
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics:
Student Research Workshop, pages 296–312

March 21-22, 2024 c©2024 Association for Computational Linguistics

Can docstring reformulation with an LLM improve code generation?

Nicola Dainese and Alexander Ilin and Pekka Marttinen
Department of Computer Science

Aalto University
nicola.dainese@aalto.fi

Abstract

Generating code is an important application of
Large Language Models (LLMs) and the task
of function completion is one of the core open
challenges in this context. Existing approaches
focus on either training, fine-tuning or prompt-
ing LLMs to generate better outputs given the
same input. We propose a novel and comple-
mentary approach: to optimize part of the input,
the docstring (summary of a function’s purpose
and usage), via reformulation with an LLM, in
order to improve code generation. We develop
two baseline methods for optimizing code gen-
eration via docstring reformulation and test
them on the original HumanEval benchmark
and multiple curated variants which are made
more challenging by realistically worsening the
docstrings. Our results show that, when oper-
ating on docstrings reformulated by an LLM
instead of the original (or worsened) inputs,
the performance of a number of open-source
LLMs does not change significantly. This find-
ing demonstrates an unexpected robustness of
current open-source LLMs to the details of the
docstrings. We conclude by examining a series
of questions, accompanied by in-depth analy-
ses, pertaining to the sensitivity of current open-
source LLMs to the details in the docstrings,
the potential for improvement via docstring re-
formulation and the limitations of the methods
employed in this work.

1 Introduction

Large Language Models for coding (code LLMs)
emerged in recent years as the dominant approach
to code generation (Chen et al., 2021; Nijkamp
et al., 2023b,a; Li et al., 2023; Rozière et al.,
2023). The research community proposed various
benchmarks to systematically evaluate the code
generation abilities of LLMs (Chen et al., 2021;
Hendrycks et al., 2021; Austin et al., 2021; Lai
et al., 2022). One of the grand challenges of code
generation is the task of function completion: given

its definition and an explanation of the desired be-
haviour, write the body of the desired function.
Current methods in code generation focus on mul-
tiple directions: better pre-training datasets and
procedures for more performant base models (Li
et al., 2023; Rozière et al., 2023), specific fine-
tuning methods for coding models (Le et al., 2022;
Chaudhary, 2023; Luo et al., 2023), test-time im-
provements via self-testing (Chen et al., 2022; Ni
et al., 2023), solutions reranking (Zhang et al.,
2022), self-repair (Chen et al., 2023b; Olausson
et al., 2023) or other techniques (Shi et al., 2022;
Shinn et al., 2023; Zelikman et al., 2023).

In this work we explore the idea of input trans-
formations as a new, complementary approach to
improving code generation abilities of LLMs. In
the context of function completion tasks, the in-
put can be formulated as a function declaration
followed by a docstring, which explains in words
what the function is supposed to do. As illustrated
in Figure 1, we consider a specific input transfor-
mation for this task: docstring reformulation.

The motivation for this approach is the following:
first, optimizing the docstrings could provide bene-
fits that are model-agnostic, that is, benefit all code
LLMs. We hypothesize that this could be the case,
drawing inspiration from the success of prompting
techniques, such as Chain-of-Thought (Wei et al.,
2023) and similar works (Zhou et al., 2023), that
demonstrate efficacy across a broad class of models.
Second, optimizing docstrings, while maintaining
their readability, can provide interpretable insights
on the influence of docstrings’ properties on code
LLMs in the context of code generation.

This work makes the following contributions:

1. We introduce a novel framework for optimiz-
ing code generation through docstring refor-
mulation with LLMs. Additionally, we pro-
pose two baseline methods for the docstring
reformulation task.

296

Figure 1: Motivating example of docstring reformulation with LLMs for improving code generation. One can learn
to optimize docstrings by fine-tuning an LLM on successful docstring reformulations. The reformulations can
improve the usefulness of the docstring in many ways, e.g. by adding hints on how to implement the function as in
this example, or by fixing faults in the docstring.

2. We assess the effectiveness of the proposed
methods on multiple variants of the Hu-
manEval benchmark, finding a limited im-
provement to code generation.

3. We present a thorough analysis of the limi-
tations of the models used, the methods pro-
posed and the experimental setup. We find
evidence for a significant margin of potential
improvement in code generation via docstring
reformulation when using oracle reformula-
tions, and highlight key obstacles hindering
this potential.

4. We independently replicate the performance
of multiple open-source code LLMs on the
HumanEval benchmark. Additionally, we re-
lease all code necessary for experiment repro-
duction and share the novel curated variants
of HumanEval featuring faulty docstrings.

2 Related work

Prompt optimization Prompt optimization tech-
niques have garnered significant attention in re-
cent research. Li and Liang (2021) propose prefix-
tuning, an alternative to fine-tuning, which focuses
on optimizing task-specific vectors while keeping
the language model parameters fixed. Lester et al.

(2021) present prompt-tuning as a simplification of
prefix tuning, involving the addition of small task-
specific prompts for each task. Additionally, Liu
et al. (2021) introduces P-tuning, a continuous op-
timization technique for mapping context to target
output using prompts. Qin and Eisner (2021) also
explore soft prompts, emphasizing their relevance
in various NLP applications.

Reinforcement Learning (RL) has also been
employed in prompt optimization. Deng et al.
(2022) discuss the challenges associated with soft
prompts and propose a method that employs RL
to decode discrete prompts token-by-token. Zhang
et al. (2023) leverage RL to dynamically construct
instance-specific discrete prompts, enhancing task
performance through query-dependent prompts.

Instruction generation As more and more
LLMs are aligned to follow instructions, e.g., via
instruction fine-tuning or reinforcement learning
from human feedback, an open question is how
to generate instructions in natural language in or-
der to increase the likelihood of producing with an
LLM the desired output for a given input. Zhou
et al. (2023) introduce the Automatic Prompt En-
gineer (APE), framing instruction generation as a
natural language program synthesis problem and
propose search methods to find approximate so-

297

Figure 2: High-level view of the proposed method. We apply a transformation via a reformulation module (θ, z)
to the input problem x to obtain a reformulation y of it. We then use the reformulated problem as input for any
downstream code LLM ϕ. The reformulation module is optimized to reformulate the docstring of the function to be
completed, in order to increase the unit test pass rate (pass@1) of LLM-generated code completions for the target
function.

lutions. Pryzant et al. (2023) propose Automatic
Prompt Optimization (APO). APO leverages data
minibatches to create natural language "gradients,"
representing linguistic attempts at achieving what
mathematical gradients do. These language gradi-
ents critique the existing prompt and are integrated
into it through steps akin to "gradient descent".
Most relevant to our work, Yang et al. (2023) in-
troduce Optimization by PROmpting (OPRO), a
method for optimizing tasks specified in natural
language. Their approach involves generating new
solutions from a prompt containing previously gen-
erated solutions and their corresponding values,
which are subsequently evaluated and incorporated
into the prompt for further optimization.

Evolutionary methods Evolutionary methods in-
volving language models have also been explored.
Xu et al. (2023) expand the self-instruct method by
Wang et al. (2023) with instruction evolution, em-
ployed in the creation of high-quality instruction-
tuning datasets. Meyerson et al. (2023) investigate
the use of language models as variation operators
in evolutionary algorithms, enabling tasks such as
symbolic regression and sentiment modification.
Lehman et al. (2022) combine evolution through
large models with MAP-Elites (Mouret and Clune,
2015) to generate functional examples of Python
programs in the Sodarace domain, a task unseen
during pre-training. Chen et al. (2023a) focus on
producing valid neural network architectures for
neural architecture search using LLMs.

3 Methodology

In this section, we first introduce the function com-
pletion task as formulated in benchmarks such as
HumanEval, then we formalise the docstring refor-
mulation task and finally we present our baseline

methods for optimising docstring reformulations.

3.1 Code generation and function completion
task

Current state-of-the-art code generation methods
(Chen et al., 2021; Nijkamp et al., 2023b,a; Li et al.,
2023; Rozière et al., 2023) use decoder-only Trans-
former architectures with auto-regressive proba-
bilistic modeling of the next token to be generated.
In this work we denote as code LLMs any LLM
which during pre-training has been trained on a
non-negligible amount of code data.

In the context of function completion tasks,
given an input problem x and a code LLM with
parameters ϕ, the code completion c is typically
obtained by generating one token at a time until
the end-of-sentence (EOS) token is sampled or a
maximum sequence length L is reached:

pϕ(c|x) =
L∏

l=1

pϕ(cl|x, c<l). (1)

Given a dataset D consisting of pairs of input
problems and unit tests (x, T), and a code LLM ϕ,
the performance J(ϕ,D) of the code LLM is:

J(ϕ,D) = E
(x,T)∼D,
c∼pϕ(c|x)

[T (c)] . (2)

T (c) is a binary variable, with value 1 if the code
completion c passes all the unit tests T , and 0 if c
fails at least one unit test. J(ϕ,D) in the literature
is also called ’pass@1’ and is the main metric to
evaluate code LLMs’ performance on benchmarks
such as HumanEval (Chen et al., 2021).

3.2 Docstring reformulation task
We consider the task of improving code genera-
tion abilities of code LLMs. In particular we are

298

interested in optimizing functions’ docstrings to
increase the probability of sampling a correct code
solution from any code LLM; this is akin to treat-
ing the docstring as a prompt and optimizing the
prompt for the given task.

We formalise the task as follows: given the
dataset D of input problem and unit test pairs
(x, T), and a set Φ of code LLMs, for each x gener-
ate a reformulation yx to maximize the probability
of sampling a correct code completion c for (x, T)
with a code LLM ϕ uniformly sampled from Φ:

max
yx

E
(x,T)∼D,
ϕ∼U(Φ),
c∼pϕ(c|yx)

[T (c)] . (3)

In this work, we frame this problem as a doc-
string reformulation task. For each code function
f , there exist multiple possible docstrings to docu-
ment it and we hypothesize that certain docstrings
are more effective than others in guiding the code
generation as desired. Furthermore, we speculate
that the effectiveness of a docstring has a model-
agnostic component, possibly because different
code LLMs share pre-training data and would re-
spond similarly to the same input patterns.

To reformulate docstrings, we rely on an
instruction-tuned LLM θ, which we denote refor-
mulator. We provide the reformulator with the
original problem input x to be reformulated and
with a reformulation instruction z, expressing how
the reformulation task should be done.

The main reasons for the introduction of the in-
struction z is the following. Docstring reformula-
tion is a problem that requires some exploration
mechanism, as the search space is huge and the
original docstring provided in x can be assumed to
be a local maximum in the performance landscape.
We hypothesize that using instructions to steer the
reformulations in different directions is much more
sample-efficient than relying only on stochastic
sampling to search for the best reformulation.

Under this framework, the docstring reformula-
tion task can be expressed as follows:

max
θ,z

E
(x,T)∼D,
ϕ∼U(Φ),

y∼pθ(y|x,z),
c∼pϕ(c|y)

[T (c)] . (4)

To evaluate the quality of a reformulation y of
a problem x, we decode it with a code LLM and
test if the code sample c passes the unit tests T .

We can use this evaluation to rank multiple refor-
mulations for the same input problem in terms of
performance, which serves as the basis for any
learning algorithm.

3.3 Proposed methods
We propose two main methods to optimize the re-
formulations:

1. Supervised fine-tuning on the best instruc-
tion (SFT): maintaining the instruction z
fixed, fine-tune the reformulator θ on the best
reformulation y∗ for each x.

2. Instruction optimization via OPRO
(OPRO): keeping the reformulator θ fixed,
generate new instructions z with a pre-trained
LLM, denoted as instruction optimizer,
conditioned on the past instructions and their
pass rates following the OPRO method in
Yang et al. (2023).

SFT In this first approach, for each input problem
x in the dataset, we generate R (R ≥ 2) reformula-
tions y1, . . . , yR as:

y1, . . . , yR ∼ pθ(y|x, z). (5)

In the SFT method, we consistently use the fol-
lowing hand-written instruction z:

"Improve the docstring of the following function

using the best coding conventions."

The reformulation instruction z and the input prob-
lem x are presented to the reformulator using an
instruction-following template adapted from Luo
et al. (2023) and reported in Appendix B.1. For
each reformulation yi we then generate C code
completions c1, . . . , cC using a code LLM. Each
code completion is evaluated against the problem’s
unit tests T and the result is either pass (1) or fail
(0). We define the best reformulation of the prob-
lem input x as:

y∗ = argmax
y∈{y1,...,yR}

C∑

j=1

T (cj(y)). (6)

We then perform supervised fine-tuning of the refor-
mulator θ on the (x, y∗) pairs, formatted with the
same template used during reformulation and we
compute the loss only for the tokens corresponding
to y∗. In summary, at every iteration of the algo-
rithm, we generate R reformulations of each input
problem in the training set, C code completions of

299

each reformulation, evaluate all code completions
against the corresponding tests and perform super-
vised fine-tuning on the pairs of input problems
and best reformulations. We continue the training
for multiple iterations and use the final reformula-
tor model in the evaluation phase. During training,
we use a single, fixed code LLM, the coder model,
to generate the code based on the reformulations.
During evaluation we use different coder models to
study the generalizability of the benefits from the
reformulated docstrings.

OPRO In this second approach, at every iteration,
we generate Z instructions z1, . . . , zZ by prompt-
ing the reformulator with a specific instruction gen-
eration template and then we form all possible com-
binations of reformulation instructions and input
problems. For each combination, we generate one
reformulation, using as input the same reformu-
lation template as in the SFT method, but with a
different z, and use the reformulation as input to
the coder model to produce C code completions.
We score each reformulation instruction with the
pass@1 metric of all the code completions asso-
ciated with it. We start the first iteration with Z
hand-written instructions (see Appendix B). From
the second iteration, to generate new instructions,
we do the following:

1. Sample n (instruction, score) pairs from all
instructions evaluated so far;

2. Sort them in ascending order of score;

3. Format them according to the instruction gen-
eration template (described below);

4. Generate a continuation of the template with
the instruction optimizer LLM and parse out
the new instruction (until the first newline
character).

n is a hyper-parameter of the algorithm, and how to
set its value is further discussed in the Appendix B.

We use the following instruction generation tem-
plate, adapted from Yang et al. (2023):

Your task is to generate the next instruction to

achieve a higher score. The instructions should

ask to change, improve or rewrite the function

documentation or docstring. The instructions

should not ask to write new functions, add new

arguments or change the output of the given

function. Below are some previous instructions

with their scores. The score ranges from 0.0 to

1.0.

Instruction 1: {instruction_1}

Score 1: {score_1}
...

Instruction n: {instruction_n}

Score n: {score_n}

Instruction n+1:

4 Experiments and Results

Datasets In this work we consider HumanEval
as a dataset on which to test the efficacy of the
docstring reformulation, as it is one of the most
used benchmarks in coding. To further study the
influence of the docstrings and their reformulations
in various scenarios, we curate four other versions
of HumanEval, where we manually edited all input
problems, introducing the respective faults:

• Misspelling: a character was either added,
subtracted or changed in one of the most im-
portant words of every docstring.

• Ambiguity: all examples of input-output be-
haviour, hints and edge-case specifications are
removed from every docstring.

• Distractor: a sentence out of context is in-
serted at the beginning or at the end of every
docstring.

• Bad formatting: all type hints in the function
declaration, blank lines and ">>>" symbols in
front of examples are removed.

The motivation for introducing errors in the doc-
strings was to explore the potential for improve-
ment by reformulation when the docstring is ini-
tially imperfect. We aimed at introducing errors
similar to those that could potentially happen by
human coders. We report examples of all the faults
introduced in Appendix E.

Experimental setup For every variant of Hu-
manEval, we run the SFT and the OPRO methods
for 10 iterations. The SFT method uses 2 reformu-
lations per input problem and 2 code completions
per reformulation, while the OPRO method uses 5
reformulation instructions per input problem, one
reformulation and one code completion.

During training, we use the WizardCoder-
Python-7B (Luo et al., 2023) as the reformula-
tor and coder model and, for the OPRO method,
Llama-2-7b-chat (Touvron et al., 2023) as the in-
struction optimizer model. For the evaluation setup,

300

Table 1: Results for SFT method. We report the pass@1 results on the four selected variants of HumanEval,
corresponding to the original problem and three modified versions with manually worsened docstrings. Initial
column shows the performance on the initial input problem (original or worsened). Reformulated column shows the
performance after applying the trained reformulator model to the corresponding initial input.

Models Original Misspelling Ambiguity Distractor

Initial Reformulated Initial Reformulated Initial Reformulated Initial Reformulated

open_llama_7b_v2 13.4 (2.7) 14.0 (2.7) 13.4 (2.7) 14.6 (2.8) 15.2 (2.8) 12.8 (2.6) 10.3 (2.4) 14.6 (2.8)

mpt-7b 16.4 (2.9) 15.9 (2.9) 17.7 (3.0) 14.6 (2.8) 16.4 (2.9) 17.7 (3.0) 10.3 (2.4) 17.7 (3.0)

starcoder 33.5 (3.7) 33.5 (3.7) 35.4 (3.7) 32.3 (3.7) 30.5 (3.6) 32.9 (3.7) 31.1 (3.6) 32.9 (3.7)

WizardCoder-3B 35.4 (3.7) 32.9 (3.7) 29.2 (3.6) 31.1 (3.6) 30.5 (3.6) 31.1 (3.6) 33.5 (3.7) 34.8 (3.7)

WizardCoder-Python-7B* 53.0 (3.9) 56.1 (3.9) 46.3 (3.9) 54.3 (3.9) 53.7 (3.9) 52.4 (3.9) 54.8 (3.9) 53.0 (3.9)

WizardCoder-15B 57.9 (3.9) 57.9 (3.9) 56.1 (3.9) 54.3 (3.9) 51.8 (3.9) 50.6 (3.9) 54.2 (3.9) 53.0 (3.9)

Average 34.9 35.1 33.0 33.5 33.0 32.9 32.4 34.3
* WizardCoder-Python-7B is used as coder model during training.

Table 2: Results for OPRO method. We report the pass@1 results on the four selected variants of HumanEval,
corresponding to the original problem and three modified versions with manually worsened docstrings. Initial
column shows the performance on the initial input problem (original or worsened). Reformulated column shows the
performance after applying the reformulator model with the optimized reformulation instruction to the corresponding
initial input.

Models Original Misspelling Ambiguity Distractor

Initial Reformulated Initial Reformulated Initial Reformulated Initial Reformulated

open_llama_7b_v2 13.4 (2.7) 14.0 (2.7) 13.4 (2.7) 15.9 (2.9) 15.2 (2.8) 18.9 (3.1) 10.3 (2.4) 12.8 (2.6)

mpt-7b 16.4 (2.9) 17.1 (2.9) 17.7 (3.0) 15.9 (2.9) 16.4 (2.9) 18.9 (3.1) 10.3 (2.4) 14.0 (2.7)

starcoder 33.5 (3.7) 32.3 (3.7) 35.4 (3.7) 34.8 (3.7) 30.5 (3.6) 34.8 (3.7) 31.1 (3.6) 32.9 (3.7)

WizardCoder-3B 35.4 (3.7) 32.3 (3.7) 29.2 (3.6) 31.7 (3.6) 30.5 (3.6) 34.8 (3.7) 33.5 (3.7) 33.5 (3.7)

WizardCoder-Python-7B* 53.0 (3.9) 56.1 (3.9) 46.3 (3.9) 53.0 (3.9) 53.7 (3.9) 53.7 (3.9) 54.8 (3.9) 50.0 (3.9)

WizardCoder-15B 57.9 (3.9) 54.9 (3.9) 56.1 (3.9) 53.0 (3.9) 51.8 (3.9) 48.8 (3.9) 54.2 (3.9) 51.8 (3.9)

Average 34.9 34.5 33.0 34.1 33.0 35.0 32.4 32.5
* WizardCoder-Python-7B is used as coder model during training.

in addition to the original coder model, we consider
5 other LLMs with model sizes ranging from 3B
to 15B parameters: OpenLlama-2-7B-V2 (Geng
and Liu, 2023; TogetherComputer, 2023), MPT-
7B (MosaicML, 2023), starcoder (15B) (Li et al.,
2023), WizardCoder-3B and WizardCoder-15B
(Luo et al., 2023). These models were selected
as a representative subset of the open-source LLM
landscape. The selection criteria are discussed in
Appendix C.

During the evaluation, we use the reformulator to
produce one reformulation per each input problem
via greedy decoding and pass each reformulation to
all six coder models to compute the pass@1 metric
for each model. As a baseline, we compute the
pass@1 of each model using the non-reformulated
problems as inputs to the coder models and follow-
ing the same exact evaluation procedure.

Results We report in Table 1 the results for SFT
method and in Table 2 the ones for the OPRO
method. Additionally, we report the results for
one more HumanEval variant (the bad formatting

one) in Appendix D, as the average model perfor-
mance did not decrease after introducing this type
of fault, thus raising doubts about its relevance. We
also report in parentheses the estimated errors for
the models’ performances as

√
p(1− p)/N , as-

suming a Binomial distribution of the successful
code completions, with p the pass rate (pass@1)
and N = 164 the number of problems in the Hu-
manEval dataset.

For both methods, we can notice two main
trends: first, the average performance on the faulty
variants of HumanEval across the coder models de-
creases slightly (roughly 2 percentage points), and
second, the average performance when using refor-
mulations rather than the initial (possibly faulty)
input problems does not increase significantly. All
models obtain mixed results, increasing perfor-
mance on some reformulated variants and losing it
on others, with the only exception of WizardCoder-
15B, whose performance consistently decreases on
reformulations.

301

5 Discussion and Conclusions

In the following section we raise a series of ques-
tions about the docstring reformulation framework,
the SFT and OPRO methods and the experimental
setup. We address these questions with ulterior
argumentations and analyses, before drawing the
conclusions from this study. A more extended dis-
cussion is presented in Appendix A.

Q1. Limitations of docstring optimization for
code generation: How capable are the code
LLMs considered in this work to leverage doc-
strings’ improvements?

We use the following working definition of doc-
string improvement: An increase in the informa-
tion that the docstring contains about the body of
the function to be completed. This definition is
model-agnostic, as it does not make reference to
the performance of any model; rather, we expect
that LLMs can leverage the increased information
in the docstrings for better code generation.

First, we show in Table 3 in Appendix A that,
if docstrings are completely removed from the in-
put problems, the performance drops dramatically
across all models, demonstrating that docstrings
serve a key role in accurate function completion.

Then, we compare the performance of the var-
ious LLMs when evaluated on the faulty variants
of HumanEval versus the original dataset, which
can be considered an improved version of them.
We find that five out of six models surprisingly
increased performance on at least one of the four
faulty variants of HumanEval, indicating that a doc-
string improvement does not necessarily benefit
code generation and it can even hurt performance.

Finally we evaluate the coder models on two new
sets of strongly improved docstrings for the Hu-
manEval problems, produced while having access
to the ground-truth function completions (oracle
docstrings). The first set of docstrings is produced
by GPT-41 with access to the ground-truth solution
(’Oracle Hints’), asking the model to give detailed
hints on how to implement the function. The sec-
ond set contains the true body of the function to
be completed (’Oracle Solutions’), so that the task
of the coder models simplifies to copy-pasting the
solution. Our results, presented in Table 4 in Ap-
pendix A, show that both Oracle Hints and Oracle

1In all the experiments with GPT-4 we use GPT-4 Turbo,
also referred as gtp-4-1106-preview in OpenAI API.

Solutions docstrings greatly improve the perform-
nace of all coder models.

Figure 3: Performance of different docstrings. We
report the pass@1 averaged across the six coder models
for different kinds of docstrings: no docstrings at all
(’No docs’), faulty docstrings (’Faulty (avg.)’, average
across Misspelling, Ambiguity and Distractor variants),
original docstrings (’Original’), oracle docstrings with
hints (’Oracle Hints’) and with solutions (’Oracle Solu-
tions’).

Figure 3 summarises our findings on the ability
of the considered LLMs in leveraging docstrings
for code generation: coder models may not reli-
ably leverage small improvements in the docstrings,
but clearly benefit from the overall information in-
cluded in them. In particular, the performance with
Oracle Hints can be considered as a good estimate
of the potential of optimizing code generation via
docstring reformulation; how to achieve such per-
formance without access to the ground-truth solu-
tion to generate hints remains an open question.

Q2. Limitations of the docstring reformula-
tion methods in principle: Are the methods pro-
posed guaranteed to improve the performance of
the coder model used during training? Is there
any guarantee that the improvement will transfer
to other coder models?

We identify the following challenges that any
method for docstring reformulation faces: explo-
ration, noisy learning signal and learning rule, over-
fitting and generalization.

The exploration challenge is about searching for
the best docstring for a given input problem. Both
the SFT and the OPRO methods rely on stochastic
sampling of the reformulations with an inductive
bias, encoded as extra information z in the prompt.
However, this doesn’t guarantee to find the best
docstrings, as the search space is huge.

302

The challenge with noisy learning signals lies in
the high variance of the pass rate metric, which is
due to the stochasticity in the coder model. This
can impair the stability of the optimization in the
SFT method, as it is not well suited for dealing
with noisy feedback. OPRO’s learning rule, on the
other hand, while more robust to noise, is reliant on
the instruction optimizer LLM and as such, it also
doesn’t guarantee any convergence of the method.

Finally, if reformulations exclusively boost a par-
ticular coder model’s performance while decreas-
ing performance for most other models, they over-
fit to that model. Conversely, if reformulations
enhance the performance of diverse coder models
without specific tailoring, they demonstrate gener-
alization across coder models. Empirically, we do
not observe any sign of overfitting. We attribute
this to the lack of backpropagation through the
coder model in the proposed methods, which, we
speculate, acts as a regularizer over the optimised
reformulations and improves their generalizability.

We conclude that the proposed methods face key
shortcomings in exploring the reformulation space
and in learning from a noisy feedback signal.

Q3. Limitations of the docstring reformulation
methods in practice: Are there further practical
considerations about our experimental setup that
could affect the methods’ success?

In addition to the limitations discussed in Q2,
the proposed methods may be limited by practical
implementation choices. Initial experiments indi-
cated that the choice of method parameters, as well
as the language generation parameters and prompt
templates for LLMs, does not strongly influence
the results. Consequently, we run additional experi-
ments to ablate the role of capability of the models
employed as:

1. Reformulator: We evaluate the coder models
on reformulations produced by GPT-4, instead
of WizardCoder-Python-7B, prompted with
the same reformulation instruction as in the
SFT method. We use the original HumanEval
dataset for this experiment.

2. Instruction optimizer: We reproduce the
OPRO experiments for the original Hu-
manEval dataset using GPT-4 as instruction
optimizer model, instead of Llama-2-7b-chat.

Regarding the experiments on the reformulator,
reported in Table 5 in Appendix A, we find no

significant difference in performance between the
two models for the given reformulation instruction;
our qualitative inspection of the generated refor-
mulations supports the conclusion that the selected
open-source model can generate docstring reformu-
lations on par with GPT-4 in this specific context.

In the case of the instruction generator experi-
ment, the results for GPT-4, presented in Table 6 in
Appendix A, are significantly worse than the ones
obtained with the selected instruction optimizer.
Qualitatively, GPT-4 suggests verbose reformula-
tion instructions, often leading the reformulator to
include in the documentation hallucinated informa-
tion, e.g. about possible invalid inputs. This results
in incorrect handling of edge cases in generated
code completions and performance degradation.

In summary, our ablation studies in this section
show that the limitations of the proposed methods
are not linked with the quality of the models se-
lected as reformulator and instruction optimizer,
but rather to the points described in Q2.

Conclusions

Code generation is crucial for diverse real-world ap-
plications, and accurate function completion poses
a key challenge in this context. In this work we
introduce docstring reformulation with an LLM as
a novel approach to improve code generation for
function completion and propose two methods to
solve the task. When testing them on multiple vari-
ants of the HumanEval benchmark, we find limited
improvements to code generation.

In our discussion, we first show that the consid-
ered coder models may not reliably leverage small
improvements in the docstrings, but clearly bene-
fit from the overall information included in them.
Leveraging oracle reformulations, we then provide
evidence that the more information the docstrings
contain about the solutions, the more beneficial
they are, regardless of the model. Finally, we argue
that the proposed methods face key shortcomings
in exploring the reformulation space and in learn-
ing from a noisy feedback signal, while we exclude
limitations linked to our implementation choices.

Interesting future directions are to investigate
more efficient ways of searching for promising re-
formulations, for example by reflecting on previous
candidates, and to examine RL-based algorithms,
such as RLHF (Christiano et al., 2023) and DPO
(Rafailov et al., 2023), as alternatives to supervised
fine-tuning.

303

Limitations

The main limitation of this work is that we train
and test our methods on the same input problems,
i.e. the ones of HumanEval. The choice is due to
the fact that not many benchmarks exist for func-
tion completion, as we require verified unit tests
for each input problem in the benchmark. Fur-
ther, HumanEval is arguably the most used coding
benchmark at the time of writing and this facili-
tated verifying the performance of a large amount
of open-source LLMs as the starting point of this
work, which wouldn’t have been possible other-
wise.

However, we argue that this doesn’t impair our
results for the following reasons: First, we evaluate
our methods also on different LLMs than the one
used during training, in contrast with prior work,
such as Pryzant et al. (2023) and Yang et al. (2023),
that focuses on optimizing prompts for a single
model. Second, we constrain the optimization to
be done via a language prompt (the reformulation)
and we only use a non-differentiable scalar feed-
back to score the reformulations; this is a setup
very similar to the ones in bandit problems, where
the reformulation serves as the action, the scalar
feedback as reward and the performance is assessed
on the training distribution. Third, we never let our
methods see the code completions nor the true solu-
tions to the input problems. However, future work
should definitely focus on cross-dataset generaliza-
tion of prompt reformulation. The other limitations
are addressed in the main text, in Section 5.

Acknowledgements

We are grateful to Minttu Alakuijala and Hans
Moen for the insightful conversations during the
development of this research. This research has
been funded by the Academy of Finland Flagship
program: Finnish Center for Artificial Intelligence
(FCAI). We acknowledge the computational re-
sources provided by the Aalto Science-IT project
and by CSC – IT Center for Science, Finland. We
also acknowledge CSC for awarding this project
access to the LUMI supercomputer, owned by the
EuroHPC Joint Undertaking, hosted by CSC (Fin-
land) and the LUMI consortium through Finland.

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen

Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Angelica Chen, David M. Dohan, and David R. So.
2023a. Evoprompting: Language models for code-
level neural architecture search.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.
Codet: Code generation with generated tests.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023b. Teaching large language mod-
els to self-debug.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2023. Deep
reinforcement learning from human preferences.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yi-
han Wang, Han Guo, Tianmin Shu, Meng Song, Eric
Xing, and Zhiting Hu. 2022. RLPrompt: Optimizing
discrete text prompts with reinforcement learning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3369–3391, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Xinyang Geng and Hao Liu. 2023. Openllama: An open
reproduction of llama.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with apps.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:

304

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
http://arxiv.org/abs/2302.14838
http://arxiv.org/abs/2302.14838
http://arxiv.org/abs/2207.10397
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2304.05128
http://arxiv.org/abs/2304.05128
http://arxiv.org/abs/1706.03741
http://arxiv.org/abs/1706.03741
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
http://arxiv.org/abs/2105.09938
http://arxiv.org/abs/2105.09938
http://arxiv.org/abs/2211.11501

A natural and reliable benchmark for data science
code generation.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven C. H. Hoi. 2022. Coderl: Mas-
tering code generation through pretrained models and
deep reinforcement learning.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal
Ndousse, Cathy Yeh, and Kenneth O. Stanley. 2022.
Evolution through large models.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023. Starcoder: may
the source be with you!

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct.

Elliot Meyerson, Mark J. Nelson, Herbie Bradley, Arash
Moradi, Amy K. Hoover, and Joel Lehman. 2023.

Language model crossover: Variation through few-
shot prompting.

MosaicML. 2023. Introducing mpt-7b: A new standard
for open-source, commercially usable llms.

Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminat-
ing search spaces by mapping elites.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov,
Wen tau Yih, Sida I. Wang, and Xi Victoria Lin. 2023.
Lever: Learning to verify language-to-code genera-
tion with execution.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-
vio Savarese, and Yingbo Zhou. 2023a. Codegen2:
Lessons for training llms on programming and natu-
ral languages.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023b. Codegen: An open large language
model for code with multi-turn program synthesis.

Theo X. Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2023. Demystifying gpt self-repair for code genera-
tion.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-
guang Zhu, and Michael Zeng. 2023. Automatic
prompt optimization with "gradient descent" and
beam search.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Computa-
tional Linguistics.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke
Zettlemoyer, and Sida I. Wang. 2022. Natural lan-
guage to code translation with execution.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning.

305

http://arxiv.org/abs/2211.11501
http://arxiv.org/abs/2211.11501
http://arxiv.org/abs/2207.01780
http://arxiv.org/abs/2207.01780
http://arxiv.org/abs/2207.01780
http://arxiv.org/abs/2206.08896
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2302.12170
http://arxiv.org/abs/2302.12170
http://arxiv.org/abs/1504.04909
http://arxiv.org/abs/1504.04909
http://arxiv.org/abs/2302.08468
http://arxiv.org/abs/2302.08468
http://arxiv.org/abs/2305.02309
http://arxiv.org/abs/2305.02309
http://arxiv.org/abs/2305.02309
http://arxiv.org/abs/2203.13474
http://arxiv.org/abs/2203.13474
http://arxiv.org/abs/2306.09896
http://arxiv.org/abs/2306.09896
http://arxiv.org/abs/2305.03495
http://arxiv.org/abs/2305.03495
http://arxiv.org/abs/2305.03495
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2204.11454
http://arxiv.org/abs/2204.11454
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366

TogetherComputer. 2023. Redpajama-data: An open
source recipe to reproduce llama training dataset.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2023.
Large language models as optimizers.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah D.
Goodman, and Nick Haber. 2023. Parsel: Algorith-
mic reasoning with language models by composing
decompositions.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schu-
urmans, and Joseph E. Gonzalez. 2023. TEMPERA:
Test-time prompt editing via reinforcement learning.
In The Eleventh International Conference on Learn-
ing Representations.

Tianyi Zhang, Tao Yu, Tatsunori B. Hashimoto, Mike
Lewis, Wen tau Yih, Daniel Fried, and Sida I. Wang.
2022. Coder reviewer reranking for code generation.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023. Large language models are human-level
prompt engineers. In The Eleventh International
Conference on Learning Representations.

A Extended discussion

Q1. Limitations of the models considered:
How capable are the code LLMs that we consid-
ered in this work to leverage improvements in the
docstrings?

We use the following working definition of doc-
string improvement: An increase in the informa-
tion that the docstring contains about the body of
the function to be completed. This definition is
model-agnostic, as it does not make reference to
the performance of any model; rather, we expect

that LLMs can leverage the increased information
in the docstrings for better code generation.

First, we show in Table 3 that, if docstrings are
completely removed from the input problems, the
performance drops dramatically across all models,
demonstrating that docstrings serve a key role in
accurate function completion.

Then, we compare the performance of the var-
ious LLMs when evaluated on the faulty variants
of HumanEval versus the original dataset, which
can be considered an improved version of them.
We find that five out of six models surprisingly
increased performance on at least one of the four
faulty variants of HumanEval, indicating that a doc-
string improvement does not necessarily benefit
code generation and it can even hurt performance
(see Table 1 and Table 14, Initial columns).

Finally we evaluate the coder models on two new
sets of strongly improved docstrings for the Hu-
manEval problems, produced while having access
to the ground-truth function completions (oracle
docstrings). The first set of docstrings is produced
by GPT-42 with access to the ground-truth solution
(’Oracle Hints’), asking the model to give detailed
hints on how to implement the function. The sec-
ond set contains the true body of the function to be
completed (’Oracle Solutions’), so that the task of
the coder models simplifies to copy-pasting the so-
lution. Our results, presented in Table 4, show that,
both the Oracle Hints and the Oracle Solutions
reformulations largely increase the performance
of all models, with the Oracle Solutions being al-
ways superior to the Oracle Hints. Interestingly,
no model achieves 100% pass rate even with the
ground truth solution in-context, highlighting that
current LLMs have strong limitations in using the
information provided without any additional fine-
tuning.

Figure 3 summarises our findings on the ability
of the considered LLMs in leveraging docstrings
for code generation: coder models may not reli-
ably leverage small improvements in the docstrings,
but clearly benefit from the overall information in-
cluded in them. In particular, the performance with
Oracle Hints can be considered as a good estimate
of the potential of optimizing code generation via
docstring reformulation; how to achieve such per-
formance without access to the ground-truth solu-
tion to generate hints remains an open question.

2In all the experiments with GPT-4 we use GPT-4 Turbo,
also referred as gtp-4-1106-preview in OpenAI API.

306

https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2212.10560
http://arxiv.org/abs/2212.10560
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2309.03409
http://arxiv.org/abs/2212.10561
http://arxiv.org/abs/2212.10561
http://arxiv.org/abs/2212.10561
https://openreview.net/forum?id=gSHyqBijPFO
https://openreview.net/forum?id=gSHyqBijPFO
http://arxiv.org/abs/2211.16490
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-

Table 3: Performance with or without docstrings on
the HumanEval benchmark. These results highlight
the importance of docstrings in the context of function
completion.

Models With docs Without docs

open_llama_7b_v2 13.4 (2.7) 7.3 (2.0)

mpt-7b 16.4 (2.9) 9.8 (2.3)

starcoder 33.5 (3.7) 15.9 (2.9)

WizardCoder-3B 35.4 (3.7) 15.9 (2.9)

WizardCoder-Python-7B 53.0 (3.9) 19.5 (3.1)

WizardCoder-15B 57.9 (3.9) 20.1 (3.1)

Average 34.9 14.8

Q2. Limitations of the docstring reformula-
tion methods in principle: Are the methods pro-
posed guaranteed to improve the performance of
the coder model used during training? Is there
any guarantee that the improvement will transfer
to other coder models?

We identify the following challenges that any
method for docstring reformulation faces: explo-
ration, noisy learning signal and learning rule, over-
fitting and generalization.

The exploration challenge is about searching for
the best docstring for a given input problem. The
search space is huge, as generating docstrings is
an open-ended text generation problem. In both
the SFT and the OPRO methods we have an explo-
ration process based on the stochastic sampling of
the reformulations with an inductive bias encoded
as extra information (the reformulation instruction
z) in the prompt. This unfortunately doesn’t pro-
vide any strong guarantees in the ability of finding
the best docstrings, thus efficient exploration re-
mains a key obstacle in the proposed methods.

The main signal for learning is the pass rate
of the code completions generated by the coder
model when receiving as input a given reformula-
tion. We use the pass rate metric to identify the
best reformulations and then we either explicitly
increase their probability under the reformulator
model, in the SFT method, or we reward the re-
formulation instruction associated with them, in
the OPRO method. The challenge of noisy learn-
ing signal is that the coder model is stochastic and
as such there is a lot of variance associated to the
pass rate metric. Furthermore, the metric is com-
putationally intensive to calculate, as one needs to
invoke an LLM (the coder model) to obtain one

or more code completions. Thus it might be too
costly to arbitrarily reduce the noise if we have a
tight computational budget.

Linked to the noise concern within the learn-
ing signal is the task of formulating a stable and
efficient learning rule that harnesses the learning
signal to maximize the task objective.

In the SFT method, for each input problem, we
select the best reformulation and increase its prob-
ability. This encounters two main problems: first,
with high noise levels, we can mistakenly select a
non-optimal reformulation as the best one; second,
it might be that none of the reformulations is as
good as the initial docstring and this can lead to
training instabilities. Thus, while in principle this
method is quite flexible and it can perform a fine-
grained optimization at the reformulation level, it
is not well suited to learn from noisy signals.

In the OPRO method, given n instructions with
their corresponding scores, we prompt an LLM
model to produce a better instruction; therefore,
the learning rule is effectively a black box, where
the new "learned" instruction is the one sampled
by the model. This method can deal quite well
with the noise in the learning signal, because each
instruction’s score is the pass rate averaged over all
problems, rather than the pass rate for a single one.
However, the OPRO method is reliant on an LLM
for implementing the learning rule, which doesn’t
provide any guarantee of improvement.

Thus, how to design a learning rule to efficiently
and robustly learn from a noisy signal is another
open challenge in the docstring reformulation task.

Finally, if reformulations exclusively boost a par-
ticular coder model’s performance while decreas-
ing performance for most other models, they over-
fit to that model. Conversely, if reformulations
enhance the performance of diverse coder models
without specific tailoring, they demonstrate gener-
alization across coder models. Empirically, we do
not observe any sign of overfitting. We attribute
this to the lack of backpropagation through the
coder model in the proposed methods, which, we
speculate, acts as a regularizer over the optimised
reformulations and improves their generalizability.
However, we do not have any theoretical guarantees
against overfitting, nor in support of the generaliz-
ability of the optimized reformulations.

We conclude that the proposed methods face
core shortcomings in exploring the reformulation

307

Table 4: Performance with Oracle docstrings. Model Performance when including in the docstring GPT-4-
generated hints based on the ground truth solution (’Oracle Hints’) and when including in the docstring the ground
truth solution (’Oracle Solutions’). We compare them with the performance of the coder models on the original
HumanEval (’Original’).

Models Original Oracle Hints Oracle Solutions
open_llama_7b_v2 13.4 (2.7) 22.6 (3.3) 65.9 (2.7)

mpt-7b 16.4 (2.9) 27.4 (3.5) 53.0 (2.9)

starcoder 33.5 (3.7) 40.2 (3.8) 54.9 (3.7)

WizardCoder-3B 35.4 (3.7) 48.2 (3.9) 78.7 (3.7)

WizardCoder-Python-7B 53.0 (3.9) 57.3 (3.9) 79.9 (3.9)

WizardCoder-15B 57.9 (3.9) 59.8 (3.8) 90.0 (3.9)

Average 34.9 42.6 70.4

space and in learning from a noisy feedback signal.

Q3. Limitations of the docstring reformulation
methods in practice: Are there further practical
considerations about our experimental setup that
could affect the methods’ success?

In addition to the limitations discussed in Q2,
the proposed methods may be limited by:

• The performance of the initial models used as
reformulator as instruction optimizer.

• The choice of the methods’ parameters, such
as the amount R of reformulations per input
problem and the amount C of code comple-
tions per reformulations.

• The hyperparameters used for language gen-
eration with LLMs and, for the SFT method
only, the hyperparameters for the fine-tuning
of the reformulator model.

• The specific prompt templates employed.

We pose special emphasis on the first point, as
preliminary experiments ruled out a strong depen-
dence from the other points. We run additional
experiments to ablate the role of capability of the
models employed as:

1. Reformulator: We evaluate the coder models
on reformulations produced by GPT-4, instead
of WizardCoder-Python-7B, prompted with
the same reformulation instruction as in the
SFT method. We use the original HumanEval
dataset for this experiment.

2. Instruction optimizer: We reproduce the
OPRO experiments for the original Hu-
manEval dataset using GPT-4 as instruction
optimizer model, instead of Llama-2-7b-chat.

Regarding the experiments on the reformulator,
reported in Table 5, we find no significant differ-
ence in performance between the two models for
the given reformulation instruction; our qualitative
inspection of the generated reformulations supports
the conclusion that the selected open-source model
can generate docstring reformulations on par with
GPT-4 in this specific context.

In the case of the instruction generator experi-
ment, the results for GPT-4, presented in Table 6,
are significantly worse than the ones obtained with
the selected instruction optimizer. Qualitatively,
GPT-4 suggests verbose reformulation instructions,
often leading the reformulator to include in the doc-
umentation hallucinated information, e.g. about
possible invalid inputs. This results in incorrect
handling of edge cases in generated code comple-
tions and performance degradation.

In summary, our ablation studies in this section
show that the limitations of the proposed methods
are not linked with the quality of the models se-
lected as reformulator and instruction optimizer,
but rather to the points described in Q2.

Table 5: Reformulator model ablation. We com-
pare the performance of our reformulator model,
WizardCoder-Python-7B, without any SFT training
against the one of GPT-4.

Models
Reformulated by

WizardCoder GPT-4
open_llama_7b_v2 14.6 (2.8) 15.9 (2.9)

mpt-7b 16.4 (2.9) 18.3 (3.0)

starcoder 30.5 (3.6) 28.7 (3.5)

WizardCoder-3B 33.5 (3.7) 37.2 (3.8)

WizardCoder-Python-7B 52.4 (3.9) 51.2 (3.9)

WizardCoder-15B 54.2 (3.9) 49.4 (3.9)

Average 33.6 33.5

308

Table 6: Instruction optimizer model ablation for
OPRO method. We compare the performance of our
instruction optimizer model, Llama2-7B-chat, against
the one of GPT-4, when utilising the OPRO method for
10 iterations. The results for GPT-4 are significantly
worse than the ones obtained with the selected instruc-
tion optimizer.

Models
Instruction optimizer

Llama2 GPT-4
open_llama_7b_v2 14.0 (2.7) 8.0 (2.1)

mpt-7b 17.1 (2.9) 13.4 (2.7)

starcoder 32.3 (3.7) 25.0 (3.4)

WizardCoder-3B 32.3 (3.7) 30.5 (3.6)

WizardCoder-Python-7B 56.1 (3.9) 50.6 (3.9)

WizardCoder-15B 54.9 (3.9) 50.0 (3.9)

Average 34.5 29.6

B Hyper-Parameters used for the
experiments

In the following section we report all the hyper-
parameters used in our experiments. In Table 7 we
report the parameter values for the SFT method,
while in Table 8 the ones for the ORPO method.
Furthermore, in Table 9 we report the parameters
used for generating the reformulations, in Table 10
we report the ones for generating the code comple-
tions and finally in Table 11 the PEFT parameters
for the SFT method.

In OPRO we also use a variable amount n of past
instructions and scores pairs, starting at an arbitrary
value of min(4, Z), where Z is the number of in-
structions used per iteration of the method, and in-
creasing n of 1 at every iteration. While we haven’t
ablated this choice, we speculate that smaller n
favour exploration by reducing the amount of pat-
terns available to the instruction optimizer, while
larger n favour exploitation of features in common
between successful past instructions.

Table 7: Parameter values for SFT method.

Parameter Value
Reformulation instructions (Z) 1
Reformulations per problem (R) 2
Code completions per reformulation (C) 2
Method iterations (I) 10

Table 8: Parameter values for OPRO method.

Parameter Value
Reformulation instructions (Z) 5
Reformulations per problem (R) 1
Code completions per reformulation (C) 1
Method iterations (I) 10
Instruction optimizer temperature 1.0
Instruction optimizer top-p 0.8
Instruction optimizer max tokens 200

Table 9: Parameters for generating reformulations
with an LLM. The OPRO method is always using the
evaluation setting for the reformulations, while the SFT
method uses the training and evaluation settings in the
respective phases. Notice that the batch size does not
affect performance and its choice depends on the hard-
ware at disposal and the size of the reformulator model.

Parameter Training Evaluation
Batch size 32 32
Temperature 0.2 0
Top-p 0.95 N/A
Max tokens 512 512

Table 10: Parameters for generating code comple-
tions with an LLM. The OPRO method is always using
the evaluation setting for the reformulations, while the
SFT method uses the training and evaluation settings in
the respective phases. At evaluation time, the batch size
is adjusted depending on the size of the coder model
(however it does not affect performance).

Parameter Training Evaluation
Batch size 32 ’custom’
Temperature 0.2 0
Top-p 0.95 N/A
Max tokens 768 768

Table 11: PEFT parameters for training the reformu-
lator in the SFT method.

Parameter Value
LoRA r 8
LoRA α 32
LoRA dropout 0.1
Batch size 4
Gradient accumulation steps 8
Max sequence length 768
Learning rate 2× 10−5

Number of training epochs 1

309

B.1 Prompt templates

In both the SFT and the OPRO methods, we present
the reformulation instruction z and the input prob-
lem x to the reformulator using the following tem-
plate:

Below is an instruction that describes a task,

paired with an input that provides further

context. Write a response that appropriately

completes the request.

Instruction:

{z}

Input:

{x}

Response:

{imports_and_def}

"""

This was used by Luo et al. (2023) to train the
WizardCoder suite of code LLMs and was adopted
in this work because, after preliminary tests, a Wiz-
ardCoder model was chosen as our reformulator.

We append at the end of the template the library
imports and the function definition (until the """
that marks the start of the docstring in Python pro-
grams) contained in x to facilitate the reformulation
task. This is because both the imports and the func-
tion definition are meant to remain fixed in the task
and they provide additional context to generate a
high-quality docstring in the reformulation.

The OPRO method uses also the following seed
reformulation instructions:

1. Improve the docstring of the
following function using the best
coding conventions.

2. Rephrase the following python code
maintaining the function name and
signature:

3. Clarify the following python function
by rewriting the docstring:

4. Expand the documentation of the
following python function suggesting
how to implement it:

5. Rewrite the documentation of the
following function:

C Independent replication of open-source
LLMs on HumanEval

For the evaluation setup, in addition to the origi-
nal coder model, we consider 5 other LLMs with
model sizes ranging from 3B to 15B parameters:
OpenLlama-2-7B-V2 (Geng and Liu, 2023; Togeth-
erComputer, 2023), MPT-7B (MosaicML, 2023),
starcoder (15B) (Li et al., 2023), WizardCoder-3B
and WizardCoder-15B (Luo et al., 2023). These
models were selected as a representative subset of
the open-source LLM landscape and had to satisfy
the following criteria:

1. They had to be available on Hugging Face.

2. Their prior performance on HumanEval had
to be reported online from the authors of the
models or from a trustworthy third party.

3. Their performance on HumanEval had to
be reproducible by the authors of this work
within reasonable limits.

The results for the models of which we could
reproduce the reported performance are presented
in Table 12, while the results for the models whose
performance couldn’t be replicated are presented in
Table 13. Importantly, we do not imply that these
models cannot yield the reported performance, but
rather that model performance depends on many
undocumented factors, such as the prompting strat-
egy, the post-processing of the model output and
the versions of the libraries used in the implemen-
tation.

We also tried to download teknium/Replit-v1-
CodeInstruct-3B and Salesforce/xgen-7b-8k-base
as other performing models whose performance
was replicated with open-source code, but we en-
countered errors in using them with version 4.31
of the HuggingFacetransformers library. Differ-
ent library versions caused other LLMs to drop in
performance, thus we ran all experiments with this
version of the library.

D Results for bad formatting HumanEval

We report in Table 14 the results for the SFT and
the ORPO methods on the bad formatting variant
of HumanEval.

E Faulty variants of HumanEval

In Figure 4 we report an example of an input prob-
lem together with all the four different faults that
we implement in this work.

310

Figure 4: Examples of faulty docstrings. Example of an input problem from the original HumanEval benchmark
and of its faulty versions.

311

Table 12: Independent verification of selected LLMs performance on HumanEval.

Model Our Setup Best Reproducible (GitHub) Best Reported (Paper)

open_llama_7b_v2 13.4 14.0 N/A
mpt-7b 16.4 15.9 18.3
starcoder 33.5 34.6 33.6
WizardCoder-3B 35.4 N/A 34.8
WizardCoder-Python-7B 53.0 N/A 55.5
WizardCoder-15B 57.9 57.0 59.8

Table 13: Independent verification of excluded LLMs performance on HumanEval. WizardCoder-1B and the
base model of Llama-2-7b work to some extent, but are not close enough to the reference values to be selected for
the main studies. We were not able to make the CodeLlama family of models work and it is not clear where the big
gap in performance comes from.

Model Our Setup Best Reproducible (GitHub) Best Reported (Paper)

WizardCoder-1B-V1.0 18.9 N/A 23.8
Llama-2-7b-hf 11.6 13.1 12.8

CodeLlama-Python-7b 3.0 N/A 38.4
CodeLlama-Python-13b 5.5 N/A 43.3
CodeLlama-Instruct-7b 7.9 N/A 34.8
CodeLlama-Instruct-13b 4.3 N/A 42.7

Table 14: Results for HumanEval with bad format-
ting fault. We removed these results from the main
results because the fault introduced did not affect on
average the performance of the selected LLMs.
* is used as coder model by SFT and OPRO also during
training.

Models Initial
Reformulated

SFT OPRO

open_llama_7b_v2 12.1 (2.5) 13.4 (2.7) 11.6 (2.5)

mpt-7b 17.7 (3.0) 17.7 (3.0) 16.5 (2.9)

starcoder 35.4 (3.7) 34.8 (3.7) 32.9 (3.7)

WizardCoder-3B 32.9 (3.7) 31.7 (3.6) 32.9 (3.7)

WizardCoder-Python-7B 53.0 (3.9) 56.1 (3.9) 57.3 (3.9)

WizardCoder-15B 58.5 (3.8) 55.5 (3.9) 55.5 (3.9)

Average 34.9 34.9 34.5

312

