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Abstract

An all-too-present bottleneck for text clas-
sification model development is the need to
annotate training data and this need is mul-
tiplied for multilingual classifiers. Fortu-
nately, contemporary machine translation
models are both easily accessible and have
dependable translation quality, making it
possible to translate labeled training data
from one language into another. Here, we
explore the effects of using machine trans-
lation to fine-tune a multilingual model for
a classification task across multiple lan-
guages. We also investigate the benefits
of using a novel technique, originally pro-
posed in the field of image captioning, to
account for potential negative effects of
tuning models on translated data. We show
that translated data are of sufficient quality
to tune multilingual classifiers and that this
novel loss technique is able to offer some
improvement over models tuned without it.

1 Introduction

One of the most common uses of machine learn-
ing for natural language processing (NLP) is the
classification of text into one of multiple mutually-
inclusive or mutually-exclusive labels. Recently,
generative LLMs, such as PaLM (Chung et al.,
2022) and ChatGPT (Ouyang et al., 2022) have
shown exciting and impressive capabilities to do
zero- or few-shot prompting, classify text given
only a few examples for the task across a variety
of languages. Nevertheless, it is still the case that
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the highest performing and most efficient means
to classify text is the use of a bespoke classifier
trained with hundreds or thousands labeled exam-
ples (Pires et al., 2019), particularly when the task
requires a level of human-like subjectivity or gen-
eral reasoning ability (Kocoń et al., 2023, see dis-
cussion). To this end, finding or creating a corpus
of labeled examples is a necessary step in the cre-
ation of any classifier.

For high-resource languages like English, which
have many existing labeled corpora available and
large populations of annotators on crowd-sourced
workers such as Amazon Mechanical Turk, the
challenge of creating or finding training and eval-
uation data can be costly, but not prohibitively so.
Yet, for lower-resourced languages which lack ex-
isting annotated corpora and have smaller or even
non-existent populations on these large annotation
platforms, acquiring the required training data can
prove to be much more difficult. Moreover, if the
model is intended to be able to perform the same
classification across multiple languages, the time
and effort required to annotate training data be-
comes multiplicative. Fortunately, classification is
not alone in the applications of machine learning in
NLP. Machine translation (MT) has seen major im-
provements in recent years (Stahlberg, 2020), ac-
celerated by the adoption of the transformer archi-
tecture (Vaswani et al., 2017).

To date, several options for high quality machine
translation currently exist, between API services
and open-source models. MT API services, such
as Google translate, have become nearly ubiqui-
tous, provide high quality translations, while still
being relatively inexpensive. In fact, in one exper-
iment, translating data using Google translate into
English and using existing English-trained classi-
fier models outperformed certain models trained
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on the original language directly (Araujo et al.,
2016). In addition to MT API services, several
open-source translation models are easily avail-
able, such as the multilingual M2M100 model (Fan
et al., 2020), NLLB200 model (Team et al., 2022)
or the over 1400 models trained by the Univer-
sity of Helsinki (Tiedemann and Thottingal, 2020),
with many of these models have performance that
approaches or exceeds that of MT APIs (Stahlberg,
2020).

With this in mind, it may be the case that trans-
lating an existing, labeled dataset with one of the
aforementioned MT options is a feasible alterna-
tive to creating a novel dataset directly in that lan-
guage. This has several benefits. Firstly, it avoids
the problem of existing corpora or annotation op-
tions not existing for the language in question.
Secondly, it minimizes the data needed for multi-
lingual models and allows annotations for one lan-
guage to serve another. Here, we ask if it is possi-
ble to use MT to train a multilingual model, given
only original, annotated data for a single language.

Of course, the potential benefits of using MT to
train a multilingual model are still affected by the
old machine learning adage: garbage in, garbage
out. Even the best translations, either human or
machine, will lose some of the information of the
original language, which will inevitably lead to
dropped performance for a model trained on the
translated examples. Fortunately, the problem of
training models using semantically similar but im-
perfect pairs of data is not unique to the task at
hand and there is a growing body of research which
may provide some benefit. In particular, image
captioning is a task to generate the ideal natural
language text caption for an image and these cap-
tioning models must learn to represent semanti-
cally related data from very different modalities
similarly, i.e., text and images (Li et al., 2021). In
this way, image captioning is somewhat analogous
to the task of training on translated data, where we
want to have semantically identical text from dif-
ferent languages predicted to have the same labels.
As a result, we ask in addition whether some of the
model training techniques used in image caption-
ing models can lead to improved performance for
multilingual models trained using MT data.

2 Related Work

This work is by no means the first to suggest the
usage of machine translation to create or augment

datasets for lower resourced languages. Wei and
Pal (2010) and Pan et al. (2011) augmented Chi-
nese language corpora with annotated data trans-
lated from English to improve the performance of
a Chinese-language sentiment analysis model. On
the other hand, Barriere and Balahur (2020) and
Ghafoor et al. (2021) used existing API translation
services to translate annotated data from English
into lower-resourced languages and trained classi-
fiers solely on these translated data, finding that
classifiers trained on translated data were fairly ac-
curate but did see drops in performance, likely due
to the effects of imperfect translations of the train-
ing data.

It should be noted that training a model from
scratch is not the only means to create an ac-
curate classifier, particularly for lower-resourced
languages. Large multilingual transformer mod-
els such as M-BERT (Devlin et al., 2018), XLM-
ROBERTA (Conneau et al., 2019) or GPT-3
(Brown et al., 2020) have been shown to have
the ability to generalize from one language to the
other, i.e., train in one language and improve test
performance in another language, (Pires et al.,
2019), but benefits of this vary on the languages
in question, with languages that share closer ge-
nealogical origin or structural similarities benefit-
ing more from inter-language transfer. Regardless,
training a model with examples of a particular lan-
guage dependably yields the best classifier for new
data in that language.

Nevertheless, to date there has been no investi-
gation of how fine-tuning large multilingual trans-
former models on translated data affects final per-
formance compared to simple interlanguage trans-
fer. Moreover, previous work to train models using
translated data employed a naive approach, treat-
ing translated data as if it were no different than
original, untranslated data which annotated itself.
In this work, we investigate both how multilin-
gual transformer models trained on translated data
perform compared to interlanguage transfer and
explore a means to mitigate imperfect translation
quality when creating these training datasets.

3 Image captioning and Image-Text
Contrastive Loss

Image-text Contrastive (ITC) loss is a technique
used when training multimodal models to caption
images with natural language descriptions (Li et
al., 2021). For example, BLIP (Li et al., 2022)
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is a image-captioning model that was trained with
a mix of human- and artificially-annotated images
where ITC loss was integral to the models abil-
ity to learn from noisy, artificially-annotated data.
ITC loss, then, has been shown to mitigate nega-
tive effects of both noise and different modalities
for multimodal models.

At an intuitional level, these captioning mod-
els decompose text and images into a shared em-
bedding space and ITC loss seeks to penalize
cases where related image-text pairs are dissim-
ilar in this shared embedding space. In other
words, ITC looks seeks to bring semantically re-
lated items from disparate modalities closer in a
shared embedded space and has empirically im-
proved image-captioning models, with little im-
pact on training time or resources.

Training multilingual classification models with
translated data bears a similarity to captioning,
though rather than have semantically related ex-
amples from different modalities, there are seman-
tically parallel data in different languages. That
being the case, we will be a slightly modified form
of ITC loss, namely original-translated contrastive
(OTC) loss, to enforce similarity within a batch
between data from the original language and its
translated counterpart. Like ITC loss, OTC loss
penalizes a transformer model for dissimilar em-
bedding representations for translated pairs. One
way to think of it is that this loss encourages the
model to embed sentences with the same meaning
identically, regardless of language.

In detail, we implement OTC loss as follows.
We begin by deriving a probability of each origi-
nal/translated pairing in a training minibatch, po2t

and pt2o, that is, which original examples pairs
with which translated example and vice versa.

po2tm =
exp(s(O, Tm)/τ)

ΣM
m exp(s(O, Tm)/τ)

(1)

pt2om =
exp(s(T,Om)/τ)

ΣM
m exp(s(T,Om)/τ)

(2)

Here, s(T,O) is a similarity function between
the original, untranslated data and the translated
examples in a minibatch. We compute s(T,O)
by first extracting and normalizing the embedding
for the initial [CLS] token after the final attention
head of the encoder stack in M-BERT, comput-
ing a pairwise dot product for all possible pairs
of original and translated data and dividing by τ ,
which is a learnable parameter. We then apply the

softmax function as a way to represent the like-
lihood of each original/translated match. Ideally,
each correct original/translated pair will have the
most similar embeddings, resulting in a value close
to 1 after softmax. As a final step, we compute
the cross-entropy between the result of the previ-
ous step and a target vector which encodes the cor-
rect original/translated pairs, weighting this by a
hyperparameter, αotc. Following BLIP (Li et al.,
2022), we set αotc = .4 for all runs.

ℓotc = αotc ∗
1

2
E(O,T )[H(yo2t(O),po2t(O)+

H(yt2o(T ),pt2o(T )] (3)

4 Experiments

4.1 Data
For these experiments, we use a multilingual
dataset of Amazon product reviews across 6 lan-
guages: English, Spanish, French, German, Chi-
nese and Japanese (Keung et al., 2020). This
dataset is comprised of over 1 million total ex-
amples, split into a train and test partition. The
reviews are equally distributed across the six lan-
guages, as well as the total stars given to the re-
viewed product (1-5) for both the train and test par-
tition, i.e., each number of stars comprises 20% of
the examples for that language. This dataset is par-
ticularly useful due to its size, number of available
languages and presence of an established training
and test data split.

We began by translating each review from the
training partition of the original dataset into each
of the other respective languages and assigned the
same star value to the review (see example 1), i.e.,
if a review was originally in English and had star
star, when translating it into French it would also
be labeled with one star. We did this translation
once before carrying out the rest of the experiment
to ensure each classifier would be trained on the
same set of translations. To translate, we used
a single multilingual translation model, M2M100
(Fan et al., 2020). We chose to use a single mul-
tilingual translation model in order to mitigate any
potential differences from translation quality com-
ing from different machine translation architec-
tures.

4.2 Experiment design
To investigate any potential improvement in classi-
fier accuracy with the use OTC loss, we fine-tuned
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id translated language text stars
1 0 en My daughter really likes the backpack and ... 5
1 1 es Mi hija realmente le gusta el bolsillo y ... 5
... ... ... ... ...
2 0 en This product is BS, I washed my face with hot water ... 1
2 1 fr Ce produit est BS, je me suis lavé le visage à l’eau chaude ... 1
... ... ... ... ...

Figure 1: Example original and translated data. Each unique review (id) in the original dataset was translated to the other
languages and assigned the same star value. Texts truncated here for formatting.

pretrained transformer models on datasets that in-
cluded original, untranslated data for a single lan-
guage1 and only translated data for all others in the
six language set. As an example, in one training
run, the model would be tuned on the original En-
glish training data and only translated data for all
other languages, which were translated from the
set of the original English data. We did this for
all six languages in the original set to ensure any
results were not restricted to one language in the
dataset. Though the exact training examples var-
ied for each model, we tested each on the original
testing split of the dataset, which was solely com-
prised of original data, i.e., non-translated, for the
six languages.

In each case, we tuned a multilingual DISTIL-
BERT model (Sanh et al., 2019), a distilled ver-
sion of the original multilingual M-BERT (Devlin
et al., 2018), to predict the number of stars on a re-
view as a categorical classification problem, using
categorical cross-entropy loss and varying between
using OTC loss as an additional loss parameter be-
tween runs. We chose to use a distilled variant of
BERT due to the distilled variants increased speed
of training, while still maintaining 97% of overall
language understanding of the original.

Because of the mechanics of OTC loss, each
translated datum must have an original match in
the minibatch and each original must have at least
one translated variant. As such, we constructed
minibatches during training such that half the sam-
ples were always original, untranslated data and
the other half were a randomly selected translated
example for each original datum. For each orig-
inal example, we randomly selected a translated
example from the other languages, meaning that
the model saw an equal number of original and
1We restricted the experimental conditions to only including
a single language’s original data, rather than use the full set
of 6! = 720 possible permutations of language combinations
for the sake of efficiency and resources.

translated examples during tuning overall, though
it saw far fewer individual examples of each trans-
lated language, i.e., roughly 1

5 . For simplicity, we
restricted our tests to a 1:1 original:translated ratio
and we used the same batch sampling method for
runs without OTC loss, to make results more easily
comparable.

For each tuning run, we used a batch size of 32
(16 original and 16 translated examples per batch)2

and used the AdamW (Loshchilov and Hutter,
2017) optimizer with a linear warm-up of 500 up-
dates with a learning rate of 2e-5. All training was
done on G5.2XLARGE AWS instances which con-
tain NVIDIA A10G GPUs. We tuned 3 separate
tuning runs for each set of hyperparameters and re-
port their mean values in the next section.

5 Results

In these experiments, we asked two simple ques-
tions: 1) how feasible is it to tune a multilingual
transformer model on translated data and 2) does
the inclusion of OTC loss improve model perfor-
mance for languages where only translated train-
ing data was used.

In answer to the first, for each of the six
languages in the original dataset, models fine-
tuned with translated data showed higher F1-micro
scores3 on the held-out test set, compared to mod-
els trained with only original data for a single
language (see Table 1). As was expected from
Pires et al. (2019), even if a model was never
exposed to data for a language, original or trans-
lated, the final model did have F1-micro greater
than chance for that language (which would be
20% for a balanced, 5-label problem), indicating
2For baseline conditions where there was no translated data,
mini-batching happened as normal with 32 examples original,
untranslated data per batch.
3F1-micro is an example-weighted version of the F1-score,
which is the harmonic mean or precision and recall. For more
details on F1-score, see (Jurafsky and Martin, 2008).
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Language F1-micro
No data Translated Original

EN 0.407 0.481 0.554
FR 0.379 0.468 0.544
DE 0.359 0.465 0.581
ES 0.376 0.474 0.55
JA 0.307 0.396 0.543
ZH 0.352 0.372 0.458

Table 1: F1-micro for models trained with no samples for
the specified language (No data), with only translated sam-
ples (Translated) and with the original training data for that
language (Original). All languages saw a sizeable boost to
performance over their respective baselines when using trans-
lated data (.02-.11) but all languages did perform markedly
better when given actual data for each language.

there was interlingual knowledge transfer happen-
ing within the model during training. Moreover, it
appears that there was more transfer between re-
lated, similar languages, compared to more dis-
similar languages; models trained with data for a
European language showed higher performance on
other European languages, compared to Japanese
or Chinese. Nevertheless, for all languages, the use
of translated data did show a noticeable improve-
ment (.02-.11), though for each language, models
trained with only translated data did underperform
models trained with the full set of origina, untrans-
lated training examples for that language (.07-.12).

That said, it is clear that the use of translated
training data does improve model performance,
even if the trained model only sees translated ex-
amples for that language. It should also be noted
that due to the batching and sampling strategy used
here, models trained with translated data saw far
fewer examples of each language where they only
saw translated data. That is, because each origi-
nal review was paired with a single translated ex-
ample out of five possible translated, these models
were exposed to roughly one fifth of the data for
translated languages and still saw a sizable boost
in performance.

Moving on to the effect of OTC loss, Table
3 shows the mean F1-micro per language in the
testing set, for models fine-tuned using original
data for the specified language and translations
for all other languages. For all languages, mod-
els trained using OTC loss saw an improvement
over models trained without for all languages ex-
cept Chinese, which showed a mixed set of negligi-
ble differences or lowered performance. However,

Language F1-micro
No OTC OTC

EN 0.479 0.483
FR 0.464 0.472
DE 0.463 0.467
ES 0.472 0.476
JA 0.393 0.399
ZH 0.368 0.376

Table 2: Comparison on final performance per language for
models that only included translated examples for the spec-
ified language. Though the gain was less than .1, each lan-
guage consistently performed better when trained with OTC
loss.

these values include runs where the specific lan-
guage was included as original, untranslated data.
When averaging across all runs where a language
in the testing set was only represented by trans-
lated data, OTC loss shows an improvement over
models trained without it for all languages. Table
2 shows the mean F1-micro for all models trained
where the specified language was not the original
language.

To ensure that the results here were in fact sta-
tistically significant, we fit a linear mixed-effect
model to predict final model F1-micro for a lan-
guage, given the hyperparameters of a particular
tuning run. Mixed-effect models are able to accu-
rately evaluate the contribution of different fixed-
effect independent variables, e.g., whether OTC
was used when training a particular model, on de-
pendent variables, e.g., the final accuracy of the
trained model, all the while being robust to ex-
pected random variance between trials, e.g., be-
cause of random initialization and batching, some
deep learning models score higher than others
with identical hyperparameters (see Baayen et al.
(2008), Jaeger (2008) for more).

This statistical model was fit to predict per-
language test f1-micro, given a random effect of
each model run and three fixed effects: i) the tested
language, ii) the identity of the single original lan-
guage and iii) whether OTC loss was added. OTC
was found to have a significant, positive effect
(COEF=0.036, STD.ERROR=0.017, for all model
details see 2), indicating that even after taking into
consideration differences between languages and
random variance for each multilingual model, the
inclusion of OTC loss did yield an improved final
model F1-micro.
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Orig. Training Language OTC EN FR DE ES JA ZH

EN No OTC 0.548 0.488 0.493 0.489 0.425 0.423
OTC 0.553 0.507 0.522 0.512 0.434 0.422

FR No OTC 0.504 0.539 0.504 0.493 0.424 0.426
OTC 0.512 0.539 0.517 0.511 0.428 0.412

DE No OTC 0.514 0.495 0.577 0.495 0.436 0.427
OTC 0.524 0.506 0.581 0.506 0.449 0.425

ES No OTC 0.506 0.497 0.500 0.544 0.433 0.419
OTC 0.523 0.510 0.518 0.548 0.441 0.413

JA No OTC 0.470 0.460 0.477 0.468 0.526 0.436
OTC 0.493 0.474 0.499 0.487 0.522 0.424

ZH No OTC 0.486 0.439 0.441 0.444 0.398 0.482
OTC 0.488 0.467 0.473 0.472 0.421 0.503

Table 3: F1-micro results on untranslated test data. Each row shows the per-language performance for models trained with
original data for the specified language and translated data for all other languages, using OTC loss and without. Each cell shows
the mean of 3 runs per condition. Bolded values show a difference of .03 or greater.

6 Discussion and future directions

We investigated the feasibility of using translated
text to fine-tune a multilingual transformer model,
as well as any potential gains by utilizing a novel
application of deep learning technique to improve
performance. We found that models trained us-
ing only translated data for a language do show
a noticeable improvement over baselines, though
as expected, there was still a performance drop
from using original, untranslated data for that lan-
guage. We also found that slight further gains can
be achieved by the use of OTC loss, suggesting that
training the model in such a way where it is sensi-
tive to potential data issues improves its ability to
generalize.

Granted, this is a very open problem and results
of using translated data to tune a multilingual clas-
sifier will vary highly depending on the quality of
MT model used, architecture of the classifier be-
ing tuned and the type of classification being mod-
eled. Nevertheless, the results here are exciting for
multiple reasons. Firstly, as suggested by previ-
ous works (Shalunts et al., 2016, as an example),
MT is useful tool for language-specific dataset cre-
ation when creating a dataset for that language di-
rectly may prove difficult. In this case, we showed
that M-BERT models tuned on translated exam-
ples showed large gains over simple multilingual
transfer during training. This is particularly inter-
esting given that for each translated language, the
model was only given a fraction of samples com-
pared to the original language due to the 1:1 ratio
of original and translated data. A future direction

for this work may be to adjust this ratio or the num-
ber of languages in the dataset to investigate how
this affects model training. Secondly, the use of
OTC loss was shown to lead to a small, but robust
boost to performance. This suggests that methods
of mitigating the natural effects of translation have
a potential to bridge the gap, so to speak, between
models trained on translated data and on datasets in
the target language directly. Particularly relevant,
Chinese, which is linguistically dissimilar from the
majority of languages in the set used here, showed
a mixed ability to benefit from training with other
languages, but a clearer improvement using OTC
loss. This may suggest that OTC loss is able to mit-
igate structural differences between languages and
a future direction for this may be to explore exactly
how OTC loss affects individual examples and how
other noise-reduction techniques may lead to fur-
ther gains in model performance.

Putting this together, this is an indication that
MT-augmented datasets stand as a good first step
for developing multilingual classification models.
Given that MT can quickly and efficiently expand
an annotated dataset from one language into an-
other and that translated dataset is of sufficient
quality to improve over basic interlingual trans-
fer, this technique has great potential to expanding
classification tasks to new languages quickly. In
addition, OTC loss may be able to slightly but sig-
nificantly increase the quality of these models with
no additional data. All in all, we are confident that
the use of MT augmentation is an exciting and in-
teresting topic for future exploration.
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Mixed Linear Model Regression Results
==========================================================
Model: MixedLM Dependent Variable: test_acc
No. Observations: 108 Method: REML
No. Groups: 18 Scale: 0.0038
Min. group size: 6 Log-Likelihood: 111.7634
Max. group size: 6 Converged: Yes
Mean group size: 6.0
----------------------------------------------------------

Coef. Std.Err. z P>|z| [0.025 0.975]
----------------------------------------------------------
Intercept 0.465 0.024 19.128 0.000 0.418 0.513
otc[T.True] 0.036 0.017 2.105 0.035 0.002 0.069
original_lang[T.en] -0.020 0.028 -0.714 0.475 -0.074 0.035
original_lang[T.es] -0.012 0.028 -0.432 0.666 -0.066 0.042
original_lang[T.fr] -0.015 0.028 -0.555 0.579 -0.070 0.039
original_lang[T.ja] -0.030 0.028 -1.093 0.274 -0.085 0.024
original_lang[T.zh] -0.050 0.028 -1.801 0.072 -0.104 0.004
test_lang[T.en] 0.016 0.020 0.762 0.446 -0.025 0.056
test_lang[T.es] 0.003 0.020 0.130 0.897 -0.037 0.043
test_lang[T.fr] -0.000 0.020 -0.005 0.996 -0.040 0.040
test_lang[T.ja] -0.061 0.020 -2.972 0.003 -0.101 -0.021
test_lang[T.zh] -0.068 0.020 -3.336 0.001 -0.108 -0.028
Group Var 0.001 0.009
==========================================================

Figure 2: Full model details for MLE model trained to predict F1-micro per laguage. OTC has a positive contribution to an
increase F1-micro score, even when controlling for variance between languages and model runs.
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