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Abstract

We report an experiment in which we
use machine learning to validate the em-
pirical objectivity of a novel annotation
taxonomy for behavioral translation data.
The HOF taxonomy defines three transla-
tion states according to which a human
translator can be in a state of Orienta-
tion (O), Hesitation (H) or in a Flow state
(F). We aim at validating the taxonomy
based on a manually annotated data-set
that consists of six English-Spanish trans-
lation sessions (approx 900 words) and
1813 HOF-annotated Activity Units (AUs).
Two annotators annotated the data and ob-
tain high average inter-annotator accuracy
0.76 (kappa 0.88). We train two classi-
fiers, a Multi-layer Perceptron (MLP) and
a Random Forest (RF) on the annotated
data and tested on held-out data. The clas-
sifiers perform well on the annotated data
and thus confirm the epistemological ob-
jectivity of the annotation taxonomy. In-
terestingly, inter-classifier accuracy scores
are higher than between the two human an-
notators.

1 Introduction

Translation is considered to involve complex and
non-linear cognitive processes (Krings, 2001). Un-
derstanding the intricacies of the temporal dynam-
ics of these processes is a fundamental aspect in
Translation Process Research (TPR).

Various approaches have been proposed over the
past 40 years to understand the distinct phases and
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mental states experienced by translators (Jakob-
sen, 2017). Starting with Think-Aloud Protocols
in the 1980s, in which translators comment their
own translation behavior during their translations
(Königs, 1987; Krings, 2001), the field of enquiry
has moved towards less invasive technologies, that
is, keystroke logging and eye tracking (Hvelplund,
2016; Carl et al., 2016). The recordings of these
logging tools make it possible to assess the flow
of translation in a seamless way and to investigate
how translations evolve in time; where translators
type smoothly, where they get stuck, and where
they search for (external) resources, etc.

One approach to analysing the translation pro-
cess has been to segment the behavioral Trans-
lation Process Data (TPD) into processing units
(Alves and Vale, 2009; Schaeffer et al., 2016). But
how these segments should be defined and what
they exactly represent has been a topic of continu-
ous exploration and debate. The assessment of the
translation rhythm (aka ”Pause Analysis” (Kumpu-
lainen, 2015; Muñoz and Apfelthaler, 2022)) has
provided valuable insights into translation patterns
as produced by more or less experienced transla-
tors (Jakobsen, 2011), for different levels of text
complexity (Hvelplund, 2016), for different trans-
lation goals (Zou et al., 2022b), post-editing be-
havior (Jia et al., 2019) and also for spoken trans-
lation (e.g., interpretation, sight translation, (Zou
et al., 2022a)). The underlying assumption has
been that longer keystroke pauses are indicative
of more challenging translations, while stretches
of smooth typing can be observed when there are
no/less translation hurdles or difficulties (Lacruz
et al., 2014). However, determining an exact
pause threshold to differentiate these phenomena
remains a challenge. Many studies (Krings, 2001;
O’Brien, 2006; Kumpulainen, 2015; Vieira, 2016,
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among others) present varying segmentation meth-
ods with different pause thresholds, ranging from
300ms to five seconds or more. These strands of
research rely on deterministic fragmentation tech-
niques to segment the key logging and eye track-
ing data into Translation Units (TUs, (Alves and
Vale, 2009; Carl and Schaeffer, 2017)) or Activ-
ity Units (AUs, (Hvelplund, 2016; Schaeffer et al.,
2016)). However, these approaches lack intuitive
labeling and thus make it difficult to derive a com-
prehensive understanding of the complex nature
of the translation process and how it unfolds over
time. Some researchers suggest a hierarchical pro-
cess model (Schaeffer and Carl, 2013) and others
(Muñoz and Apfelthaler, 2022; Dragsted, 2010)
advocate a translator-specific fragmentation of the
TPD into processing units depending on the trans-
lators’ typing speed.

Combined, this suggests that human translation
processes are embedded in a hierarchical men-
tal architecture, encapsulating various processing
strata. A hierarchical approach to understanding
translation has the potential to offer a nuanced un-
derstanding of translators’ behavior and strategies
on various interacting levels of analysis. In order
to advance this project, a novel higher-level seg-
mentation taxonomy was introduced in (Carl et al.,
2024) that fragments the TPD in three broad phe-
nomenal translation states, Hesitation (H), Orienta-
tion (O) and Translation Flow (F). The HOF taxon-
omy assumes that behavioral traces of these three
states can be observed in the TPD and that transla-
tors can be at any one point in time in only one of
the three states.

In previous work (Carl et al., 2024) we have
annotated a small corpus with HOF translation
states. The corpus is publicly available as part of
the CRITT TPR-DB1. The HOF annotation corpus
provides a layer of manual annotation, introducing
segment labels of an assumed phenomenal layer of
translation processes, suited to analyse the hierar-
chical embedding of translation processes.

However, the HOF taxonomy, capturing quali-
ties of conscious translator experience, is entirely
new territory and the genaralizability and validity
of the annotation schema is still unclear. In this pa-
per, we therefore conduct further investigation to
assess whether and to what extent this new taxon-
omy is epistemologically valid — that is, we want
1The annotations can be downloaded from here
http://critt.as.kent.edu:3838/public/
State_Annotation_Phases.zip

to investigate to what extent different annotators
might agree the HOF states to represent a phenom-
enal translation ”reality”. While a manual annota-
tion has shown a varying amount of agreement be-
tween two annotators (Kappa 0.37 and 0.88, (Carl
et al., 2024), in this paper we use ML techniques to
further validate the consistency of the taxonomy.

AI and ML techniques can be used in various
ways and for different purposes. Mollo (2024),
for instance, enumerates a few scenarios where AI
can be used as: AI-as-engineering (industrial and
commercial projects, as e.g., MT systems), AI-as-
psychology to improve our understanding of bio-
logical intelligence, AI-as-idea or AI-as-recreation
for recreating biological intelligence in artificial
systems. AI can also be used for ”exploring intelli-
gence spaces” so as to uncover new forms of intel-
ligence that are different from human intelligence
or to uncover algorithms (Zhong et al., 2023).

In this paper we use ML techniques to inves-
tigate the ”epistemological objectivity” (Searle,
1998; Searle, 2017, see also section 5 for a dis-
cussion) of the HOF annotation schema. That is,
we are interested in verifying whether ML can re-
produce the results of our manual annotations to a
similar amount of accuracy. We assume that if the
trained models performs well on the classification
task, it confirms the objectivity of the annotation
taxonomy used to create the training data. Con-
versely, poor model performance would indicate
issues with the annotation taxonomy.

For instance, it might be the case that, even
though two annotators agree in their annotation la-
bel, they might be biased by some intuition, cul-
tural or otherwise un-observable features which
may not be accessible to the ML technology.
However, if ML reaches similar results of accu-
racy as the inter-annotator agreement indicates, we
take the annotation taxonomy to implement re-
producible and epistemological objective annota-
tion criteria. That is, as ML lacks subjective, per-
sonal or cultural influences in the process annota-
tion process (i.e., HOF state labeling), high accu-
racy on held-out testing data may be an indicator
of stable results with minimum bias,

In section 2 we describe the data and the man-
ual annotation process of the reference (training)
data. Section 3 describes our implementation of
two classifiers — Multi-Layer perception (MLP)
and Random Forest (RF) — while section 4 re-
ports our training and evaluation on a set of 1813
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HOF-annotated AUs. We report higher precision
and recall between the classifier and annotator as
compared to inter-annotator agreement between
the two annotators. Section 5 concludes with a dis-
cussion on Searle’s notion of ”ontological subjec-
tivity” and ”epistemological objectivity” and their
relation to the evaluation of our HOF states.

2 Activity Units, Translation Units and
Translation States

The translation process can be conceptualized as
a dynamic flow of mental processes marked by
information input as gathered through eye move-
ments and textual output in the form of keystrokes
or mouse movements. As translators navigate
the source text (ST) and produce the target text
(TT), their behavior is influenced by numerous fac-
tors. To better understand these processes, differ-
ent approaches have been pursued that fragment
translation-behavioral data (keystrokes and gaze
data) into processing units. Figure 1 shows a pro-
gression graph that depicts three ways of segment-
ing the approximately 28 seconds of the plotted
translation session. TUs (Carl and Kay, 2011;
Alves and Vale, 2009), indicated in the top in
Figure 1, are characterized by a typing pause (a
blank space in top line of the Figure) followed
by a typing burst (or Production Unit, PU) indi-
cated as grey boxes. AUs (Schaeffer et al., 2016;
Hvelplund, 2016) are constructed based on the co-
ordination of gaze activities and typing behavior
and are marked at the bottom in Figure 1 in differ-
ent colors. Three distinct HOF translation states are
indicated with black dotted lines (Carl et al., 2024).
Boundaries of translation states coincide with AU
boundaries, so that sequences of AUs can be used
to fragment the TPD into HOF translation states.
This section explores these constructs and the three
annotations, emphasizing their significance and in-
terplay.

2.1 Translation Units

TUs segment the continuous stream of transla-
tion activities (keystrokes) into stretches of typ-
ing and pausing. They capture the translator’s per-
ception and actions, indicating the challenges they
encounter during the translation process (Malmk-
jaer, 1998). In Figure 1, TUs appear as succes-
sive pauses and typing bursts of fluent production
(or PUs). The pauses that occur between PUs are
taken to be indicators of elevated translation effort,

as it is assumed that during those breaks transla-
tors engage in reflection or (mental) search (Drag-
sted, 2010). Sequences of TUs have been used to
compute pause-word-ratio (Lacruz et al., 2014) as
indicators of cognitive effort. However, TUs of-
ten lack the granularity to explain precisely what
occurs during the pauses. Moreover, they do not
differentiate whether a translator is directing their
focus towards the ST or the TT during these inter-
vals (Schaeffer et al., 2016).

AU AU activity Color Effort Effect
T1 ST reading Blue + -
T2 TT reading Green + -
T4 translation production Yellow - +
T5 ST reading with concur-

rent production
Red - +

T6 TT reading with concur-
rent production

Dark
Green

- +

T8 no observed behavior for
more than one second

Black + -

Table 1: Types of AUs, color code in Figure 1 and levels of
translational effect and cognitive effort.

2.2 Activity Units

AUs provide a more fine-grained view on the trans-
lation process, focusing on the coordination of the
translator’s eyes and hands. It addresses some of
the inherent limitations of TUs. In our data, we
categorize AUs into six types as presented in Ta-
ble 1 (Carl et al., 2016). They provide more de-
tailed insights into how translators engage in vari-
ous aspects of the translation process. The classi-
fication of AUs is based on whether translators are
actively involved in translation production, read-
ing the ST or TT, or simultaneously reading and
writing. As shown in Table 1, each type of AU
can be associated with a degree of translational ef-
fects (typing activities) and cognitive effort (i.e.,
gazing). For instance, an AU of type T1 indicates
ST reading which results in low levels of effects
(no translation is typed) but higher amounts of cog-
nitive effort (mental resources are allocated). In
simpler terms, it means that the translator primar-
ily focuses on understanding the ST, with minimal
to no simultaneous translation work, as depicted in
Figure 1.

2.3 HOF Translation States

HOF Translation States offer insights into qualities
of the translator’s experience. Carl et al (2024) dis-
tinguish between three translation states: A state
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Figure 1: Progression graph of a small snippet of the translation session (BML12/P02 T3). Production time in milliseconds
is indicated in the horizontal axis. Vertical axis refers to the ST on the left side and the TT on the right side. The blue dots
and green diamonds represent eye movements on the ST and TT respectively. The black and red characters are insertion and
deletion respectively. AUs are marked as colored bars on the bottom, TUs are indicated with red lines, and PUs as gray boxes
in the top of the graph. Translation States are sequences of AUs, indicated by black dashed boxes, labeled O, F, H. The graph
represents a segment of approximately 28 seconds (249.000ms - 277.000ms) of an English-to-Spanish translation.

of orientation (O) refers to the translator’s behav-
ior when feeling the need to get acquainted with
the source text (ST). It is characterized by lin-
ear, forward-reading behavior of the ST. The Flow
state (F) represents a phase in which the transla-
tor is immersed in translation production, gener-
ating the TT with ease and minimal interruption.
It is marked by fluent translation production with
minimal reading ahead and short pauses. A state
of Hesitation (H) emerges out of surprise, where
unexpected challenges prompt the translator to re-
vise and re-read. This state indicates moments of
uncertainty or cognitive challenge, signifying ar-
eas where the translator is challenged with com-
plexities in the source text or struggles to find suit-
able translations. These distinct translation states
are annotated in the progression graph in Figure 1,
exemplifying associated typical behavioral corre-
lates.

2.4 Empirical Data

We use a set of six translation sessions from the
CRITT TPR-DB that were previously annotated
with HOF translation state labels (Carl et al., 2024).
The CRITT TPR-DB (Carl et al., 2016) is a collec-
tion of currently more than 5000 translation ses-
sions, amounting to hundreds of hours of TPD,
that is compiled into a consistent publicly available
database. The CRITT TPR-DB is extensively doc-
umented in numerous publications and summary
tables with more that 300 product and process fea-

tures are available in a compiled form.2

In this study we use six English-to-Spanish
translation sessions from BML123 The BML12
study consists of 184 translation sessions by Span-
ish translation students that were recorded in 2012
in Copenhagen and in Spain (Barcelona). The
HOF annotation taxonomy was developed based
(among others) on six BML12 sessions and an-
notated in 2022 by two advanced (Chinese and
Japanese) translators. A special purpose interface
was used to annotate the translation sessions, simi-
lar to Figure 1. The annotation process is described
in detail (Carl et al., 2024). The six annotated ses-
sions consist in total of 42 segments (sentences)
with 854 source words. The translations of these
42 segments resulted in 1813 AUs which were an-
notated with HOF labels. In this study we used the
1813 HOF-annotated AUs for training and evaluat-
ing two classifiers.

2See the CRITT website https://sites.google.
com/site/centretranslationinnovation/
tpr-dbThe TPD can be downloaded free of charge
from sourceforge https://sourceforge.net/
projects/tprdb/, an introduction to the usage and a free
trial account is provided here https://sites.google.
com/site/centretranslationinnovation/
tpr-db/getting-started
3The MultiLing data and BML12 study is de-
scribed: https://sites.google.com/site/
centretranslationinnovation/tpr-db/
public-studies#h.p_iVVuCQOHJx2O
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2.5 Manual Annotation

As reported in (Carl et al., 2024), the manual an-
notation involved five phases: Phases 1, 2, and 4
were trial annotations and are not considered here.
In Phase 3, 1288 AU were annotated, but the ab-
sence of a structured approach resulted in a Kappa
score of 0.37, indicating a moderate agreement be-
tween the two annotators (see Table 2). In Phase
5, a structured approach with a decision tree and
guidelines was defined (Carl et al., 2024), result-
ing in a significant improvement in inter-annotator
agreement, as shown in the high Kappa score of
0.88. Table 2 shows the inter-rater accuracy and
Kappa scores along with the number of AUs used
in Phase 3 and 5.

Phase Total AUs Kappa Accuracy
3 1288 .37 .66
5 525 .88 .93

Table 2: Kappa scores for Phases 3 and 5 of annotation.
Phase 3 involves five sessions, while Phase 5 involves ses-
sion P04 T2 of the BML12 study. The average accuracy for
all 1813 annotations is .74.

Furthermore, Table 3 offers a breakdown of the
number of AUs for each of the three translation
states in Phases 3 and 5, and for both annotators
(Y and T). There is a noticeable shift in the dis-
tribution of annotated AUs across these states be-
tween the two phases. In Phase 3, the difference in
the numbers of AUs annotated by T and Y across
the three states suggests distinct interpretations of
the states. This is the reason for the low Kappa
score of 0.37 and low Accuracy of 0.66 in Table
2. The elaboration of a decision tree and annota-
tion guidelines prior to Phase 5 clearly leads to a
better alignment between the two annotators, evi-
denced not only by their closely matching counts
across states but also by the high Kappa score of
0.88 (Accuracy 0.93). In our experiments, we use
annotations from Phases 3 and 5 as a training/test
corpus in section 4. Given the amount of coordina-
tion and mutual adjustment of the two annotators,
we decided to corroborate the empirical objectivity
of the annotation schema using MT.

3 Training Translation State Classifiers

In this section we describe two classifiers that
were used to assess the annotated translation states.
While the variation of inter-annotator agreement,
as reported in Table 2, indicates that annotators

Phase 3 Phase 5
State Y T Y T
H 403 331 216 217
O 275 108 51 55
F 610 849 258 253

total 1288 1288 525 525

Table 3: Number of AUs in the two AU annotation phases for
the two annotators T and Y.

are able to learn and agree on annotation guide-
lines and to generalize and reproduce the underly-
ing concepts, this does not necessarily mean that
those generalizations can also be learned and re-
produced by a ML classifier. If, however, ML
techniques can reproduce manual annotations with
high accuracy we can be more certain about the
”epistemological objectivity” (Searle, 2017) of the
annotation schema. Besides, once a classifier is
trained, we will also be able to automatically an-
notate new data. Therefore, in this study we only
describe an evaluation of the trained classifier on
the manually annotated data and leave a full-blown
analysis on a large corpus for future research.

3.1 Multi-layer Perceptron

An MLP is a supervised simple feed-forward neu-
ral network. It consists of multiple layers, and each
layer is fully connected to the following one. Fig-
ure 2 shows the structure of a two-layer MLP.

For our task, there are 34 cells in the input layer,
and each of them corresponds to one of the 34
AU features (see Appendix A). There are 3 cells
in the output layer corresponding to 3 state labels
{H,O,F}. The output is a set of probabilities, each
of which represents the probability that an input is
classified as a certain state. The final prediction is
the state with the highest probability.

We implemented MLP classifiers using
sklearn4. We set the following parameters in
MLPClassifier:

• hidden layer sizes: number of neu-
rons in hidden layers

• batch size: size of mini-batches

• max iter: maximum number of iterations

• learning rate init: learning rate used

• random state: random seed

• solver: weight optimizer
4See https://scikit-learn.org.
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Figure 2: The structure of a two-layer MLP.

3.2 Random Forest

We implemented an RF classifier using sklearn
(see footnote 4). RF is a supervised ML method
that trains a model on the annotated (‘gold’) data.
An RF is a set of decision trees where the output
of the classifier is the class selected by most trees
(majority vote). In our trials we set this number to
500. RFs are said to be rather robust with respect
to variations in the data, as the entry point to each
of the decision trees varies probabilistically, while
the algorithm averages over the differences. New,
unseen data can, therefore, be classified reliably.
Another advantage of RFs is that the importance
of the features can be ranked, which may provide
helpful insights into feature design. In Appendix
B we provide the ranking of feature importance for
the 34 AU features and the two models trained on
the annotated Y and T data.

4 Evaluation of Classifiers

The training of AU-to-state classifiers is based on
six annotated sessions from Phase 3 and 5 with
1813 datapoints (AUs), as shown in Table 3.

We trained classifiers based on two backbone
models: MLP and an RF. The annotated data are
split into 70% for training (1269 data points), and
30% for testing (544 data points). We used the 34
features that are described in the Appendix A in
Table 9 for the classifiers.

In a 10-fold cross validation with RF and MLP
we get best average accuracy values of 0.85 for the
two classifiers.Table 4 shows the best and average
performance of classifiers based on the two mod-
els. We observe the best accuracy and F1-score for
the RF classifiers and annotator T.

4.1 Multi-layer Perceptron

For the MLP classifier, we used the Adam opti-
mizer (Kingma and Ba, 2014) with an alpha value

Best Average
acc. F1 acc. F1

T
MLP 85 69 67 52
RF 85 75 78 64

Y
MLP 79 73 66 51
RF 83 76 75 57

Table 4: Best and average accuracy (acc.) and F1-score (F1,
in percentage) for the RF and MLP classifiers for both anno-
tators.

of 1e-5. The MLP architecture consisted of three
hidden layers with 400, 200, and 400 units in
size, respectively. We set the random state to 1
for reproducibility. The classifiers were trained
separately on the data annotated by annotators Y
and T. We also used the StandardScaler from
sklearn, which standardizes features by remov-
ing the mean and scaling to unit variance.

4.2 Scaling Data

It is worth noting a difference in the perfor-
mance of the MLP classifiers when trained on
scaled data vs. non-scaled data. The effect of
StandardScaler to the performance of the
MLP classifier is significant. When the MLP
model is trained on unscaled data, its average accu-
racy drops significantly. However, the scaler does
not impact the results of the RF classifier.

MLP State Prec. Rec. F1 Support

T
H 0.77 0.79 0.78 164
O 0.72 0.69 0.70 45
F 0.91 0.90 0.91 335

Y
H 0.76 0.74 0.75 204
O 0.66 0.59 0.63 96
F 0.81 0.86 0.83 244

RF State Prec. Rec. F1 Support

T
H 0.82 0.83 0.82 168
O 0.72 0.48 0.57 48
F 0.90 0.94 0.92 328

Y
H 0.84 0.84 0.84 189
O 0.84 0.73 0.78 93
F 0.88 0.92 0.90 262

Table 5: Precision (Prec.), Recall (Rec.), and F1-score (F1)
for MLP (top) and RF (bottom) classifiers trained on 1269 AU
annotations and evaluated on a test set of 544 AU annotations
for both annotators.
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4.3 Precision and Recall
A fine-grained assessment of the classification re-
port in Table 5 reveals that values for Precision,
Recall and F1-score are differently distributed for
the three States. State F has highest precision and
recall values for both annotators Y and T and for
both classifiers. As noted in (Carl et al., 2024),
it is comparatively easy to detect this state in the
behavioral data and it also has the best inter-rater
agreement, as discussed in section 2 and Table 3.
States O and H seem to be more difficult to separate
and may be easily confused. Note that that Table
5 shows this to be the case for both annotators, T
and Y.

4.4 Comparing Y and T labels
Table 6 shows two confusion matrices between the
Y annotations and the RF predictions (on the left)
and the T annotations (on the right). As the two
matrices show, as well as indicated in Tables 3
and 5, the distribution of states are unequally dis-
tributed. There are almost three times more AUs
with F label, as compared to O states.

A large number of states H seem to be classified
as F, which indicates that more distinctive features
might need to be developed, so as to better distin-
guish between states F and H.

True RF Predictions True T-labels
Y-labels H O F H O F

H 156 13 20 77 38 74
O 14 67 12 26 37 30
F 15 2 245 16 7 239

Table 6: Left: Confusion Matrix for predictions of Y-labels
of the test set for RF classifier shown in Table 5 (bottom).
Right: Confusion Matrix for the same test set but against the
true T-labels for the same data points.

The confusion matrices in Table 6 show that pre-
dictions produced by the RF classifier trained on
the annotated Y-data correspond to a higher degree
with the same annotator than the labels between
the two annotators. This may indicate that each
annotator is consistent in itself, whereas larger dis-
agreement can be observed between the annota-
tors. For instance, in the upper row, out of the 189
Y-annotated H labels, 156 labels were corrected
predicted by the trained RF, 13 were predicted as O
and 20 as F states. In contrast, annotators Y and T
agree in H label only 78 cases. AUs that annotator
Y considers H receive in 38 instances label O and
74 cases the label F by annotator T.

4.5 Accuracy across Annotators and
Classifiers

In order to corroborate the assumptions in the
previous subsection, we assess accuracy patterns
across the two classifiers and annotators in more
detail. We trained the RF (R) and MLP (M) clas-
sifiers with a training set of 1269 AUs to predict
T and Y labels, as outlined in section 3. This pro-
vided us with four models for the two classifiers
(M and R) and two annotators (T and Y). Succes-
sively, each of the four models (MT, MY, RT, and
RY) predicted a list of state labels for the 544 ex-
amples in test set. We thus obtain six lists of state
label predictions for the test set: four lists of pre-
dictions from the four classifiers (MT, MY, RT, and
RY) and in addition the original labels from the
manual T and Y annotations. Table 7 shows accu-
racy scores for the 6 × 6 pair-wise combinations
of these label lists. Since accuracy scores are sym-
metrical (i.e., Accuracy(x, y) == Accuracy(y, x)),
Table 7 only shows the lower part of the rectangu-
lar matrix. Note also that Accuracy(x, x) == 1 and
that the triangle below the diagonal adds up to 15
accuracy pairs (cells).

T Y RT RY MT
Y .76 1 — — —
RT .87 .72 1 — —
RY .77 .86 .78 1 —
MT .85 .71 .91 .77 1
MY .73 .80 .74 .85 .76

Table 7: Accuracy scores for different pairs of Classifiers (R
and M) and Annotators (T and Y.

The accuracy scores in Table 7 range between
.71 and .91. As discussed in sections 4.1, higher
accuracy scores are observed for RF than for MLP
and for annotator T as compared to annotator Y.
However, contrary to what one might expect, the
highest accuracy scores are obtained between pre-
dictions of two classifiers trained on the same data,
rather than between predictions of a classifier and
the data population it was trained on. Thus, Table
7 reveals that:

1. highest accuracy scores are observed when
comparing predictions of two different clas-
sifiers trained on data of the same annota-
tor. Thus the two comparisons: MT/RT and
MY/RY produce among the highest accuracy
scores of .91, and .85 respectively. These
numbers are marked in bold in Table 7
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2. high accuracy scores, but not quite as high,
are also observed when comparing predic-
tions of a classifier evaluated against the man-
ual annotations of the same annotator that the
classifier was trained on. Thus the the four ac-
curacy scores: RT/T, RY/Y, MT/T, and MY/Y
produce the second highest accuracy scores of
.87, .86, .85, and .80 respectively. This is the
case discussed in the context of Table 6 (left).

3. as can be expected, the predictions of two
classifiers trained on different annotators pro-
vides lower accuracy values as compared to
those in item 1. and 2 above. These pairs of
HOF state label predictions have the follow-
ing accuracy values: MY/RT:.74, RY/RT:.78,
MT/RY:.77, and MY/MT:.76.

4. surprisingly, even lower is the accuracy be-
tween the two manual annotations T/Y. With
a value of .76 it is just slightly higher than the
accuracy values of a manual annotation and a
different classifier in item 5. This is the case
discussed in the context of Table 6 (right).

5. the lowest accuracy scores are observed when
comparing predictions of a classifier that was
trained on one annotator A but evaluated with
a manual annotation of the other annotator
B. The the four comparisons: MT/Y, RT/Y,
MY/T, and RY/T produce the lowest accuracy
scores of .71, .72, .73, .77 respectively. These
numbers are marked in italics in Table 7

The results are somewhat puzzling. Most sur-
prising is perhaps the finding that the output of the
classifiers in item 1. are more consistent (higher
accuracy) than the the classifiers in 2 and that ac-
curacy values in 3. are higher than inter-rater ac-
curacy in 4.

Provided that a(ny) classifier generalizes and ap-
proximates the inherent structure of the manual an-
notations, there will be some noise in the gener-
alizations. Under this assumption we expect that
accuracy values in 2. should be higher than in 1,
since the noise of two classifiers (in item 1) would
multiply. Presumably, each of the two classifiers
(M and R) would ’infer’ their own generalizations
which, we would assume, are likely less compat-
ible than the classifier’s own generalization about
the set of manual annotations which the classifier
was trained on (as in item .2). Provided that the
manual annotations are consistent, i.e., they are

’gold’ data, why then do pairs of classifiers trained
on the same data produce higher accuracy values
as compared to the gold data?

Why would it be the case that predictions from
two different models (R and M) produce more con-
sistent predictions as each of the classifiers evalu-
ated against the test data taken from a population
that they were trained on? Provided the test data
is correct, how is it possible that, despite their very
different nature and implementation, RF and MLP
make similar but wrong predictions?

Similar surprising is the observation that T/Y
inter-annotator accuracy in item 4. is lower than
the predictions of the classifier trained and evalu-
ated on two different annotators in item 3.

Also this outcome suggests that the two classi-
fiers may have inferred similar generalizations that
somehow capture similarities between the T and
Y training sets, but that do not, however, account
correctly for the structure of the test set. This idea
is corroborated in the accuracy values reported in
item 5. which shows that the worst values are ob-
tained by evaluating a classifier on a manual test
set of a different annotator.

The results indicate that an evaluation of the
classifier on manually annotated data or on auto-
matically generated test sets may lead to different
results. The results may also indicate that the train-
ing set is perhaps not sufficiently large to capture
the instances that are represented in the test set.
However, we take it that our experiments validate
the epistemological objectivity of the HOF taxon-
omy, as the classifier perform well on the task at
hand.

5 Discussion and Conclusion

Human translation is a complex cognitive process
that involves numerous interacting processes. To
understand and analyse these processes, one ap-
proach to Translation Process Research (TPR) has
been to collect and synchronize behavioral data
(keystrokes and gaze data) from translation ses-
sions and to segment the flow of data into various
kinds of processing units. Several automatic seg-
mentation approaches have been suggested, but as
the labels often lack intuitive understanding it is
difficult to interpret the data.

A novel higher-order HOF taxonomy has been
proposed (Carl et al., 2024) that segments the data
into three phenomenal states in which a translator
can be: a state of orientation (O) accounts for the
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Ontology Epistemology
Su

bj
ec

tiv
e

EXISTENCE OF THE SUBJECTIVE

• Reality as I experienced it (intentions,
attitudes, pain, beliefs, desires, etc)

• Conscious personal experience

KNOWLEDGE OF THE SUBJECTIVE

• Reality as it is judged by me (opinions,
preferences, etc)

• What “I” know to be the case

O
bj

ec
tiv

e

EXISTENCE OF THE OBJECTIVE

• Reality as it exists: physical, spatial,
temporal (mountains, molecules, etc. )

• Exists independent of perception

KNOWLEDGE OF THE OBJECTIVE

• Reality as ”we” describe it: norms,
conventions (money, marriage, etc.)

• Assertions “we” make about reality

Table 8: Modes of existence according to Searle.

need of ST information input which is character-
ized by reading-ahead in the ST. In a flow state (F),
translations are fluently produced, and the state
of hesitation (H) reflects surprise or uncertainty,
which is characterized by regressions, re-fixations
and text modifications. Together with the HOF tax-
onomy, (Carl et al., 2024) specify a decision tree
that provided criteria for the annotation process.

A small corpus of behavioral data annotated and
released (Carl et al., 2024). The annotated data
consists of six English-Spanish translation ses-
sions (approximately 900 words) and 1813 HOF-
state annotated Activity Units (AUs, (Carl et al.,
2016)). Two annotators annotated the data with
HOF labels and — after specifying a decision tree
and annotation guidelines — annotators reached a
good inter-rater agreement.

Given the novelty of the annotation taxonomy,
we investigate how well the HOF annotations can
be reproduced. We use machine learning (ML)
classifiers to validate the ”epistemological objec-
tivity” (Searle, 2017) of the annotation schema.
That is, we deploy a Multi-layer Perceptron and a
Random Forests classifier to assess the ”objectiv-
ity” of the manual annotations, where high accu-
racy of the ML classifiers would indicate the valid-
ity of the underlying HOF annotations taxonomy.

In his discussion about ”modes of existence”,
(Searle, 1998; Searle, 2017) makes a distinction
between, on the one hand, subjective and objec-
tive ways of understanding and, on the other hand,
between the epistemology and the ontology of
knowledge and reality (see Table 8). Whereas on-
tology is a branch of metaphysics that deals with
the nature of being, epistemology is the branch of

philosophy concerned with the theory of knowl-
edge.

Ontological subjectivity then refers to the idea
that subjective experiences is a form of reality, but
there may not be an independent, objective reality
beyond these subjective constructions (see Table
8). Epistemological objectivity is the idea that cer-
tain aspects of reality can be known objectively,
independent of my beliefs, perspectives, or inter-
pretations. Objective knowledge can be discovered
or verified through rational inquiry, observation, or
evidence, regardless of subjective opinions or in-
terpretations.

Despite the fact that consciousness has a sub-
jective mode of existence—and is thus not directly
accessible to scientific inquiry—Searle claims that
this does not prevent us from having an epistemo-
logical objective science of consciousness. While
translators experience subjective states of orienta-
tion, hesitation and flow, these states, we assume,
can be recovered in the behavioral data and studied
under epistemically objective conditions. Norms,
regulations or—as in our case the HOF annotation
taxonomy—can be understood, deployed and ob-
jectively verified within observable TPD in a given
context. Our results suggest, however, that there
might be a gradual slope between epistemological
subjective and epistemological objective modes of
existence, rather than a binary one. Table 7 sug-
gests that, despite a well-formulated HOF state
decision tree as described in (Carl et al., 2024),
a perfect agreement between different annotators
may not always be possible5. Accuracy values,

5Similar findings have been reported in countless translation
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such as those in Table 7, may thus provide an in-
dex for the degree of epistemological objectivity,
where higher accuracy values indicate greater epis-
temological value of the underlying taxonomy (or
norm), and thus allow for higher objectivity while
lower accuracy values indicate increased possibil-
ities for epistemological subjectivity. Surprisingly,
then, our findings indicate that the two different
classifiers (MT/RT and MY/RY) trained on the
same data are able to arrive at higher epistemo-
logical objectivity as compared to the two human
annotators who follow the same annotation guide-
lines. It suggests that different classifiers are able
to generalize the (training) data in a similar way
which, however, deviates from generalizations that
our annotators from the annotation guidelines and
decision trees.
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Appendix

A Features of Classifiers

Both classifiers were trained with a list of 34 fea-
tures, shown in Table 9. The first 15 features,
above the double line, prefixed with “TU ”, are
copied from the TU of which the AU is part (see
Figure 1). These features thus encode the context
of the AU. All ”TU ” features relate to behavioral
data, concerning the gaze and the keystroke data,
and their duration.

The lower 19 features were extracted from and
describe properties of AUs. Similarly, most of
the AU features characterize the behavioral data
within one AU. However, four of these features are
related to properties of the translation product and
four features include contextual from surrounding

Feature Description of feature
TU logDurTU log-transformed duration of the TU
TU WinSwitch Number of gaze switches between

ST and TT
TU TrtT Total reading time on the ST
TU TrtS Total reading time on the TT
TU TrtST ratio log((TrtS + 1)/(TrtT + 1))
TU TGset Intersection of words IDs produced

in next TU
TU PauseDur Ratio of (Pause+1)/(DurTU+1)
TU ParTrtT Duration of concurrent TT reading

while typing
TU ParTrtS Duration of concurrent ST reading

while typing
TU ParFixT #fixations during concurrent TT

reading and typing
TU ParFixS #fixations during concurrent ST

reading and typing
TU InsDelLog ratio of deletions and insertions

log(Del + 1)/(Ins+ 1))
TU FixT Number of fixations on TT
TU FixS Number of fixations on ST
TU FixDist log of max. distance in Y-position

of fixations on ST window (in pixel)
log(FixSspanY + 1)

Type Type of TU as described in Table 1
Gram5 concatenation of AU type with the

preceding four AU types
Dur Duration of the AU
SGnbr #ST words for which translations

were produced (concerns AU types
T4, T5,T6)

TGnbr #TT words produced (concerns AU
types T4, T5,T6)

Ins #Insertions (concerns AU types T4,
T5,T6)

CrossS Average Cross values for ST words
produced in AU

CrossT Average Cross values for TT words
produced in AU

ProbSgaze Average log probability of source
words in GazePath

ProbTgaze Average log probability of target
Words in GazePath

ProbCgaze Average log CrossS value in
GazePath

ProbSTCgaze Average log of joint ST, TT and
CrossS value in GazePath

HSgaze Average entropy of ST words in
GazePath

HTgaze Average entropy of TT words in
GazePath

HCgaze Average entropy of Cross values in
GazePath

HSTCgaze Average entropy of joint ST, TT and
Cross in GazePath

Effort sum of log duration for context AUs:
T4, T5, T6

Effect sum of log duration for context AUs:
T1, T2, T8

Significance Effect minus Effort

Table 9: List of features used for Classifier.
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AUs information. The features SGnbr and TGnbr
indicate how many source and target words were
covered in the AU, while CrossS and CrossT are
measures of the distance / reordering between the
source and the target words (Carl et al., 2016).
Four of the AU features refer to the nearby context
of the AU. Type is type of AU (see Table 1) Gram5
is the concatenation of AU type labels, while Ef-
fort, Effect, and Significance take into account Ef-
fort/Effect properties of the two surrounding AUs
as described in Table 1.

In this study, we define Effort, Effect, and Signif-
icance for an AU to depend on the type and the du-
ration of the two preceding two AUs and the next
AU. The Effort of an AU is computed as the sum
of log(Dur(AU)) for each context-AU of Type T1,
T2 or T8 (no keystroke activity is observed). The
Effect is computed as the sum of log(Dur(AU)) for
each context-AU of Type T4, T5 or T6. The Signif-
icance of an AU is then its Effect minus its Effort,
so that more significant AUs are characterized by
longer stretches of text production.

B Importance of features in RF Classifier

Table 10 shows the 34 features in their order of
importance as obtained during RF training. The
list of features is ordered with respect to the im-
portance of the T column (annotator T). The “N”
column indexes features according to their impor-
tance for T, while the column header “O” provided
the rank re-ordering of the importance for the Y
data. There is a strong correlation between the two
importance vectors of T and Y (R=0.95), indicat-
ing that slight differences in the annotation of T
and Y do not seem to have a large impact on fea-
ture importance of the RT classification.

The context of AUs seems to be important for
classifying their HOF label. Thus, the 15 TU-
inherited features (those preceded by “TU ”) make
around 50% (49.18% and 49.94%) of the total im-
portance for T and the Y respectively. Adding to
this the importance of the features that account for
the external context of the AUs, Gram5, Effort, Ef-
fect and Significance, increases the importance of
context-related features to 72.16% and 73.87% re-
spectively. That is, only 28% and 26% of the HOF
state classification is due to AU internal charac-
teristics. Those AU-local features are indicated in
bold in Table 10. Also note that the first 11 most
important features are all ‘context’ features which
make up around 58% in the T set (57% in Y).

N Feature T Y O
1 TU PauseDur 0.0829 0.0848 1
2 Significance 0.0770 0.0707 3
3 Effect 0.0709 0.0778 2
4 Effort 0.0569 0.0535 4
5 TU InsDelLog 0.0513 0.0425 7
6 TU logDurTU 0.0502 0.0345 10
7 TU FixS 0.0431 0.0398 9
8 TU TrtS 0.0421 0.0516 5
9 Gram5 0.0345 0.0278 13

10 TU FixDist 0.0344 0.0271 14
11 TU TrtST 0.0332 0.0467 6
12 Dur 0.0272 0.0293 11
13 TU FixT 0.0271 0.0219 18
14 Ins 0.0268 0.0401 8
15 TU TrtT 0.0246 0.0226 17
16 TU ParTrtS 0.0229 0.0279 12
17 CrossS 0.0196 0.0250 15
18 TU WinSwitch 0.0189 0.0154 24
19 ProbCgaze 0.0183 0.0146 27
20 TU ParTrtT 0.0182 0.0234 16
21 TU TGset 0.0181 0.0156 23
22 Type 0.0181 0.0152 25
23 ProbSgaze 0.0172 0.0134 34
24 TU ParFixT 0.0166 0.0176 22
25 HTgaze 0.0162 0.0145 29
26 HCgaze 0.0161 0.0151 26
27 HSTCgaze 0.0160 0.0139 32
28 TU ParFixS 0.0158 0.0204 20
29 HSgaze 0.0154 0.0143 30
30 ProbTgaze 0.0153 0.0136 33
32 TGnbr 0.0151 0.0208 19
31 SGnbr 0.0151 0.0203 21
33 ProbSTCgaze 0.0141 0.0140 31
34 CrossT 0.0110 0.0145 28

Table 10: Importance of features for T and Y annotations.
Columns T and Y give the percentage for the respective fea-
tures. Column N indicates the order of importance for the T
annotator while O provides the order for Y annotator.
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