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Abstract

The advancement of generative Large Lan-
guage Models (LLMs), capable of produc-
ing human-like texts, introduces challenges
related to the authenticity of the text doc-
uments. This requires exploring potential
forgery scenarios within the context of author-
ship attribution, especially in the literary do-
main. Particularly, two aspects of doubted
authorship may arise in novels, as a novel
may be imposed by a renowned author or in-
clude a copied writing style of a well-known
novel. To address these concerns, we intro-
duce Forged-GAN-BERT, a modified GAN-
BERT-based model to improve the classifica-
tion of forged novels in two data-augmentation
aspects: via the Forged Novels Generator (i.e.,
ChatGPT) and the generator in GAN. Com-
pared to other transformer-based models, the
proposed Forged-GAN-BERT model demon-
strates an improved performance with F1 scores
of 0.97 and 0.71 for identifying forged nov-
els in single-author and multi-author classifica-
tion settings. Additionally, we explore differ-
ent prompt categories for generating the forged
novels to analyse the quality of the generated
texts using different similarity distance mea-
sures, including ROUGE-1, Jaccard Similarity,
Overlap Confident, and Cosine Similarity.

1 Introduction

Early applications of generative models for liter-
ary text generation go back to the works by Bailey
(1974) for automatic poetry generation. Moreover,
the most recent attempts to generate poems via

text generative models were described by Saeed
et al. (2019); Zhang and Lapata (2014); Yi et al.
(2017); Wang et al. (2016); Yu et al. (2017); Liu
et al. (2018); Beheitt and Hmida (2022). ChatGPT
and other powerful generative models generated
stories by investigating different prompting mech-
anisms (Benzon, 2023; Osone et al., 2021). In
most recent attempts, the researchers have explored
human-AI co-creation in literary areas, for instance,
in the works of Calderwood et al. (2020); Frich et al.
(2019). Also, the work in Uludag (2023) performed
qualitative and quantitative methods to test the cre-
ativity of ChatGPT in psychology. Uludag (2023)
finds that ChatGPT has some level of creativity but
also imposes limitations, such as a limited under-
standing of the context and the inability to generate
original ideas.

With the popularity of generative LLMs for cre-
ative content generation, there have been issues
observed on well-known book-selling platforms
such as Amazon, where AI-generated books are
presented for sale under human writers’ names
with and without the original involvement of the
authors (Friedman, 2023). Responding to this situ-
ation, platforms such as Amazon have taken mea-
sures, such as ordering self-publishing authors to
explicitly declare whether their content is machine-
generated (Radauskas, 2023). To address these
challenges, organisations such as the ‘Authors
Guild’ and ‘The Society of Authors are actively
pursuing legislative protection for human authors
from such forged literary works under their names
(Aut, 2023; SOA, 2023).

325



As a preliminary step to proposing possible solu-
tions for such authorship issues, particularly consid-
ering a use case of machine-generated novels, we
explored the ability to utilise GAN-BERT (Croce
et al., 2020) to discriminate forged novels gener-
ated by ChatGPT from the texts of the original nov-
els. The internal architecture of the GAN-BERT
models combines a generator capable of generating
fake texts similar to real ones. Since the GAN-
BERT model already identifies fake texts (Silva
et al., 2023), we want to test the hypothesis that it
will perform well in detecting AI-generated novels
in a similar style to the original novels. This paper
presents the Forged-GAN-BERT model, specifi-
cally designed to identify forged novels within the
context of authorship attribution. We utilised 20
novels per author during this study, considering 5
randomly selected authors, prompting ChatGPT to
forge the books’ styles with zero-shot prompting.
In contrast to a recent study conducted by Jones
et al. (2022), which is primarily on online posts,
our research focuses on literary works. We utilise
the GAN-BERT model to conduct a dual analysis
of the forged texts, combining forged novels gener-
ated within the GAN generator and those created
by LLM, like ChatGPT. Also, in Jones et al. (2022),
they have used fine-tuning to generate AI text, but
instead, we prompted ChatGPT to forge or disguise
the author’s style. To our knowledge, this is the
first study using ChatGPT prompts to generate sim-
ilar novelist styles and to utilise the GAN-BERT
model to detect AI-generated novels.

Our study is steered by the following formulated
research questions:

RQ 1 What are the implications of utilising var-
ious text similarity metrics in assessing the
quality of forged novels?

RQ 2 Is it possible to distinguish between hu-
man novels vs LLM-generated novels with
the Forged-GAN-BERT?

The remainder of the paper is organised into sev-
eral sections: Section 2 provides a brief literature
survey. Then, Section 3 describes the dataset infor-
mation. Section 4 elaborates on the quality analysis
of the forged novels against different prompt cat-
egories, emphasising the RQ1. Section 5 outlines
the Forged-GAN-BERT model architecture related
to the RQ2. Finally, Section 6 adds concluding
remarks and future directions.

2 Related Work

Text generation models, aka Natural Language Gen-
eration (NLG), generate text closer or indistinguish-
able from human text or any other input format,
such as image or video, which can be categorised
into completion generation, text-to-text generation,
and inference. Large Language Models (LLM)
such as BERT (Devlin et al., 2019), T5 (Raffel
et al., 2020), PALM Chowdhery et al. (2022), GPT-
3 (Brown et al., 2020), GPT-4 (OpenAI, 2023b),
were trained on larger datasets with billions of
parameters, which can process massive loads of
data and provide highly accurate results. BERT-
based models (Devlin et al., 2019) and T5 (Raffel
et al., 2020) were built on encoder-only or encoder-
decoder architectures, respectively, and are flexible
for adapting to many tasks by means of finetuning.
Chowdhery et al. (2022) investigate the scalabil-
ity factor of LLMs in terms of few-shot learning
towards multilingual tasks and source code gener-
ation tasks. Recent LLM text generators mainly
focus on the models’ scalability and increasing the
models’ capacities compared to the predecessor
models.

Advanced conversational models can be opti-
mised for massive, high-quality data generation
via prompt engineering (Saravia, 2022) on the API
of interface level. By using prompt engineering
in LLMs such as Flan (Chung et al., 2022), Chat-
GPT (OpenAI, 2023a), LLaMA (Hoffmann et al.,
2022), and GPT-4 (OpenAI, 2023b), models can be
utilised to curate new datasets (Wang et al., 2022;
Sanh et al., 2022; Gehman et al., 2020; Bai et al.,
2022) or as data augmentation strategies (Zhao
et al., 2023; Shivagunde et al., 2023; Wang et al.,
2023).

Mishra et al. (2022) discuss machine learning-
based fake news detection techniques with a
comparison to deep learning models. Tweep-
Fake (Fagni et al., 2021) detects DeepFake tweets
generated by bots based on different text generation
techniques such as RNN, Markov Chains, LSTM,
and GPT-2. DeID-GPT (Liu et al., 2023) presents
a zero-shot medical text de-identification based on
GPT-4 in the domain of clinical notes.

In the area of authorship attribution, two main
approaches exist for author identification: tradi-
tional approaches such as stylometric methods
(Aborisade and Anwar, 2018; Soler Company and
Wanner, 2017; Madigan et al., 2005), and deep
learning-based approaches (Fabien et al., 2020;
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Ruder et al., 2016; Saedi and Dras, 2021). Sty-
lometric approaches focus on stylometric feature
identification and utilising them in classification
models. Moreover, ensemble models such as Bac-
ciu et al. (2019); Moreau et al. (2015) combine sty-
lometric and deep learning mechanisms to enhance
the authorship attribution. Authorship Obfuscation,
a sub-discipline of authorship attribution, specifi-
cally addresses hiding authors’ writing styles and
identifying such attempts (Dehouche, 2021; Jones
et al., 2022).

The GAN-BERT model (Croce et al., 2020)
integrates BERT-based models with the Semi-
Supervised GANs, as illustrated in Figure 1. The
GAN-BERT model is being used for a range of ap-
plications such as sentiment analysis (Myszewski
et al., 2022; Ta et al., 2022), authorship attribution
(Silva et al., 2023), text classification (Auti et al.,
2022; Tanvir et al., 2022), and multi-task learning
(Breazzano et al., 2021).

Figure 1: GAN-BERT Model (Croce et al., 2020)
G - Generator, D - Discriminator, F - Forged text, L -
Labeled data, U - Unlabelled data

In contrast, considerable research has been per-
formed on Fake News, Tweets, Medical, and Po-
ems, but still limited attention to novels. Further
analysing original and generated text, specifically
for the literary domain, considering AI-generated
forged text, has yet to be addressed.

3 Datasets

3.1 Original Novels

We used a subset of a 19th-century novelists’
dataset created and curated from Project Gutenberg
(Gutenberg) for the human-created texts. We se-
lected 20 novels from 5 randomly selected authors:
Arthur Conan Doyle, Henry Rider Haggard, Jack
London, Mark Twain, and Wilkie Collins. The se-
lected novel’s list is in the released code repository
1.

1https://github.com/Kaniz92/Forged-GAN-BERT

3.2 Forged Novels:

In the literary domain, forgery can occur through
two scenarios. One involves the misattribution of
a text to a particular author(s), while the other in-
volves copying a similar writing style. This writing
style could be relevant to the author or the doc-
ument itself. Our research focuses on the latter
scenario, where we explore using LLMs to gen-
erate forged novels resembling existing original
works and attempt to identify such creations.

Prompting the ChatGPT-3.5 API 2 has been used
to generate similar novels per each original novel,
ranging on different prompt categories: Length,
Similarity, Identification, Chapter, and Tempera-
ture, illustrated in Table 1.

As explained in Table 2, the length parameter
considers whether to include word count in the
prompt query and an antecedent to the word count:
‘at least’, ‘exactly’, or ‘at most’. The similarity
parameter is defined to identify how ChatGPT in-
terprets prompts to generate similar texts using an-
tecedents to the book name:‘similar to’, ‘as same
as’, ‘same background as’, and ‘same characters
as’. The identification parameter mentions the book
text, i.e., with or without the author. There are dif-
ferent ways to prompt ChatGPT to generate novels,
either to generate a full text or a chapter(s) ex-
plored in the Chapter parameter. In the ChatGPT
API, the Temperature parameter can be set from 0
to 1, where a value closer to 1 generates creative
texts. We used this dataset on different prompts to
analyse the quality of the generated text but only
utilised the Default prompt for the training and test-
ing of the model. We prompted ChatGPT to forge
the novel text in each prompt, not the author’s style.
All the prompts under each Prompt Category are
mentioned in the Appendix A.

3.3 Preprocessing Datasets

As illustrated in Figure 2, the Project Gutenberg
texts contain special header and footer sections.
The Gutenberg sections were removed from the
original dataset as a preliminary preprocessing step.
Then, on both datasets, we performed typical pre-
processing steps such as lowercasing, stopword
removal, punctuation removal, and newline char-
acter removal. The cleaned original novel text has
been prompted to the ChatGPT to generate forg-

2The forged novels were generated in March 2023. Hence,
with the new ChatGPT-3.5 API update, the generated novels
may differ from those used here.
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Parameter Type Prompt Example Description
Length Write a complete novel similar to {book_name} by {author}. Without specifying a

word limit
Similarity Write a complete novel with same characters as {book_name}

by {author}. The novel should be at least 10000 words.
Same fiction characters as
the original novel

Identification Write a complete novel similar to {book_name}. The novel
should be at least 10000 words.

Without specifying the au-
thor

Chapter Write the first chapter of a complete novel similar to
{book_name} by {author}. The novel should be at least 10000
words.

First chapter only

Default Write a complete novel similar to {book_name} by {author}.
The novel should be at least 10000 words.

Default prompt with tem-
perature set to 0.2

Table 1: Prompt examples per each parameter type. The temperature parameter is controlled via the ChatGPT
parameters. The Default prompt was used to compare discriminative models.

Prompt Sub-Category Prompt
Without Write a complete novel similar to {book_name} by {author}.

Min Write a complete novel similar to {book_name} by {author}. The novel should be at least
10000 words.

Exactly Write a complete novel similar to {book_name} by {author}. The novel should be exactly
10000 words.

Max Write a complete novel similar to {book_name} by {author}. The novel should be at most
10000 words.

Table 2: Prompt examples for Length Prompt Type. Other prompt examples can be referred in Appendix A.

Figure 2: Original Novel (top) and Forged Novel (bottom) - Little Novels by Wilkie Collins. These are raw
texts from the Project Gutenberg and ChatGPT responses, respectively. Prior to the training and testing, several
pre-processing steps are performed as in Section 3.

eries. While the features we excluded during the
pre-processing stage are commonly employed as
stylometric features in authorship studies, our fo-
cus for author classification with LLMs mainly
involves text-based features.

4 Quality Analysis of Forged Novels

It is important to evaluate the quality of the
generated forged novels (F ) by comparing them
with the original novels (O). Different prompt

categories (P ) have been considered, with p ∈
{‘Length’, ‘Similarity’, ‘Identification’, ‘Chapter’,
and ‘Temperature’}. Although an infinite range
of prompts can be used for these experiments, we
considered only a finite set of 18 different prompts.
Since the objective of each prompt is to generate
a similar novel to a given original novel, we were
interested in the generated text quality and the sim-
ilarity, hence utilised a range of metrics such as
ROUGE-1, Jaccard Similarity, Overlap Confident,
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Figure 3: Prompt Type Impact Calculation using Similarity Scores

and Cosine Similarity. Each averaged similarity
score can be calculated as follows, considering a
basic averaging approach:

Average Distancemj =
1

N

N∑

i=1

Dm
(oi,fij)

with oi an original novel, pj a prompt category
and fij the corresponding forged novel of oi gen-
erated using pj . For a given similarity measure m,
with m ∈ {ROUGE-1, Jaccard Similarity, Over-
lap Coefficient, Cosine Similarity}, the distance D
between oi and fij is represented as Dm

(oi,fij)
. N

is the total number of pairs of novels we average
over.

For each prompt category P , the results of the
averaged distribution for each prompt sub-category
(see Table 2) are illustrated in Figure 3. These re-
sults indicate that the ‘Chapter’ prompt category
has more impact on the generated text similarity
based on the Overlap Coefficient and Cosine Sim-
ilarity metrics. The ‘Similarity’ prompt category
reports the highest ROUGE-1 score, which sug-

gests that such prompts captured similarity better
content-wise.

5 Forged-GAN-BERT Model

In the proposed model architecture as in Figure 4,
we are considering two aspects in addressing forged
texts in authorship attribution:

1. augmented novels via Forged Novels Genera-
tor

2. generated fake text via GAN-BERT

The proposed Forged-GAN-BERT model differs
from the original GAN-BERT model (Croce et al.,
2020) by incorporating a dual forged text analy-
sis curated explicitly for the authorship attribution
task. In contrast to the original model, only labelled
data were used in this approach. Across different
experiment settings, we provide the model with
different ratios of forged novels and original novels
and varying numbers of predicted classes via the
discriminator (D). The original and forged novels
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Figure 4: Forged-GAN-BERT Model Architecture. Original novels were given as context to the LLM-based
prompting to generate Forged Novels, which concatenated as inputs to the BERT model (bert-base-cased) in the
GAN-BERT model (Croce et al., 2020) (see Figure 1) to generate real text embedding. G and D represent the
generator and discriminator, respectively. Calculated loss at D is used to update model parameters in both G and D.
The forged novels generated by LLM and the fake text F from G contribute to the dual analysis of the forged novels.

are considered real data, passing through the BERT
model to generate text embedding. Subsequently,
using a controlled noise distribution from the latent
space, the generator (G) produces fake text resem-
bling the real text, which is used as an input to the
discriminator. The calculated loss is then used to
adjust the generator and discriminators’ training
parameters.

5.1 Dual Analysis of Forged Novels

Conventional approaches to detecting forged text
typically combine generated or annotated forged
text with the original text. In contrast, the proposed
model performs a dual analysis by incorporating
two types of forged texts: those derived from real-
world sources and those generated by the GAN
generator. This approach enhances the model’s
capability to detect forged novels, whether written
by humans or machine-generated.

Furthermore, a secondary hypothesis examined
via this dual analysis is that generating forged text
based on existing forged text may reveal the im-
poster’s true writing style. The fake novels F, gen-
erated for each forged novel, act as forged texts
over existing forged texts.

5.2 Experiment Design

We designed the following experiments under dif-
ferent dataset slices generated from the Default
prompt with the temperature value set to 0.2. Al-
though the higher temperature values indicate more
creativity in the generated text, we had to select
a lower range value to ensure the generated text
would keep the same style as the suggested novel.

1. ChatGPT as an Author Class

2. Human novels vs forged novels

When representing ChatGPT as an author class,
we simulated a scenario of determining whether
a test novel is a forgery against a known au-
thor’s work. The comparison between human and
forged novels evaluates the model’s ability to iden-
tify LLM-generated texts across different authors,
which evaluates the model’s generalisation ability.

The BERT embeddings were used to represent
the text, and the discriminator problem was mod-
elled as simple text classification. The models were
trained with default parameters wherever appropri-
ate: a batch size of 8, 5 epochs, a warmup propor-
tion of 0.1, a learning rate of 1e-5, a dropout rate
of 0.2, and using Adam optimiser.
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Model F1 F1(Human) F1(ChatGPT) Accuracy AUC
BERT 0.688 ±0.199 0.648 0.728 0.700 0.700
Longformer 0.975 ±0.051 0.978 0.971 0.975 0.975
RoBERTa 0.949±0.070 0.956 0.943 0.950 0.950
Forged-GAN-BERT 0.975 ±0.057 0.971 0.978 0.975 0.975

Table 3: Comparison between ChatGPT and All Authors (Averaged) Binary Classifications using BERT Embedding
as features.

Model F1 F1(Human) F1(ChatGPT) Accuracy AUC
BERT 0.275 0.000 0.760 0.550 0.917
Longformer 0.389 0.100 1.000 0.675 1.000
RoBERTa 0.397 0.080 1.000 0.700 1.000
Forged-GAN-BERT 0.710 0.600 1.000 0.850 1.000

Table 4: Comparison between ChatGPT vs Human Binary Classifications using BERT Embedding as features.

5.3 ChatGPT as an Author Class

At the primitive level, we investigated the model
performance when ChatGPT-forged novels were
compared to a single author based on binary classi-
fication. We trained author-based models with 20
novels from the original author and 20 ChatGPT
forgeries for each novel, resulting in a balanced uni-
form dataset slice. We averaged results obtained
per author to obtain a better generalisation.

The classification against a single author was
performed by reporting Accuracy, F1, AUC scores,
and each class F1 as illustrated in Table 3. The
dataset was well balanced during each author’s
comparisons, with 20 novels from the author and
20 ChatGPT novels per each, resulting in 40.

The high accuracy of 0.98 and F1 of 0.97 indi-
cate a superior performance of Forged-GAN-BERT
in distinguishing forged novels and each original
novel. For instance, consider a scenario where a
bookseller would want to investigate whether a spe-
cific novel is a forgery based on a known author’s
work. With a higher number of works to compare
in real life, manual processing becomes imprac-
tical and time-consuming. Instead, the proposed
model suggests an automated process that can be
integrated into such a scenario.

The AUC of 0.97 indicates the dataset bal-
ance between the two classes. F1(Human) and
F1(ChatGPT) scores evaluated the model perfor-
mance if only a particular class is present in the
dataset; for example, if only authors’ original work
is presented to the model, then it is capable of iden-
tifying correct authors with a 0.97 of F1 score, and
with 0.98 of F1 score vice versa.

Compared to the baseline models, BERT shows
a lower accuracy of 0.70 and F1 of 0.69, suggesting
a slightly weaker performance.

5.4 Human novels vs forged novels

To experiment with the model performance in the
multiple authors’ scenario, we have mixed all the
ChatGPT forgeries with original novels. We used
the 100 original novels from our 5 human nov-
elists and their forged counterparts generated by
ChatGPT, resulting in a balanced distribution. The
stratified k-fold sampling was used to overcome
the overfitting. We performed another set of binary-
class experiments using the same dataset by group-
ing all authors into the ‘human’ class and keeping
the ChatGPT class the same.

In the multiple-author scenario, we considered
ChatGPT as a unique author with five other au-
thors, resulting in 6 classes to discriminate. We
used the same models and parameter settings to
experiment on this and reported the same metrics
as in Table 4. For AUC, we used one-vs-rest in
a multi-class setting, using ChatGPT class. The
dataset is imbalanced in class distribution as Chat-
GPT text is five times each author’s novel count,
but it was balanced regarding the human vs AI text
ratio.

The Forged-GAN-BERT model achieved a high
accuracy of 0.85 and an F1 of 0.71, showing its
ability to collectively identify human- and machine-
generated novels. The perfect AUC score suggests
a perfect separation between the two classes.

Compared to the baseline BERT model, which
exhibits lower accuracy 0.55 and F1 0.25, indi-
cates a weaker performance when distinguishing
between human and ChatGPT-generated novels
than the Forged-GAN-BERT model.

5.5 Robustness of the model

The Table 3 results were obtained by comparing dif-
ferent models per each author and getting the aver-
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age of all the results. As per the standard deviation
results recorded, it shows that both Forged-GAN-
BERT and Longformer shows comparatively lower
standard deviation across different authors, hence,
both are robust over different author-wise compar-
isons. Although the Longformer model shows a
competitive performance with the Forged-GAN-
BERT model, it does not consist of a component
to generate fake texts or to implicitly compare fake
text vs real text.

Other models, BERT and RoBERTa are not com-
paratively successful in this case. Specifically,
when comparing single-authors and multiple au-
thors, the BERT model significantly showcases the
lowest performance across almost all the metrics
for both cases. This shows that the BERT models
are not recommended for classifying forged novels,
compared to the other models.

Further, the Table 4 results were obtained by ob-
serving one model to compare human vs ChatGPT
novels, where Forged-GAN-BERT outperforms all
other models across all the metrics. Altogether, we
can deduce that the proposed Forged-GAN-BERT
model is equally capable of identifying forged nov-
els per each author or with multiple authors.

6 Conclusion

In conclusion, the introduced Forged-GAN-BERT
model addresses the challenges of authorship at-
tribution in machine-generated forged novels, ex-
plicitly and implicitly considering a dual forged
text analysis approach. The results suggest that the
proposed model outperforms other considered base-
line models in identifying forged novels in single-
author and multi-author classifications. Additional
evaluation on the generated forged novels against
different prompts utilised various similarity dis-
tance metrics such as ROUGE-1, Jaccard Similar-
ity, Overlap Coefficient, and Cosine Similarity. The
reported results indicated that the ’Chapter’ con-
figurations have more impact on generating novels
similar to the original text. This evaluation can be
extended for a probabilistic distribution approach
to evaluate the forged novels for all the possible
prompts in the infinite series of the prompts.

Future Work

We suggest that more research should focus on a
proper evaluation mechanism of the similarity mea-
sure for literary works such as novels. Future di-
rections could be around the authorship attribution

area, focusing on stylistic-related features. Further,
comparing and adhering to authorship obfuscation
techniques would be an interesting future direction.

Although we utilised existing metrics, further
research may be needed to evaluate the similarity
between original and generated novels using lan-
guage models such as ChatGPT, specifically on the
creative index aspects.

This calculation can be extended considering
a discrete probability distribution approach to de-
termine the overall error rate, which suits future
investigations. Further, integrating stylometric fea-
tures into such probabilistic distribution would be
another exciting direction.

Limitations

While this study unveils valuable insights into us-
ing the Forged-GAN-BERT model for authorship
attribution in the context of forged novel scenarios,
there are a few limitations to acknowledge. We
only focused on 5 authors and 20 novels from each
in a controlled dataset setting, denoting a close-
set authorship attribution. In a real-world setting,
we cannot expect the model to evaluate a text that
may be a forgery of known classes; hence, further
works should be investigated upon open-set author-
ship to ensure a more generalisation. As per the
copyright considerations and issues with releasing
forged novels, we refrain from releasing the entire
dataset; instead, we have provided guidelines to
reproduce the experiment settings.

Further, we acknowledge the character limita-
tions imposed by the ChatGPT-3.5 model, which
generates the forged novels, resulting in segments
of the novels closely resembling the originals. To
ensure consistency, we maintained the same text
lengths as the original and generated forged novels
during the experiments.

Ethics Statement

The selected original novels from Project Guten-
berg (Gutenberg) between 1800 and 1914, out of
the copyright duration as mentioned in ‘Rule 1:
Works First Published Before 95 Years Ago and
Before 1977’ and ‘Rule 10(c) - Works of Treaty
Parties and Proclamation Countries First Published
Between 1923 and 1977’. Yet, we are not releasing
the datasets to the public to prevent any unethical
usage of the generated forged novels. The text gen-
erated in the generator in the Forged-GAN-BERT
model is not human-readable; instead, it embeds
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representations, preventing unethical usage. Any
extended applications of this research should ad-
here to established ethical guidelines, such as us-
ing the generated forged novels and the proposed
model only for classification purposes and research
objectives. Moreover, using the proposed model
and dataset generation should refrain from distribut-
ing any author’s original content without appropri-
ate consent.
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A Appendix - Prompt Examples

Prompt Category Prompt Sub-Category Prompt

Length Without Write a complete novel similar to {book_name} by {author}.

Min Write a complete novel similar to {book_name} by {author}.
The novel should be at least 10000 words.

Exactly Write a complete novel similar to {book_name} by {author}.
The novel should be exactly 10000 words.

Max Write a complete novel similar to {book_name} by {author}.
The novel should be at most 10000 words.

Similarity SimilarStyle Write a complete novel similar to {book_name} by {author}.
The novel should be at least 10000 words.

SameStyle Write a complete novel as same as {book_name} by {author}.
The novel should be at least 10000 words.

SameBackground Write a complete novel with same background in {book_name}
by {author}. The novel should be at least 10000 words.

SameCharacters Write a complete novel with same characters in {book_name}
by {author}. The novel should be at least 10000 words.

Identification BookName Write a complete novel similar to {book_name}. The novel
should be at least 10000 words.

BookNameAuthorName Write a complete novel similar to {book_name} by {author}.
The novel should be at least 10000 words.

Chapter FirstAndLast Write the first and last chapters of a novel similar to {book_name}
by {author}. The novel should be at least 10000 words.

All Write a complete novel similar to {book_name} by {author}.
The novel should be at least 10000 words.

First Write the first chapter of a complete novel similar to
{book_name} by {author}. The novel should be at least 10000
words.

First5 Write first five chapters of a complete novel similar to
{book_name} by {author}. The novel should be at least 10000
words.

Default Write a complete novel similar to {book_name} by {author}.
The novel should be at least 10000 words.

Table 5: Prompts per each parameter type: The temperature parameter is controlled via the ChatGPT parameters
for the Default prompt.
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