
EACL 2024

The 18th Conference of the European Chapter of the
Association for Computational Linguistics

Proceedings of Tutorial Abstracts

March 21, 2024



The EACL organizers gratefully acknowledge the support from the following
sponsors.

Platinum

Gold

Bronze

D&I Champion

ii



c©2024 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
317 Sidney Baker St. S
Suite 400 - 134
Kerrville, TX 78028
USA
Tel: +1-855-225-1962
acl@aclweb.org

ISBN 979-8-89176-092-9

iii



Introduction

Welcome to the Tutorials Session of EACL 2024.

NLP is a rapidly-changing field, which has undergone different periods, and the knowledge needed to
be at pace is changing rapidly. A lot of changes have been brought up by recent advances in the deve-
lopment and deployment of Large Language Models (LLMs). Five tutorials have been selected for this
year’s EACL, which reflect this trend.

The EACL tutorial session is organized to give conference attendees an introduction by expert resear-
chers to some topics of importance drawn from our rapidly growing and changing research field.

This year, as has been the tradition over the past few years, the call, submission, reviewing, and selection
of tutorials were coordinated jointly for multiple conferences: EACL, NAACL-HLT, ACL, and EMNLP.

We would like to thank the tutorial authors for their contributions and flexibility on topics including
interpretability, multilingualism and multimodality.

EACL 2024 Tutorial Co-chairs
Mohsen Mesgar
Sharid Loáiciga
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Haim Dubossarsky , and Nina Tahmasebi
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1 Introduction

Languages change constantly over time, influenced
by social, technological, cultural and political fac-
tors that affect how people express themselves. In
particular, words can undergo the process of seman-
tic change, which can be subtle yet significantly
impact the interpretation of texts. For example, the
word terrific used to mean “causing terror” and
was as such synonymous to terrifying. Nowadays,
speakers use the word in the sense of “excessive”
and even “amazing”.

In Historical Linguistics, tools and methods have
been developed to analyse this phenomenon, in-
cluding systematic categorisations of the types of
change, the causes and the mechanisms underly-
ing the different types of change. However, tradi-
tional linguistic methods, while informative, are
often based on small, carefully curated samples.
Thanks to the availability of both large diachronic
corpora, the tools to model word meaning using un-
supervised computational methods, and evaluation
benchmarks, we are seeing an increasing interest in
the computational modelling of semantic change.
This is evidenced by the increasing number of pub-
lications in this new domain as well as the organi-
sation of initiatives and events related to this topic,
such as the yearly workshop on Computational Ap-
proaches to Historical Language Change LChange1

that reached its fourth year , and several evaluation
campaigns (Schlechtweg et al., 2020a; Basile et al.,
2020b; Kutuzov et al.; Zamora-Reina et al., 2022).

Relevance Computational modelling of semantic
change is highly relevant for fields like lexicog-
raphy but also studies in (Historical) Linguistics
where we can complement and verify existing re-
search on larger corpora, more genres, more ex-

1https://www.changeiskey.org/event/2023-emnlp-
lchange/

tended periods and many more languages. Com-
putational modelling of semantic change is also
interesting for any text-based humanities and social
sciences as well as technical and medical science,
where the evolution of concepts or the progres-
sion of before and after is studied. In the past few
years, we have seen an increasing interest in utiliz-
ing methods for semantic change in other domains.
Marjanen et al. (2019) delved into the connections
between "isms" (like liberalism, socialism, and con-
servatism) and ideological language, shedding light
on the progression of political language throughout
history. Bizzoni et al. (2020) investigate changes
in scientific writing, while Haider and Eger (2019)
direct their focus in poetry studies. Wevers (2019)
and Garg et al. (2018) investigated the presence and
evolution of gender biases and ethnic stereotypes in
various textual data. Vylomova et al. (2019) honed
in on the semantic transformations of harm-related
concepts within psychology. Their study sought
to determine if concepts like addiction, bullying,
harassment, prejudice, and trauma have broadened
in scope over the past forty years. Tripodi et al.
(2019) traced the evolution and prevalence of an-
tisemitic biases across various domains, such as
religion, economics, and socio-politics. Their data
suggested an alarming rise in antisemitism, partic-
ularly in France, from the mid-80s onward.

This tutorial will be interest of for the ACL com-
munity as a venue for facilitating discussions and
sharing knowledge on Diachronic Linguistics and
time-aware language analysis. There is an exten-
sive collection of models, methods and trained di-
achronic resources that benefit anyone interested in
temporally evolving information beyond the LSC
community. Moreover, it will provide a practi-
cal demonstration of available tools to researchers
and practitioners working on different aspects of
LSC and historical linguistics. In particular, we
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will showcase the benchmark developed within
the Change is Key! program, in which a suit of
pre-trained models, as well as training and test
data, are available2, and integrate hands-on ses-
sions throughout the tutorial.

2 Tutorial overview

This tutorial will overview the current approaches,
problems, and challenges in detecting lexical se-
mantic changes. At its core, the computational
modelling of semantic change consists of the fol-
lowing:

• Modelling of word meaning, typically using
unsupervised methods applied to diachronic
corpora;

• modelling of meaning change, based on the
outcome of the above; and

• evaluation.
This tutorial will extend the above with an intro-

duction to lexical semantic change and an overview
of the available resources (corpora, pre-trained di-
achronic models, and data sets). We will highlight
issues in the creation and use of diachronic corpora
and different procedures for annotating data. Next,
we will introduce the current state-of-the-art ap-
proaches for automatic detection of LSC, provide
a hands-on section on available systems and tools,
and open the floor to discuss possible applications.

3 Outline

1. Introduction to Semantic Change and Compu-
tational modeling (1.5 hours)

2. Evaluation: Tasks, benchmarks, and measure-
ments of Lexical Semantic Change (1.5 hours)

3. Models for Lexical Semantic Change Detec-
tion (2 hours)

4. Hands-on and Discussion (1 hours)

3.1 Introduction to Semantic Change and
Computational modelling (1.5 hour)

We will provide a theoretical background of
LSC, paying attention to semasiological phe-
nomena, i.e., semantic change. We will intro-
duce the classical types of semasiological change
(e.g., metaphorization/metonymization or general-
ization/specialization) but also focus on types of

2https://github.com/ChangeIsKey/LSCDBenchmark

changes at the level of synonymous groups or en-
tire lexical fields (Geeraerts, 2020). Several theo-
ries, among which diachronic prototype semantics
(Geeraerts, 1997) and grammaticalization theory
(Traugott, 2017), will be reviewed. Finally, we
will discuss some of the theoretically relevant find-
ings recently studied in computational semantic
change (e.g., the Law of Parallel Change and the
Law of Differentiation (Hamilton et al., 2016a; Lié-
tard et al., 2023; Stern, 1921)).

3.2 Evaluation: Tasks, benchmarks, and
measurements of Lexical Semantic
Change (1.5 hour)

We will briefly overview some of the available
most used diachronic corpora such as The New
York Times corpus (Sandhaus, 2008), l’Unità
corpus (Basile et al., 2020a), the DTA corpus
(Textarchiv), the BZ and ND corpora (Zeitung),
the CCOHA corpus (Alatrash et al.), the LatinISE
corpus (McGillivray and Kilgarriff, 2013), and the
KubHist corpus (Adesam et al., 2019). A list of
lexicographic resources useful for Lexical Seman-
tic Change will be described, such as the Oxford
English Dictionary3 and the Sabatini Coletti dictio-
nary4 (Basile et al.).

We will introduce the framework DUREL
(Schlechtweg et al., 2018) for the annotation of
LSC, which is employed in the annotation process
of Semeval 2020 Task 1 (Schlechtweg et al., 2020a).
We will present the tasks on which LSC is usually
framed: Unsupervised Lexical Semantic Change
Detection, Lexical Semantic Change Discovery and
Temporal Analogies. For each task, we will intro-
duce the most used benchmarks, namely SemEval-
2020 Task 1: Unsupervised Lexical Semantic
Change Detection (Schlechtweg et al., 2020b),
which is the first task on Unsupervised Lexical
Semantic Change Detection in English, German,
Swedish, and Latin languages, RuShiftEval (Ku-
tuzov and Pivovarova, 2021) for the Russian lan-
guage, LSCDiscovery (Zamora-Reina et al., 2022),
the Shared Task on Semantic Change Discovery
and Detection in Spanish, NorDiaChange (Kutu-
zov et al., 2022), ChiWUG (Chen et al., 2023), and
the datasets for the Temporal Analogies task (Yao
et al., 2018; Szymanski, 2017).

3https://www.oed.com/
4https://dizionari.corriere.it/

dizionario_italiano/

2

https://www.oed.com/
https://dizionari.corriere.it/dizionario_italiano/
https://dizionari.corriere.it/dizionario_italiano/


3.3 Models for Lexical Semantic Change
Detection (2 hours)

We will provide some background on Distributional
Semantics introducing PPMI matrices (Levy and
Goldberg), Word2vec (Mikolov et al., 2013) and
BERT models (Devlin et al., 2018). Then, we
will present models for Lexical Semantic Change,
starting from Alignment Models (Tahmasebi et al.,
2021; Kutuzov et al., 2018; Cassotti et al., 2020).
In particular, we will introduce Post-alignment
models such as those based on Orthogonal Pro-
crustes (Hamilton et al., 2016b), Jointly Explicit
Alignment Models such as Dynamic word embed-
dings (Yao et al., 2018), and Jointly Implicit Align-
ment Models such as Temporal Word Embedding
with a Compass (Carlo et al., 2019), Temporal Ref-
erencing (Dubossarsky et al., 2019) and Temporal
Random Indexing (Basile et al., 2016).

With the increasing use of contextualised word
embeddings, numerous approaches employing
BERT-base models have been developed for LSC
Detection (Montanelli and Periti, 2023; Laicher
et al., 2021). We will present the approaches based
on contextualised word embeddings following the
classification framework proposed by Montanelli
and Periti (2023). In particular, we will discuss
the use of contextualised embeddings according to
three dimensions of analysis: meaning representa-
tion, time-awareness, and learning modality. We
will illustrate existing approaches as concrete ex-
amples for each dimension, allowing for a more
precise and comprehensive understanding. For ex-
ample, we will introduce simple unsupervised ap-
proaches such as the use of similarity measure like
Average Pairwise Distance (Giulianelli et al., 2020),
or clustering algorithms like WiDiD (Periti et al.,
2022), but also supervised approaches that lever-
age the time information of the corpora such as
TempoBERT (Rosin et al., 2022) and Temporal
Attention (Rosin and Radinsky, 2022)).

Moreover, we will present approaches that
train BERT models on Word Sense Disambigua-
tion (Navigli, 2009) and Word-in-Context (Pilehvar
and Camacho-Collados, 2019) tasks to perform
LSC Detection such as GlossReader (Rachinskiy
and Arefyev, 2021), DeepMistake (Arefyev et al.,
2021), and XL-LEXEME (Cassotti et al., 2023).
Finally, we will look at models based on lexical
substitution, such as Card (2023) and Liétard et al.
(2023), and generative models (Giulianelli et al.,
2023).

4 Tutorial Information

Type of the tutorial Introductory.

Length This is a 6-hour tutorial.

Target audience and background This tutorial
targets researchers at different levels of expertise in
the field. Introductory researchers will gain a com-
prehensive understanding of the topic, covering
foundational concepts and available resources. In-
termediate researchers will deepen their knowledge
with advanced approaches for automatic detection
and analysis of LSC, while advanced researchers
will explore state-of-the-art techniques and address
complex challenges. The tutorial is designed to
be inclusive, fostering the participation of atten-
dees with varying experience levels. Furthermore,
the tutorial aims to foster a more powerful syn-
ergy between the LSC domain and other areas of
NLP, particularly emphasising the integration with
Lexical Semantics and research pursuits in Word
Sense Discrimination. Prerequisites include a basic
understanding of linguistics, Natural Language Pro-
cessing, and Computational Linguistics concepts.

Breadth The tutorial sections will cover both
works from the tutorial presenters and others:

• Introduction to Language Change: 20% of
work by tutorial presenters and 80% by others

• Evaluation: Tasks, benchmarks, and measure-
ments of Lexical Semantic Change: 40% of
work by tutorial presenters and 60% by others

• Models for Lexical Semantic Change Detec-
tion: 20% of work by tutorial presenters and
80% by others

Diversity The tutorial brings together a diverse
group of presenters, each with unique computer sci-
ence and linguistics backgrounds, hailing from dif-
ferent institutions such as the University of Gothen-
burg, the Queen Mary University of London, the
University of Milan and Vrije Universiteit Brus-
sel. This diverse group of experts reflects the in-
terdisciplinary nature of the research field, where
knowledge from linguistic analysis and computa-
tional methodologies converge. Furthermore, the
tutorial will showcase the rich linguistic diversity
of studying LSC, covering several languages, in-
cluding Russian, English, Swedish, Latin, Spanish,
and Italian. Exploring multiple languages will give
attendees insights into how semantic change man-
ifests across language families, historical periods,
and socio-cultural contexts. The tutorial aims to
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foster a global perspective on the diachronic change
of word meanings by encompassing various lan-
guages, encouraging participants to draw parallels
and distinctions between languages.

Audience size The proposed tutorial is expected
to attract around 100+ attendees, motivated by the
considerable interest and attendance observed in
related events like the International Workshop on
Computational Approaches to Historical Language
Change and the Ever Evolving NLP (EvoNLP)
Workshop.

Venue We prefer ACL 2024 and NAACL 2024 as
our tutorial is tailored for an audience that includes
linguists and computer scientists. EMNLP 2024
stands as our second preferred option. Should there
be no available slots, we would consider EACL
2024.

Pedagogical material All materials, in-
cluding presentations and Python notebooks,
will be available online at the tutorial web-
site: https://www.changeiskey.org/
event/2024-eacl-tutorial/.

Past tutorials

• LREC 2022 Tutorial Lexical Semantic
Change: Models, Data and Evaluation: While
this tutorial primarily devoted its attention to
resources for LSC Detection, our proposed tu-
torial aims to provide more comprehensive
coverage on the subject of Computational
Modeling of Semantic Change, as we will
delve into a rich introduction of the linguis-
tic aspects of semantic change, and a detailed
exploration of computational models, empha-
sizing not just the conventional approaches,
but also focusing extensively on the architec-
tures of cutting-edge models.

5 Reading list

• Introduction to Semantic Change (Geeraerts
et al., 2012; Traugott, 2017; Geeraerts, 2020)

• Surveys (Kutuzov et al., 2018; Tahmasebi
et al., 2021; Montanelli and Periti, 2023)

• Benchmarks (Schlechtweg et al., 2020a;
Basile et al., 2020c; Kutuzov and Pivovarova,
2021)

• Models (Hamilton et al., 2016c; Yao et al.,
2018; Giulianelli et al., 2023; Cassotti et al.,
2023; Periti et al., 2023)

6 Presenters

Nina Tahmasebi is an associate professor at the
University of Gothenburg. She has researched com-
putational methods for semantic change since 2008
and leads the Change is Key! program, a 6-year
research program aimed at developing state-of-the-
art methods for semantic change and use these to
address research questions from historical linguis-
tics as well as the humanities and social sciences.
She is the chair of the LChange workshop series
on Computational modeling for language change
and has extensive experience in modeling and eval-
uation for semantic change.

Pierluigi Cassotti is a PhD student at the Uni-
versity of Bari (Italy) and a researcher at the Uni-
versity of Gothenburg (Sweden). He has been a
co-organiser of the LREC 2022 Tutorial Lexical
Semantic Change: Models, Data and Evaluation, a
co-organiser of the (LChange’23) Workshop, and
a co-organiser of the DIACR-Ita shared task for
the Italian language. His research aims to fill the
gap between Natural Language Processing tools
and Diachronic Linguistics, focusing on develop-
ing models for LSCD and creating resources for
the diachronic analysis of language.

Francesco Periti is a PhD student at the Univer-
sity of Milan (Italy). His research primarily cen-
ters around computational modeling of language
change, with a specific focus on Lexical Semantic
Change detection. He has been a co-organiser of
the 4th International Workshop on Computational
Approaches to Historical Language Change 2023
(LChange’23).

Stefano De Pascale is postdoctoral scholar at the
KU Leuven (Belgium), as a member of the Change
is Key! program, and assistant professor in Italian
linguistics at the Vrije Universiteit Brussel (Bel-
gium). He obtained his PhD in Linguistics in 2019
at the KU Leuven. In his dissertation he investi-
gated the contribution of token-based vector space
models in the study of lexical variation. In 2021 he
obtained a junior FWO-postdoctoral fellowship to
work on the computational modelling of diachronic
prototype semantics.

Haim Dubossarsky is a lecturer for NLP at
Queen Mary University of London. In his
work, Haim emphasises the importance of care-
ful methodological routines in using computational
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methods in NLP as a condition for reliable and val-
idated scientific conclusions, and is a well-cited
author in the field.
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1 Description

This tutorial will introduce the NLP community to
Item Response Theory (IRT; Baker, 2001). IRT
is a method from the field of psychometrics for
model and dataset assessment. IRT has been used
for decades to build test sets for human subjects and
estimate latent characteristics of dataset examples.
Recently, there has been an uptick in work applying
IRT to tasks in NLP. It is our goal to introduce the
wider NLP community to IRT and show its benefits
for a number of NLP tasks. From this tutorial, we
hope to encourage wider adoption of IRT among
NLP researchers.

As NLP models improve in performance and in-
crease in complexity, new methods for evaluation
are needed to appropriately evaluate performance
improvements. In addition, data quality continues
to be important. Models exploitation of annotation
artifacts, annotation errors, and a misalignment be-
tween models and dataset difficulty can hinder an
appropriate assessment of model performance. As
models reach and exceed human performance on
certain tasks, it gets more difficult to distinguish be-
tween improvements and innovations and changes
in scores due to chance. In this three-hour, intro-
ductory tutorial, we will review the current state of
evaluation in NLP, then introduce IRT as a tool for
NLP researchers to use when evaluating their data
and models. We will also introduce and demon-
strate the py-irt Python package for IRT model-
fitting to help encourage adoption and facilitate
IRT use.

We believe that this should be a tutorial instead
of a specialized workshop since the tutorial will aid
in exposing a larger NLP audience to IRT. While
this methodology has been applied successfully
to NLP applications, further community exposure
specifically for graduate students may provide a
new methodological perspective. We aim to make
the tutorial interactive with hands-on Jupyter note-

books which will give concrete simple examples.
Tutorial materials are available online.1

2 Target Audience/Prerequisites

The tutorial content will be self-contained so that a
broad target audience of *CL conference attendees
(researchers, PhD students, industry professionals,
etc.) can take away information on incorporating
IRT in their workflow. In terms of prerequisites,
we expect the audience to have basic knowledge of
probability and statistics. We also expect audience
members to have experience with Python is useful
for py-irt.

3 Outline

1. Evaluation in NLP (30 minutes)

2. Introduction to IRT (1 hour)

• Defining IRT Models
• IRT Model Fitting
• Introduction to py-irt

– This section will include tutorial con-
tent and live demonstration of the py-
irt package.

3. IRT in NLP (45 minutes)

• Building Test Sets
– Model Evaluation
– Chatbot Evaluation

• Training Dynamics
– Example Mining
– Curriculum Learning

• Model and Data Evaluation
– Rethinking Leaderboards
– Features Related to Difficulty

4. Advanced Topics and Opportunities for Future
Work (45 minutes)

1https://eacl2024irt.github.io/
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3.1 Evaluation in NLP

Today more than ever evaluation of generative AI
and datasets has become more important than ever.
We will start with a brief introduction to evalua-
tion in NLP, covering the state of the field over
the years (Church and Hestness, 2019). We will
cover traditional classification metrics, the rise of
leaderboards (Ethayarajh and Jurafsky, 2020), and
issues with incremental improvement on summary
statistics (Blum and Hardt, 2015).

3.2 Introduction to IRT

We will then move to an introduction of IRT (Baker,
2001; Carlson and von Davier, 2013). IRT is a psy-
chometric method for estimating latent characteris-
tics of test takers and test examples (typically called
“items”). IRT has a rich history in the psychometric
literature, and is used to construct tests of subject
competency (Carlson and von Davier, 2013), men-
tal health screeners (Cole et al., 2011), and health
literacy tests (Lalor et al., 2018a), among others.

As IRT is most likely new to the NLP audience,
we will spend time discussing the motivation for
IRT and the mathematical foundations which make
the building blocks of IRT models. We will intro-
duce IRT, highlight some of the important use cases
from the literature, and introduce the relevant IRT
models.

Specifically, we will introduce models that are
used when there is a known correct answer, e.g.,
an NLP classification task. Such models take a
binarized data input and estimate the latent ability
(“skill”) of the subject and the latent parameters
(such as difficulty) of the dataset items.

We will describe how these models are fit, and
highlight issues with traditional methods when con-
sidering NLP datasets. Traditionally, sampling
methods have been use to fit IRT models, but they
are computationally expensive on today’s large-
scale datasets (Wu et al., 2020). We will then in-
troduce variational-inference methods (VI) for IRT
model fitting and show how they can alleviate some
of the prior concerns (Natesan et al., 2016; Lalor
et al., 2019; Wu et al., 2020).

Lastly, we will introduce the py-irt package for
fitting IRT models in Python (Lalor and Rodriguez,
2022) and demonstrate how the tool is used using
Jupyter notebooks. While IRT has shown promise
in NLP, existing software for fitting models are lim-
ited by human-data sized constraints. The py-irt
package leverages variational-inference (VI) meth-

ods to fit IRT models fast and with large data sets.
This section of the tutorial will cover the meth-
ods built into py-irt and also include a demo with
Jupyter notebooks of using py-irt for different NLP
evaluation tasks.

3.3 IRT for NLP
We will next discuss how IRT can and has been
incorporated into NLP. Prior work has looked at
building new test sets with IRT, conducting human-
machine comparisons, reevaluating leaderboards,
and evaluating chatbot outputs, among other tasks.

3.3.1 IRT for NLP: Dataset Construction and
Evaluation

We will first look at IRT for NLP dataset construc-
tion and analysis (Lalor et al., 2016; Martínez-
Plumed et al., 2019; Sedoc and Ungar, 2020).
Specifically, how can one use IRT to build a test set
with a variety of examples included that can mea-
sure a range of model ability. We will show how
IRT can complement traditional evaluation metrics
while also revealing new information about both
models and test data (Vania et al., 2021; Amidei
et al., 2020).

3.3.2 IRT for NLP: Training Dynamics
Next, we will show how IRT can be used to im-
prove the model training process. For example, by
filtering datasets to exclude outliers (e.g., those ex-
amples that are too easy or too hard) or by using
IRT to build a curriculum learning pipeline (Lalor
and Yu, 2020), model training can be done more
effectively and with better results.

3.3.3 IRT for NLP: Model Evaluation
Finally, we will discuss how IRT can help us to
reimagine model evaluation (Otani et al., 2016; Se-
doc and Ungar, 2020). We will show how incorpo-
rating IRT into leaderboards can give us much more
information on model performance (Rodriguez
et al., 2021). We will also show how targeted model
probing using IRT can lead to new insights about
model behavior (Lalor et al., 2018b; Laverghetta Jr.
et al., 2021). Finally, we will compare IRT to other
methods such as Elo-Ranking, TrueSkill, and other
methods.

3.3.4 Advanced Topics
Lastly, we will discuss opportunities for further
incorporating IRT into NLP research. This sec-
tion will discuss more advanced IRT models, as
well as ways that NLP research can inform IRT.
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For example, what characteristics of examples
make them more difficult (Rodriguez et al., 2022)?
Also, we will cover IRT extensions and variants
to parametrize new instances, such as proxies for
difficulty (Martínez-Plumed et al., 2022), or using
language models to annotate instance demands, the
use of the agent characteristic curves (Martinez-
Plumed and Hernandez-Orallo, 2018; Hernández-
Orallo et al., 2021) and other ways to use IRT in
cases where there is no population of systems.

3.4 Content Breadth

Our goal in this tutorial is to introduce the audience
to IRT broadly, and the applications of IRT in NLP
specifically. To that end, the content we present will
be a mix of foundational IRT research and methods
from psychometrics, recent work by the presenters,
and work from others in the NLP community who
have incorporated IRT into their research.

4 Diversity Considerations

The presenters represent a mix of industry and aca-
demic researchers. We also span both Europe and
the US. The methods described can be applied to
a variety of NLP tasks and languages. The tutorial
content will be posted online for wide distribution
beyond those able to attend the conference.

5 Ethics Statement

IRT methods can provide fine-grained information
about dataset examples and models. With regard
to datasets, IRT can potentially surface discrepan-
cies in how groups of examples are handled by
NLP models. For example, IRT analyses may
show that examples collected from a certain de-
mographic group are systematically more difficult
than those examples collected from another demo-
graphic group.

6 Pedagogy

We hope that this tutorial can serve as a comprehen-
sive introduction to IRT for an NLP audience and
that the content can be reused by others who are
not able to attend. To that end, the tutorial will in-
clude a combination of presentation slides, demos
via Jupyter Notebooks, and interactive sessions in
Jupyter notebooks. All content for the tutorial will
be hosted online and made publicly available for
future use and dissemination.

7 Presenters

John P. Lalor is an Assistant Professor of IT, An-
alytics, and Operations at the University of Notre
Dame. His research interests include model evalu-
ation, curriculum learning, fairness, and BioNLP.
Prior to Notre Dame, John received his PhD in
Computer Science from the University of Mas-
sachusetts, Amherst (advised by Hong Yu) in
2020. John has presented a tutorial on Evalua-
tion and Interpretability in Deep Neural Networks
to the 2018 American Medical Informatics Asso-
ciation (AMIA) Annual Symposium with Abhyu-
day Jagannatha and Hong Yu. Website: https:
//jplalor.github.io/.

Pedro Rodriguez is a researcher at Meta AI –
FAIR. His research interests include question an-
swering, information retrieval, and evaluation. Be-
fore joining Meta, Rodriguez completed his PhD
at the University of Maryland, advised by Jordan
Boyd-Graber. He has reviewed for ACL confer-
ences and workshops, area chaired for COLING,
was an organizer of the Dynamic Adversarial Data
Collection Workshop at NAACL 2022, and an orga-
nizer of a question answering challenge at NeurIPS
2017. Website: https://www.pedro.ai/.

João Sedoc is an Assistant Professor in the de-
partment of Technology, Operations and Statis-
tics at New York University Stern School of Busi-
ness. He is also affiliated with the Center for
Data Science at New York University and one
of the co-PIs of the Machine Learning for Lan-
guage (ML2) group. João’s research areas are
at the intersection of machine learning and nat-
ural language processing. His interests include
conversational agents, model evaluation, deep
learning, crowdsourcing, spectral clustering, and
time series analysis. He has organized multiple
workshops: Workshop on Insights from Nega-
tive Results in NLP (EMNLP 2020-2021, ACL
2022, EACL 2023), the Workshop on Chatbots
and Conversational Agent Technologies & Dia-
logue Breakdown Detection Challenge (DBDC)
(IWSDS 2019, 2020, 2021), Workshop on Neu-
ral Conversational AI (ICLR 2021), Workshop on
Computational Approaches to Subjectivity, Sen-
timent and Social Media Analysis (2021-3), Dia-
log System Technology Challenge Tracks (AAAI
2021, SIGDIAL 2023), GEM workshop (EMNLP
2023), HumEval workshop 2023 (RANNLP 2023)
Website: https://www.stern.nyu.edu/
faculty/bio/joao-sedoc.
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Jose Hernandez-Orallo is Professor at the Uni-
versitat Politècnica de València and Senior Re-
search Fellow at the Leverhulme Centre for the
Future of Intelligence, University of Cambridge,
UK. His academic and research activities have
spanned several areas of AI, machine learning, data
science and intelligence measurement, with a fo-
cus on a more insightful analysis of the capabili-
ties, generality, progress, impact and risks of AI.
He has published five books and more than two
hundred journal articles and conference papers on
these topics. His research in the area of machine
intelligence evaluation has been covered by sev-
eral popular outlets, such as The Economist, New
Scientist and Nature. For a couple of decades, he
has vindicated a more integrated view of the eval-
uation of natural and artificial intelligence, a po-
sition represented by his book “The Measure of
All Minds” (Cambridge University Press, 2017,
PROSE Award 2018) and by multiple papers and
events, using IRT, extensions and techniques from
some other disciplines to evaluate general-purpose
AI such as LLMs. He is a member of AAAI,
CLAIRE and ELLIS, and a EurAI Fellow. Website:
https://josephorallo.webs.upv.es/

8 Estimate Audience Size

We expect between 50 to 150 attendees. This is
based on previous experience at *CL tutorials as
well as interest from others to learn about IRT meth-
ods.

References
Jacopo Amidei, Paul Piwek, and Alistair Willis. 2020.

Identifying annotator bias: A new IRT-based method
for bias identification. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 4787–4797, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Frank B Baker. 2001. The basics of item response the-
ory. ERIC.

Avrim Blum and Moritz Hardt. 2015. The ladder: A re-
liable leaderboard for machine learning competitions.
PMLR.

James E Carlson and Matthias von Davier. 2013. Item
response theory. ETS Research Report Series,
2013(2):i–69.

Kenneth Ward Church and Joel Hestness. 2019. A sur-
vey of 25 years of evaluation. Natural Language
Engineering, 25(6):753–767.

David A Cole, Li Cai, Nina C Martin, Robert L Find-
ling, Eric A Youngstrom, Judy Garber, John F Curry,
Janet S Hyde, Marilyn J Essex, Bruce E Compas,
et al. 2011. Structure and measurement of depression
in youths: applying item response theory to clinical
data. Psychological assessment, 23(4):819.

Kawin Ethayarajh and Dan Jurafsky. 2020. Utility is in
the eye of the user: A critique of NLP leaderboards.
Association for Computational Linguistics.

José Hernández-Orallo, Bao Sheng Loe, Lucy
Cheke, Fernando Martínez-Plumed, and Seán
Ó hÉigeartaigh. 2021. General intelligence disentan-
gled via a generality metric for natural and artificial
intelligence. Scientific reports, 11(1):22822.

John P. Lalor and Pedro Rodriguez. 2022. py-irt: A
scalable item response theory library for python. IN-
FORMS Journal on Computing.

John P. Lalor, Hao Wu, Li Chen, Kathleen M. Mazor,
and Hong Yu. 2018a. ComprehENotes, an Instru-
ment to Assess Patient Reading Comprehension of
Electronic Health Record Notes: Development and
Validation. Journal of Medical Internet Research,
20(4):e139.

John P. Lalor, Hao Wu, Tsendsuren Munkhdalai, and
Hong Yu. 2018b. Understanding deep learning per-
formance through an examination of test set difficulty:
A psychometric case study. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4711–4716, Brussels,
Belgium. Association for Computational Linguistics.

John P. Lalor, Hao Wu, and Hong Yu. 2016. Building
an evaluation scale using item response theory. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 648–
657, Austin, Texas. Association for Computational
Linguistics.

John P. Lalor, Hao Wu, and Hong Yu. 2019. Learn-
ing latent parameters without human response pat-
terns: Item response theory with artificial crowds. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4249–
4259, Hong Kong, China. Association for Computa-
tional Linguistics.

John P. Lalor and Hong Yu. 2020. Dynamic data se-
lection for curriculum learning via ability estimation.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 545–555, Online.
Association for Computational Linguistics.

Antonio Laverghetta Jr., Animesh Nighojkar, Jamshid-
bek Mirzakhalov, and John Licato. 2021. Can trans-
former language models predict psychometric proper-
ties? In Proceedings of *SEM 2021: The Tenth Joint
Conference on Lexical and Computational Semantics,
pages 12–25, Online. Association for Computational
Linguistics.

12

https://josephorallo.webs.upv.es/
https://doi.org/10.18653/v1/2020.coling-main.421
https://doi.org/10.18653/v1/2020.coling-main.421
http://proceedings.mlr.press/v37/blum15.html
http://proceedings.mlr.press/v37/blum15.html
https://doi.org/10.1017/S1351324919000275
https://doi.org/10.1017/S1351324919000275
https://doi.org/10.18653/v1/2020.emnlp-main.393
https://doi.org/10.18653/v1/2020.emnlp-main.393
https://doi.org/10.2196/jmir.9380
https://doi.org/10.2196/jmir.9380
https://doi.org/10.2196/jmir.9380
https://doi.org/10.2196/jmir.9380
https://doi.org/10.18653/v1/D18-1500
https://doi.org/10.18653/v1/D18-1500
https://doi.org/10.18653/v1/D18-1500
https://doi.org/10.18653/v1/D16-1062
https://doi.org/10.18653/v1/D16-1062
https://doi.org/10.18653/v1/D19-1434
https://doi.org/10.18653/v1/D19-1434
https://doi.org/10.18653/v1/D19-1434
https://doi.org/10.18653/v1/2020.findings-emnlp.48
https://doi.org/10.18653/v1/2020.findings-emnlp.48
https://doi.org/10.18653/v1/2021.starsem-1.2
https://doi.org/10.18653/v1/2021.starsem-1.2
https://doi.org/10.18653/v1/2021.starsem-1.2


Fernando Martínez-Plumed, David Castellano, Carlos
Monserrat-Aranda, and José Hernández-Orallo. 2022.
When ai difficulty is easy: The explanatory power of
predicting irt difficulty. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36,
pages 7719–7727.

Fernando Martinez-Plumed and Jose Hernandez-Orallo.
2018. Dual indicators to analyze ai benchmarks: Dif-
ficulty, discrimination, ability, and generality. IEEE
Transactions on Games, 12(2):121–131.

Fernando Martínez-Plumed, Ricardo BC Prudêncio,
Adolfo Martínez-Usó, and José Hernández-Orallo.
2019. Item response theory in ai: Analysing machine
learning classifiers at the instance level. Artificial
intelligence, 271:18–42.

Prathiba Natesan, Ratna Nandakumar, Tom Minka, and
Jonathan D Rubright. 2016. Bayesian prior choice
in irt estimation using mcmc and variational bayes.
Frontiers in psychology, 7:1422.

Naoki Otani, Toshiaki Nakazawa, Daisuke Kawahara,
and Sadao Kurohashi. 2016. IRT-based aggregation
model of crowdsourced pairwise comparison for eval-
uating machine translations. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 511–520, Austin, Texas.
Association for Computational Linguistics.

Pedro Rodriguez, Joe Barrow, Alexander Miserlis
Hoyle, John P. Lalor, Robin Jia, and Jordan Boyd-
Graber. 2021. Evaluation examples are not equally
informative: How should that change NLP leader-
boards? In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 4486–4503, Online. Association for Computa-
tional Linguistics.

Pedro Rodriguez, Phu Mon Htut, John Lalor, and João
Sedoc. 2022. Clustering examples in multi-dataset
benchmarks with item response theory. In Proceed-
ings of the Third Workshop on Insights from Negative
Results in NLP, pages 100–112, Dublin, Ireland. As-
sociation for Computational Linguistics.

João Sedoc and Lyle Ungar. 2020. Item response theory
for efficient human evaluation of chatbots. In Pro-
ceedings of the First Workshop on Evaluation and
Comparison of NLP Systems, pages 21–33, Online.
Association for Computational Linguistics.

Clara Vania, Phu Mon Htut, William Huang, Dhara
Mungra, Richard Yuanzhe Pang, Jason Phang,
Haokun Liu, Kyunghyun Cho, and Samuel R. Bow-
man. 2021. Comparing test sets with item response
theory. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1141–1158, Online. Association for Computa-
tional Linguistics.

M Wu, R Davis, B Domingue, C Piech, and Noah D
Goodman. 2020. Variational item response theory:
Fast, accurate, and expressive.

13

https://doi.org/10.18653/v1/D16-1049
https://doi.org/10.18653/v1/D16-1049
https://doi.org/10.18653/v1/D16-1049
https://doi.org/10.18653/v1/2021.acl-long.346
https://doi.org/10.18653/v1/2021.acl-long.346
https://doi.org/10.18653/v1/2021.acl-long.346
https://doi.org/10.18653/v1/2022.insights-1.14
https://doi.org/10.18653/v1/2022.insights-1.14
https://doi.org/10.18653/v1/2020.eval4nlp-1.3
https://doi.org/10.18653/v1/2020.eval4nlp-1.3
https://doi.org/10.18653/v1/2021.acl-long.92
https://doi.org/10.18653/v1/2021.acl-long.92
https://www.semanticscholar.org/paper/a68e96795f09dfc57d89ae52f87decdda0152506
https://www.semanticscholar.org/paper/a68e96795f09dfc57d89ae52f87decdda0152506


Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Tutorial Abstracts, pages 14–20

March 21, 2024 c©2024 Association for Computational Linguistics

Language + Molecules

Carl Edwards and Qingyun Wang and Heng Ji
University of Illinois Urbana-Champaign

{cne2, qingyun4, hengji}@illinois.edu

1 Description
Climate change, access to food and water,
pandemics— these words, when uttered, immedi-
ately summon to mind global challenges with pos-
sible disastrous outcomes. The world faces enor-
mous problems in the coming decades on scales
of complexity never-before-seen. To address these
issues, developing scientific solutions which are
scalable, flexible, and inexpensive is critical. Fur-
ther, we need to develop these solutions quickly.
Broadly speaking, chemistry can provide molecular
solutions to many of these problems: breakthrough
drugs (e.g., kinase inhibitors (Ferguson and Gray,
2018)), materials (e.g., organic photovoltaics (Kip-
pelen et al., 2009)), and chemical processes. The
extremely large search spaces in which these solu-
tions exist make AI tools critical for finding them.
Of particular note, multimodal models combining
language with molecules are poised to be a crit-
ical tool for discovering these solutions (Zhang
et al., 2023). In this tutorial, we will discuss the
role which natural language processing can play
in discovering and accelerating solutions to global
problems via the broad chemistry domain.

One of the first questions that probably comes to
mind is why we would want to integrate natural lan-
guage with molecules. Succinctly, combining these
types of information has the possibility to acceler-
ate scientific discovery. As motivating scenarios,
imagine a future where a doctor can receive a novel,
patient-specific drug necessary to treat an ailment
just by writing a few sentences describing the pa-
tient’s symptoms (also taking into account their
genotype, phenotype, and medical history). Or,
imagine a scientist tackling challenging problems
by designing a molecule satisfying desired func-
tions (e.g., antimalarial or a photovoltaic) rather
than its structure or low level properties (e.g., solu-
bility). Controlling molecules and drug design in
such a high-level manner has potential to be hugely
impactful, but it requires a method of abstract de-

scription; luckily, humans have already developed
one: natural language.

In recent months, because of this potential im-
pact, significant attention and growth has occurred
in scientific NLP and AI research, including in-
tegration of molecules with natural language and
multimodal AI for science/medicine ((Zhang et al.,
2023) Section 10.3.3, (Wang et al., 2023)). We
believe a sufficient amount of work has now been
done, along with significant interest generated, to
propose an Introductory to NLP (yet still Cutting-
Edge) tutorial on "Language + Molecules". This
tutorial is designed to require no knowledge and
will enable participants to begin exploring relevant
and impactful research. Since most relevant work
is still cutting-edge, this will broaden the commu-
nity’s understanding of the associated challenges,
methodologies, and goals in multimodal molecule-
language models. We will present an interactive
hands-on example and release accompanying rele-
vant code and resources. The tutorial will precede
and prepare the way for the Language+Molecules
workshop later in the year at ACL.

2 Outline [180 min.]

Applying language models to the scientific domain
is becoming increasingly popular due to its po-
tential impact for accelerating scientific discovery
(Hope et al., 2022). Beyond extracting information
from scientific literature, NLP has the possibility
to increase control of the scientific discovery pro-
cess, which can be achieved through multimodal
representations and generative language models.

2.1 Background [60 min.]

Scientific Information Extraction [15 min.]

To start, we will provide a high-level overview on
traditional NLP tasks used for scientific discov-
ery (e.g., named entity recognition, entity linking,
and relation extraction), as well as recent domain-
specific LLMs designed for superior performance
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on scientific tasks (Beltagy et al., 2019).

What is a molecule? [15 min.]

Half of the title is molecules, but what is one? We
will start from scratch and discuss what a molecule
actually is, including the basic constituents of
molecules, atoms and bonds, and how they essen-
tially form graph structures. Then, we will focus on
molecular string languages, which are a key build-
ing block for chemical language models. We will
discuss tradeoffs of these languages (Grisoni, 2023;
Weininger, 1988; O’Boyle and Dalke, 2018; Krenn
et al., 2020; Cheng et al., 2023). Krenn et al. (2020)
proposes a formal grammar approach, which may
particularly interest the ACL community.

Molecule Design using Language Models [15]

Now that we know what a molecule is, we will
overview recent work applying NLP techniques to
these molecular languages with impressive results.
These molecular LLMs are trained with adapted
pre-training techniques from (natural) language
models to learn molecule representation from large
collections of molecule strings (Frey et al., 2022;
Chithrananda et al., 2020; Ahmad et al., 2022;
Fabian et al., 2020; Schwaller et al., 2021; NVIDIA
Corporation, 2022; Flam-Shepherd and Aspuru-
Guzik, 2023; Tysinger et al., 2023). Applications
include molecule and material generation, property
prediction, and protein binding site prediction.

Drug Discovery–A Brief Primer [15 min.]

Ok, so NLP is being used for molecules now.
What can we do with it?—here, we present a brief
overview of drug discovery–an important but chal-
lenging problem. Historically, molecular discov-
ery has commonly been done by humans who de-
sign and build individual molecules, but this can
cost over a billion dollars and take over ten years
(Gaudelet et al., 2021). We’ll discuss a little of
the process here, including non-NLP deep learning
methods, so that we know how to improve it.

2.2 Integrating Language with Molecules [95]

What does natural language have to offer? [15]

At least at first, integrating languages and
molecules seems like an odd idea. Here, we’ll start
an interactive discussion with the audience on what
they think potential benefits might be. We’ll make
sure to mention the following major advantages, as
discussed in the recent survey (Zhang et al., 2023):

1. Generative Modeling: One of the largest
problems in current LLMs—-hallucination—
becomes a strength for discovering molecules
with high-level functions and abstract proper-
ties. In particular, language is compositional by
nature (Szabó, 2020; Partee et al., 1984; Han
et al., 2023), and therefore holds promise for
composing these high-level properties (e.g., an-
timalarial) (Liu et al., 2022).

2. Bridging Modalities: Language can serve to
“bridge” between modalities for scarce data.

3. Domain Understanding: Grounding language
models into external real world knowledge (here,
molecular structures) can improve understand-
ing of unseen molecules and advance many
emerging tasks, such as experimental procedure
planning, which use LLMs as scientific agents.

4. Democratization: Language enables scientists
without computational expertise to leverage ad-
vances in scientific AI.

Do I want multimodality? [5 min.]

An important, yet often overlooked, question in
multimodal NLP is to ask: do I need multimodal-
ity? For example, if one wants to extract reactions
from the literature, a text-to-text model (Vaucher
et al., 2020) might be sufficient. However, editing a
drug with high-level instructions requires language
(Liu et al., 2023a; Fang et al., 2023). Here, we
will dive into this question and discuss example
scenarios with the audience for how to answer it.

2.2.1 Integrating Modalities [30 min.]

Ok, we’ve decided we want or need multimodality.
Next, we need to discuss how people are currently
tackling this-we’ll start with two primary methods,
bi-encoder models and joint representation models.

Bi-Encoder Models (and beyond) Bi-encoder
models consist of an encoder branch for text and
a branch for molecules. They have the advantage
of not requiring direct, early integration of the two
modalities, allowing existing single-modal models
to be integrated. Representative examples we will
discuss include Text2Mol (Edwards et al., 2021),
CLAMP (Seidl et al., 2023), and BioTranslator
(Xu et al., 2023). Generally, bi-encoder models
are effective for cross-modal retrieval (Edwards
et al., 2021; Su et al., 2022; Liu et al., 2022; Zhao
et al., 2023b), but they may also be integrated into
molecule (Su et al., 2022; Liu et al., 2022) and
protein (Liu et al., 2023b) generation frameworks.
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We’ll talk about all these tasks, applications, and re-
turn to some important motivations (e.g., bridging
modalities).

Joint Molecule-Language Models Joint models,
on the other hand, seeks to model interactions be-
tween multiple modalities inside the same network
to allow fine-grained interaction. We will discuss
encoder-only models (Zeng et al., 2022), encoder-
decoder models (Christofidellis et al., 2023), and
decoder-only models (Liu et al., 2023c).
Model Differences: We will answer important
questions such as: Which model should I use?
What tasks can each do? Tasks include retrieval
(Edwards et al., 2021), “translation” between
molecules and language (Edwards et al., 2022a),
editing molecules (Liu et al., 2022), and chemical
reaction planning (Vaucher et al., 2020, 2021).

An Interactive Example - Targeting
Microtubules for Cancer Treatment [20 min.]

At this point, there’s been a lot of ideas thrown
around. We’ll consolidate them by exploring an
interactive example of language-enabled molecule
design using Google Colab.
We will focus on microtubules for the example.
These cellular structures play an important role in
many processes such cell growth and division, and
mutations can be oncogenic (Mukhtar et al., 2014;
Wattanathamsan and Pongrakhananon, 2022). In
modern medicine, tumors such as pancreatic can-
cer are commonly treated by microtubule-targeting
drugs such as paclitaxel (Albahde et al., 2021). In
our example, we will explore creating new drugs
with this function using natural language instruc-
tions, which may be useful in cases of paclitaxel
resistance (Kavallaris, 2010). Our hands-on exam-
ple will consist of three components:
1. Language-enabled Drug Design:

Participants will explore inputs to
language→molecule models to generate
candidate drugs which target microtubules.

2. Language-Guided Assay Testing:
Here, participants will test their proposed drugs
in an assay. We will follow (Seidl et al., 2023),
where natural language descriptions are used for
assay predictions.

3. Interaction Prediction:
Finally, we will test if proposed drugs bind with
beta-tubulin using Autodock Vina, a well estab-
lished docking program (Trott and Olson, 2010),
via DockString (García-Ortegón et al., 2022).

Applications [25 min.] Here, we will dis-
cuss important applications to improve cross-
discipline communication, including drug discov-
ery (Mukhtar et al., 2014; Ferguson and Gray,
2018), organic photovoltaics (Kippelen et al.,
2009), and catalyst discovery for renewable energy
(Zitnick et al., 2020).

2.3 Recent Trends and Conclusion [25 min.]

Instruction-Following Molecular Design [10]

In the last year, instruction-following language
models (Wei et al., 2021) have surged in popularity.
Following this trend, training methodologies and
datasets have recently emerged to allow language
models to follow instructions related to molecule
properties (Liang et al., 2023; Fang et al., 2023;
Zeng et al., 2023; Zhao et al., 2023a). We will give
a brief overview of this new line of work.

LLMs as Scientific Agents [5 min.] Further,
we’ll focus on recent work which looks to control
experiments with language models (Boiko et al.,
2023) and to create tools for enabling domain-
specific capabilities in general language models
(Bran et al., 2023; Liu et al., 2023a).

Conclusion [10 min.] We will discuss the key
difficulties in the molecule-language domain that
need to be addressed by the research community to
allow similar progress to the vision-language do-
main. This includes 1) data scarcity due to domain
expertise requirements, 2) addressing inconsistency
when training on scientific literature, 3) improved
methods for integrating geometric structures into
LLMs, and 4) developing better evaluation met-
rics for chemical predictions without real-world
experiments.

3 Logistics and Details
Diversity Considerations For this tutorial, our
team originates from geographically distant coun-
tries and has varying level of seniority, including
two PhD students and a full professor, The team
includes a female researcher. This tutorial will aug-
ment a workshop on "Language + Molecules" to be
held at a the ACL conference, which already has
confirmed speakers and organizers with diversity in
geography, ethnicity, and gender. This tutorial will
strongly promote academic diversity, since it re-
quires combining the specialties of chemists, physi-
cians, pharmacists, computational linguists, and
machine learning researchers. Further, this tuto-
rial will promote the usage of NLP in high-impact
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areas, ranging from drug discovery to organic pho-
tovoltaics. The methods we will introduce are
language-agnostic. All tutorial materials (slides,
example, reading list) will be shared to reach such
a diverse audience.

Target Audience and Background We will tar-
get this tutorial at NLP researchers with no knowl-
edge of chemistry or molecules– thus, we will pro-
vide an extensive discussion of background mate-
rial. However, we will assume that the target audi-
ence is familiar with modern NLP methods includ-
ing training deep neural network-based language
models (e.g., BERT). We anticipate an audience
size of 75-150 researchers. We will discuss rele-
vant background for applying NLP to molecules
and important applications in chemistry.

Reading List
• Molecule Representations and Language Mod-

els: (Weininger, 1988; Krenn et al., 2020; Cheng
et al., 2023; Chithrananda et al., 2020; Ahmad
et al., 2022; Tysinger et al., 2023)

• Molecule-Language Modeling: (Edwards et al.,
2021; Zhao et al., 2023b; Zeng et al., 2022; Ed-
wards et al., 2022b; Zhao et al., 2023a; Su et al.,
2022; Liu et al., 2022, 2023c; Xu et al., 2023;
Liu et al., 2023a; Luo et al., 2023)

• Applications: (Jordan and Roughley, 2009;
Mukhtar et al., 2014; Kippelen et al., 2009)

• LLMs as Scientific Agents: (Boiko et al., 2023;
Bran et al., 2023; Castro Nascimento and Pi-
mentel, 2023; White et al., 2023)

• Survey: (Zhang et al., 2023) Section 10.3.3
We won’t require reading these beforehand to en-
sure the tutorial is introductory.

Breadth of Tutorial Papers in the reading list
were created by a diverse set of authors and include
other disciplines. Specifically, only 2 papers and a
survey from the instructors will be covered.

Ethical Considerations

Broader Impacts Our tutorial will have potential
broader impacts: 1) It will help ACL researchers to
better understand the research goals and constraints
in chemical sciences, allowing them to do more
impactful research there. 2) Studying language
models in the context of non-human languages can
help develop an understanding of their workings;
due to our own personal linguistic biases, human
researchers often misattribute abilities to language
models. This is particularly relevant for develop-
ing new methodologies which are applicable to

low-resource human languages. 3) It will promote
further research in text-based molecule generation,
with potential to enable a large shift in chemistry re-
search so that custom molecules can be developed
for each application or patient.
Ethical Concerns Like most methodologies reliant
on LLMs, there may be biases learned by the model
due to its large-scale training data. In this domain,
these biases may affect what type of molecules are
generated. Thus, any molecules or drugs discov-
ered should be strictly evaluated by standard clini-
cal processes before being considered for human
or medicinal use. Another risk is that potentially
dangerous molecules may be discovered. However,
knowledge of dangerous molecule’s existence and
structure is generally not harmful due to the requi-
site technical knowledge and laboratory resources
required for synthesis. Overall, we believe these
downsides are outweighed by the benefits to the
research and pharmaceutical communities.

3.1 Tutorial Presenters

Carl Edwards is a Ph.D. student in the Com-
puter Science Department at UIUC. Broadly, he
is interested in information extraction, informa-
tion retrieval, text mining, representation learning,
AI4Science, and multimodality. Particularly, he is
interested in applying these to the scientific domain
to accelerate scientific discovery. His work focuses
on integrating natural language and molecules, es-
pecially using multimodal representations.

Qingyun Wang is a Ph.D. student in computer
science at UIUC. His research lies in NLP for sci-
entific discovery. Recently, he works on extracting
reaction information from scientific literature. He
served as a PC member in conferences including
ICML, ACL, ICLR, NeurIPS, etc. His work was
recognized in the first Alexa Prize competition and
by the NAACL-HLT 2021 Best Demo Award. He
has presented a tutorial at EMNLP 2021.

Heng Ji is a professor at the Computer Science
Department of UIUC, and Amazon Scholar. She
is a leading expert on multimodal multilingual in-
formation extraction, including NLP for Science
with a particular interest in leveraging NLP for
drug discovery. She has coordinated the NIST
TAC Knowledge Base Population task since 2010.
She has served as the PC Co-Chair of many con-
ferences including NAACL-HLT2018 and AACL-
IJCNLP2022 and has presented many tutorials. She
was elected as NAACL secretary 2020-2023.
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Abstract

Transformers have emerged as dominant play-
ers in various scientific fields, especially NLP.
However, their inner workings, like many other
neural networks, remain opaque. In spite of the
widespread use of model-agnostic interpretabil-
ity techniques, including gradient-based and
occlusion-based, their shortcomings are becom-
ing increasingly apparent for Transformer in-
terpretation, making the field of interpretability
more demanding today. In this tutorial, we will
present Transformer-specific interpretability
methods, a new trending approach, that make
use of specific features of the Transformer ar-
chitecture and are deemed more promising for
understanding Transformer-based models. We
start by discussing the potential pitfalls and
misleading results model-agnostic approaches
may produce when interpreting Transformers.
Next, we discuss Transformer-specific methods,
including those designed to quantify context-
mixing interactions among all input pairs (as
the fundamental property of the Transformer
architecture) and those that combine causal
methods with low-level Transformer analysis to
identify particular subnetworks within a model
that are responsible for specific tasks. By the
end of the tutorial, we hope participants will un-
derstand the advantages (as well as current limi-
tations) of Transformer-specific interpretability
methods, along with how these can be applied
to their own research.

1 Tutorial Description

With Transformers (Vaswani et al., 2017) demon-
strating exceptional performance across every do-
main they venture into such as language, speech,
vision, and music, the necessity to understand
their underlying mechanisms has become more cru-
cial than ever before. Many model-agnostic inter-
pretability techniques that were commonly used for
earlier generations of deep learning architectures,
such as probing, occlusion-based, and feature attri-
bution methods, were swiftly adapted for use with

the Transformer architecture. However, these ap-
proaches demonstrate notable disagreement with
each other and a lack of stability when moving
from one domain to another (Neely et al., 2022;
Pruthi et al., 2020; Krishna et al., 2022). Their
effectiveness in drawing reliable conclusions has
therefore been an ongoing matter of debate (Bibal
et al., 2022).

Recently, a game-changing trend has emerged:
the development of analysis methods that are pre-
cisely tailored to the model architecture of Trans-
formers, built upon their underlying mathematical
foundations. These methods make use of specific
features of Transformers, including their layered
structure (layers, heads, tokens), the division of la-
bor between the attention mechanism, feed-forward
layers, and residual streams. These techniques span
from those aimed at measuring token-to-token in-
teractions (known as context mixing, Brunner et al.,
2020; Kobayashi et al., 2020, 2021; Ferrando et al.,
2022b; Mohebbi et al., 2023b,a), to others striving
to reverse engineer the model decision and decom-
pose it into understandable pieces (known as mech-
anistic interpretability, Wang et al., 2023; Elhage
et al., 2021).

This tutorial focuses on Transformer-specific in-
terpretability methods. We will first briefly review
the internal structure of the Transformer architec-
ture to establish our notations. Next, we will ex-
plain why it is necessary to design methods tai-
lored to the model architecture, exposing the lim-
itations of model-agnostic approaches when ap-
plied to Transformer analysis using practical exam-
ples. Subsequently, we will introduce Transformer-
specific techniques, delving into their mathematics,
and categorizing them according to their purposes,
using experimental results across a number of do-
mains, such as text, speech, and music, as well
as across several languages. Our tutorial will con-
clude with a discussion on current limitations in
interpretability and promising future directions.
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2 Tutorial Type

The tutorial will be cutting-edge, covering the lat-
est research advancements in the interpretability of
Transformers, which serve as the backbone archi-
tecture of modern NLP systems.

The only ACL tutorials similar to ours are "Inter-
pretability and Analysis in Neural NLP" (Belinkov
et al., 2020) and "Fine-grained Interpretation and
Causation Analysis in Deep NLP Models" (Saj-
jad et al., 2021), held at ACL 2020 and NAACL
2021, respectively. Both focused on general model-
agnostic interpretability techniques. Our tutorial,
however, will question the effectiveness of those
general-purpose analysis methods and mark the
next chapter: a transition from model-agnostic ap-
proaches to Transformer-specific methods.

3 Target Audience

Given the widespread use of Transformers across
various applications in both text and speech, we
expect that our audience will be not only folks en-
gaged in interpretability but also those from various
tracks within the Computational Linguistics com-
munity who have not kept up with the recent ad-
vancements within interpretability research. In fact,
we have been frequently asked at *ACL confer-
ences and our industry meetings, particularly by in-
dividuals outside of the interpretability track, seek-
ing guidance on the most effective interpretabil-
ity techniques to employ in their projects for non-
interpretability purposes, such as training monitor-
ing, model compression, or model tuning.

In terms of expected prerequisite background,
we expect audience members to be familiar with
the basic concepts of Transformer models. For the
Jupyter notebooks that will be covered, we expect
experience with PyTorch and the Transformers
library.

4 Outline of Tutorial Structure

The tutorial will consist of 30 minute slots of lec-
tures and interactive seminars for which we will
provide Jupyter notebooks. A small part of the tu-
torial will be focused on interpretability techniques
from the organisers (e.g. Abnar and Zuidema, 2020
and Mohebbi et al., 2023b), but the majority of the
work discussed will be work from other labs to pro-
vide an honest and broad overview of the current
state of interpretability research in NLP.

1. 30 minute lecture on model-agnostic inter-
pretability:

• Introduction
• Model-agnostic approaches: probing,

feature attributions, behavioral studies
• How are model-agnostic approaches

adapted to Transformers? What are their
limitations?

2. 30 minute lecture on interpretation of atten-
tion and context mixing:

• Attention analysis (Clark et al., 2019) as
a straightforward starting point for mea-
suring context mixing.

• Limitations of interpreting raw attention
scores (Bibal et al., 2022; Hassid et al.,
2022)

• Effective attention scores: rollout (Ab-
nar and Zuidema, 2020), HTA (Brun-
ner et al., 2020), LRP-based attention
(Chefer et al., 2020).

• Expanding the scope of context mix-
ing analysis by incorporating other
model components: Attention-Norm
(Kobayashi et al., 2020, 2021, 2023),
GlobEnc (Modarressi et al., 2022), ALTI
(Ferrando et al., 2022b,a), Value Zero-
ing (Mohebbi et al., 2023b), DecompX
(Modarressi et al., 2023).

3. 30 minute interactive tutorial on interpreting
context mixing: Jupyter notebooks will be
provided (via Google Colab) and can be run
interactively while the presenters go through
it.

4. Coffee break

5. 30 minute lecture on mechanistic and
causality-based interpretability:

• Basics of mechanistic interpretability:
the residual stream and computational
graph views of models, and the circuits
framework (Olah et al., 2020; Elhage
et al., 2021; Hanna et al., 2023).

• Finding circuit structure using causal in-
terventions (Vig et al., 2020; Geiger et al.,
2021; Wang et al., 2023; Goldowsky-Dill
et al., 2023; Conmy et al., 2023; Nanda,
2023; Syed et al., 2023).
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• Assigning semantics to circuit compo-
nents: the logit lens (Nostalgebrist, 2020;
Geva et al., 2021), concept erasure (Bel-
rose et al., 2023), and (potentially) pol-
ysemanticity and superposition (Elhage
et al., 2022).

6. 30 minute interactive tutorial mechanistic in-
terpretability in NLP, notebooks will again be
provided.

7. 30 minute slot for discussion, reflection and
future outlook: what are open questions in
interpretability, what’s next, and what’s lack-
ing?

5 Reading List

In addition to the key papers mentioned in Sec-
tion 4, we would recommend attendees that are in-
terested in gaining a broader understanding of gen-
eral interpretability techniques to explore the fol-
lowing survey papers: (Belinkov and Glass, 2019;
Madsen et al., 2021; Raukur et al., 2022; Lyu et al.,
2022)

6 Special Requirements

There are no special technical requirements, other
than standard conference equipment (computer,
screen, and projector). If participants wish to par-
ticipate in the interactive parts, they should bring
their laptops.

7 Diversity

Our tutorial focuses on Transformer-specific in-
terpretability across several domains, including
text, speech, music, (and vision, to some extent).
As Transformers have gained widespread adoption
within the CL community, we anticipate engaging a
diverse and extensive audience. To ensure diversity,
we have both professors and PhD students on our
instructor team.

8 Tutorial Instructors

Hosein Mohebbi is a PhD candidate at Tilburg
University. He is part of the InDeep consortium
project, doing research on the interpretability of
deep neural models for both text and speech. Dur-
ing his Master’s, his research revolved around the
interpretation of pre-trained language models and
the utilization of interpretability techniques to ac-
celerate their inference time. His research has been

published in leading NLP venues such as ACL,
EACL, EMNLP, and BlackboxNLP, where he also
regularly serves as a reviewer. He is also one of the
organizers of BlackboxNLP 2023-2024, a work-
shop focusing on analyzing and interpreting neural
networks for NLP.

Jaap Jumelet is a PhD candidate at the Insti-
tute for Logic, Language and Computation at the
University of Amsterdam. His research focuses
on gaining an understanding of how neural mod-
els are able to build up hierarchical representa-
tions of their input, by leveraging hypotheses from
(psycho-)linguistics. His research has been pub-
lished at leading NLP venues, including TACL,
ACL, and CoNLL. He is a co-organiser for Black-
boxNLP in 2023-2024. He has been involved in
numerous courses in the AI Master of the Univer-
sity of Amsterdam, all with a focus on NLP and
interpretability.

Michael Hanna is a PhD candidate at the Univer-
sity of Amsterdam, as part of the Institute for Logic,
Language and Computation. His research focuses
on understanding the abilities of pre-trained lan-
guage models, and linking these behaviors to low-
level mechanisms using causal methods. His work
has been published in leading interpretability and
NLP venues such as NeurIPS, EMNLP, and EACL.
He previously designed and led a workshop on
mechanistic interpretability as part of the Univer-
sity of Amsterdam’s artificial intelligence masters
program.

Afra Alishahi is an Associate Professor at the
Department of Cognitive Science and Artificial In-
telligence at Tilburg University, Netherlands. Her
main research interests are developing computa-
tional models of human language, studying the
emergence of linguistic structure in grounded mod-
els of language learning, and developing tools and
techniques for analyzing linguistic representations
in neural models of language. She has served as
program chair for CoNLL and as AC and SAC
for many recent CL conferences, and is one of the
founders of the BlackboxNLP workshops. She has
acted as ACL tutorial co-chair and taught tutorials
at ACL and ESSLII; most recently she offered a
tutorial on Interpretability of linguistic knowledge
in neural language models as part of Lectures on
Computational Linguistics in Pisa, Italy.
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Willem Zuidema is Associate Professor of NLP,
Explainable AI and Cognitive Modelling at the Uni-
versity of Amsterdam. He has published widely in
NLP, AI and Cognitive Science venues, including
TACL, JAIR, ACL, EMNLP and NeurIPS. Since
2016, many of his publications have focused on in-
terpretability in AI. He has taught many undergrad-
uate and graduate courses (including Interpretabil-
ity and Explainability in AI in Amsterdams’s MSc
AI, 2022, 2023), and two courses at graduate sum-
merschools (ESSLLI 2008, 2015). He leads a
project on interpretability that involves 5 universi-
ties (‘InDeep’, 2021-2026). He has served on many
program committees, including ACL, NAACL,
EMNLP, BlackboxNLP, and helped organize work-
shops and conferences; in 2016, he was tutorial
co-chair for ACL.
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Abstract

The recent breakthroughs in Artificial Intel-
ligence (AI) can be attributed to the remark-
able performance of Large Language Models
(LLMs) across a spectrum of research areas
(e.g., machine translation, question-answering,
automatic speech recognition, text-to-speech
generation) and application domains (e.g., busi-
ness, law, healthcare, education, and psychol-
ogy). The success of these LLMs largely de-
pends on specific training techniques, most no-
tably instruction tuning, RLHF, and subsequent
prompting to achieve the desired output. As
the development of such LLMs continues to
increase in both closed and open settings, eval-
uation has become crucial for understanding
their generalization capabilities across differ-
ent tasks, modalities, languages, and dialects.
This evaluation process is tightly coupled with
prompting, which plays a key role in obtain-
ing better outputs. There has been attempts
to evaluate such models focusing on diverse
tasks, languages, and dialects, which suggests
that the capabilities of LLMs are still limited
to medium-to-low-resource languages due to
the lack of representative datasets. The tutorial
offers an overview of this emerging research
area. We explore the capabilities of LLMs in
terms of their performance, zero- and few-shot
settings, fine-tuning, instructions tuning, and
close vs. open models with a special emphasis
on low-resource settings. In addition to LLMs
for standard NLP tasks, we will focus on speech
and multimodality.1

1 Tutorial Content Description

Large Language Models (LLMs) are prominent ex-
amples of Foundation Models (FMs), based on the
Transformer network architecture (Vaswani et al.,
2017). Trained to predict the subsequent token in
a sequence, LLMs capture implicit and intricate

1The content of the tutorial will be available at the follow-
ing website: https://llm-low-resource-lang.github.
io/.

information contained in the data. Moreover, when
created using multilingual training data, the mod-
els capture linguistic nuances, phonological pat-
terns, and semantic relationships across languages,
strengthening its multilingual capabilities. How-
ever, understanding how their capabilities general-
ize across tasks and languages requires a systematic
evaluation approach.

1.1 Benchmarking LLMs for different tasks
and languages

The HELM project (Liang et al., 2022) assessed
English LLMs across various metrics and scenar-
ios. BIG-Bench (Srivastava et al., 2022) introduced
a large-scale evaluation with 214 tasks, consid-
ering low-resource languages as well. Other ef-
forts included evaluations of ChatGPT, GPT2.5,
BLOOMZ, and OpenAI GPT as in Bang et al.
(2023); Ahuja et al. (2023); Hendy et al. (2023);
Abdelali et al. (2023); Scao et al. (2022).

For speech, OpenAI’s Whisper (Radford et al.,
2022), Google’s USM (Zhang et al., 2023), and
other speech models are explored by the speech
community. They are general-purpose speech mod-
els with multilingual capabilities, designed for
speech recognition (ASR) and other tasks. The
benchmarking efforts include Speech Processing
Universal PERformance Benchmark (SUPERB)
initiative (Yang et al., 2021) which includes a col-
lection of benchmarking tools, resources, and a
leader board for 10 tasks from six domains.

1.2 LLMs and lower-resources languages

These LLMs have been trained on datasets from
the internet, ingesting many resources in different
languages. For close models (e.g., ChatGPT) the
coverage and the distribution of the content for
medium-to-low-resource languages are unknown.
Most of the open-sourced models uses common-
crawl dataset, which is skewed for many languages.
For example, Bloom, that is trained on 46 natural
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languages and 13 programming languages 2, has
only 4.6%, 0.02% and 0.70% language coverage
for Arabic, Swahili and Hindi respectively (Scao
et al., 2022).

With models trained on such distribution of
data, this raises questions on their capabilities on
medium-to-low-resource languages in a variety of
language processing tasks. To understand the capa-
bilities of LLMs, there has been several research
efforts. Bang et al. (2023) reports that ChatGPT
fails to generalize to low and extremely low re-
sources languages (e.g., Marathi, Sundanese, and
Buginese). Lai et al. (2023) reports that ChatGPT
generally performs better for English than other
languages. Ahuja et al. (2023) evaluate 8 differ-
ent tasks with 33 languages and report that LLMs
perform better on high-resource languages and lan-
guages that are in Latin scripts. In our work for Ara-
bic, we evaluate ChatGPT on 33 tasks, 59 datasets
with 96 test setups using zero-shot setting. Perfor-
mances are significantly lower on 88 test setups
(Abdelali et al., 2023). This study also focused on
tasks covering different Arabic dialects and reports
that models perform comparably for MSA than
other dialects such as Egyptian, Gulf, Levantine,
and Maghrebi.

In the realm of speech technology, OpenAI’s
recent Whisper model has demonstrated that the
performance in low-resource languages is still rel-
atively poor, a trend that correlates with the size
of the pre-training dataset. Subsequently, Google’s
USM models have shown further improvements in
performance, achieving an average word error rate
(WER) of less than 30% across 73 languages.

1.3 Multimodality

Along side with NLP, speech, and multimodal gen-
erative models have also emerged (Liu et al., 2023a;
Zhu et al., 2023a; OpenAI, 2023a). ChatGPT has
demonstrated multi-modal abilities on variety of
tasks. Following that, Zhu et al. (2023a) developed
MiniGPT-4, which is trained by combining Vicuna
(Chiang et al., 2023) and Blip-2 (Li et al., 2023).
Recently, OpenAI, Google, and Meta released GPT-
4 Vision (OpenAI, 2023b), Gemini (Team et al.,
2023), and AnyMAL (Moon et al., 2023), respec-
tively, each focusing on multimodal aspects. The
idea of the these attempts was to train a model
by aligning visual information from a pre-trained
vision encoder with an LLM. Though their capa-

2https://huggingface.co/bigscience/bloom

bilities have not been widely studied across tasks
and languages, it is important to explore and un-
derstand their capabilities that can enhance future
studies.

1.4 Dialects
In our study for Arabic (Abdelali et al., 2023), we
observed that the gaps in LLMs’ performance be-
tween MSA and dialectal datasets (e.g., for ma-
chine translation (MT) and speech recognition task)
are more pronounced, indicating ineffectiveness of
LLMs for under-represented dialects. For example,
in both the GPT-models, we noticed a large discrep-
ancy in the POS accuracy of 0.810 versus 0.379
on MSA and dialects respectively. Similarly, for
Arabic dialect identification tasks (ADI) we notice
a significant difference between the SOTA acoustic
and lexical model with respect to LLMs results.

1.5 Prompting for LLMs
Prompt design plays a critical role in influenc-
ing the performance of Large Language Models
(LLMs), as evidenced in (Reynolds and McDonell,
2021; Dong et al., 2022). These models are highly
sensitive to minor variations in the prompts, such
as word choice and the order of examples in few-
shot settings. Ahuja et al. (2023) have investigated
various monolingual and multilingual prompts, dis-
covering that English-language templates gener-
ally outperform those in native languages. The
performance of a task also depends on native and
non-native language prompts. In our study focus-
ing on Arabic (Abdelali et al., 2023) and Bangla
(Hasan et al., 2023), we have found that perfor-
mance can vary considerably depending on whether
the prompts are in a native or non-native language.
This variability is observed in both zero-shot and
few-shot settings. Another point of interest in few-
shot settings is the method used for selecting shots
and arranging them in a reasonable order. Various
approaches have been reported, such as random
selection (Khondaker et al., 2023), class-based se-
lection (e.g., Liang et al. (2022) selected examples
to ensure class coverage in classification tasks),
and Maximal Marginal Relevance-based (MMR)
selection (Carbonell and Goldstein, 1998).

1.6 What this tutorial offers
Here, we provide an overview of the capabilities
of LLMs for diverse tasks, languages, dialects, and
modalities, including text, speech, and multimodal-
ity. We start with an introduction to LLMs, includ-
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ing a brief history and their significant capabilities
in downstream tasks. This is followed by an in-
depth examination of various LLMs developed for
NLP, speech, and multimodal applications, empha-
sizing their utility across different tasks.

In the third part of the tutorial, we delve into the
intricacies of prompting, which serves as a foun-
dational element for obtaining output from these
LLMs. In this part, we will also include a hands-on
demonstration of tools that have been developed
to further facilitate research on LLMs. The fourth
part of the tutorial will focus on a more compre-
hensive discussion about low-resource languages,
addressing both the challenges they present and fu-
ture directions for research. Finally, we will discuss
hallucination, bias, toxicity, and computational re-
sources needed for model training and inference.
An outline of the tutorial is reported in Section 3.

2 Type of the Tutorial

The tutorial is both introductory, covering a num-
ber of topics related to the capabilities of LLMs,
but it is also cutting-edge, covering some latest de-
velopments in these areas. Attendees will have an
overview of tasks, languages, dialects and modal-
ities related to LLMs, which will put them up
to speed to do research in the area. The tutorial
targets anyone interested in employing LLMs for
NLP, speech and multimodal tasks. We believe
researchers working on lower-resource languages
will be especially interested. We expect the audi-
ence to have intermediate machine learning knowl-
edge.

3 Outline of the Tutorial

Below, we offer an outline of the tutorial. More
information and materials will is available online
on the tutorial website upon the tutorial acceptance.

3.1 Introduction [30 min]

(i) LLMs

(a) A brief history of LLMs
(b) Capabilities in downstream NLP, speech,

and multimodal tasks

References: (Mielke et al., 2021; Sennrich et al.,
2016; Wu et al., 2016; Kudo and Richardson, 2018;
Radford et al., 2019; Devlin et al., 2019; Liu et al.,
2019; Lewis et al., 2020)

3.2 Models and their capabilities for
low-resource languages [30 min]

The following are just a few examples of models.
They will not be the only ones covered in the tuto-
rial.

(i) Models for NLP tasks

(a) GPT 3.5 (ChatGPT), GPT-4
(b) Bloom, LLaMA, mT5, Flan, PaLM

(ii) Models for Speech tasks

(a) USM
(b) Whisper

(iii) Models for Multimodality

(a) Closed models: GPT-4 Vision, Gemini
(b) Open Models: MiniGPT, LLaVA

References: (Brown et al., 2020; Liu et al., 2023a;
Xue et al., 2020; Scao et al., 2022; Touvron et al.,
2023; Zhu et al., 2023a)

3.3 Prompt Engineering [50 min]
(i) Zero-shot

(ii) Few-shots and selection methods

(iii) Prompt templates

(iv) Mono/Cross lingual prompting

(v) Prompt programming

(vi) Tools and resources (e.g., LLMeBench (Dalvi
et al., 2023), OpenICL (Wu et al., 2023),
PromptBench (Zhu et al., 2023b)) and lm-
evaluation-harness (Gao et al., 2023).

References: (Wei et al., 2021; Zhang et al., 2022;
Reynolds and McDonell, 2021)

3.4 Limitations and Challenges for
low-resource settings [50 min]

(i) Multitask, multilingual, multimodal evalua-
tion for low-resource languages

(ii) Multi-dialects challenges

(iii) Summary of recent benchmarking efforts
References: (Ahuja et al., 2023; Liang et al., 2022;
Srivastava et al., 2022; Bang et al., 2023; Ahuja
et al., 2023; Hendy et al., 2023; Yang et al., 2021;
Radford et al., 2022; Zhang et al., 2023; Abdelali
et al., 2023; Bang et al., 2023; Bubeck et al., 2023)

3.5 Other Related Aspects [30 min]
(i) Hallucination

(ii) Bias, Toxicity and Misinformation in LLMs

(iii) Computational Resources, Carbon footprint
References: (Bang et al., 2023)
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4 Prerequisites

We expect attendees to be equipped with basic
knowledge of machine learning, including familiar-
ity with recent neural network architectures, partic-
ularly Transformers, and an understanding of pre-
trained language models. Additionally, attendees
should be familiar with standard NLP tasks such
as text classification, natural language generation,
and question answering.

5 Reading List

In addition to the references cited in Section 3, we
recommend several surveys: an overview of LLMs
(Zhao et al., 2023), prompt engineering (Liu et al.,
2023b; Gu et al., 2023), in-context learning (Dong
et al., 2022), and evaluation of LLMs (Liang et al.,
2022).

6 Tutorial Instructors

Firoj Alam is a Scientist at the Qatar Comput-
ing Research Institute (QCRI), HBKU. He re-
ceived his PhD from the University of Trento, Italy,
and has been working for more than ten years
in Artificial Intelligence, Deep/machine learning,
Natural Language Processing, Social media con-
tent, Image Processing, and Conversation Analysis.
His current research interest includes LLMs, fact-
checking, multimodal propaganda detection in mul-
tiple languages. He previously presented tutorials
at WWW-2022 and WSDM-2022 on the topic of
“Fact-Checking, Fake News, Propaganda, And Me-
dia Bias”. He was a co-organizer of different shared
tasks CheckThat! 2020-2024 at CLEF, SemEval-
2021 task 6 (propaganda detection in memes),
SemEval-2024 task (multilingual detection of per-
suasion techniques in memes), WANLP (Arabic-
NLP) shared task (2022-2023) and the NLP4IF-
2021 shared task. He is also a co-organizer of
the BLP-2023 workshop (collocated with EMNLP-
2023).
Shammur Absar Chowdhury is a Scientist at
QCRI, HBKU. Her research interest includes de-
signing speech models, and interpretability for
atypical phenomena in conversation. Dr. Chowd-
hury authored more than 60 peer-reviewed publi-
cations in tier-top conferences and journals; and
actively contributed to the research community
by organizing shared tasks, challenges, and work-
shops like SemEval-2022 (Task 3), QASR-TTS-
v1.0 (ASRU2023), SLT2023 (Local Chair), sum-
mer workshop JSALT2022 (as a senior mentor)

along with serving in the program-committee of
top-tier conferences and special interest groups
(SIGs).
Sabri Boughorbel is a Scientist at QCRI, HBKU.
He received his PhD in Machine Learning from
the university of Paris Sud. He has an extensive
experience in Machine Learning for industrial and
academic research. He authored more than 70 peer-
reviewed papers and 7 patents. He was awarded
several grants in the intersection of machine learn-
ing and health. His current research is on lever-
aging open-sourced LLMs for low-resource lan-
guages and developing multi-modal language mod-
els. He serves as PC member of top-tier machine
learning conferences. In 2023, he co-organized a
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