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Abstract

Multimodal hateful content detection is a chal-
lenging task that requires complex reasoning
across visual and textual modalities. There-
fore, creating a meaningful multimodal repre-
sentation that effectively captures the interplay
between visual and textual features through
intermediate fusion is critical. Conventional
fusion techniques are unable to attend to the
modality-specific features effectively. More-
over, most studies exclusively concentrated on
English and overlooked other low-resource lan-
guages. This paper proposes a context-aware
attention framework for multimodal hateful
content detection and assesses it for both En-
glish and non-English languages. The pro-
posed approach incorporates an attention layer
to meaningfully align the visual and textual
features. This alignment enables selective fo-
cus on modality-specific features before fus-
ing them. We evaluate the proposed approach
on two benchmark hateful meme datasets, viz.
MUTE (Bengali code-mixed) and MultiOFF
(English). Evaluation results demonstrate our
proposed approach’s effectiveness with F1-
scores of 69.7% and 70.3% for the MUTE
and MultiOFF datasets. The scores show ap-
proximately 2.5% and 3.2% performance im-
provement over the state-of-the-art systems on
these datasets. Our implementation is available
at https://github.com/eftekhar-hossain/Bengali-
Hateful-Memes.

Disclaimer: This paper contains hateful images
that may be disturbing to some readers.

1 Introduction

Recently, online platforms are witnessing an emerg-
ing trend of propagating hateful and offensive con-
tent. While most research in this area has focused
on detecting hate speech from text-based content
(Waseem and Hovy, 2016; Schmidt and Wiegand,

*Denotes equal contribution

Fahad & Nazriya (2002)

Figure 1: Example of hateful memes. In isolation, nei-
ther the image nor the caption may appear hateful, but
when combined, they can convey a hateful message.

2017), offensive multimodal content is also propa-
gated, such as memes. Memes are images or screen-
shots with short texts embedded in them. Their
sarcastic nature made them an increasingly popular
tool for spreading hate and targeting individuals
or communities based on various factors such as
gender, race, ethnicity, religion, physical appear-
ance, and sexual orientation (Williams et al., 2016;
Chhabra and Vishwakarma, 2023). The prolifer-
ation of such content poses a significant threat to
communal harmony and social stability and has
therefore become an area of active research interest
(Cao et al., 2022; Pramanick et al., 2021).

Multimodal hateful content detection requires
a holistic understanding of visual and textual in-
formation. When considered separately, the image
and caption components in Figure 1(a) may seem
innocuous. The image portrays two women—one
wearing a hijab and the other without and the cap-
tion states, “abnormal and normal”. However, as a
meme, this composition can be seen as derogatory
towards the woman wearing the hijab by labeling
her as abnormal. Similarly, the meme in Figure 1(b)
insults the marriage of two South Indian celebrities
by indicating their age gap in the text. Thus, focus-
ing only on the image or the text is inadequate for
complete understanding. Sometimes without the
background information of the people and events
used in a meme, it is difficult to interpret the mean-
ing because the captions are short, fragmented, and
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sarcastic. Studies have demonstrated that off-the-
shelf multimodal systems, which are typically ef-
fective in performing various visual-linguistic tasks,
encounter difficulties when it comes to detecting
hateful memes (Kiela et al., 2020; Cao et al., 2022).
Furthermore, the current state-of-the-art systems
(Lee et al., 2021; Pramanick et al., 2021) for detect-
ing hateful memes face limitations when applied
to resource-constrained languages. This is primar-
ily because several key components within their
architectures are not accessible or well-supported
in other languages. These challenges underscore
the need for language-specific adaptations to ad-
dress hateful meme detection in a broader linguistic
context effectively.

To address this knowledge gap, we present a
solution for detecting multimodal hateful memes.
The approach leverages an attention-based context-
aware fusion framework to create coherent mul-
timodal representations. We hypothesize that by
aligning visual and textual features before fusion,
the network can better capture essential cues for
accurate classification. The key challenge lies in
effectively incorporating modality information to
enable the network to focus on crucial features.
Previous methods (Pramanick et al., 2021; Lee
et al., 2021) used background context and addi-
tional captions while performing the fusion. In
contrast, our approach introduces an attention layer
to align modalities which simultaneously facilitates
the extraction of contextual representations from
both visual and textual modalities. Moreover, with-
out adding external knowledge, the model’s learn-
ing capability is augmented when the aligned rep-
resentations are combined with modality-specific
(i.e., visual, textual) features. To evaluate our ap-
proach, we conducted experiments on two bench-
mark datasets in different languages: MUTE (Hos-
sain et al., 2022¢) and MultiOFF (Suryawanshi
et al., 2020). The evaluation results and ablation
study demonstrate the effectiveness of our solution
over baseline and state-of-the-art methods.

The major contributions of this paper are three-fold:
(i) develop an attention framework that effectively
attends the contributing features of visual and tex-
tual modalities to detect multimodal hateful memes
(Section 3.1); (ii) conduct an extensive evaluation
on two different benchmark datasets on real-world
memes to demonstrate the effectiveness of the pro-
posed solution (Section 4.3, 4.5); and (iii) perform
ablation studies in different settings to examine

the impact of BERT-base embeddings in detecting
hateful memes while also investigate the model’s
quantitative and qualitative errors to understand its
limitations (Section 4.4, 4.4).

2 Related Work

Hateful Content Detection: Over the past few
years, offensive/hate speech detection has received
a significant amount of attention from researchers.
Some works focused on developing new corpus
for different languages (Lekea and Karampelas,
2018; Roy et al., 2022) while others studied to
develop novel methods (Li and Ning, 2022; Moza-
fari et al., 2020a). However, most of the studies
focused on hateful content detection from textual
data and overlooked the multimodal aspects of the
user-generated data. One such multimodal data is
a meme, which combines both images and text.
With the flourishing of internet memes and be-
cause of their detrimental impact on society, on-
line hateful meme classification got a considerable
amount of traction from the research community
(Das et al., 2020; Cao et al., 2022) lately. Suryawan-
shi et al. (2020) and Kiela et al. (2020) introduced
hateful memes dataset in English. Besides devel-
oping datasets in English, few works attempted to
introduce hateful memes datasets for low-resource
languages such as Bengali (Hossain et al., 2022c).
Multimodal Fusion: Over the years, various tech-
niques have been applied to detect multimodal hate-
ful memes. Conventional fusion (Vijayaraghavan
et al., 2021; Gomez et al., 2020) by concatenating
the modality-specific information is the most com-
monly used method for learning multimodal rep-
resentation. Some works employed bilinear pool-
ing (Chandra et al., 2021) while others fine-tuned
transformers (Kiela et al., 2020) based architec-
tures such as VILBERT, MMBT, and Visual-BERT.
Besides, some works attempted to use disentan-
gled learning (Lee et al., 2021) and incorporate im-
age captioning (Zhou et al., 2021) to improve the
hateful memes detection performance. Recently,
Cao et al. (2022) applied prompting techniques for
hateful meme detection in English. To the best
of our knowledge, no one has attempted to align
the visual and textual features for hateful meme
detection. Nonetheless, feature alignment is key
in creating a successful multimodal representation
(Zeng et al., 2022; Liu et al., 2019). This work
aims to address this research gap by introducing an
alignment technique for hateful meme detection.
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Overall our work differs from the existing stud-
ies in several significant ways: (i) rather than us-
ing additional context with conventional (i.e., early,
late) fusion for multimodal representation, we align
the visual and textual features using attention be-
fore fusing them, (ii) Existing models are primar-
ily designed for English and challenging to adapt
for languages like Bengali. This work presents a
model that uses alignment and can be adapted for
any language by swapping out language-specific
components, and (7ii) evaluation is performed on
real-world meme dataset (MUTE, MultiOFF ) rather
than the synthetic memes as in Kiela et al. (2020).

3 Method

Memes comprise two modalities (i.e., visual and
textual); logically, one modality’s content can out-
weigh another’s content during prediction. Besides,
not all the information from both modalities has
an equal effect on determining whether a meme
is hateful. We propose a context-aware fusion
framework that selectively focuses on modality-
specific information to model this complex rela-
tionship. The proposed network takes multimodal
input and feeds the visual information to a CNN
and textual information to an RNN for feature ex-
traction. Then we calculate alignment weights over
the visual and textual features through the attention
layer. The objective is to capture the contributing
features with higher weights by emphasizing both
modalities. Subsequently, these alignment weights
are utilized to create multimodal contextual rep-
resentation. Finally, the resulting contextual and
modality-specific representations are combined and
passed to the softmax layer for classification. We
denote our proposed architecture as Multimodal
Context Aware - Skip Connected Fusion (MCA-
SCF) framework. An overall architecture of the
framework is presented in Figure 2.

To ensure the robustness of the architecture, we
experiment with three other variants of the pro-
posed MCA-SCF framework: a) Vision Guided
Contextual Fusion (VGCF) framework; b) Text
Guided Contextual Fusion (TGCF) framework; and
¢) Multimodal Contextual Fusion (MCF) frame-
work. The architecture of these variants differs in
context vector computation and information fusion.
In VGCF, we compute contextual information con-
cerning the visual information and fuse it with the
textual features. On the other hand, in TGCF, the

contextual information is computed with respect
to textual features and integrated with the visual
features. In contrast, we compute the context for
both modalities and then combine them in MCF.
The rest of the components for all the architectures
remain the same. The details of the variants VGCE,
TGCE MCF can be found in Appendix A.

3.1 Proposed (MCA-SCF) Architecture

The MCA-SCF framework consists of several com-
ponents described in the following subsections.

3.1.1 Preprocessing

Before feeding the data into the framework, we pre-
process the visual (v) and textual () modality. For
v, we resize the images to 150 x 150 x 3 and trans-
form the pixel values between 0 to 1 to reduce the
computational complexity. On the other hand, we
remove unwanted characters (i.e., symbols, URLs,
numbers, etc.) from textual data. Then we encode
each word with a unique number and make all the
text lengths equal to size [, where [=60.

3.1.2 Visual and Textual Feature Extractor

We employ a pre-trained CNN (ResNet50) to ob-
tain the visual features from the memes. We use
ResNet50 because of its capability to address the
vanishing gradient problem and effectiveness in
several multimodal classification tasks (Hossain
et al., 2022a,b). To adjust ResNet50, we exclude
the top two layers from the main architectures and
utilize the weights of the higher-level features pre-
viously trained on the ImageNet (Deng et al., 2009)
dataset. We add a global average pooling layer
followed by a dense layer and retrain the architec-
ture with new weights. The following equation
computes the visual features.

d
Vi = Relu (Z Wik * G + bj> (1)

k

Here, Vy € R'*4 represents the visual semantic
features extracted by the ResNet50 for the m*
memes visual modality (v). Here, d represents the
number of neurons (100) in the dense layer. And, G
represents the feature map generated by the global
average pooling layer while W and b represent the
weight matrix and bias respectively.

We employ Recurrent Neural Network to extract
both word-level and sentence-level textual features.
Specifically, we use Bidirectional Long Short Term
Memory (BiLSTM) network to capture the contex-
tual dependency of the words. Initially, we generate
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Figure 2: Our proposed context-aware multimodal architecture: v and ¢ are the processed image and its corre-
sponding caption. The upper block represents the visual feature extractor, and the lower block is the textual feature
extractor. Alignment scores (cv,;) are calculated by applying attention on visual (V) and textual (h;...h;) features.
Subsequently, visual (C,) and textual (C}) context vectors are created by aligning (V) and (h;...h;) through
alignment vector (c;). Finally, by concatenating these context vectors (C,, Cy) with modality-specific features
(V¢, hy) our method creates the multimodal context-aware representation M.

the embedding vectors that give a semantic mean-
ing to each word. The embedding dimension size
is set to (64). The embedding vectors are passed to
a BILSTM which can keep the contextual depen-
dency of the word vectors of £. The output of the
BiLSTM network is generated by concatenating the
forward and backward LSTM cell’s output. It gives
a word-level feature vector for every k" time step.
The final time step (I*") output is the sentence-level
feature vector that we will use during the fusion
operation. The features are computed using the
following equation.

W =nj e n; )
Here, hg-k] e RY2N and bl € R1*2N respectively
denote the BiLSTM word-level and sentence level
feature generated for j** word in the k" layer or
time step. [ is padding length and [V is the number
of hidden units (50) in the LSTM cell. The & rep-
resents the concatenation. All the hyper-parameter
values are selected via trial and error fashion by

monitoring the validation accuracy.

3.1.3 Alignment and Fusion

Unlike existing approaches that employ early or
late fusion techniques for multimodal represen-
tation, we align the visual and textual features
through attention before joining them. Inspired
from (Xu et al., 2015) we apply the additive atten-
tion (Bahdanau et al., 2014) mechanism to develop
the alignment model. The model assigns a score
oy, ;j to the world-level feature of the 4 time step
and the visual feature, V. The set of weights «, ;
determines how much image and text level features
are aligned to predict a particular class label (y).
The alignment score, « is parameterized by a feed-
forward network where each feature vector (i.e.,
visual and textual) is trained with separate weights.
The score function is therefore in the following
form, given that tanh is used as the non-linear
activation function:

CV(Vf, h‘j) = U:‘ftanh (WI * Vf =+ W2 * hj) (3)

exp (a(Vy, hj))
(a(Vy, hj))

Qy,j =

)

]
Zj:l exrp
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After performing the softmax operation (4), we
obtain the normalized alignment scores, where
higher weights are assigned to the feature com-
binations that are important for the prediction (y).
Here, vq, W1, and W5 are the weight matrices to
be learned by the alignment model.

Afterward, we use these alignment scores to gen-
erate context vectors for each modality. The in-
tuition behind this is that not all the features of
individual modality are equally important for clas-
sification. Thus, focusing only on the significant
feature is the key to better prediction. The follow-
ing equation is computed for the context vectors.

C, = Z ay i x Vy 5)
J

Cr=>) oy *h; (6)
J

Here, C, € R1*? and C; € R* are referred to
as the vision-guided and text-guided context vec-
tors, respectively. These vectors keep the contex-
tual and significant modality-specific information
concerning both visual and textual modalities.

The context vectors are concatenated to generate
a context-aware multimodal representation. Fur-
thermore, inspired by the residual learning (He
et al., 2016) we concatenated each modality feature
along with this contextual representation. The idea
is to boost the gradient flow to the lower layer and
enhance the multimodal representation. The fol-
lowing equation can express the combined feature
representation.

My =Cp® Cr Vi@ hll (7

Here, My € R4 represents the contextual
multimodal representation. This combined feature
vector is then passed for the classification.

4 Experiments and Results

In this section, we first describe the datasets and
the evaluation settings. We discuss the baselines
and their results in comparison with the proposed
method. Moreover, we conduct an ablation study to
show how replacing components of the MCA-SCF
framework affects the performance. Subsequently,
an error analysis will be provided to understand the
model’s error. Furthermore, we perform a cross-
domain analysis to see how the proposed frame-
work performs irrespective of language variation
in a zero-shot setting (Appendix C).

4.1 Datasets

We train and evaluate our proposed approach on
two benchmark multimodal datasets: the Multi-
modal Bengali Hateful Memes (MUTE) and a pop-
ular English Memes (MultiOFF) dataset. Due to
the unavailability of datasets, we limited our perfor-
mance assessment on these datasets. For this work
we only consider real-world memes and avoid syn-
thetic datasets (Kiela et al., 2020). Table 1 presents
the distribution of the datasets.

Dataset Class Train Validation Test
Hate 275 152 159

MUTE Not-Hate | 2092 23 257
. Offense 187 59 59
MultiOFF 1\ Offense | 258 90 90

Table 1: Distribution of MUTE and MultiOFF datasets.

MUTE (Hossain et al., 2022¢): A hateful memes
dataset for the Bangla language. It consists of 4158
memes where the captions are code-mixed (Bangla
+ English) in nature. Among 4158 memes, 1586
are hateful and the rest of them are not hateful. We
use the exact train-test split adopted by the authors
to compare with our proposed approach.

MultiOFF (Suryawanshi et al., 2020): The Mul-
tiOFF consists of a total of 743 memes collected
based on the US presidential election. The authors
labeled the memes into the offensive category. How-
ever, these memes can be considered hateful since
they substantially overlap with the hatred category
and contain derogatory/abusive content targeted to-
ward a group of people. The training, validation,
and test set contain 445, 149, and 149 memes.

We adopt the evaluation metrics from the pre-
vious works in hateful meme classification (Lee
et al., 2021). The superiority of a model is deter-
mined based on the weighted F1-score. Besides,
weighted precision, recall, and Area Under the Re-
ceiver Operating Characteristics (AUC) scores have
been reported for comparison. The details of the
experimental settings are discussed in Appendix B.

4.2 Baselines

We develop several baselines considering the uni-
modal (i.e., image or text) and multimodal informa-
tion. The baseline models are chosen based on the
best-performing models on these datasets (MUTE,
MultiOFF) and popular techniques from the ex-
isting literature. The model’s hyperparameters are
chosen via a trial-and-error approach by monitoring

166



the validation accuracy. The baseline architectures
are described in the following subsections.

4.2.1 Unimodal Models

Initially, we implemented models considering only
the visual modality. We use the ResNet50 net-
work where we fine-tuned and retrained it with
new weights. The architecture configuration kept
the same as described in Section 3.1.2. Besides,
we also fine-tuned the Vision Transformer (ViT)
(Dosovitskiy et al., 2020) architecture on both
datasets. On the other hand, for textual modality,
we employed several architectures including BiL.-
STM (Baruah et al., 2019), BiLSTM + Attention
(Altin et al., 2019), BERT (Mozafari et al., 2020b),
and XLM-R (Ranasinghe and Zampieri, 2020). In
one architecture we use an LSTM cell with 32
hidden units. Subsequently, the attention mech-
anism is added with the LSTM in another archi-
tecture. We use the language-specific variation of
the BERT (i.e., Bangla BERT (Sarker, 2020) and
English-BERT (Devlin et al., 2018)), the multilin-
gual BERT (m-BERT), and cross-lingual BERT
(XLM-R) for our task. We freeze the weights
of these architectures and retrain them with new
weights by adding a dense layer of 100 neurons.
The dense layer takes the sentence embeddings as
input and makes a higher-level representation of
the text. Finally, this representation is passed to the
classification layer for prediction.

4.2.2 Multimodal Models

To develop the models using multimodal informa-
tion, we use the most popular fusion techniques in-
cluding Early Fusion (Pranesh and Shekhar, 2020),
Late Fusion (Hossain et al., 2022b), and Atten-
tive Fusion (Sharma et al., 2022). We select the
best-performing unimodal models (ResNet50 and
LSTM) for visual and textual feature extraction.

* For early fusion, a dense layer of 100 neurons
is added at both ends of individual modalities
to make a joint representation by concatenat-
ing them.

* In late fusion, the classification layer’s out-
put from each modality is combined and then
passed for the classification.

* With attentive fusion, the last dense layer’s
output is passed to an attention layer, and then
the resulting attentive vector is used for classi-
fication.

Finally, we employed several state-of-the-art
multimodal architectures including VisualBERT-
COCO (Li et al., 2019), CLIP (Radford et al.,
2021), and ALBEF (Li et al., 2021) and fine-tuned
them on our datasets.

4.3 Results

Table 2 presented the outcome of the baselines
and proposed method over the test set of MUTE
and MultiOFF datasets. In MUTE, the visual mod-
els (ResNet50 and ViT) failed to obtain a satis-

Approach Models MUTE MultiOFF
P R WF AUC P R WF AUC
ResNet50 (FT) 0.634  0.646 0.631+0.00 0.598+0.01 0.624  0.637 0.62340.02 0.593+0.01
ResNet50 (RT) 0.617  0.634 0.61440.02 0.58040.03 0.580  0.557 0.56240.0s 0.55940.01
ViT 0.622  0.639 0.58410.03 0.55710.02 0.603  0.624 0.55940.06 0.5421.¢.02
Unimodal BiLSTM 0.660 0.670 ().658i0_02 0.626i0_02 0.611 0.604 ().606i0‘02 0.591;&0(01
BiLSTM + Attention 0.659  0.622 0.62740.02 0.6364+0.01 0.577  0.597 0.578+0.02 0.54810.01
BERT 0.645 0.658 0.64240.08 0.609+0.06 0.621 0.617 0.61040.01 0.61140.09
m-BERT 0.627  0.644 0.62040.02 0.58640.01 0.584  0.611 0.57440.02 0.54710.07
XLM-R 0.646  0.656 0.64810.04 0.618410.01 0.612  0.630 0.58040.01 0.55710.08
Early Fusion 0.634  0.649 0.60710.02 0.57510.01 0.646  0.657 0.64510.02 0.6161.0.06
Late Fusion 0.619 0.634 0.61940.02 0.586+0.00 0.738 0.657 0.56840.01 0.56310.07
Multimodal A_ttentive Fusion 0.660  0.637 0.64249.00 0.64140.02 0.610  0.624 0.53840.03 0.53240.06
VisualBERT COCO 0.494  0.572 0.53040.04 0.52140.01 0396  0.689 0.503+0.07 0.50240.05
CLIP 0.643  0.641 0.56040.06 0.54510.07 | 0.646  0.651 0.60140.05 0.57640.03
ALBEF 0.679  0.667 0.6681.0.06 0.67710.02 0.612  0.617 0.61340.04 0.6104.0.04
VGCF 0.671  0.677 0.67140.02 0.64410.02 0.651  0.624 0.62810.03 0.63240.04
Proposed System  TGCF 0.662  0.665 0.663+0.01 0.64140.01 0.667  0.651 0.65540.01 0.65140.01
and Variants MCF 0.692  0.699 0.68940.02 0.659+0.01 0.654  0.657 0.65540.05 0.63540.04
MCA-SCF (Proposed) | 0.696 0.696 0.697+0.00 0.674+0.01 0.702  0.704  0.70310.02 0.686+0.03

Table 2: Performance comparison of unimodal and multimodal models on test set where P, R, WF, and AUC denote
precision, recall, weighted F1-score, and area under the receiver operating characteristics curve respectively. VGCF,
TGCEF, and MCF are the variants of the proposed MCA-SCF approach. The FT and RT represent the fine-tunned
and retrained version of ResNet50, respectively. The standard deviation (£) with five different random seeds is also
reported. For space constraints, the score is not shown for precision and recall.
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factory outcome, while among the textual models,
BiLSTM achieved the highest F1-score of 0.658.
Surprisingly, the performance of the pre-trained
transformers is lower than BiLSTM. We perform
a detailed ablation study to get more insights on
this. Meanwhile, when multimodal information is
integrated, the attentive fusion approach achieved
the highest F1 (0.642) and AUC (0.641) scores
compared to its counterparts (i.e., early and late
fusion). Among the other multimodal architec-
tures (i.e., VisualBERT, CLIP, and ALBEF), AL-
BEF showed outstanding performance with an F1
score of 0.668. However, we observed that the vari-
ants (VGCF, TGCEF, and MCF) of the alignment
approach obtained superior performance over the
unimodal and other multimodal models except AL-
BEF. Even though they achieved better outcomes,
the proposed MCA-SCF framework outperformed
all the models by getting the highest F1 score of
0.697.

In MultiOFF dataset, BERT achieved the highest
F1-score of 0.610 amid the unimodal models. On
the other hand, early fusion showed significantly
higher performance (0.645) compared to late fusion
(0.568), attentive fusion (0.538), and other multi-
modal architectures such as VisualBERT (0.503),
CLIP (0.601), and ALBEF (0.613). We noticed that
the performance is substantially improved with the
variants. Nonetheless, MCA-SCF outperforms all
the models, obtaining the highest F1 score of 0.703
and AUC score of 0.686.

In summary, the proposed MCA-SCF framework
and its variants outperformed the baselines in both
datasets. Aligning the visual and textual informa-
tion before fusing them played a crucial role in
boosting the model’s predictive performance.

4.4 Ablation Study

In addition to the experiments emphasizing the im-
portance of context-aware multimodal representa-
tion for hateful meme classification in Table 2, we
also examine the effect of contextualized embed-
dings in MCA-SCF instead of simple word em-
beddings. We consider three transformer models
i.e., language-specific BERT, multilingual BERT,
and XLLM-R. We employed the architecture with
similar parameters described in Section 4.2.1. Two
individual models were developed for each trans-
former architecture. Firstly, BERT word level and
sentence level embeddings were used to develop
MCA-SCF whereas in the second case, contextu-

Models MUTE MultiOFF
WF AUC WF AUC
MCA-SCF w/ BERT + BiLSTM 0.657  0.634 | 0.571  0.542
MCA-SCF w/ only BERT 0.649  0.637 | 0.612  0.586
MCA-SCF w/ m-BERT + BiLSTM | 0.645  0.622 | 0.613  0.589
MCA-SCF w/ only m-BERT 0.665 0.676 | 0.575  0.551
MCA-SCF w/ XLM-R + BiLSTM 0.615 0.582 | 0.525 0.501
MCA-SCF w/ only XLM-R 0.661  0.627 | 0.540 0.513

Table 3: Effect on the proposed method performance
when replacing the text model with various transformer
architectures.

alized embeddings were passed to an LSTM layer
and utilized the LSTM word level features with the
contextualized sentence embeddings to construct
MCA-SCEF. The training parameters of the models
were kept the same as discussed in Appendix B.
Table 3 reported the outcomes when contextualized
embeddings are used. We observed that, in the case
of MUTE, MCA-SCF with m-BERT obtained the
highest F1 score (0.665), whereas MCA-SCF with
m-BERT + BiLSTM achieved the maximum F1
score (0.613) in MultiOFF dataset.

The findings reveal that there is no significant
effect of using the BERT-based models for hateful
meme detection. Even the BERT-based model out-
comes are lower than the variants of the proposed
method. Therefore, it can be stated that contextual-
ized embeddings are not suitable for hateful meme
detection. The reason behind this lower perfor-
mance could be the fact that the memes’ captions
are very different from regular texts. BERT-based
models are typically trained on longer and more
complete textual inputs, whereas the language used
in meme captions is often short, fragmented, and
sarcastic. This discrepancy in language style can
cause this suboptimal performance.

4.5 Comparison with Existing Studies

Table 4 presents the performance comparison of the
proposed method with the existing state-of-the-art
systems on the datasets. In MUTE, our proposed
multimodal framework achieves the best F1 score

Dataset Approaches WF (%)
Hossain et al. (2022c) 67.2

MUTE Proposed 69.7
Suryawanshi et al. (2020) 54.0
Lee et al. (2021) 64.6

MultOFF g sain et al. (20224) 66.7
Zhong et al. (2022) 67.1
Proposed 70.3

Table 4: Comparative analysis of the proposed method
with the existing state-of-the-art systems.

168



Category
B Hate
I Not-Hate
s Combined

@®
S
73.5

~
o

(=]
o

%4
o

“
)
<

Misclassification Rate (%)
w B
o o

N
o

=
o

Attentive Fusion

Late Fusion
Method

Early Fusion Proposed

(a) MUTE

100
Category
mmm Offense
mm Not-Offense
B Combined

~ S
5 ~
8 @

80 A

60

40 -

Misclassification Rate (%)

20 4

Late Fusion  Attentive Fusion
Method

Early Fusion Proposed

(b) MultiOFF

Figure 3: Misclassification rate comparison between various fusion approaches (i.e., early, late, attentive) and

proposed (MCA-SCF) method on both datasets.

of 69.7% (1 2.5%) as compared to the existing
highest score of 67.2%. Likewise, for MultiOFF
dataset, we obtain the highest F1 score of 70.3%
(1 3.2%) beating the current state-of-the-art system
(67.1%). The performance improvement in both
datasets’ indicates our proposed method’s novelty.

4.6 Error Analysis

We investigate the errors of the proposed MCA-
SCF approach both quantitatively and qualitatively.

Quantitative Analysis: Early, late, and attentive
fusion techniques have been considered to compare
the errors with the proposed approach. We mea-
sured the Misclassification Rate (MR) for all the
models reported in Figure 3. For MUTE dataset,
we observed that the MR is reduced at 43.3% (pro-
posed method) from 73.5% (early fusion) in Hate
class while it is increased ~10% in Not-Hate class.
However, the error rate in Not-Hate class is min-
imal with the early fusion approach, whereas for
Hate class, the attentive fusion approach reduces
the error most. To conclude, we computed the com-
bined class error rate and found that the overall
system’s error is the lowest (30%) with the pro-
posed MCA-SCF method. Likewise, in MultiOFF,
the proposed method achieves the lowest combined
error rate of 29.5%. It is worth noting that the
proposed model significantly reduces the error rate
in negative classes, enabling effective detection of
hateful memes. One interesting aspect observed
is that the misclassification rate is higher in the
Negative (Hate or Offense) class compared to the
Positive (Not-Hate or Not-Offense) class across all
approaches. This discrepancy could be attributed

iSomeJrare]photosfof}
[NGruiliSiam]NEHid]

=

(b) Actual: Hateful
Predicted: Not-Hate

(a) EF: Not-Hate (X)
AF: Not-Hate (X)
Proposed: Hateful (v')

Figure 4: Example (a) shows a meme where the pro-
posed method yields better predictions, and example (b)
illustrates a wrongly classified sample. The symbol (v)
and (X) indicates the correct and incorrect prediction.
EF and AF represent the early fusion and attentive fu-
sion approaches, respectively.

to the uneven distribution of data, with fewer train-
ing samples in the negative classes. As a result,
the model may have struggled to effectively learn
visual and textual patterns, leading to incorrect pre-
dictions.

Qualitative Analysis: We also perform qualitative
analysis by investigating model predictions on a
few samples. For example, the meme in Figure
4 (a) was misclassified as Not-Hate by the early
and attentive fusion approaches. However, the pro-
posed method captures the image and textual fea-
tures that represent the context of the meme and
therefore can correctly predict them as Hateful. We
also analyze where the proposed method failed to
give accurate inferences. For instance, the model
misclassified the meme shown in Figure 4 (b) as
Not-Hate when the actual label is Hate. The rea-
son for this misclassification could be the presence
of consistent visual features “Bald Man” and the
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absence of any trigger word in the text. Moreover,
the model needs world-level knowledge to under-
stand that this meme is demeaning the identity of a
reputed person in Bangladesh. The above analysis
shows that we need to explore more advanced rea-
soning modules to classify such memes accurately.

5 Conclusion

This paper presents MCA-SCF, a multimodal
framework that aligns visual and textual features us-
ing attention to create a coherent contextual repre-
sentation. The model aims to improve hateful con-
tent detection performance by leveraging contex-
tual and modality-specific representations. We eval-
uate the model on two publicly available datasets
i.e., MUTE and MultiOFF. Our extensive exper-
iments demonstrate that MCA-SCF outperforms
the state-of-the-art systems on these datasets. Fur-
thermore, we conducted experiments with different
variants of the model and performed an ablation
study to ensure the system’s robustness. The abla-
tion study reveals that general word embeddings
are more suitable than contextualized embedding
for multimodal hateful meme detection. Finally,
the cross-domain analysis illustrates the model’s
generalization capability in zero-shot settings.

Limitations

We identify several findings in this work. Firstly,
we found that advanced multimodal models (e.g.,
CLIP, and Visual BERT) can not show satisfactory
performance on both datasets. One compelling
reason can be attributed that these models are
not pretrained on enough Bengali image-text pairs
and thus perform poorly when fine-tuning on the
MUTE dataset. On the other hand, the lags in the
performance in MultiOFF due to having fewer sam-
ples. As a result, the model does not get enough
examples to learn complex relationships in the task
and provides inferior performance. Besides that
other advanced multimodal models (i.e., ALIGN,
FLAVA, ViLBERT, BLIP) are rarely pretrained for
Bengali image text pairs, limiting their applications
in such low-resource languages. Therefore, we fo-
cus on enhancing the performance of off-the-shelf
models with minimal computation by improving
intermediate fusion through alignment. Our er-
ror analysis indicates that there is still significant
room for improvement to effectively align visual
and textual features for multimodal hateful content
detection. Secondly, while the proposed model

can infer the implicit meaning of memes in certain
cases, it still falls short in complex reasoning to
comprehend the contextual nuances of memes with
concise captions. Finally, due to the unavailability
of real-world meme datasets, we limited our per-
formance assessment to two benchmark datasets.
In the future, we plan to apply the model to detect
memes in similar domains like harm and aggres-
sion, demonstrating its robustness across diverse
and challenging categories.
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Appendix
A Variants of MCA-SCF Framework

We develop three other variants of the MCA-SCF
network namely VGCF, TGCF, and MCF. Figure
A.1 shows the computation of the variants. The
VGCF framework does not account for the con-
text vector generated from the text modality. Af-
ter aligning the visual and textual modalities, we
used the obtained alignment score (c;) to high-
light only the significant visual information and
combined them with the sentence-level (h[l]) tex-
tual feature. The VGC vector V,; € R1*24 can be
expressed by the following equation.

Vyr = Cy @ hlY (®)

On the other hand, with TGCF framework, we
utilize the alignment score to generate a contextual
representation (C}) only for the text modality. This
representation is then combined with the visual
features (V) to compute the TGC vector Ty €
R*2d by the equation (9).

T,; = C & Vj )

In the MCF framework, we combined the two
context vectors (i.e., C, and C}) to make a con-
textual multimodal representation. The vector
M.; € R*24 can be expressed by the equation.

Mcf = Cv & C’t (10)

B Experimental Settings

We perform experiments on the Google Colab plat-
form. The transformer architectures were down-
loaded from the huggingface library and imple-
mented using the TensorFlow framework. All the
models are compiled using binary cross-entropy
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Figure A.1: Variants of the proposed MCA-SCF framework. The majority of the components remain the same as
illustrated in figure 2. The three variants (V, s, M., T, ) have differences in the way they integrate information to

emphasize the context of a particular modality.

loss function. For all the models the error optimiza-
tion is performed by the Adam optimizer with a
learning rate of le ™ except for the transformer-
based models which are 3e—5. We used the batch
size of 16 and trained the models for 20 epochs. To
save the best intermediate models during training
Keras checkpoint method has been utilized.

C Zero-shot Cross-Domain Transfer

We examine the cross-domain transfer ability of the
proposed method by training it on a source dataset
and evaluating it on a target dataset. Besides,
we also investigate the proposed method’s per-
formance when the training is done on combined
datasets but tested only on a particular dataset. We
focus on examining the impact of captured phenom-
ena between datasets. The cross-domain perfor-
mance has been measured by the relative zero-shot
transfer ability (Turc et al., 2021). We denoted it as
the recovery ratio because it indicates the ratio of
how much performance is recovered by changing
the source domain and it is given as follows.

F(S,T)

R(ST) = 37

(1)

Here, F'(S,T) is a model performance (i.e., f1-
score) for the source domain S on the target domain
T'. If the source and target domains are the same,
the ? would be 1.0. The recovery scores of both
zero-shot and combined dataset settings are given
in Table C.1.

Target
Multi-
MUTE OFF
MUTE 0.697 0.585
(84%)
Zero-shot 03577

° . .
E MultiOFF (75%) 0.703
5 . 0.604 0.627
@»»  Cross- domain MT+MO (86%) (90%)

Table C.1: Effect of the zero-shot and cross-domain

transfer on both datasets. MT+MO indicates the combi-
nation of the MUTE and MultiOFF datasets. The major
diagonal represents the actual performance, while the
minor diagonal indicates how much performance is re-
covered when we change the source dataset.

In both settings, the recovery rate is compar-
atively higher when we evaluate on MultiOFF
dataset and train using the MUTE dataset. For in-
stance, in the zero-shot setting, the MUTE dataset
75% performance of 0.697 is recovered when the
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source domain was the MultiOFF dataset. Simi-
larly, we observed that 84% is the recovery rate on
MultiOFF when MUTE is the source domain. On
the other hand, with a combined setting, 86% and
90% performance is recovered of the MUTE and
MultiOFF datasets. Overall, in zero-shot setting
MUTE as a source dataset can mostly recover the
performance from MultiOFF. This could happen
because MUTE consists of code-mixed captions
and has more training samples. This may allow for
a greater transfer and sharing of multimodal fea-
tures between datasets, ultimately contributing to
the model’s strong performance on the MultiOF F
dataset. Meanwhile, the proposed method can not
generalize well on MUTE when trained with Mul-
tiOFF dataset. This is because the less number of
training samples in MultiOFF and the model do
not get any information about the Bengali language
from the dataset. In contrast to its moderate gener-
alization performance in the zero-shot setting, our
proposed method demonstrates strong performance
in the test set of each dataset when trained on the
combined training set.
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