalar product of−→q and −→p . The bottleneck in this architecture lies
in the averaging of the token vectors.

The ColBERT (Khattab and Zaharia, 2020)
model represents a particular variant of the Dual
Encoder architecture, termed a Single Encoder.
Models based on this architecture use the same
encoder for both queries and products. However,
the novelty of ColBERT lies in computing the simi-
larity scores token-wise, instead of comparing the
mean vectors. Given a search query q comprising
m tokens and a product p comprising n tokens, the
similarity function sColBERT (·, ·) is:

sColBERT (q1:m, p1:n) =

m∑

1

max
1..n

(−→q T
1:m · −→p 1:n

)

(4)
The sum over maximum similarity scores for

each token of a query in Eq. (4) implies that n ·m
scalar products need to be calculated, compared
to one scalar product in sBERT (·, ·).

2.2. Hybridization
It is accepted to understand hybridization as mix-
ing the lexical and neural methods of information
retrieval within one product search system. Hy-
bridization can be applied at different stages of
the search. For instance, the authors of the study
Nigam et al. (2019) combined the search results
of several distinct models based on lexical, behav-
ioral, and semantic methods. Another hybridiza-
tion principle was applied in the study Gao et al.
(2021)—the lexical method was the primary re-
trieval mechanism, while a semantic model was
trained to correct the mistakes of the lexical model.

2.3. Tokenization
The progress in tokenization methods has led to
significant improvements in the offline metrics of
natural language processing models (Kudo and
Richardson, 2018; Sennrich et al., 2016). The
BPE (Byte-Pair-Encoding) tokenization method
was originally introduced as a data compression
method (Gage, 1994). In constructing the BPE
tokenizer, the initial vocabulary is sequentially ex-
tended until the preset limit is reached. The pri-
mary goal of applying BPE to natural text is to split
words into commonly occurring subwords. Usu-
ally, little care is given to the actual semantics of
the final tokens. However, unlike most applica-
tions, where semantic information can be repre-
sented by the combination of tokens, information
retrieval often requires semantically rich tokens in

order to use them as terms to construct effective
search indexes, see Fig 1.

The later proposed alternative, the unigram to-
kenization method (Kudo, 2018a), demonstrates
the opposite approach—the vocabulary size is se-
quentially pruned by removing rare tokens that can
be replaced by common tokens. The unigram
method was primarily introduced to provide multi-
ple possible tokenizations for a given text with the
use of a unigram language model. During vocab-
ulary construction, both methods aim to minimize
the length of text encoded in tokens and, in prac-
tice, produce similar tokenizations.

3. Methodology

3.1. H1
The H1 semantic model draws significant inspira-
tion from ColBERT but architecturally simplified. It
processes both queries and documents by tokeniz-
ing them and then passing them through a BERT-
based Dual Encoder. The resulting embeddings
are evaluated using the sColBERT (·, ·) similarity
function. We explore the impact of different tok-
enization techniques in Ablation Study Section 4.2.
A distinctive aspect of H1 is its approach to token-
level lexical hybridization, where we enhance the
tokenizer’s vocabulary with semantically rich terms
to improve the semantic independence of stan-
dalone terms. The Experiments Section 4 pro-
vides a comprehensive analysis of the H1 system’s
application in a product retrieval task. For this task
specifically, we augmented the tokenizer’s vocab-
ulary with a carefully selected list of brand names.

The rationale behind incorporating brand names
into the vocabulary is rooted in understanding user
search behavior, particularly when it comes to
specific brands. For instance, when a customer
searches for ”new balance shoes”, their intent is
not to explore products related to the terms ”new”
and ”balance” independently. Instead, they are
looking for items specifically associated with the
”New Balance” brand. However, these customers
may still be open to considering various types of
”shoes”.

H1 model is optimized on positive and negative
product-query pairs using the following loss func-
tion:

LH1 =
[
γ − sθ(q1:m, p+1:n) + sθ(q1:m, p−1:n)

]
+0

(5)

Where γ is a threshold and sθ is a similarity re-
lation parametrized by θ, applied to an m-token
query q with a positive p+ and a negative p− prod-
uct description example. Negative examples are
sampled by selecting a random product from the
current batch. The square brackets around the
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Figure 2: Token handling principle of H1 (a), compared to that of a FastText (b). H1 attributes scores to
each pair of query and document tokens, while the FastText-based system compares the mean vector
representations.

equation, []+0, denote that negative values are set
to 0.

3.2. Evaluation
Neural retrieval methods, given their computa-
tional intensity, are impractical for online prod-
uct searches within catalogs containing billions of
items. Instead, their utility shines in building in-
dexes for product descriptions, as schematically
outlined in the example in Figure 1. The actual
neural encoder is never utilized to generate the em-
beddings for user queries. Our evaluation method-
ology mirrors these practical limitations, ensuring
that our approaches are both realistic and aligned
with the constraints of large-scale product retrieval
systems.

For the query encoder Eq
θ , the product encoder

Ep
θ , the similarity measure s, and the tokenization

method T , the evaluation procedure employed in
the experiments (Section 4) is as follows:

1. The vocabulary of query tokens Vq is collected
using T .

2. For every token ti from the vocabulary Vq, its
embedding eqi = Eq

θ [ti] is produced.

3. The embeddings for the tokens in every prod-
uct description pj1:n are computed as:

(ej,k)
n
k=1 = Ep

θ [T (p
j
1:n)]

4. An index that maps every query term to rele-
vant products is built using query tokens as
terms:

I(ti) = {pj1:n | s(eqi , epj,1:n) > γ}

where γ is a relevancy threshold.

5. For a query q1:m with tokens

T (q) = (t’1, ... , t’m)

a list of all relevant products according to the
index I,

R = I(t′1)| … |I(t′m)

is collected, and the metric is computed on R,
sorted with respect to the similarity of relevant
products to the query.

The described evaluation approach mimics the
product search implemented with a simple term
index-based hybrid search system. This system
combines the efficiency of fast lexical term lookup
in an index for high precision, with the computation
of similarity scores on only a subset of all prod-
uct descriptions, ensuring low latency responses.
The performance of the system is entirely depen-
dent on the similarity measure s within embedding
space defined by semantic model of choice.

The offline metrics for product search differ from
those of document information retrieval. The ob-
jective of product search is to identify several, or
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ideally, all products relevant to the query, includ-
ing identical items. This requirement stems from
the customer’s need to compare prices for iden-
tical products. Hence, the formulas for recall and
precision are adapted to include an equivalence re-
lation M . Precision metrics for product search are
defined as follows, with recall metrics being simi-
larly formulated.

P@k =
1

|Q|
∑

q∈Q

∣∣M(prq@k, pgq)
∣∣

k
(6)

mAP@k =
1

k

k∑

i=1

P@i (7)

Q – the set of all search queries.

pgq – all ground truth products for query q.

prq – the retrieved products for query q at rank k.

M(A,B) – the set of products in A that are equiv-
alent to any of the products in B.

4. Experiments

We evaluated the proposed H1 model against sev-
eral existing information retrieval models, specifi-
cally TCT-ColBERT (Lin et al., 2020), Single En-
coder (SE) (Nigam et al., 2019), and Dual Encoder
(DE) (Huang et al., 2013). Additionally, we ex-
perimented with three tokenization methods: Byte
Pair Encoding (BPE), unigram, and word tokeniza-
tions. For each tokenization method, we proposed
two variations: one enriched with a predefined set
of brand names as special tokens (referred to as
multi-token or mt variations), and a standard ver-
sion without added brand names (non-multi-token
or non-mt variations).

We employed the SentencePiece library for
all tokenization tasks, configuring it with the
split_by_whitespace=False option to ensure multi-
word brand names could be incorporated as spe-
cial tokens.

Following the evaluation methodology outlined
in Section 3.2, we calculated the metrics mean Av-
erage Precision at 12 items (mAP@12) and Re-
call at 1000 items (R@1k) for H1, SE, DE mod-
els combined with every tokenization method de-
scribed earlier. Two products are considered to be
equivalent if they share the same title.

We compare the performance of the best combi-
nation of the model type and tokenization method
against ColBERT implemented by Terrier (Mac-
donald et al., 2021) and trained with Tight Coupling
Teachers method (Lin et al., 2020).

4.1. Dataset
Our data source is the publicly available WANDS
dataset, chosen for its suitability in objectively
benchmarking retrieval systems in the context of e-
commerce. The dataset’s key characteristics are
as follows:

• 42,994 product candidates,

• 480 queries,

• 233,448 relevancy scores for query-product
pairings.

The relevancy of query-product pairs in the
WANDS dataset is annotated with three levels:
fully relevant (Exact), partially relevant (Partial),
and Irrelevant. For the purposes of training our
models, we utilized only two labels: Exact (labeled
as 1) and Irrelevant (labeled as -1), with class bal-
ancing implemented prior to training.

4.2. Ablation study
First, we ablate over the tokenization method and
model hyperparameter (embedding dimensions)
for each of the model types: H1, SE, DE. For Col-
BERT model, the pretrained version was used, so
it was not included in the ablation study. The re-
sults of the experiment are shown in Fig 3. The
best results, R@1k = 86.6% and mAP@12 =
56.1%, were achieved by the combination of H1
model with 768 embedding dimensions and BPE
tokenization with brand names added.

We note that for both BPE and unigram tokeniza-
tions, the variation with brand names added (mt)
produces consistently better results for any model
with any embedding dimensionality.

4.3. Best models comparison

Model Threshold Precision Recall

ColBERT

12 41% 26%
128 21% 61%
512 9% 78%
1024 5% 84%

Table 1: The ColBERT results on WANDS dataset.

The Table 1 presents the results of the evalua-
tion of the ColBERT model on the WANDS dataset
with varying thresholds. The H1 model demon-
strates better results, especially for Precision at 12
items.

To further demonstrate the superiority of the H1
model, we compare H1, SE, DE, and ColBERT
models with the best hyperparameters seen in the
Ablation Study Section 4.2 on a single query with
multiple thresholds k.
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Figure 3: Ablation study results over tokenization methods and model architectures.

Figure 4: An illustrative one-query example of how
Precision decreases and Recall increases for dif-
ferent semantic retrieval models with respect to
cut-off threshold k.

The dynamics of Precision and Recall metrics
for the H1 model with respect to the threshold k
are illustrated in Fig 4, clearly separating the H1
model from the rest. The Recall of the search re-
sults is higher with lower values of the threshold k,
and Precision declines more slowly as k increases,
compared to other models.

5. Conclusions and Future Work

This study introduced the H1 embedding model, a
cutting-edge approach designed to refine the land-
scape of e-commerce search systems by leverag-
ing multi-word term embeddings. Our extensive
evaluations demonstrate that H1, through its in-
novative use of semantically rich tokens and hy-
brid search methodologies, notably enhances the
accuracy and efficiency of product retrieval. By
achieving mAP@12 = 56.1% and R@1k = 86.6%
on the WANDS dataset, H1 has set a new bench-
mark, surpassing other state-of-the-art models in
terms of precision and recall.

Our research underscores the criticality of inte-
grating semantic understanding with traditional lex-
ical search techniques to address the inherent lim-
itations of each approach. The H1 model’s unique
ability to treat multi-word terms as singular entities
not only improves the search relevance but also
aligns with the natural language processing of user
queries, thereby significantly enhancing the user
experience in e-commerce platforms.

Future efforts will be dedicated to establishing
a definitive benchmark for semantic models oper-
ating within the framework of hybrid search sys-
tems. By exploring a broader range of system ar-
chitectures, the aim of our future work is to provide
a comprehensive and objective evaluation frame-
work that will not only assess the efficacy of current
models but also inspire the development of more
advanced and effective search solutions.
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Abstract
This paper presents a model architecture and training pipeline for attribute value extraction from search queries. The
model uses weak labels generated from customer interactions to train a transformer-based NER model. A two-stage
normalization process is then applied to deal with the problem of a large label space: first, the model output is
normalized onto common generic attribute values, then it is mapped onto a larger range of actual product attribute
values. This approach lets us successfully apply a transformer-based NER model to the extraction of a broad range
of attribute values in a real-time production environment for e-commerce applications, contrary to previous research.
In an online test, we demonstrate business value by integrating the model into a system for semantic product retrieval
and ranking.

Keywords: attribute extraction, e-commerce search, named-entity recognition

1. Introduction

E-commerce applications use a range of structured
information that describe their catalog of products
or services. This allows customers to browse via a
taxonomy of product categories and filters, using
the structured information directly to narrow down
their search. For example, a customer may click on
categories “Furniture”, then “Bedroom Furniture”,
then “Nightstands”, then the attribute “Color:Blue”,
to find an item they like.

However, when customers search using natural
language, a mapping of the query to relevant struc-
tured information must happen automatically. This
mapping can principally be used in two ways to im-
prove search engine performance: first, scores that
judge the relevance of a query to particular prod-
uct information can be used to inform a relevance-
based ranking (Liu et al., 2022b). Second, explicit
filters can be applied dynamically, restricting the
result set to products with attributes matching those
identified in the query, in particular where the query
interpretation has a high degree of confidence in
its prediction.

Attribute value extraction (AVE) in search can
be approached in different ways. While it is possi-
ble to e. g. use a multi-label classification task at
query level, we opted for a token-level classifica-
tion approach related to the more general problems
of slot filling and named-entity recognition (NER).
This yields a more intuitive mapping from spans
in the query to explicit filtering, providing a more
transparent user experience.

Two major challenges of a search application
are, first, that text input is short and contains non-
standard grammar and spelling; and, second, the
stringent latency requirements for model inference,
which needs to be computed online in real time.

Both of these make the use of transformers,1 the
current state of the art in NER, challenging since
they use contextual information typically only found
in longer strings, and they contain a high number
of model weights. In addition, there are challenges
with the large size of the label space and the fact
that NER training and evaluation requires token-
level labelling, which can be prohibitively expensive.
Indeed, Xu et al. (2019) claim the search problem
is not solvable with an NER-style model.

To the contrary, we demonstrate the feasibility
of a transformer-based NER-style model. Using
a lightweight transformer that meets the latency
requirements, we show that it performs almost as
well as a larger model, indicating data quality may
be more important than model size. We show a
way to create quality data via a regime of hierar-
chical normalization applicable to any e-commerce
catalog to deal with the problem of a large label
space. We use weak labeling to create abundant
inexpensive labeled data. We report model accu-
racy and nDCG gains and, lastly, demonstrate the
business value of this approach via an online A/B
test.

2. Related Work

In search systems, query understanding models
aim to decipher and interpret users’ search goals so
as to aid the downstream retrieval and ranking ap-
plications (Deng and Chang, 2020). In the general
web search domain, query understanding consists
of two dimensions: intent classification and topic
detection (Brenes et al., 2009). Query intent classi-

1Transformer-based models are among the state of
the art in NER tasks, e. g. the BERT-based model from Li
et al. (2020) for Ontonotes v5 (Weischedel et al., 2013).
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User query text mod bright red sofa
Query tokens mod bright red sofa

Identified text spans mod bright red sofa
NER label STYLE COLOR O

Intermediate attribute values Modern Red
Final attribute title Product Styles Upholstery Color

Final attribute value Modern & Contemporary Red

Table 1: An example user query with two attributes identified

fication determines users’ desired search actions,
such as informational, navigational and transac-
tional (Broder, 2002; Rose and Levinson, 2004).
Query topic detection maps users’ search queries
to a predefined taxonomy of topics, such as sports,
entertainment and so on (Li et al., 2005). Intent
classification and topic detection problems also ex-
ist in the e-commerce domain. Both intents and, in
particular, query topic categories in e-commerce
can differ greatly depending on industry vertical
(Tsagkias et al., 2021), but the the overarching prin-
ciples are applicable to any e-commerce domain.

E-commerce query topic detection maps user
search queries to the structured product catalog
taxonomy (Wen et al., 2019). For instance, the
search query “KitchenAid 4.5 Qt” maps to products
in the “Small Appliances/Mixers” category, with at-
tributes of “Brand: KitchenAid” and “Capacity: 4 -
5 Qt”. The query-to-product-type mapping part of
the problem (“KitchenAid 4.5 Qt” to “Small Appli-
ances/Mixers”) has been well studied as text clas-
sification (Hashemi et al., 2016; Kim et al., 2016;
Lin et al., 2020).

There has been less prior work focusing on the
query AVE and normalization part of the problem.
Following Luo et al. (2022), a distinction can be
made in AVE between explicit (e.g. Cowan et al.
2015; Kozareva et al. 2016; Wen et al. 2019; Cheng
et al. 2020; Zhang et al. 2021) and implicit or la-
tent attributes (e.g. Wu et al. 2017). Explicit at-
tributes are represented by a span of text in the user
query, whereas implicit attributes are not. Implicit
attributes can be use directly, whereas extracted
explicit attribute spans usually need to first be nor-
malized to match misspellings or non-canonical
forms against structured product data, as in the
current approach.

A major challenge for AVE in e-commerce
queries is the sparsity of available data (Cheng
et al., 2020; Wen et al., 2019), especially where the
number of product attributes is high with a long tail
distribution of rare attributes. Cheng et al. (2020)
address this via an iterative learning framework
that utilizes both synthetic data and human anno-
tated data to extract product categories and brands.
Wen et al. (2019) went without human annotated
data and leveraged only user behavior logs to build
a sequential tagging model for attribute detection.

Zhang et al. (2021) use a teacher-student network
to better exploit a combination of human annotated
labels and weak synthetic labels in their sequential
tagging model. We address this problem via weak
and synthetic labeling (Section 3.3) to generate
data; and reducing the label space via normaliza-
tion (Section 3.5).

Normalization is a challenge for explicit AVE and
some studies leave it out altogether despite its ne-
cessity in an e-commerce setting (Zhang et al.,
2021). Similarity measures are one possible ap-
proach per Putthividhya and Hu (2011), who use
n-gram sub-string similarity to normalize results
to match dictionary entries. Cowan et al. (2015)
use a gazetteer approach for matching identified
spans to attribute entities, as do Zhang et al. (2021)
after a frequency analysis of user behavior. We
propose a two-step normalization process using
gazetteers: first identified spans are mapped on
to a pre-defined schema of intermediate attribute
value concepts, before finally mapping them on to
product attribute data (Section 3.5). An example
search query with intermediate and final attributes
identified is given in Table 1.

An additional constraint in any business context
is that there must be enough monetary value to
justify the complexity of the system implemented.
Business applications of attribute extraction from
search queries include product retrieval (Cheng
et al., 2020), recall filtering (Wen et al., 2019) and
ranking (Cheng et al., 2020; Wen et al., 2019; Wu
et al., 2017). In an A/B test, the current system
brings value in ranking (Section 4) even on top of
a semantic search system per Liu et al. (2022b),
where no previous studies known to the current
authors have explicitly demonstrated this.

Outside of the search context, classic NER ap-
proaches inform the current work. NER is typically
defined as the identification of phrases that contain
the names of persons, organizations and locations
(Tjong Kim Sang and De Meulder, 2003). Although
many attribute values are not proper nouns, the
mechanics of the problem in regards to span iden-
tification in written text are similar, and the phrases
to be identified can be sorted into thematic groups
in a similar fashion to those in classic NER. Publicly
available, pre-trained, transformer-based models
like BERT (Devlin et al., 2019) that create context-
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Human Weak Test F1 F1 F1 F1
labels labels set COLOR STYLE BRAND overall

Human only 90 0 33 0.83 0.447 0.525 0.453
Weak only 0 82 33 0.686 0.504 0.656 0.56

Weak and synthetic only 0 146 33 0.687 0.516 0.662 0.568
Production model 90 146 33 0.818 0.625 0.71 0.654

Table 2: Sample model training & test set sizes & statistics (data size given in thousands)

sensitive word embeddings enable token classifica-
tion on top of these networks to be used as viable
alternative to traditional NER methods.

3. Problem Definition & Methodology

The problem at hand is thus to map explicit at-
tributes within a user search query string onto the
structured data of a set of products, within the prac-
tical constraints of the live production environments
of an e-commerce website. The structured data
targeted in particular here are attribute titles and
attribute values. Canonical examples of attribute
titles are “Upholstery Color” and “Product Styles”,
which can have attribute values like “Red” or “Mod-
ern & Contemporary”, and which are both distinct
from a product’s category, e. g. “Sofas”.

For explicit AVE, a number of studies use method-
ologies from NER, such as a conditional random
field (CRF) (Cowan et al., 2015), long short-term
memory network (LSTM) plus CRF (Kozareva et al.,
2016; Wen et al., 2019), bidirectional gated recur-
rent unit (GRU) network with a CRF layer plus
LSTM-based character embeddings (Cheng et al.,
2020) and, more recently, pre-trained transformer-
based language models (Zhang et al., 2021; Luo
et al., 2022). Other studies use a question answer-
ing approach (Shinzato et al., 2022; Xu et al., 2019).
The model presented here is an NER model, using
token classification on top of a distilled pre-trained
transformer-based language model. Distilled ver-
sions of larger language models (Sanh et al., 2019)
enable performance to be largely be maintained
without the drag on latency.

As this paper focuses on explicit AVE, normaliza-
tion is required, which we approach using an initial
gazetteer, plus a second layer of custom normal-
ization depending on the attribute type. Contrary
to Xu et al. (2019), who claim that an NER-based
model cannot deal with a large attribute space, we
demonstrate how this can indeed be done by using
this two-stage normalization approach.

The model training pipeline consists thus of mul-
tiple steps. First, human annotation using a prede-
fined attribute schema is conducted (Section 3.2).
The human annotation is supplemented by weak
and synthetic labels generated from the structured
data in the catalog (Section 3.3). The model itself

is a token-classification transformer network (Sec-
tion 3.4). The identified span is normalized before
use (Section 3.5). The model is evaluated via both
offline and online means (Section 4).

3.1. Production Environment & Baseline
The current system replaces the previous rules-
based system in production, which is applied to
around half of all search experiences, covering just
under 15% of the most common distinct search
queries in a given month. The other half of search
experiences are characterized by a long tail of di-
verse search queries, which previously had not had
attributes extracted at all. However, some attribute
information is implicitly used in the embedding-
based semantic search product retrieval model, to
the extent that this attribute information was avail-
able in the product information used to train the
model (product name, product category and so
forth). However, to use this information explicitly
for relevance scoring or dynamic filtering, individual
attributes need to be predicted and then mapped
to product data.

A challenge peculiar to the current production
system is that it is not set up to have consistent at-
tribute information across product categories. Prod-
uct attributes are specific to a given product cate-
gory. This means that the attributes of a product of
type “Chair” include “Upholstery Material” and “Leg
Material”, whereas a product of type “Saucepan”
includes “Lid Material”. In addition, attributes of dif-
ferent product categories may have distinct IDs and
values, even where the attribute title is the same or
similar, e.g. “Primary Material”. This puts the num-
ber of attributes at around 86,000 distinct attribute
ID-title pairs with 314,000 distinct attribute ID-value
pairs. This makes a direct classification difficult due
to data sparsity for the long tail of less-common at-
tributes; in the current paper we address this chal-
lenge via two-stage normalization (Section 3.5).

3.2. Human Annotation
Human annotators were provided with lists of his-
torical customer search queries to label with up to
three attributes. All queries were initially labeled
by two human annotators. If both annotators did
not exactly agree on an attribute, it was submit-
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F1 COLOR F1 STYLE F1 BRAND F1 overall
Production model 0.818 0.625 0.71 0.654
No noisy spelling 0.838 0.617 0.69 0.651

No synthetic subjects 0.76 0.614 0.702 0.65
No synthetic SKU IDs 0.754 0.654 0.704 0.649

No synthetic product categories 0.759 0.619 0.694 0.63

Table 3: Ablation study

ted to a third annotator to make a final decision.
Annotators were asked to label non-overlapping
sub-strings of the original query with attribute titles
and values from a pre-defined schema of interme-
diate attributes.

The schema of intermediate attributes was cre-
ated from a frequency analysis of commonly
searched attributes from historical user interactions.
This schema is used both for annotation and as
the intermediate attributes for the first stage of nor-
malization. Annotators could label attribute values
outside of the predefined schema by selecting an
umbrella “Other” option. Common attribute values
identified in this way were added to the predefined
schema when appropriate.

For model training, the human annotation is con-
verted to BIO (beginning-inside-outside) labels us-
ing the IOB2 schema (Krishnan and Ganapathy,
2005) for the attribute-type named entities E =
{BRAND, MATERIAL, COLOR, DIMENSION, SUB-
JECT, LIFE_STAGE, FEATURE, LOCATION, SIZE,
FINISH, PRICE, STYLE, SHAPE, PATTERN, NUM-
BER_ITEMS, NUMBER_COMPONENTS}.

The inter-annotator agreement (IAA) on entity
level is around 68% F1, calculated by holding one
annotator’s labels as ground truth and the other as
system output. Among the entities that the annota-
tors agreed on, the option normalization accuracy
is around 94%.

3.3. Weak Labels & Synthetic Data
To produce weak labels, a variety of attributes and
other structured product data (e.g. product cate-
gory for O labels per the BIO schema) from known
add-to-cart events were string-matched against the
preceding user query. As conflicting information
came from the various sources, an unweighted ma-
jority vote was then applied to the candidates per
Ratner et al. (2017). This allowed the use of the
available diverse structured data sources to reduce
noise. In the future, other methods for weak label
selection could be applied per Ratner et al. (2016).
The resultant weak labels were used together with
human-labeled data to train the NER model.

Zhang et al. (2021) use a similar system for get-
ting large amounts of weak labels, and report that
models trained with weakly labeled data alone (F1
0.6) are inferior to those trained with much less

human labeled data alone (F1 0.62). However, in
our system, the weak labels appear to be of higher
quality than the human data, at least for some la-
bels, as shown in Table 2, which may point to an
opportunity to improve task design.

Adding generative model predictions from Flan-
T5-XL (Chung et al., 2022) to the weak labels had a
neutral affect on the performance of the model. Fur-
ther experimentation with larger generative models
is planned.

In addition to weak labels from customer add-to-
cart events, synthetic search experiences and cor-
responding labels were created. Synthetic search
queries were created in a number of ways: ran-
dom distortions to create misspellings for existing
labeled data; various subjects, e.g. animal types,
from the structured product data with SUBJECT la-
bels; and using SKU IDs and product category
names as O labels. Adding additional O labels via
product categories had the greatest positive effect
as shown in the ablation study in Table 3.

3.4. Model Architecture

The training set {(x(i), y(i))}Ni=1 consists of N train-
ing examples where (x(i), y(i)) is the ith instance
consisting of a tuple of the input query x(i) and its
labels y(i). A single search query is symbolized
for the ith training example with a variable natural
number, M (i), of tokens by a vector

x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)

M(i)),

where each element, x(i)
j , is a natural language

token. The two-dimensional array y(i) represents
the labels for the ith training sample, such that

y(i) = (y
(i)
1 , y

(i)
2 , . . . , y

(i)

M(i)),

where there are M (i) label vectors and each y
(i)
j is

an NER label in the form of a one-hot vector of the
fixed size L of the label set.

The DistilBERT model (Sanh et al., 2019) from
Huggingface (Wolf et al., 2020) was used to gener-
ate a two-dimensional array of logits corresponding
to the labels as follows, where f is the DistilBERT
feed-forward transformer network consisting of an
embedding layer, five transformer block layers and
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a linear classifier:

ŷ(i) = f(x(i)).

The DistilBERT uncased pre-trained English
base model was fine-tuned using the Huggingface
NER pipeline with seqeval (Nakayama, 2018)
as the metric for evaluation and multi-class cross-
entropy loss, such that the loss function can be
expressed as

L(ŷ(i), y(i)) = −
M(i)∑

j

L∑

k

y
(i)
jk log

(
σ(ŷ

(i)
j )k

)
,

with σ, the softmax function, defined as follows:

σ(ŷ
(i)
j )k =

e(ŷ
(i)

jk
)

∑L
l e(ŷ

(i)

jl
)
.

Missing token labels, i.e. tokens where no BIO
label could be identified during the weak labeling
process, were ignored for purposes of calculating
the model loss. The model was then fine-tuned
with the objective of minimizing the loss over the
training set using AdamW, i. e. Adam (Kingma and
Ba, 2014) with weight decay (Loshchilov and Hutter,
2017).

3.5. Attribute Value Normalization
For span-identification-based AVE, a normalization
step is required to translate the text span in the
customer query and its NER label onto an attribute
value and title respectively in the production sys-
tem. In the simplest case, a one-to-one mapping of
NER labels to attribute titles exists and only the text
spans need to be normalized to attribute values.
This is not the case in our system, where there
is a many-to-many mapping of NER labels to at-
tribute titles, which may have different names and
unique IDs across product categories even when
synonymous.

In the present study, we thus take a two-step
normalization approach. First, in the human anno-
tation, the spans identified by the annotators are
matched to both an intermediate attribute title and
an intermediate attribute value from a pre-defined
schema of frequently searched attributes. The in-
termediate attribute schema groups synonymous
and similar attribute titles and attribute values to-
gether, so “Uphostery Material” and “Leg Material”
become just MATERIAL. Likewise, in the search
query “crimson sofa”, the annotator would mark
up the string “crimson” with “COLOR: Red”, where
‘Red’ is the intermediate attribute value. At infer-
ence time, a gazetteer created from the human
annotation is used to normalize text spans onto the
intermediate attribute values. An exception is nu-
merical attributes and BRAND, which are mapped
onto an intermediate attribute title only.

The second normalization step occurs when
mapping the intermediate attribute titles and values
onto actual product attributes in the structured data,
where both the attribute title and value may have
forms different to the intermediate ones and the
number of attribute titles and values is much larger.
The strategy used for the second stage of normal-
ization varies, depending on the type of attribute
as described below.

In the second normalization step at the attribute
title level, some NER labels can easily be mapped
onto a small number of class-agnostic attribute ti-
tles, as is the case for BRAND, PRICE and STYLE;
all products have these attributes and they are ag-
nostic to the product category. For other NER la-
bels, such as MATERIAL, there are many different
attribute titles that these could map to, many of
which are dependent on the product category and
call out the material of the components of the prod-
uct, e. g. “Upholstery Material” and “Frame Mate-
rial” are prominent in the “Beds” category, but “Top
Material” and “Base Material” are used for “Dining
Tables”. In this case, a statistical methodology sim-
ilar to that used by Zhang et al. (2021) is required
to map NER labels onto attribute titles.

Different approaches are also used at the at-
tribute value level, depending on the type of at-
tribute. Some attribute titles have an open set of
attribute values. For DIMENSION and PRICE, there
is no restriction on the value it can take, except that
they are positive floating-point numbers. Likewise
for BRAND, new brands are added to the catalog
continuously, so these do not form a closed set.
Other attribute titles, e.g. STYLE, do have a small,
fixed set of attribute values, which do not change
much over time. These values are determined in a
curated way by domain-owners in the company.

For example, for BRAND, which has a large open
set of attribute values, the first stage of normaliza-
tion consists only of mapping the NER label onto its
intermediate attribute title. For the second stage of
normalization, the NER label is mapped onto one
of two actual brand name attribute titles in the prod-
uct data. The identified text spans can be mapped
onto attribute values per the methodology used
by Zhang et al. (2021). For the online experiment
(Section 4) using the BRAND span identified by this
model in the ranker, however, we did not use this
methodology as it added the complication of need-
ing the resulting mapping available in production.
Instead, for the second layer of normalization, we
used token-level Jaccard index as a measure of text
similarity between the actual brand name attribute
values and the span identified by the model. This
avoids having to update a mapping as new brands
are added to the catalog and is easy to implement
in production.

For STYLE, an example of an NER label with a
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F1 COLOR F1 STYLE F1 BRAND F1 overall
DistilBERT 0.818 0.625 0.71 0.654

RoBERTa base 0.797 0.619 0.682 0.632
RoBERTa large 0.793 0.601 0.683 0.623

SimCSE 0.821 0.591 0.677 0.626

Table 4: Change in performance by language model

BRAND MATERIAL COLOR DIMENSION SUBJECT FINISH
NER label 0.71 0.73 0.87 0.85 0.55 0.73
End to end - 0.66 0.82 - 0.50 0.73

SIZE LIFE_STAGE PRICE NUMBER_ITEMS SHAPE PATTERN
NER label 0.84 0.83 0.75 0.87 0.80 0.59
End to end 0.83 0.81 - 0.84 0.77 0.59

FEATURE LOCATION STYLE NUMBER_COMPONENTS
NER label 0.41 0.76 0.64 0.58
End to end 0.41 0.74 0.63 0.52

Table 5: F1 scores for NER labels (i.e. attribute titles) & micro-averaged end-to-end (i.e. attribute value)
F1 scores

closed set of intermediate attribute values, there is
a single final attribute title across classes. Human
annotation was initially used to create a mapping
from surface forms to normalized forms of the at-
tribute values. Per Zipf’s law, the most commonly
occurring 200 tokens cover the majority of token
instances, so the effort for doing this is low, as this
data is already annotated for training. Without any
additional annotation, it results in a first-stage nor-
malization accuracy of 0.985. Normalization accu-
racy is calculated as the sum of the end-to-end true
positives (true positive intermediate attribute value
and true positive NER label), divided by the true
positives for the NER label, as measured against
the human-annotated test set. An almost one-to-
one mapping of the intermediate attribute title and
values to structured data is then applied. In this
instance, more advanced mapping methodologies
would bring diminishing returns.

4. Evaluation

We used the seqeval package (Nakayama, 2018)
to evaluate the model against a hold-out set of the
human-annotated data. F1 scores at attribute title
(i.e. NER label) and attribute value (i.e. end-to-end)
level are reported in Table 5, with example experi-
ments on combinations of synthetic, weak and hu-
man labels shown in Table 2. BRAND, DIMENSION
and PRICE are not normalized to attribute values,
so performance is only recorded for these at the
attribute title level.

The current model meets the latency require-
ments, with an average speed in offline testing of 6

ms on GPU2 and 12 ms on CPU3 for a single query.
In online testing, there were small but significant
increases in the range of 0.5% to 2.6% in latency
for search queries overall, although these were
largely offset by preprocessing improvements after
launch. Other transformer models, e.g. RoBERTa
(Liu et al., 2019), SimCSE (Gao et al., 2021), were
tested (Table 4) but they did not meet the latency
requirements. In addition, the bigger transformer
models did not give a boost in performance as
shown Table 4; the hypothesis is that a larger model
quickly over-fits for short search queries and a sim-
pler model with fewer trainable parameters is prefer-
able.

Offline ranking experiments were conducted
where the brand name identified by the model
in user queries was compared against the brand
name and product name for products to be ranked.
Token-level Jaccard index between these was cal-
culated and used to boost relevant products. The
product ranking with boosted brand names was
then compared against existing product rankings.
When using the brand attribute value from the
model, an average lift of 4.65% was observed in
the normalized discounted cumulative gain at rank
48 (nDCG48).

The nDCG score was calculated in the typical
fashion with

DCGp =

p∑

i=1

rel i
log2(i+ 1)

,

2Run on a machine with a single NVIDIA® Tesla®
P100 GPU.

3Run on a machine with 16 CPUs of type Intel® Xeon®
Processor E5-2630.
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where the relevance value is calculated as

rel i = α ∗ view i + β ∗ atci + γ ∗ order i
and view i is a binary value 1 if the product page was
viewed and 0 if not. Analogously atci is whether an
add-to-cart event occurred and order i is whether
an order was placed. The weights α, β and γ are
heuristically determined by the relative frequency
of view, add-to-cart and order events respectively,
with the most weight placed on orders. The DCG
score is then normalized as follows:

nDCGp =
DCGp

IDCGp
,

where Ideal DCG (IDCG) is the maximum possible
DCG score with the products ordered according
to relevance value, with highest relevance values
first.

An A/B test was conducted to evaluate the
model’s impact, with the variation using the method-
ology and the weights determined in the offline test-
ing described above to rank a subset of products
retrieved by a semantic search system per Liu et al.
(2022b). This resulted in significant overall lifts in
product views (1.45%) and add-to-cart (3.45%) and
conversion rates (2.99%). The variant helped to
reduce friction during users’ search journey and
enabled users to find relevant products with less
effort, as we observed significant decreases in re-
formulation rate (-1.25%) and landing page exit rate
(-0.76%). Further A/B tests on other attributes and
use cases are planned.

5. Conclusion & Discussion

In this paper, we presented an NLP application in
the domain of e-commerce, focusing on identify-
ing explicit attributes in customer search queries
using weak labels and a transformer-based NER
approach. To overcome the challenge of a large
label space for attributes, we employed a two-stage
normalization process. For the first stage, we lever-
aged human annotation to create a normalization
gazetteer, while the second stage of normalization
varied depending on the specific attribute under
consideration.

The model met the strict latency requirements of
an e-commerce website and was put into produc-
tion. It showed significant business value via an
initial A/B test using the BRAND output, and more
tests are planned for additional attributes and use
cases going forward, including dynamic filtering of
products.

We showed that an increase model size and
complexity did not necessarily increase the perfor-
mance of the model, although further experiments
with larger language models are planned. A signifi-
cant boost was gained by adding product category

as a separate O label, as well as by adding synthetic
data. Contrary to previous studies, our human data
did not outperform our weak and synthetic data
on most labels, indicating a possible opportunity
to improve both task design and the intermediate
attribute schema.

Also left to explore are implicit attributes per Luo
et al. (2022); using more powerful generative AI
models to generate labels; and a multilingual ver-
sion of the model for non-English catalogs.

Overall, this study demonstrates the successful
application of weak labels and transformer-based
NER for explicit attribute identification. The deploy-
ment of our model in a real-world setting, along with
the observed business value, highlights its practical
significance. Our proposed future directions open
up exciting opportunities for further advancements
in this domain.
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Abstract
Pool-based active learning techniques have had success producing multi-class classifiers that achieve high accuracy
with fewer labels compared to random labeling. However, in an industrial setting where we often have class-level
business targets to achieve (e.g., 95% recall at 95% precision for each class), active learning techniques continue to
acquire labels for classes that have already met their targets, thus consuming unnecessary manual annotations.
We address this problem by proposing a framework called Target-Aware Active Learning that converts any active
learning query strategy into its target-aware variant by leveraging the gap between each class’ current estimated
accuracy and its corresponding business target. We show empirically that target-aware variants of state-of-the-art
active learning techniques achieve business targets faster on 2 open-source image classification datasets and 2
proprietary product classification datasets.

Keywords: active learning, multi-class classification

1. Introduction

Active learning is a popular approach used to re-
duce the manual labeling effort required to train a
classifier. In active learning, we iteratively acquire
labels from annotators and use them to (re)-train
a classifier. Previous research (Lewis and Gale,
1994; Settles, 2009; Gal et al., 2017; Lin and Parikh,
2017) has demonstrated that choosing a batch of
instances with small batch sizes offers a good trade-
off between user interactivity and number of labels
required to create a classifier. In each active learn-
ing iteration, we perform two operations: (i) use a
query strategy to judiciously select a fixed-sized
subset (a batch) of unlabeled instances and send
them to the annotators, and, (ii) train a classifier
using new and previously labeled instances. To
pick the next set of unlabeled instances for annota-
tion, we rank all instances in unlabeled data based
on scores such as margin, entropy, expected loss
reduction, or sub-modular information measures
like mutual information, conditional gain etc., and
select the instances which are most likely to benefit
the classifier.

Imagine using the active learning paradigm to
improve a 3-class classifier with 4 labels: pens,
pencils, erasers, and not-in-k (i.e., the background
class which does not contain pens, pencils, or
erasers). In an industrial setting, annotators of-
ten work backwards from achieving class-level
business-specified accuracy targets, where accu-
racy refers to any measure of a classifier’s ability
to discriminate between classes, e.g., precision,
recall, classification accuracy, false positive rate.
E.g., the task could be to achieve 90% recall at 85%
precision for each class-of-interest. Vanilla active
learning algorithms are sub-optimal for such appli-

*These authors contributed equally to this work
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Figure 1: TAAL computes relative priority weights
for each class taking into account its current es-
timated accuracy (solid flag) and target accuracy
(checkered flag). Here, the expected priority is pen-
cil > pen > eraser.

cations because they ignore business targets. In
other words, they continue to select unlabeled data
that improves the accuracy of a class even if its esti-
mated accuracy exceeds the business targets; this
annotation budget could instead be used to improve
other classes that are yet to meet their targets. To
this end, we propose a framework Target-Aware
Active Learning (TAAL) that can be applied on top
of any active learning strategy to create its target-
aware variant. If the classification task has class-
level business targets defined, TAAL increases the
likelihood of achieving the targets on all classes-of-
interest given a fixed labeling budget, by leveraging
the gap between each class’ target and estimated
accuracy. Note that TAAL will not help achieve
global business targets (e.g. micro-recall) faster
than baseline query strategies.

2. Target-Aware Active Learning

Consider an active learning setup employing an ar-
bitrary query strategy that generates a query Q, i.e.,
a queue of instances to be labeled. We make this
query strategy target-aware under the TAAL frame-
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work shown in Fig. 2. We first quantify the relative
attention each class requires to achieve its accu-
racy targets; this is handled by the Class Priority
Weight Computer (Sec. 2.1). We then use a Class
Priority Aware Query Adapter (Sec. 2.3) to select a
subset of instances from Q and reorder them into a
queue Qp prioritizing classes that require the most
attention. This process necessitates identification
of the subset of classes whose accuracy is likely
to improve if a given instance is labeled. This is
accomplished by the Candidate Labels Generator
(Sec. 2.2). Thus, the TAAL framework can be ap-
plied to an arbitrary query strategy to convert its
output query Q into a target-aware version Qp. The
following sections discuss the three components
of TAAL.

2.1. Class Priority Weight Computer
Let Y = {y1, y2, ..., yk} be the set of classes in a
multi-class classifier. In TAAL, at any active learn-
ing iteration ℓ, a Class Priority Weight Computer
quantifies the ‘priority weights’ (i.e., relative atten-
tion) that each class needs to attain its accuracy
target. We update these class priority weights at
every active learning iteration. Fig. 1 shows an ex-
ample to motivate class priority weights where the
‘pencil’ class gets the highest priority because its
estimated accuracy is farthest away from its target.
For a class yi at iteration ℓ, let ρi,ℓ represent the

d1

d2

d3La
be

lin
g 

Pr
io

rit
y 

Q
ue

ue
 Q d3

d1

d2

Cl
as

s 
Pr

io
rit

y A
wa

re
La

be
lin

g 
Pr

io
rit

y 
Q

ue
ue

 Q
p

Target-Aware Active Learning Framework

Dequeue

Annotator
Candidate 

Labels 
Generator

Query 
Strategy

Class Priority 
Weight 

Computer

Class Priority 
Aware Query 

Adapter

Batch size = 2

Figure 2: TAAL transforms a queue of unlabeled
instances Q (left) generated by an arbitrary query
strategy, into queue Qp (right) by prioritizing classes
based on the relative gaps between their estimated
accuracy and business target. TAAL uses a Class
Priority Weight Computer to quantify the attention
each class needs. Candidate Labels Generator
identifies classes that are likely to see accuracy
improvement if an unlabeled instance is labeled.
Class Priority Aware Query Adapter reorders Q into
Qp by prioritizing instances that are likely to improve
accuracy over classes that need attention. With
a labeling budget of 2 documents, vanilla query
strategies would have surfaced documents d1 and
d2 to the annotator. TAAL prioritizes d3 in Qp as d3
will likely improve the pencil class which requires
the most attention.

target value of an accuracy metric of interest and
ρ̂i,ℓ be its estimated value. Then, any realization of
the Class Priority Weight Computer must generate
a weight wi,ℓ for class yi at iteration ℓ such that

wi,ℓ ∝ max(ρi,ℓ − ρ̂i,ℓ, 0) (1)
If the goal is to decrease a target metric e.g., false

positive rate, it should be expressed as its negative
in Eq. (1) e.g., negative false positive rate. In this
paper, we implement a realization of Class Priority
Weight Computer based on a class-level accuracy
metric ρ such that, at each active learning iteration
ℓ, it computes a priority weight wi,ℓ for class yi as

wi,ℓ =





max(δi,ℓ, 0) if
k∑

j=1

max(δj,ℓ, 0) > 0,

1 otherwise.

(2)

where δi,ℓ = ρi,ℓ − ρ̂i,ℓ, with ρi,ℓ and ρ̂i,ℓ being the
target and estimated values of the accuracy metric
respectively.

2.2. Candidate Labels Generator
The Candidate Labels Generator identifies the sub-
set of classes whose accuracy is likely to improve if
a particular instance from the unlabeled data pool
is labeled. Let Yx be the subset of classes with a
high likelihood of containing the true class of an
unlabeled instance x. We construct Yx using any
information available on x; e.g., it can leverage the
classifier’s scores across classes to identify candi-
date classes. We hypothesize that retraining the
classifier after labeling x is likely to improve its ac-
curacy over all classes in Yx. Any realization of the
Candidate Label Generator should generate a can-
didate labels set Yx for x such that the true class
of x has a high probability of being a member of
Yx, while keeping |Yx| as small as possible. In this
paper we implement a realization of the Candidate
Labels Generator that produces a candidate class
labels set for an input instance x given by

Yx =

{
y ∈ Y

∣∣∣∣
P (y | x)

maxz∈Y P (z | x) ≥ tc

}
(3)

where P (y | x) ∈ [0, 1] is the probability score
assigned to class y by the active learning classifier
given instance x, and tc is a configurable cutoff
threshold. We set tc to 0.5. This means all classes
with score≥ 50% of the maximum score are treated
as candidate class labels for each instance.

2.3. Class Priority Aware Query Adapter
Class Priority Aware Query Adapter reorders the
input queue of unlabeled instances to reflect class
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priority weights. Consider the example in Fig. 2
in which instance d3 has rank 3 in the queue of
instances Q from an active learning query strat-
egy (non-target-aware). One of d3’s candidate la-
bels, Pencil, has the highest priority weight. So,
the Class Priority Aware Query Adapter pushes d3
ahead of d1 and d2 in its reordered output queue
Qp. Our implementation of the Class Priority Aware
Query Adapter is in Algorithm 1. In each active
learning iteration, we start with a ranked queue of
unlabeled instances Q from the underlying query
strategy. Then, we invoke Class Priority Weight
Computer to update priority weights W . Class Pri-
ority Aware Query Adapter starts with sampling a
class yselected from Y with priority weights W as
sampling probability (Line 3). Then it traverses Q
from top to bottom, selecting the first instance d
which has yselected in its candidate labels set (Lines
5 to 16), and enqueues d in Qp if it is not present
in Qp already (Line 8). Finally, it removes class
yselected from the candidate labels set of d so that
instance d is not picked for yselected again (Line 9).
If a class is not a candidate label for any instance
in Q, its priority weight is reset to 0 since it cannot
be prioritized in the current learning iteration. The
process is repeated until |Qp| reaches Nq or no
classes can be prioritized (Lines 2 to 17). The com-
putational complexity of Class Priority Weight Com-
puter (Eq. 2) and Candidate Labels Generator (Eq.
3) is O(k). Hence, the computational complexity of
the Class Priority Aware Query Adapter (Algorithm
1) is O(|Q| · |Qp| · k). In practice, k << |Q| and
|Qp| << |Q|; hence, the overall computational com-
plexity of a TAAL-enabled query strategy is O(|Q|).

3. Experiments

We use pool-based active learning setup (Lewis
and Gale, 1994; Settles, 2009; Gal et al., 2017;
Lin and Parikh, 2017) consisting of a modelM, a
seed set of randomly sampled labeled instances
(xi, yi) ∈ Dseed (|Dseed| = 500) to initializeM in the
first iteration, an unlabeled data pool Dpool, and a
query strategy R. We run active learning over a
series of iterations until a budget of L (L = 6000)
labeled instances. At each iteration ℓ, we acquire
a batch of B (B = 500) new instances from Dpool
governed by R, and re-train model M. We con-
duct experiments on 2 image-based and 2 text-
based datasets (Sec. 3.2) which are fully-labeled
(including “unlabeled” data Dpool) and multi-class.
We use a labeling bot to simulate a human-in-the-
loop active learning setup (Gal et al., 2017; Lin
and Parikh, 2017; Siddhant and Lipton, 2018) us-
ing the fully-labeled datasets. The bot provides
labels for the data instances selected by the query
strategy R. We compare the baseline query strate-
gies listed in Sec. 3.1 against their Target-Aware

Algorithm 1: Class Priority Aware Query
Adapter
Inputs : (i) Queue Q of instances from a

query strategy, (ii) Class priority
weights array W as [w1, w2, ..., wk]
where wj is the priority weight for
class yj from Eq. (1), (iii) No. of
output instances Nq ≤ |Q|

Output
:

Class priority aware queue Qp of

instances.
1 Initialize: (i) Empty queue Qp, (ii) Candidate

labels map F mapping each instance x in
Q to F [x], with F [x]← Yx computed using
Eq. (3).

2 while |Qp| < Nq and max(W ) ̸= 0 do
3 Randomly sample 1 class yselected ∈ Y

per weights W .
4 i← 1
5 while i ≤ |Q| do
6 d← instance at index i in Q
7 if yselected ∈ F [d] then
8 if d /∈ Qp then Qp.enqueue(d) ;
9 F [d]← F [d] \ {yselected}

10 Exit inner while loop.
11 else
12 i← i+ 1
13 if i > |Q| then reset weight for

yselected in W to 0 ;
14 end
15 end
16 end
17 return Qp

(TA-) variants created by applying TAAL on top
of each query strategy. For image datasets we
use ENTROPY, BADGE, CORESET, and SIMILAR
as baseline query strategies because they have
produced SOTA results on several benchmarks
(Citovsky et al., 2021). SIMILAR is an interesting
baseline because it gives high accuracy for rare
classes in the dataset. For product classification
datasets, we use E3G as the baseline query strat-
egy to mimic our internal active learning setup.

3.1. Baseline Active Learning Query
Strategies

We discuss active learning strategies in detail under
related work (section 5). Below we describe the
specific query strategies used in experiments.
ENTROPY (Settles, 2009) sampling queries the la-
bels of instances for which the prediction of the
classifier is maximally uncertain in terms of en-
tropy of confidence scores. It selects a batch
of B instances from Dpool with highest entropy in
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model’s output, where the entropy Hx for each
instance x is measured over say k classes as
−∑k

i=1 P (yi|x) logP (yi|x). BADGE (Ash et al.,
2019a) samples a batch of B instances from Dpool
that are disparate and high magnitude when repre-
sented in a hallucinated gradient space, a strategy
designed to incorporate both predictive uncertainty
and sample diversity into every selected batch.
BADGE uses the k-Means++ seeding algorithm
on {gx : x ∈ Dpool} where gx is the gradient embed-
ding of an instance x using current model weights w.
CORESET (Sener and Savarese, 2017) addresses
the problem of selecting diverse examples in a
batch by posing active learning as coreset selec-
tion, i.e. choosing a set of points such that a model
learned over the selected subset is competitive for
the remaining data points. It samples a batch of B
instances from Dpool by solving the k-center prob-
lem on {zx : x ∈ Dpool}, where zx is the embedding
of an instance x derived from the penultimate layer
of the model. SIMILAR (Kothawade et al., 2021) is
a unified active learning framework that employs dif-
ferent sub-modular information measures, namely,
Submodular Mutual Information, Submodular Con-
ditional Gain, Submodular Conditional Mutual In-
formation as query acquisition functions. SIMILAR
not only works in standard active learning setup
but also easily extends to more realistic settings
such as having class imbalance in the data distri-
bution, and provides the SOTA solution for active
learning. E3G (Slivkins, 2019) (Explore-Exploit-
EGreedy) uses the ϵ-greedy algorithm to choose
between Exploration and Exploitation. The explo-
ration strategy performs k-means clustering-based
stratified random sampling, whereas the exploita-
tion strategy is entropy-based uncertainty sampling.
To form a batch of B instances per active learn-
ing iteration, each instance x ∈ Dpool is chosen
independently by E3G with probability ϵ from the
exploration strategy, and with probability 1− ϵ from
the exploitation strategy. During the early iterations
of active learning, E3G focuses on the exploration
strategy, whereas later it emphasizes the exploita-
tion strategy. It does this by varying ϵ across iter-
ations following f(Nℓ) = max(e−γNℓ , ϵmin), where
γ is the decay rate, ϵmin is the minimum probability
of choosing an instance per exploration strategy,
and Nℓ is the total number of labeled instances at
iteration ℓ.

3.2. Datasets

We use 2 public image-based datasets, CIFAR-10
(Krizhevsky et al., 2009) and SVHN (Netzer et al.,
2011). CIFAR-10 has 60k images uniformly across
10 classes. The training subset of the dataset has
50k images, and the remaining 10k images form
the test set. SVHN has images spread across 10

classes, with 73257 images for training, and 26032
images for testing. To evaluate TAAL, we induce
class imbalance and form a long-tailed distribu-
tion over class sizes (see Dc in Table 2). For both
datasets, we carve out a 20% class-stratified ran-
dom subset from the imbalanced training set to cre-
ate a held-out validation set. We also use 2 propri-
etary fully-labeled text-based product classification
datasets HS and FEE derived from 2 different e-
commerce product taxonomies. HS has 9 classes-
of-interest and 1.15M products, while FEE has 7
classes-of-interest and 740k products. Additionally,
both datasets have one special class called ‘not-in-
k’ representing instances in the dataset that do not
belong to any classes-of-interest. Both datasets
have an intrinsic long-tailed distribution in terms of
class sizes (see Dc in Table 2).

3.3. Active Learning Classifier
We use a common training procedure and hyper-
parameters to ensure that all query strategies are
given fair treatment across all experiments. For
image classification datasets, we follow the setup
described in (Kothawade et al., 2021). We use
ResNet-18 (He et al., 2016) as our classifier M
and train it using a stochastic gradient descent op-
timizer with an initial learning rate of 0.01 and mo-
mentum of 0.9. During inference, we take the class
corresponding to the highest score from the final
layer of the trained model as the prediction for an
instance. For product classification datasets, we
choose fastText (Joulin et al., 2016) as our active
learning classifierM since it provides an attractive
trade-off between accuracy and latency. We tune
thresholds for each class to achieve the desired
precision target of 90% using out-of-fold prediction
scores in a one vs. rest setting (number of folds
is 10). During inference, we treat an instance as
member of a class if its output class probability is
higher than its corresponding threshold.

3.4. Accuracy Estimation During Active
Learning

For image datasets, we compute class priority
weights using class-level F1 score as the accuracy
metric in Eq. (2), with the per-class F1 score target
being 90%. At every active learning iteration, we
estimate class-level F1 score on the held-out valida-
tion set which is an unbiased sample from the entire
dataset. For product classification datasets, we
compute class priority weights using class-level
‘recall at precision’ (R@P) as the accuracy met-
ric in Eq. (2), with the per-class R@P target being
90R@90P. At every active learning iteration, we es-
timate class-level R@P using out-of-fold prediction
scores over exploration-sourced labeled data from
the E3G query strategy. This provides an unbiased
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performance estimate since it avoids the sampling
bias induced by the exploitation strategy. We also
set the priority weight for the ‘not-in-k’ class to 0
for all active learning iterations because our use
case necessitates improving accuracy over the k
classes-of-interest only.
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Figure 3: Progression of macro-recall across all
classes and tail classes for E3G and its target-
aware variant TA-E3G on HS and FEE datasets.
Axes’ labels are identical for both plots. Metrics
are averaged across 3 experiments, with error bars
showing min and max values. Legends report area
under each macro-recall curve (AUC) summariz-
ing macro-recall across label counts. TA-E3G has
greater AUC for all-class macro-recall and tail-class
macro-recall than E3G.

3.5. Metrics for Comparison of Query
Strategies

For experiments on image datasets, we report
class-level F1 on a held-out test set to replicate
the setup in (Kothawade et al., 2021) to compare
each query strategy against its target-aware vari-
ant. For experiments on product classification
datasets, we report class-level recall computed on
the full dataset to mimic our internal product clas-
sification setup where customers want to achieve
target accuracy for each class-of-interest on the
entire domain. We summarize class-level metrics

by reporting macro-recall and macro-F1 score. We
choose macro over micro averaging because ac-
curacy of each class is equally important for our
use-case.

4. Results

Figs. 3 and 4 show the progression of macro-F1

and macro-recall with increasing number of train-
ing examples over product classification and image
classification datasets, respectively. Plot legends
report Area Under the Curve (AUC) for each query
strategy, summarizing its accuracy metric values
across all label counts (higher the better). Aver-
aged across all 10 dataset + query strategy com-
binations, TAAL increases AUC by 1.6 percentage
points (from 63.3% to 64.9%). For 8 out of the 10
dataset + query strategy combinations, we see an
increase in AUC with TAAL, indicating that TAAL
performs better than the baseline strategies mea-
sured across all label counts. For SVHN dataset,
the target-aware variants of BADGE and ENTROPY
have the same AUC as their baseline strategies
indicating that TAAL offers no improvement. We
hypothesize that this is because SVHN is easy to
classify as we get high (> 0.8) macro-F1 scores
across tail classes with baseline query strategies.
Impact on tail classes: Tail classes are the small-
est classes-of-interest comprising ≤ 5% of the full
dataset. Achieving business targets on tail classes
is important because they represent rare, but strate-
gically important classes-of-interest. Averaged
across all 10 dataset + query strategy combina-
tions, TAAL increases tail-class AUC by 4.2 per-
centage points (from 45.4% to 49.6%), explained
by a corresponding increase in the proportion of
tail class labels by 11.3 percentage points (from
14.2% to 25.5%) at 6k labels. Tail classes have
a lower likelihood of getting labeled compared to
head classes. With fewer training instances, the
classifier performs poorly over them. This is seen
in Figs. 3 and 4, where tail-class AUC is lower than
all-class AUC. As labeling progresses, all baseline
strategies except SIMILAR continue to focus on all
classes equally. In contrast, TAAL assigns greater
importance to tail classes through weights gener-
ated by Class Priority Weight Computer (Sec. 2.1).
As depicted in Fig. 2, TAAL then prioritizes exam-
ples for labeling deemed optimal per the underlying
query strategy, but at the same time relatively more
likely to benefit tail classes. This is reflected in
Table 2 where the class distribution of training in-
stances Lc is less skewed for TAAL compared to
the corresponding baseline strategies. E.g., at 6k
labels, HS-4 (a tail class) constitutes 6.2% of total
labels with TA-E3G vs. 1.8% with E3G, an increase
by a factor of 3.4.
Impact on head classes: Head classes are the
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Figure 4: Progression of macro-F1 across all classes and tail classes for 4 query strategies and their
target-aware variants (TA-*) on CIFAR-10 test set (top) and SVHN test set (bottom). Axes’ labels are
identical for all plots. Legends report area under each macro-F1 curve (AUC) summarizing macro-F1

across all label counts. Each query strategy’s target-aware variant provides greater or similar AUC for
all-class macro-F1 and greater AUC for tail-class macro-F1.

Table 1: Area under the accuracy metric curve (AUC) for all dataset + query strategy combinations
at 6k labels. The accuracy metric summarized by AUC is F1 score for image datasets and recall for
product classification datasets. We report AUC for each query strategy (‘Baseline’ columns) against its
target-aware variant (‘TAAL’ columns) over all classes, head classes, and tail classes.

Dataset Query
Strategy

Baseline AUC (%) TAAL AUC (%)
All Head Tail All Head Tail

SVHN
CORESET 75.25 82.43 64.48 76.30 81.94 67.86
SIMILAR 73.87 79.99 64.68 74.61 80.40 65.92

ENTROPY 75.60 82.34 65.49 76.16 81.76 67.78
BADGE 76.48 83.49 65.96 76.39 82.27 67.57

CIFAR-10
CORESET 58.35 72.16 37.63 60.84 72.50 43.34
SIMILAR 59.31 70.62 42.34 60.38 71.40 43.84

ENTROPY 59.54 73.29 38.91 61.41 73.07 43.93
BADGE 59.36 74.13 37.22 61.91 73.19 44.98

FEE E3G 53.03 76.35 21.95 54.64 75.63 26.65
HS E3G 42.06 75.64 15.19 46.69 74.54 24.40

largest classes-of-interest comprising ≥ 95% of the
full dataset. Averaged over all 10 dataset + query
strategy combinations, TAAL reduces the propor-
tion of head class labels by 11.3 percentage points
(from 84.5% to 73.2%, Table 2) at 6k labels, while
only reducing head-class AUC by 0.4 percentage
points (from 77.0% to 76.7%, Table 1).

Comparison of SIMILAR and TA-SIMILAR: Ex-
periments show that TA-SIMILAR gives only a mi-
nor improvement over SIMILAR (+0.7 percentage
points all-class AUC, +1.2 percentage points tail-
class AUC). This is expected because SIMILAR is
designed to focus on tail classes, and the same
tail classes also get prioritized by TAAL since they

lag in class-level accuracy during active learning.
SIMILAR is different from TAAL in that (a) SIMILAR
needs specification of the explicit set of rare classes
in the dataset (unlike TAAL), which is not always
known a priori and, (b) SIMILAR, like any other
non-TAAL query strategy, will continue to improve
the accuracy of a class even if it has already met
its target, thus consuming unnecessary manual
annotations.

5. RELATED WORK

We refer readers to survey papers (Settles, 2009;
Ren et al., 2020) for a comprehensive overview of
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Table 2: Comparison of relative size of each class in the full dataset (Dc) and in labeled data (Lc) at 6k
labels. For Lc, we compare each baseline active learning strategy against its target-aware variant (‘TA-’).
Asterisk indicates tail classes.

Text-based product taxonomy dataset FEE (Data represented in %)
Class F-0 F-2 F-3 F-1 F-5* F-4* F-6* F-not-in-k - -

Dc 50.6 30.8 10.7 6.4 0.6 0.5 0.3 0.12 - -
E3G Lc 34.3 31.1 13.3 10.6 3.6 2.3 2.2 2.5 - -

TA-E3G Lc 28.5 21.5 7.7 4.9 9.3 8.8 17.8 1.4 - -
Text-based product taxonomy dataset HS (Data represented in %)

Class HS-2 HS-3 HS-8 HS-7 HS-6* HS-0* HS-5* HS-1* HS-4* HS-not-in-k
Dc 41.9 25.8 14.7 11.1 2.4 0.5 0.4 0.4 0.3 2.6

E3G Lc 34.1 16.4 13.4 11.5 3.3 1.8 4.5 2.4 1.8 10.8
TA-E3G Lc 32.9 14.9 10.2 7.9 2.8 2.6 5.7 5.0 6.2 11.9

Image-based dataset SVHN (Data represented in %)
Class S-1 S-3 S-5 S-6 S-7 S-0 S-2* S-4* S-8* S-9*

Dc 28.9 17.7 14.4 12.0 11.7 10.3 1.3 1.3 1.3 1.3
SIMILAR Lc 16.6 17.1 7.1 10.4 12.5 6.3 7.6 7.6 7.4 7.6

TA-SIMILAR Lc 13.8 17.2 10.4 12.3 11.5 4.7 7.6 7.6 7.4 7.6
ENTROPY Lc 19.4 20.6 13.2 14.0 11.1 8.7 3.2 3.5 3.1 3.3

TA-ENTROPY Lc 14.0 17.1 11.3 11.3 8.3 7.0 7.8 7.7 7.7 7.9
BADGE Lc 19.7 19.1 14.5 13.9 11.1 9.0 3.1 3.3 3.3 3.2

TA-BADGE Lc 15.0 16.9 11.1 11.2 8.2 6.9 7.7 7.7 7.6 7.8
CORESET Lc 22.9 18.1 12.7 12.4 10.9 9.4 3.5 4.0 2.6 3.5

TA-CORESET Lc 17.2 15.7 9.0 10.8 8.8 7.8 7.7 7.7 7.5 7.8
Image-based dataset CIFAR-10 (Data represented in %)

Class C-0 C-1 C-3 C-5 C-6 C-7 C-2 C-4* C-8* C-9*
Dc 15.8 15.8 15.8 15.8 15.8 15.8 1.3 1.3 1.3 1.3

SIMILAR Lc 16.2 17.2 10.9 10.4 10.2 18.0 3.7 4.2 4.8 4.6
TA-SIMILAR Lc 13.3 8.7 20.4 18.4 9.6 11.0 4.5 4.6 4.9 4.7

ENTROPY Lc 13.1 9.2 21.5 17.2 12.8 14.6 3.4 3.4 2.3 2.5
TA-ENTROPY Lc 13.8 8.2 20.2 15.7 10.9 12.5 4.5 4.5 4.9 4.7

BADGE Lc 14.2 9.3 21.2 18.3 13.0 13.5 2.9 2.7 2.6 2.5
TA-BADGE Lc 13.3 7.9 20.6 16.6 10.5 12.6 4.5 4.5 4.9 4.7
CORESET Lc 19.8 16.8 15.2 12.6 11.2 13.6 2.3 2.5 3.2 2.9

TA-CORESET Lc 13.5 8.8 20.2 16.4 10.1 12.9 4.3 4.4 4.8 4.7

active learning. In this section, we discuss the core
ideas we have borrowed from prior-art in Active
Learning.

Active learning query strategies determine
what unlabeled data should be annotated next.
The most popular query strategies are uncertainty-
based (Settles, 2009; Holub et al., 2008; Beluch
et al., 2018; Wu et al., 2020; Lewis and Gale,
1994), diversity-based (Bilgic and Getoor, 2009;
Guo, 2010; Dasgupta and Hsu, 2008; Sener and
Savarese, 2017; Jiang and Qing-Yu, 2015), and
expected-model-change based (Freytag et al.,
2014; Roy and Mccallum, 2001). Sec. 3.1 de-
scribes the specific query strategies we used in
experiments.

We use batch-mode active learning in this paper.
Previous research (Lewis and Gale, 1994; Settles,
2009; Gal et al., 2017; Lin and Parikh, 2017) has
demonstrated that choosing a batch of instances
with small batch sizes offers a good trade-off be-
tween user interactivity and number of labels re-
quired to create a classifier.

Hybrid query strategies (Ash et al., 2019b; Shui

et al., 2019) deal with controlling the classical explo-
ration vs. exploitation trade-off. Exploitation aims
to find data with highest uncertainty that is likely
to help the model learn fast (Bloodgood and Vijay-
Shanker, 2009), and exploration aims to find data
that is representative of the unlabeled data. One of
our baseline strategies E3G (Sec. 3.1)) falls under
this umbrella of hybrid approaches.

Stopping the active learning loop involves
defining exit criteria that help annotators decide
when to stop labeling. The most common stop-
ping method is to use a predefined criterion (Budd
et al., 2019; Liu et al., 2016; Schröder and Niekler,
2020) such as maximum number of active learn-
ing iterations, maximum annotation budget/time, or
minimum classification accuracy to be achieved.
Recent papers on stopping criteria have argued for
checking if predictions on unlabeled data have sta-
bilized (Bloodgood and Vijay-Shanker, 2014; Vla-
chos, 2008; Budd et al., 2019; Zhu et al., 2010).
We use maximum labeling budget as the sole stop-
ping criterion in this paper for a fair comparison of
baseline query strategies and their target-aware
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variants.

6. Conclusions and Future Work

We introduce a framework called Target-Aware Ac-
tive Learning (TAAL) that converts any arbitrary
active learning query strategy into its target-aware
variant by leveraging the gap between each class’
current estimated accuracy and its correspond-
ing business target. We perform extensive ex-
periments comparing 5 baseline query strategies
and their target-aware variants on 2 image clas-
sification and 2 text-based product classification
datasets. Our results indicate that TAAL improves
the likelihood of achieving business targets on 8
out of 10 dataset + query strategy combinations,
and matches the baseline performance of BADGE
and ENTROPY strategies on the SVHN dataset. In
addition, the run-time complexity of TAAL scales lin-
early with the size of the input query, making it prac-
tical for large-scale active learning. In the future,
we plan to test TAAL with classifiers like PECOS
(Yu et al., 2022) which further improve the accu-
racy of tail classes, especially for high-cardinality
classification problems.
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Abstract 
This paper proposes a novel method to improve the accuracy of product search in e-commerce by utilizing a cluster 
language model. The method aims to address the limitations of the bi-encoder architecture while maintaining a 
minimal additional training burden. The approach involves labeling top products for each query, generating 
semantically similar query clusters using the K-Means clustering algorithm, and fine-tuning a global language model 
into cluster language models on individual clusters. The parameters of each cluster language model are fine-tuned 
to learn local manifolds in the feature space efficiently, capturing the nuances of various query types within each 
cluster. The inference is performed by assigning a new query to its respective cluster and utilizing the corresponding 
cluster language model for retrieval. The proposed method results in more accurate and personalized retrieval 
results, offering a superior alternative to the popular bi-encoder based retrieval models in semantic search. 

Keywords: Large Language Models, Transformers, Natural Language Processing 

1. Introduction 

E-commerce platforms have experienced 
tremendous growth in recent years, with millions 
of users browsing and purchasing products online 
every day. One of the critical factors that 
contribute to a successful e-commerce platform is 
the ability to effectively retrieve and rank products 
based on user queries. A robust retrieval and 
ranking system should be able to understand the 
underlying semantics of queries and provide 
personalized results that meet the specific needs 
of individual users. 

    Traditional retrieval models, such as the Vector 
Space Model and Latent Semantic Analysis, have 
been effective in capturing keyword-based 
relevance between queries and items. However, 
they often struggle with understanding the 
nuances of natural language and user intent. 
Recent advancements in natural language 
processing and deep learning have led to the 
development of powerful pre-trained language 
models, such as BERT, GPT, and RoBERTa. 
These models have demonstrated impressive 
performance in various tasks, including e-
commerce retrieval and ranking, by capturing the 
semantic relationships between queries and 
items. 

Despite the successes of pre-trained language 
models, there is still room for improvement, 
particularly in understanding the diverse nature of 
user queries and providing tailored retrieval 
results. One promising direction is to incorporate 
query clustering into the retrieval and ranking 
process, leveraging the inherent structure of the 
query space to better adapt the model to different 
query types. Query clustering can help uncover 
underlying patterns in user search behavior and 
create more fine-grained representations of user  

 

intent, ultimately leading to improved retrieval 
performance. 

    In this paper, we propose a cluster-based 

language model for e-commerce retrieval and 

ranking that builds upon the strengths of pre-

trained language models and query clustering. Our 

method (Figure 2) first fine-tunes a pre-trained 

language model, on query-product pairs using a bi-

encoder approach, forming a baseline model 

(Figure 1). We then cluster the training queries into 

k clusters and refine the baseline model for each 

query cluster using a novel labeling and refinement 

strategy. 

    The key idea behind our approach is that the 

baseline model, while effective in capturing general 

semantic relationships, may not be sensitive to the 

specific characteristics of different query clusters. 

By refining the model for each cluster, we can 

better capture the nuances of various query types 

and provide more accurate and personalized 

retrieval results. 

    In summary, our cluster-based language 

model for e-commerce retrieval and ranking 

leverages the power of pre-trained language 

models and query clustering to deliver more 

accurate and personalized product retrieval 

results. By adapting the model to different query 

types, we can address the diverse needs of users 

in large-scale e-commerce environments and 

improve overall platform performance. 

2. Related Work 

The field of e-commerce retrieval and ranking has 

seen significant advancements over the years, with 

145



various techniques being proposed and 

developed. Our proposed cluster language model 

builds upon the successes of these existing 

techniques and introduces a novel approach to 

improve e-commerce retrieval performance. The 

most notable related work includes the following. 

    Learning to Rank: Learning to Rank (LTR) 

models are supervised machine learning 

techniques designed to optimize the ranking of 

items based on relevance. These approaches 

include pointwise, pairwise, and listwise ranking 

methods. Our proposed method differs from 

traditional LTR models by utilizing pre-trained 

language models and clustering queries to better 

capture the semantic relationships between 

queries and items (Burges, 2010; Freund et al., 

2003). 

   Vector Space Models: Traditional information 

retrieval models, such as the Vector Space Model 

(VSM), utilize techniques like TF-IDF and cosine 

similarity to rank documents based on their 

relevance to a given query. Our approach 

enhances this concept by leveraging pre-trained 

language models and query clustering to better 

represent the semantic space and improve ranking 

performance (Salton et al., 1975). 

   Latent Semantic Analysis: Latent Semantic 

Analysis (LSA) captures the semantic relationships 

between queries and items for improved retrieval 

and ranking. Our method extends this idea by 

incorporating pre-trained language models and 

query clustering to further refine the semantic 

understanding of queries and items, leading to 

more accurate retrieval results (Deerwester et al., 

1990). 

    Neural IR Models: Deep learning-based 

models, such as Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), 

have been applied to information retrieval tasks for 

text and image-based representations of items. 

Our proposed model takes advantage of the 

powerful representation capabilities of pre-trained 

language models and query clustering to improve 

the retrieval and ranking performance for e-

commerce (Huang et al., 2013; Palangi et al., 

2015). 

    Pre-trained Language Models: The use of 

pre-trained language models, such as BERT, GPT, 

and RoBERTa, has gained popularity in recent 

years for various natural language processing 

tasks, including e-commerce retrieval and ranking. 

Our approach differs from existing pre-trained 

language model applications by introducing query 

clustering and model refinement for each query 

cluster, which enhances the model's ability to 

capture the nuances of different query types and 

provide more personalized retrieval results (Devlin 

et al., 2018; Radford et al., 2018; Liu et al., 2019). 

    By combining the strengths of pre-trained 

language models, query clustering, and model 

refinement, our proposed cluster language model 

addresses the challenges of delivering accurate 

and personalized product retrieval results in large-

scale e-commerce environments. 

3. Methodology 

In this section, we describe the technical details of 

our baseline model which is one of the top in-house 

models in terms of recall, NDCG (Wang et al., 

2013), and execution time. Also, we present the 

proposed method that leverages the retrieval of the 

fine-tuned baseline model. 

3.1 Sentence Transformer Architecture    

The baseline model is essentially a sentence 
transformer, (Reimers & Gurevych, 2019) that is 
based on a bi-encoder architecture that contains 
two DistilBERT models (SanhSanh et al., 2019). 
These models are identical and share the same 
weights. The DistilBERT is a transformer-based 
model with 6 layers of self-attention and feed-
forward neural networks. Each attention layer 
represent different aspects of the input in different 
ways. In the context of sentence embeddings, the 
DistilBERT takes in a sentence as input and 
generates a (1, 768) size vector representation of 
that sentence. This vector representation is the 
sentence embedding used to measure the 
semantic similarity between two sentences or to 
classify a sentence into one of several categories.   

 

 
Figure 1: (Left) The architecture of the baseline 
model for training. (Right) The architecture of the 
baseline model for inference. 
 
Figure 1 presents our baseline model. It 
processes query (q) and product (p) sentences as 
pairs during training and testing. The baseline  
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model adds a mean pooling operation to the 
output of the [CLS] token of the DistilBERT. In 
training, the embeddings of q and p denoted by Zq  
and Zp respectively, are used to optimize the 
supervised contrastive loss (Hadsell et al., 2006). 
In inference, the cosine similarity between Zq and 
Zp for different p is computed and based on that 
value, each p can be ranked with respect to q.  

3.1.1 Pretraining the Baseline Model 

We selected a pretrained sentence transformer 
model: MS MARCO-DistilBERT-Base-v2 from 
Hugging Face (Hugging Face Transformers 
Library, 2021). This model is built on a variant of 
the DistilBERT model, which was pre-trained 
using a large corpus of text data including the MS 
MARCO dataset (Nguyen et al., 2016; Wolf et al., 
2020). The pre-training was done using masked 
language modeling (MLM) and next-sentence 
prediction (NSP) tasks.  The MS MARCO-
DistilBERT-Base-v2 model was further fine-tuned 
on the MS MARCO Passage Ranking task 
(Hugging Face Transformers Library, 2021), 
which is a large-scale. 

3.1.2 Fine Tuning the Baseline Model 

The baseline sentence transformer model is 

fine-tuned on query and product data in an e-

commerce application. This task is performed by 

using a contrastive learning strategy (Hadsell et al., 

2006).  Let the training query set and the product 

set be Q and P respectively. For q ∊ Q, and p, n ∊ 

P, the input (q, p) is labeled with 1, and the input 

(q, n) is labeled with 0 considering that p is a 

positive sentence and n is a negative sentence 

(Hadsell et al., 2006). The goal of contrastive 

learning is to find parameters W of a family of 

functions G, to map a collection of high-

dimensional inputs onto a low-dimensional 

manifold. For x = {p, n}, this mapping is such that 

the Euclidean distance between points on the 

manifold, given by: 𝐷𝑤(𝑍𝑞 , 𝑍𝑥) = ‖𝐺𝑤(𝑍𝑞) −

𝐺𝑤(𝑍𝑥)‖
2
closely approximates the semantic  

 

similarity of the inputs in the input space by 

minimizing the following objective function (Hadsell 

et al., 2006). 
 

𝐿 = (1 − 𝑌)
1

2
𝐷𝑊

2 + 𝑌
1

2
{𝑚𝑎𝑥(0, 𝑚 − 𝐷𝑊)}2           (1) 

 
Where, Y = {0, 1}, and m > 0 is a margin.  The fine-

tuned baseline model can be used for inference. 

For our e-commerce use case, the retrieval set of 

interest is limited to the first 100 products since a 

typical customer is less likely to explore the search 

result beyond this limit. This set is known as the 

Top Product Set for the given query q and is 

denoted by Pq. Even though the baseline method 

can search for products with a competitive 

recall@24 on unseen queries, its performance at 

smaller retrieval sets is observed to be relatively 

weak. 

3.2 The Proposed Method 

Although the bi-encoder architecture is 
considered fast, its accuracy is often 
compromised. This is an inherent drawback of the 
baseline model. The intention of the proposed 
method is to come up with a solution and enhance 
the product search up to @24 with a minimum of 
additional training. Thus, it provides an alternative 
approach to the popular bi-encoder and cross-
encoder combination (Rosa et al., 2022; Ortiz-
Barajas et al., 2022) in semantic search. 

3.2.1 Labeling Top Products for Each 
Query 

The rationale behind this step is the following 
observation: even though our baseline model is 
effective in capturing general semantic 
relationships, it may not be sensitive to the 
specific characteristics of different query clusters. 
To mitigate this problem, we introduce a novel 
labeling strategy for the elements of the Top 
Product Set and produce a new training dataset 
per query. This dataset will be used to train the 
corresponding cluster language model, 

Figure 2:The architecture of the proposed Cluster Language Model for training. 
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depending on the query cluster where the training 
query is located. For a given query q, the Top 
Product Set can be presented as Pq = {p1, p2, …, 
p99}. In an ideal retrieval, the order of the elements 
of the Top Product Set is such that all the 
purchased products should appear as added-to-
cart products.   

However, in real retrievals, some of the 
purchased products are often seen to be forced 
back by unpurchased (impressed or added-to-
cart) products due to the extreme similarities 
between them. To create the new training dataset 
for the corresponding cluster language model, we 
pair each query q with some elements of its Top 
Product Set Pq and label them using the following 
rule. 

        Let the query q be an arbitrary query; power 

wash cleaner, and identify the last purchased 

product for q in its Pq. Let this last purchased 

product be pk. Now, for all i < k, we label query-

product pairs (q, pi) with 0 if pi is not a purchased 

product. Also, we label all query-product pairs (q, 

pi) with 1 if pi is a purchased product, as shown in 

Table 1. The above relabeling helps the baseline 

model specifically suppress the unpurchased 

products that are more similar to the purchased 

products. 

    According to Table 1, a given product is 

identified by using its PRODID which is a unique 

identifier. The attribute ‘Type’ is used only to 

indicate whether the product is purchased (P) or 

unpurchased (U). The unlabeled query-product 

pairs are discarded. 

3.2.2 Labe Labeling Top Products for Each 
Query 

The training of the proposed cluster language 
model comprises two phases as shown in Figure 
2. In the first phase, we split the queries into N 
clusters using K-Means clustering algorithm. For 
this task, the K-Means algorithm is trained on the 
embedding Zq for all q ∈ Q by using the baseline 
model for inference (without computing cosine 
similarity). 

Table 1:  The proposed training dataset of the 
cluster language model for a selected query. 

This process generates clusters of queries that 
are more semantically similar. Let the j th cluster 
of Q be denoted by Qj, where j is known as the 
cluster ID. Then in each cluster, we store only the 
actual queries. The value of N should not be either 
very small or very large and is determined by 
investigating the performance of clustering. In the 
ideal case, N results in query clusters in which the 
within-cluster variance is much less compared to 
the between-cluster variance. 

3.2.3 Training Cluster Language Model on 
Individual Clusters 

The second phase of training the proposed 

cluster language model is implemented recursively 

on each cluster. This process is presented by the 

workflow illustrated for the query cluster QN in 

Figure 2, where for each query q, we first rank the 

product embeddings with respect to the query 

embedding and obtain the Top Product Set Pq for 

using the baseline model for inference. Then we 

label the top products as discussed to generate a 

new training dataset for each query as shown in 

Table 1. For all the queries in the given cluster, we 

fine tune the baseline model using the above mini 

datasets and the optimization presented in Chapter 

3.1 to generate the Cluster LM – N. After the 

second phase is completed for all the clusters, the 

collection of Cluster LM – k, where 0 ≤ k ≤ N known 

as the Cluster Language Model is stored in a model 

registry. 

    Since the baseline model parameters have 

been generally tuned for all queries and products, 

the proposed cluster-based fine tuning helps the 

model parameters learn local manifolds in the 

feature space efficiently. Therefore, the clustered 

queries help better capture the nuances of various 

query types within that cluster. As a result, the 

relevance of the retrieved products will be 

improved. 

3.2.4 Inference Using Cluster Language 
Model 

In inference, a new query is assigned to the 
respective cluster by the trained K-Means 
algorithm. Thus, receiving the cluster ID for the 
new query r, we can select the corresponding 
Cluster LM from the model registry for inference. 
First, the new query r and the product set P are 
used to generate the Top Product Set Pr as shown 
in the inference pipeline in Figure 3. Then we input 
Pr (completely) to the inference architecture of the 
selected Cluster LM to generate a Refined Top 
Product Set Pr’. 

In general, the Refined Top Product Set is a better 
retrieval than the Top Product Set for new queries 
of each cluster, providing more accurate and 
personalized retrieval results. 

 

Rank Query Product Type Label 

0 power wash cleaner P42710 P 1 

1 power wash cleaner P43322 U 0 

2 power wash cleaner P51270 U 0 

… … …  … 

k power wash cleaner P52993 P 1 

… … …  … 

99 power wash cleaner P58671 U na 
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4. Experiments 

In this section, we introduce our datasets, data 

preprocessing, evaluation process, and present 

results to demonstrate the impact of the proposed 

method in production. 

4.1 Datasets 

We used the same product catalog for training and 

validation of both the baseline and the proposed 

methods. This dataset consists of approximately 

1M unique products. Each product contains only 

the following attributes. 

• OMSID: the unique product identification 

number 

• Title: the product name 

• Brand: the product brand 

• ColorFinish: the overall color of the product 

• Leaf: the category of the first level of the  

hierarchical taxonomy  

Figure 4: Calinski Harabasz Score Elbow for K-

Means Clustering. 

An example of a product sentence is: P52993 

electric pressure washer sun joe green pressure 

washer. For the training and validation of the 

baseline and the proposed methods, we used the 

same query sets. The queries are made of refined 

customer search phrases that are free of typos. For 

the training and validation, we used about 15.4M 

unique queries and 24K unique queries 

respectively. 

4.2 Experiment Settings and 
Preprocessing 

All experiments and preprocessing are conducted 

on the Google Cloud Platform using NVIDIA A100 

GPU using Python 3 and PyTorch 1.11. Major 

libraries used: SentenceTrandformer (Thakur et 

al., 2020) from Hugging Face and 

MiniBatchKMeans from scikit-learn (Sculley, 2010). 

The training dataset consists of roughly 60M query-

product pairs. Each query is paired with a relevant 

purchased product, impressed, or added-to-cart 

product. The max token length is 40. The training 

batch size is 256. The number of epochs used for 

the baseline model and the Cluster Language 

Model: 15 and 5 respectively. 

    To train the proposed method, the training 

queries are clustered by using K-Means clustering. 

According to our initial experiments based on the 

training query set, we observed that the Cluster LM 

– k for 0 ≤ k ≤ N, consistently fails to outperform the 

baseline model on the respective validation queries 

if the size of Cluster Qk is about 1M or more. 

Although the query clusters of that scale are hard 

to describe based on their contents, this 

observation was notable despite different cluster 

members. Thus, we can safely assume that the 

size of any query cluster should be much less than 

1M. 

For our experiments, we satisfy the above 

condition by setting N = 29 resulting in 30 clusters 

with a mean cluster size of 513K with a standard 

deviation of 180K. 

However, a large number of clusters such as N = 

100 could lead to memory-related issues when 

deploying the proposed model in the cloud. Also, it 

could lower the overall performance of the cluster 

language model as many smaller clusters may 

contain quite similar queries. This reduces the 

probability that a random query is assigned to the 

correct Cluster LM – k for 0 ≤ k ≤ N during the 

inference. Figure 4 shows the Calinski Harabasz 

Figure 3: The inference pipeline of the proposed Cluster Language Model. 
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(Caliński & Harabasz, 1974) Score Elbow for K-

Means Clustering and according to which the 

elbow occurs when the number of clusters is 2 (k = 

3). Thus, a larger number of clusters greater would 

produce weaker clusters of queries. 

4.3 Evaluation Process 

Our evaluation process is conducted to measure 

the following two tasks. 

Matching: the intention of this task is to retrieve all 

the relevant purchased products for a given query. 

We use recall to measure matching at different 

retrieval thresholds such as 1, 2, 4, 8, 12, 24, and 

100. 

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =
# 𝑜𝑓 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 @𝑘

min (𝑘,𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠)
        (2) 

Ranking: the intention of this task is to order the 

retrieved products by their relevance. We use 

Normalized Discounted Cumulative Gain (NDCG) 

(Wang et al., 2013) to measure ranking at the 

retrieval thresholds mentioned above. We used 1 

to denote a product if it is purchased and 0 to 

denote the product otherwise and applied the 

following definitions. 

                       𝑁𝐷𝐶𝐺@𝑘 =
𝐷𝐶𝐺@𝑘

𝐼𝐷𝐶𝐺@𝑘
                               (3) 

Where𝐷𝐶𝐺@𝑘 = ∑ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑘/𝑙𝑜𝑔2(𝑘 + 1)𝑘
𝑖=1 , and 

IDCG@k is the Ideal Discounted Cumulative Gain 

at k. 

4.4 Results 

Our experiment were conducted to evaluate the 
effectiveness of the baseline model and the 
proposed Cluster Language Model in retrieving 
relevant purchased products from our product 
catalog. The overall performance of both models 
in matching and ranking is presented in Table 2. 
These results show that the Cluster Language 
Model has a significantly higher recall rate than 
that of the baseline model up to the retrieval  

 

Figure 5: The cluster-level performance of the baseline 
model (blue) and the Cluster Language Model (orange) 
in matching, measured for Recall@24. 

Table 2:  The overall performance of baseline 
model and Cluster Language Model. 

threshold@8. At higher thresholds, both models 
have quite similar matching performances. 
However, in ranking, the Cluster Language Model 
has a significantly higher recall rate than that of 
the baseline model up to the retrieval 
threshold@8. At higher thresholds, both models 
have quite similar matching performances. 
However, in ranking, the Cluster Language Model 
demonstrates a great improvement at every 
retrieval threshold.  

The retrieval threshold@24 is considered to be a 
benchmark for our product search tasks. We 
investigated the cluster-level performance of the 
above two models and presented them in Figure 
5. Also, we identified seven clusters in which the 
difference between the performance of the two 
models in Recall@24 is greater than 2%. Out of 
these cases, in four cases, the Cluster Language      
Model leads as shown in Table 3 and in the other 
three cases, the baseline model leads as shown 
in Table 4. 

         For each cluster (denoted by ID), Table 3 

presents the percentage of training queries used in 

each cluster. It also provides the frequency (as a 

percentage) at which the purchased products of 

the testing dataset appear in the training dataset. 

         Generally, we can expect this measure to be 

higher for the clusters in which the proposed 

method performs well during testing. The rationale 

behind this idea is that the language models tend 

to bias toward the majority of data (Wolfe & 

Caliskan, 2021). The mean L2 distance shown in 

Table 3 measures how far a given cluster member 

is from the cluster center on average. Thus, the 

lower mean L2 distance implies a denser cluster. 

Table 4 presents a similar analysis for the clusters 

in which the baseline model outperforms the 

proposed method. 

Figure 6 illustrates the relative L2 distance 

between cluster centers as a heatmap. According 

to this plot, the centers of clusters 3, 16, and 17 are 

located relatively further away from the rest of the 

cluster centers. Conversely, the centers of clusters 

Retrieval 

Threshold 

Recall NDCG 

Baseline 

Model 

Cluster 

LM 

Baseline 

Model 

Cluster 

LM 

@1 47.4 53.9 48.2 54.8 

@2 52.6 56.7 51.6 56.7 

@4 61.8 63.6 56.3 60.2 

@8 73.1 73.2 61.1 64.1 

@12 79.3 78.9 64.8 67.5 

@24 87.9 87.9 66.2 69.0 

@100 96.7 96.7 68.4 71.2 
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10, 15, and 19 are much close to the rest of the 

cluster centers. Having more distinct cluster 

centers helps the K-Means algorithm assign new 

queries to the respective clusters rather correctly.  

Table 3:  The best matching for the Cluster 

Language Model at cluster-level. 

Table 4:  The best matching for the baseline 
model at the cluster-level. 

In addition, we measured and compared the 

execution time for both models. Table 5 shows the 

average time to process a single query by using 

these methods. The Cluster Language Model 

needs to complete all the processes shown in 

Table 5. Thus, it takes about 49.5 ms to completely 

process a given query. The baseline model only 

needs the second and third processes. Therefore, it 

is about ten times as fast as the proposed method. 

Table 5:  The execution time of the baseline model 
and the Cluster Language Model. 

 

Figure 6: The relative L2 distance between cluster 
centers 

5. Conclusion 

In conclusion, this paper presented a novel 

approach to enhance the product search 

performance of the bi-encoder architecture by 

introducing a cluster-based fine-tuning method. 

The proposed method demonstrated significant 

improvement in recall rates up to the retrieval 

threshold@8, and consistently better-ranking 

performance across all thresholds, compared to 

the baseline model. Despite the increased 

processing time for the Cluster Language Model, 

it offers an alternative method to the popular bi-

encoder based retrieval models in semantic 

search, addressing the inherent accuracy trade-

offs often faced by the baseline model. The 

cluster-level analysis revealed that the proposed 

method performs well in denser clusters with a 

higher frequency of testing purchased products 

appearing in the training data. Although the 

baseline model outperforms the 

proposed method in certain clusters, the overall 

performance of the Cluster Language Model is 

superior. The L2 distance heatmap provides 

insights into the distinctiveness of cluster centers, 

which helps in the correct assignment of new 

queries to respective clusters.  

    This study demonstrates the potential of 

leveraging clustering techniques and fine-tuning to 

enhance semantic search in e-commerce 

applications. Further research could explore other 

clustering algorithms, the use of additional 

features, and optimization strategies to improve the 

performance of the proposed method and reduce 

processing time. 
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ID Training 

Data 

(%) 

Occurrence of 

Testing 

Purchased 

Products in 

Training Data 

(%) 

Mean L2 

Distance  

Recall@24 

Baseline 

Model 

Cluster 

LM 

0 2.44 2.95 1.051 82.4 84.7 

11 3.13 2.51 1.054 84.8 89.1 

22 2.53 1.29 1.055 79.5 85.8 

29 3.79 3.16 1.038 81.9 85.9 

 

 

 

ID Training 

Data  

(%) 

Occurrence 

of Testing 

Purchased 

Products in 

Training 

Data (%) 

Mean 

L2 

Distance  

Recall@24 

Baseline 

Model 

Cluster 

LM 

5 3.48 3.29 1.049 92.3 89.6 

9 3.22 2.15 1.054 92.4 90.3 

16 1.51 0.78 1.083 88.7 86.2 

 

 

Process Number of 

Queries Used 

Total Time (s) Time to Process 

a Single Query 

(ms) 

Assign queries to 

Cluster LM using K-

Means lustering 

 

24120 

 

0.085 

 

0.003 

Produce query 

embeddings using 

baseline model  

 

890 

 

0.297 

 

0.333 

Search for 100 

matching products for 

each query 

 

890 

 

3.417 

 

3.839 

Produce embeddings 

for Top Product Set, 

search for matching 

products, and obtain 

Refined Top Product 

Set. 

 

890 

 

40.348 

 

45.335 
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reflect those of the authors in their individual 

capacities. 
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