
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1576–1601

March 17-22, 2024 c©2024 Association for Computational Linguistics

Anchor Points: Benchmarking Models with Much Fewer Examples

Rajan Vivek, Kawin Ethayarajh, Diyi Yang, Douwe Kiela
Stanford University

{rvivek, kawin, diyiy, dkiela}@stanford.edu

Abstract
Modern language models often exhibit power-
ful but brittle behavior, leading to the develop-
ment of larger and more diverse benchmarks to
reliably assess their behavior. Here, we suggest
that model performance can be benchmarked
and elucidated with much smaller evaluation
sets. We first show that in six popular lan-
guage classification benchmarks, model con-
fidence in the correct class on many pairs of
points is strongly correlated across models. We
build upon this phenomenon to propose Anchor
Point Selection, a technique to select small sub-
sets of datasets that capture model behavior
across the entire dataset. Anchor points reli-
ably rank models: across 87 diverse language
model-prompt pairs, evaluating models using
1-30 anchor points outperforms uniform sam-
pling and other baselines at accurately ranking
models. Moreover, just a dozen anchor points
can be used to estimate model per-class predic-
tions on all other points in a dataset with low
error, sufficient for gauging where the model is
likely to fail. Lastly, we present Anchor Point
Maps for visualizing these insights and facilitat-
ing comparisons of the performance of different
models on various regions within the dataset
distribution.

1 Introduction

Language models have unlocked incredible general-
ization through scaling up parameters and pretrain-
ing data. Yet these same systems prove to be brittle,
spurring the development of larger, more diverse,
and more shrewd benchmarks to reliably assess
their behavior (Rajpurkar et al., 2016; Hendrycks
et al., 2021; Kiela et al., 2021; Wu et al., 2023).
Modern benchmarks typically have on the order
of 105 validation examples, with 103 − 104 per
task. Such numbers ensure that validation perfor-
mance strongly correlates with test performance
and that all in-domain regions are captured. But
these sizes are often unwieldy for rapid experimen-
tation and do not easily afford interpretability. To

Figure 1: SST-2 Validation Set Anchor Point Map. The
locations of all 872 points are learned using the predic-
tions of 60 randomly-selected source models on SST-2.
We then evaluate a held-out model, Falcon-7B, on 30
anchor points (green triangles). The model’s predic-
tions on only these 30 points are used to estimate the
Falcon-7B predictions on the remaining 842 points with
a mean absolute error of 0.09, achieving 92% agreement
with the model’s true predictions. The anchor points
identify regions where the model is weak (red regions).
We show the same Anchor Point Map colored by the
true Falcon-7B predictions in Figure 9, demonstrating
that the model is indeed weak in these areas.

compare model configurations, design the most ro-
bust prompt, or analyze failure cases, researchers
and practitioners must forward-pass (and poten-
tially manually inspect) the development set many
times. How small can benchmark development sets
be while still capturing model behavior over the
full breadth of the benchmark? Surprisingly, very
small—just several to a few dozen examples might
suffice.

In this work, we investigate the problem of
benchmarking model performance and revealing
model weaknesses on large datasets with as few
evaluation examples as possible, an objective we
call micro-benchmarking. We propose Anchor
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Figure 2: Anchor Points are Micro-Benchmarks, tiny
representative subsets of large benchmarks. Correlative
structure in the predictions of source models on the large
benchmark can be used to extract these points. Each
anchor point has a weight corresponding to the fraction
of the benchmark it represents. Evaluating models on
the anchor points produces a score that rank correlates
with performance on the entire benchmark. Anchor
Point Maps visualize a given model’s likely instance-
level performance on all points in the benchmark using
only its performance on the anchor points.

Point Selection, a technique that finds small eval-
uation sets that are maximally representative of
model behavior over the entirety of a large dataset.
We find that anchor points are effective develop-
ment sets: across 87 diverse language models and
prompts, using 1-30 anchor points shows superior
performance at ranking model performance over
random and embedding-based selection baselines.
Moreover, evaluating just a dozen anchor points
can be used to predict the model’s instance-level
predictions on all other points in the dataset with
high agreement on average, sufficient to estimate
where models are likely to fail.

Our approach builds upon a simple insight: for
many pairs of points from a given dataset, the
predicted probability of the correct class strongly
correlates across models. Thus, evaluating every

model on the entirety of a dataset is redundant. The
predictions of existing source models on a given
dataset are telling about predictions of a new tar-
get model, even across considerable performance
gaps. This mirrors phenomena like Accuracy on
the Line (Miller et al., 2021) and Agreement on the
Line (Baek et al., 2022), but at a much more gran-
ular scale. Anchor Points can be selected by iden-
tifying dataset medoids in a space where distance
is a positive, monotonically decreasing function
of cross-model correlations between points. We
further propose to visualize this space using multi-
dimensional scaling and U-MAP (McInnes et al.,
2018), which we call Anchor Point Maps. Anchor
Point Maps show what region each anchor point
captures and highlight that different models and
prompts may struggle on different dataset regions,
allowing fine-grained comparisons.

Emphatically, we do not aim to replace large
benchmarks, but rather provide cheaper signal
about model performance on these benchmarks
to help accelerate the development of models and
prompts. We also strive to be blunt about the limi-
tations of our technique. Anchor point generaliza-
tion relies on the predictive correlations of source
models being consistent with that of target models.
This is not always the case, leading to poor gen-
eralization to specific target models depending on
the choice of source models. We share simple rules
of thumb to promote this source-target consistency,
but lack rigorous theory to guide source model se-
lection. We lay foundations for further research
into model predictive correlations and efficient, in-
terpretable model evaluation.

2 Related Work

Sample-Efficient Model Evaluation We devi-
ate from prior sample-efficient model evaluation
literature along key axes. Many works (Kossen
et al., 2021a,b; Deng and Zheng, 2021; Corneanu
et al., 2020) minimize evaluation annotation costs
by actively selecting points to annotate for evaluat-
ing a given model. In the era of large benchmarks
and large models, labeled evaluation examples are
widely-available but evaluating all of them is cum-
bersome. Our technique instead minimizes the
number of forward-passed examples necessary for
reliable model evaluation. Furthermore, our se-
lection strategy is agnostic to the target model(s)
being evaluated. The resulting evaluation set is
transferable to other language models.
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Other works (Rodriguez et al., 2021; Ethayarajh
et al., 2022; Bowman and Dahl, 2020) point out
that it is often a minority of points that differentiate
the performance of various models. Rodriguez
et al. (2021) show that evaluating models on points
identified as the most discriminative can effectively
rank model performance. However, optimizing for
discriminability does not result in representative
subsets: very easy or very hard points will tend
to be excluded, leading to a different distribution.
Instead, we optimize for representativeness which
we show naturally leads to discriminability.

Instance-Level Model Performance Despite be-
ing noisy (Zhong et al., 2021), instance-level
model predictions are a rich source of information
about model behavior. Swayamdipta et al. (2020)
present Data Maps, a powerful technique that lever-
ages instance-level predictions to reveal underlying
structure in the interplay of models and data points.
Various training example regions play distinct roles
in guiding a classifier to its solution. Unlike our
technique, Data Maps are not used for comparing
model performance or isolating distinct regions of
the dataset distribution where models are weak.

Ethayarajh et al. (2022) further show that
instance-level predictions can be used to quantify
how much information a given model can extract
from a dataset, providing a formal metric of dataset
difficulty that exposes model behavior at the dataset
and data point level.

Predictive Correlations across Models Miller
et al. (2021) present the Accuracy on the Line phe-
nomenon: out-of-distribution (OOD) performance
is strongly positively correlated with in-distribution
(ID) performance for a wide range of models and
distribution shifts. This unexplained by classical
theory which provides only weak bounds relating
the two metrics (Ben-David et al., 2018). Baek et al.
(2022) further show that the agreement of two clas-
sifiers on ID data strongly linearly correlates with
their agreement on OOD data whenever Accuracy
on the Line holds. Both phenomena can be used to
cheaply estimate model OOD performance. Our
findings presented in this work mirror these phe-
nomena at a much more granular scale, i.e., data
instances rather than data sets.

Coresets Anchor Points can be interpreted as a
coreset, broadly defined as a small "summary" of a
large set of data (Feldman, 2020; Guo et al., 2022).
Selecting dataset coresets for efficient model

training is widely-explored in prior work, per-
formed through various techniques including clus-
tering (Kaufman and Rousseeuw, 2009; Reza Zan-
jirani Farahani, 2009), gradient-matching (Mirza-
soleiman et al., 2020; Killamsetty et al., 2021a),
bi-level optimization (Borsos et al., 2020; Killam-
setty et al., 2021b), and submodularity-based meth-
ods (Kai Wei, 2015). We use a clustering-based
approach, but focus on summarizing data for model
evaluation rather than training.

3 Problem Set-Up

Let D = {(xi, yi)}Ki=1 be a language classification
benchmark. D is partitioned into a training split
Dtrain and one or more evaluation splits Deval,
each drawn i.i.d fromD. We are given M models to
evaluate, denoted as the target set T = {ϕm}Mm=1.
Each unique ϕm corresponds to a model fine-tuned
onDtrain or paired with a specific prompt template
that directs the model at solving D. The dataset
has an evaluation metric (accuracy, F1-score, etc.)
to measure the aggregate performance Pm of each
ϕm on an evaluation split Deval.

We additionally have access to the instance-level
predictions of a source set of N model and prompt
template pairs S = {ϕn}Nn=1 over the entirety of
Deval. S and T are disjoint. The predictions oc-
cupy an N × |Deval| × Y tensor PS , where Y is
the cardinality of the classification task. In prac-
tice, source models could be open-source models
that can be run locally for free while target models
might be closed-source and/or more expensive.

Towards Micro-Benchmarking We aim to ex-
tract a development set from a large benchmark
that captures the benchmark’s broad coverage and
reliable ranking power while being as small as
possible, improving performance interpretability
and evaluation efficiency. We refer to this objec-
tive as micro-benchmarking. The technique must
1) acquire a small representative subset of evalu-
ation points from the large benchmark (Xacq ⊆
Deval, |Xacq| ≪ |Deval|), 2) leverage the predic-
tions of target models {ϕm}Mm=1 on the subset to
produce scores S1...M that correlate as much as
possible with model performances P1...M on the
entire dataset Deval, and 3) estimate instance-level
performance on untested points from Deval.

4 Micro-Benchmarking Approach

We measure how well an example (x1, y1) repre-
sents another example using the Pearson correla-

1578



tion of correct class confidence in the two exam-
ples measured across the predictions of the source
models in S = {ϕn}Nn=1. If our data is not anno-
tated, we can instead compute Y Pearson correla-
tions (one across each class) per example pair and
average them. However, model confidences are
bounded by [0, 1] and thus can only follow a linear
trend for a bounded range. Akin to Miller et al.
(2021), we take the logit transform of the confi-
dences to scale the axes from [0,1] to [− inf,+ inf]
prior to computing correlations. We denote this
composite function as CORRS . The task of se-
lecting a Xacq that is maximally representative of
Deval for all models in S reduces to solving a K-
Medoids problem that maximizes the correlation
between the selected and the remaining points:

min
Xacq

B∑

i=1

∑

xj
eval∈Qi

1− CORRS(xiacq, x
j
eval) (1)

where B is the number of anchor points and Qi

is the set containing all xeval that are more strongly
correlated with xiacq than any other xjacq. This ob-
jective makes the assumption that the estimate for
ϕm(xeval) leverages only the most strongly corre-
lated ϕm(xiacq). We efficiently solve this objective
using the Partitioning Around Medoids (PAM) al-
gorithm (Kaufman and Rousseeuw, 2009).

4.1 Anchor Point Techniques

We present two techniques for leveraging anchor
points to benchmark model performance with min-
imal evaluation examples.

Technique 1: Anchor Point Predictor We pro-
pose the Anchor Points Predictor, an ensemble
of univariate linear regression models that use
model predictions on each anchor point to estimate
predictions on all other points in Xeval. Specifi-
cally, anchor point ϕ(xiacq) is used to estimate all
ϕ(xeval) ∈ Qi. These instance-level prediction es-
timates can then be used to detect regions of model
weaknesses (see Section 4.1) and compute an es-
timate of any performance metric for the target
model. This technique requires that the trend lines
fitted to source model predictions explains the vari-
ance in target model predictions well. We explore
when this is the case in Appendix A. Algorithms
1 and 2 show pseudocode for fitting and making
predictions with the Anchor Point Predictor Model.

Technique 2: Anchor Point Weighted Score
Rather than attempting to estimate exact model
performance at the instance-level, we can aim to
produce a score for each target model that highly
correlates with the model’s performance on Deval.
Using the predictions of the source model set S,
we select N ∈ 1...B anchor points according to
Equation 1. Each of these points xacq,i strongly cor-
relates with a subset of the untested points inDeval,
namely all xjeval ∈ Qi. We propose the Anchor
Point Weighted (APW) score, a weighted average
of the model’s correct class probability predictions
on the anchor points with weights proportional to
cluster size.

APW (ϕi) =
1

|Deval|
B∑

i=1

|Qi| ∗ ϕi(x
i
acq)[yi] (2)

Anchor Point Maps To highlight the insights
provided by anchor points, namely model strengths
and weaknesses in distinct regions of a dataset, we
propose to visualize the cross-model correlative
space from which anchor points are drawn. We
compute pairwise correlations between all points
using CORRS , creating a |Deval| × |Deval| corre-
lation matrix C. We then represent the distance
matrix Z as a positive, monotonically decreasing
function of correlation: Z = 1 − C. Finally,
we cast the points to a high-dimensional contin-
uous space using Multi-Dimensional Scaling on
Z and project the space to two components with
U-MAP (McInnes et al., 2018). This technique
visualizes the dataset in a space where a model’s
performance on each point generalizes to the local
neighborhood of that point.

5 Predictive Correlations

To motivate our approach, we first show that lan-
guage models make predictions with consistent
structure. For many pairs of points from a given
dataset, the predicted probability of the correct
class strongly correlates across models.

Experimental Set-Up We obtain a diverse
set of language models from HuggingFace
and the OpenAI API: 27 BERT-family models,
11 non-instruction-tuned GPT-family models, 5
instruction-tuned GPT-family models, and 5 GPT-
3/3.5 variants (all listed in Tables 9 - 10). We
denote these model sets as the BERT-family, GPT-
family, InstructGPT-family, and OpenAI-family
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(a) Pairwise Correlation Matrix of ALL-Family Correct
Class Confidences on 50 QQP Examples. Rich structure
indicates the relatedness of various examples. Many are
strongly correlated.

(b) Correct Class Confidences of 87 Language Model
Predictions from all model families on Two Selected QQP
examples. A model correctly classifying one example
is predictive of the model correctly classifying the other.
This phenomenon is very common.

Figure 3: Predictive Correlations at the Instance-Level Across Language Models

respectively. For six datasets from the GLUE
benchmark (Wang et al., 2019), we finetune each
BERT-family model on the training split Dtrain

and obtain its predicted probability of the correct
class on each instance in the validation split Deval.
For the other model families we zero-shot prompt
for the same datasets using three multiple-choice
prompts per dataset (Appendix D). We obtain the
predicted probability of each class by performing
softmax over the log probabilities of candidate an-
swer sequences. Thus, we obtain a prediction ma-
trix P for each model family and dataset with size
Nsubjects × |Deval| matrix where Nsubjects = 27
for PBERT , 30 for PGPT , 15 for PIGPT , 15 for
POAI , and 87 for their union PALL.

Model predictions on pairs of examples are
linearly correlated across models. The predic-
tion matrices are approximately low-rank for all
tasks (Table 1). This can be attributed to a simple
phenomenon: let ϕn(x1)[y] denote the probability
mass (equivalently, model confidence) outputted by
ϕn on x1 ∼ Deval for a given class y. We see that
ϕn(x1)[y] often linearly correlates with the model’s
prediction on a different instance ϕn(x2)[y] across
models, i.e. ϕn(x2)[y] ≈ wϕn(x1)[y] + b, where
w and b can be found by fitting a trend line through
the correct class confidences of all source models.

Figure 3 visualizes this phenomenon. We first
observe that the correlation matrices of model pre-
dictions on the same evaluation set show rich struc-
ture. Figure 3(b) shows a QQP example pair that is
strongly positively correlated across models from

all families. This suggests that evaluating a model
on both examples is redundant. This phenomenon
is wide-spread: it holds for many pairs of exam-
ples across the six GLUE tasks and 87 widely-used
language models and prompts.

Predictive Correlations Tend to Generalize
Across Diverse Models Figure 6 in Appendix
A shows how well the strong trends from each fam-
ily transfer to other families. Errors are lowest in
the bottom row, suggesting that using source mod-
els that span all model families result in the most
generalizable trend lines. We also observe that the
predictive correlations of the BERT-family do not
generalize well to other model families, which we
explore further in Figure 8(b). However, most er-
rors in the table are generally low, suggesting that
predictive correlations tend to generalize across
diverse models.

6 Sample-Efficient Model Evaluation

We now evaluate the anchor point techniques and
compare against baselines for 1) selecting repre-
sentative evaluation subsets to rank models1 and
2) estimating model instance-level performance on
held-out points in Deval .

Subset Selection Baselines and Metrics For
baselines, we use uniform random sampling as
well as K-Medoids sampling over the embedding

1We also evaluate anchor point techniques for ranking
MMLU performance in Appendix B
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Task BERT GPT IGPT OAI ALL
MNLI 20.1 10.07 30.07 40.1 30.09
SST-2 10.08 20.05 20.09 30.1 20.09
QQP 20.06 20.06 20.1 40.09 30.09
RTE 20.07 20.06 20.08 30.1 20.08
MRPC 20.08 40.1 30.09 70.1 70.1
QNLI 10.08 20.08 30.09 70.09 30.09

Table 1: Approximate matrix rank of the correct class
probability predictions of four model families on six
GLUE task validation sets. We compute low-rank ma-
trix approximations for 27 BERT-family predictions,
30 GPT-family predictions, 15 Instruction-tuned GPT-
family predictions (IGPT), 15 OpenAI-family predic-
tions (OAI), and all 87 model predictions (ALL) to-
gether. The approximations achieve very low mean
absolute error (indicated by the subscripts), despite their
ranks being considerably smaller than the number of
models in each family.

spaces of a generic sentence encoder– Sentence-
BERT (Reimers and Gurevych., 2019) – and an en-
coder fine-tuned on the dataset– the CLS token of
bert-base-uncased (Devlin et al., 2018). For these
techniques, we use model performance on the se-
lected points as the estimate of aggregate model
performance on the entire dataset. We further con-
sider variants of these baselines that consider model
confidence. We propose mean model confidence
in the correct class on randomly selected points as
one baseline. We also propose to produce a score
estimate for each model by computing a weighted
average of the correct class probabilities assigned
to each selected point. The weights are propor-
tional to the size of each selected point’s cluster
and sum to 1, akin to Anchor Points Weighted.

To assess the ranking performance of each tech-
nique, we compute the Kendall rank correlation
coefficient (Kendall’s τ ) for a range of anchor point
set sizes and report the resulting Area Under the
Correlation Curve (AUCC) from 1 to a maximum
budget B. We then normalize AUCC by dividing
by the best possible area. In the experiments we
use B = 30, the small data regime for which it
is reasonable for practitioners to manually inspect
predictions.

Prediction Estimation Baselines and Metrics
We consider two naive baselines: 1) using the
instance-level predictions of a randomly selected
source model on Deval as the estimate of each tar-
get model’s prediction and 2) using the mean pre-
diction of all source models on each point in Deval

as the estimate. We also propose Nearest Source
Neighbor, a strategy where each target model’s
predictions on k randomly selected points are com-
pared to the predictions of all source models on
the same points. We select the source model with
the most similar predictions on these k points, as
measured with L1-distance. The predictions of this
source model on all other points in Deval are then
used as the estimate of the target model’s predic-
tions.

To measure the performance of each technique,
we use agreement– the percentage of points for
which the estimation technique assigns the highest
probability to the same class as the target model.

Anchor Points Show Competitive Performance
at Ranking Models with Small Evaluation Sets
Table 2 shows the Kendal’s τ AUCC of the meth-
ods for ranking 77 models belonging to all model
families. These curves are shown in Figures 15
and 16. Table 7 shows performance within each
model family. Overall, we observe that Anchor
Points Weighted outperforms random selection in
29 of 30 settings and Anchor Points Predictor out-
performs random selection in 27 of 30 settings.
Anchor Points Weighted proves to be the strongest
among all techniques, followed by Anchor Points
Predictor. Very small anchor point sets achieve sur-
prisingly strong correlation, serving as reliable eval-
uation sets that can easily be inspected by eye (e.g.
Figure 11). Moreover, we still observe these gains
when source models are freely-available while all
target models are closed-source (Table 4).

Anchor Point Weighted Correlations Are Re-
liable, Unlike Strong Contenders We observe
that Anchor Point Weighted (APW) performance
tends to be more reliable across evaluation set
sizes and test settings than APP as well as the
baselines. We suspect APW is more reliable than
APP because it makes a weaker assumption that
source model predictions simply follow similar cor-
relations as target model predictions rather than
closely matching the exact regression line fitted
to the source model predictions. This is corrobo-
rated by results in Appendix B with the MMLU
dataset, where APW still demonstrates superior
performance over baselines despite a small number
of source models, but APP performance worsens.

We observe inconsistent and sometimes erratic
behavior in the embedding-based baselines. De-
spite Fine-tuned and Fine-tuned Weighted base-

1581



Random Random Pretrained Pretrained Fine-Tuned Fine-Tuned AP AP
Mean Weighted Weighted Weighted Predictor

Datasets Exact Corr Exact Corr Exact Corr Corr Exact

SST-2 0.685 0.705 0.734 0.725 0.730 0.787 0.757 0.727
QQP 0.669 0.678 0.189 0.233 0.766 0.770 0.756 0.701
RTE 0.366 0.308 0.143 -0.052 0.354 0.275 0.483 0.462
QNLI 0.321 0.331 0.192 0.294 0.127 0.144 0.439 0.303
MRPC 0.687 0.679 0.528 0.604 0.641 0.681 0.726 0.716
MNLI 0.438 0.433 0.177 0.166 0.523 0.453 0.544 0.517

Average 0.528 0.522 0.327 0.328 0.523 0.518 0.612 0.571

Table 2: Area Under the (Kendall’s τ ) Correlation Curve from 1 to 30 points for ranking 77 language models at 6
General Language Understanding tasks (GLUE). We randomly select 10 models to be source models for the AP
methods and rank the remaining 77 models, averaging over 100 randomized runs. AP Weighted and AP Predictor
show significant gains, which are most dramatic at smaller evaluation sets (Figures 15 and 16). "Exact" indicates
the method generates a score that is intended to approximate the true aggregate performance directly, while "Corr"
indicates the method generates a score intended only to rank correlate with true performance. The best score is
bolded and second best score is underlined. Table 7 shows these results broken down by model family.

lines collectively achieving the best performance
in 10 settings, these baselines prove to be inconsis-
tent: Fine-tuned and Fine-tuned Weighted perform
worse than random in 12 and 10 settings, respec-
tively. We suspect this is because language model
embedding spaces are not always smooth and are
likely to be inconsistent across models.

Anchor Points Efficiently Estimate Model Pre-
dictions The Anchor Point Predictor can estimate
model performance at the instance-level over the
entire dataset. Table 3 shows the average agree-
ment between Anchor Point estimated instance-
level model predictions and true model predictions
using various numbers of anchor points and ran-
domly selected source models. The estimates of a
small number of anchor points achieve high aver-
age agreement with true model predictions. How-
ever, the source model correlations do not gener-
alize well to all target models, resulting in lower
agreement on these outlier models and thus large
standard deviations in Table 3. As a general rule of
thumb, selecting a source model set that is diverse
(e.g. comes from multiple families, see Figure 6)
results in the best generalization. Strategies for in-
telligently selecting source models are a promising
direction to resolve poor anchor point generaliza-
tion, which we discuss further in Appendix A.

Nearest Source Neighbor is a Strong Baseline
Nearest Source Neighbor achieves competitive per-
formance at estimating model instance-level pre-
dictions. The agreement achieved by this technique
is upper bounded by the agreement of each tar-
get model and its true nearest source model neigh-

bor (indicated by the B = |Deval| column in Table
3). Surprisingly, comparing just B = 10 random
points closely approaches this bound, suggesting
that the similarity of the predictions of different
models can be approximated cheaply. Note that
using B = 100 anchor points surpasses the upper
bound of this baseline on 3 of the 6 datasets.

7 Sample-Efficient Model Analysis

We now highlight how anchor point maps provide
fine-grained analysis of model generalization both
within and across datasets. This is achieved in a
sample-efficient manner using the Anchor Point
Predictor.

Anchor Point Maps Visualize Where Models
Generalize Anchor Point Maps reveal the extent
to which models learn distinct regions of dataset
distributions. Model performance on each sample
correlates with performance in the sample’s neigh-
borhood, allowing the Anchor Point Predictor to
estimate where models will fail without evaluating
the entire dataset. Figure 1 shows the SST-2 vali-
dation set mapped by the predictions of 60 source
models and then colored by estimated Falcon-7B
predictions using thirty anchor points. These esti-
mated predictions are quite faithful to the model’s
true predictions (achieving 0.09 MAE and 92%
agreement), revealing regions where the model is
weak. This localization of model behavior starkly
contrasts with typical language embedding spaces,
where model performance tends to be non-localized
(Figure 12). However, like embedding spaces, re-
lated examples naturally cluster together.
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Random Source Mean Source Nearest Source Neighbor Anchor Points

Dataset |Deval| B = 0 B = 0 B = 10 B = |Deval| B = 10 B = 100

SST-2 872 0.630.23 0.740.17 0.830.16 0.840.15 0.830.12 0.840.11

QQP 6000 0.540.28 0.590.22 0.840.15 0.850.14 0.810.13 0.830.14
RTE 277 0.530.32 0.580.31 0.800.21 0.810.20 0.830.17 0.850.16

QNLI 5463 0.600.26 0.650.23 0.780.19 0.790.19 0.760.17 0.750.15
MRPC 408 0.530.26 0.560.20 0.800.15 0.820.14 0.790.14 0.840.11

MNLI 6000 0.400.30 0.460.28 0.710.26 0.720.25 0.790.20 0.760.20

Average – 0.54 0.60 0.79 0.81 0.80 0.81

Table 3: Agreement of true target model predictions and estimated target model predictions for anchor points and
baselines, where B indicates the number of points the target models are evaluated on. We randomly select 10 models
to be source models and estimate the predictions of the remaining 77 models, averaging over 100 randomized runs.
Anchor Points and Nearest Source Neighbor surpass the naive baselines by a large margin. Standard deviations
(subscripts) remain large, indicating the presence of outlier models. The B = |Deval| column is shown only for
reference to highlight that Anchor Points can surpass the upper bound of Nearest Source Neighbor performance.
Note that standard errors can be computed by dividing the standard deviations by 10. The best score is bolded.

Anchor Points Predict Diverse Model Behavior
Figure 5 in the Appendix shows four Anchor Point
Maps of 1000 QQP points, comparing the true
and estimated predictions of deberta-v3-base and
text-davinci-003 using 30 anchor points. The two
models are weak in distinct regions of the dataset.
Despite deberta-v3-base achieving stronger perfor-
mance overall, it fails in a region of the negative
class cluster where text-davinci-003 is mostly cor-
rect. This is perhaps related to "no-free lunch" theo-
rems in statistical learning theory: different models
have biases that will lend them to perform the best
on different inputs (Ben-David and Shalev-Shwartz,
2014), which is obscured by single-number evalua-
tion metrics. The fact that the same set of anchor
points can generalize to models with diverse behav-
iors highlights that the same underlying predictive
correlations can engender these different behaviors.
We explore anchor point generalization further in
Appendix A.

Anchor Point Maps Reveal Patterns in Model
Knowledge To explore the characteristics of an-
chor points beyond basic language understand-
ing tasks, we generate an anchor point map (Fig-
ure 4(a)) using the predictions of 14 LLMs on 6
MMLU datasets (Hendrycks et al., 2021). Each
dataset contains multiple choice questions from a
distinct domain, requiring substantial real-world
knowledge to answer. We observe overlap of all
domains in the anchor point map, but there is a
remarkable amount of structure: models tend to
have correlated performance on groups of questions
from the same domain as well as related domains.
This is quantified is Figure 4(b), which shows the

distribution of domains of each question type’s 10
nearest neighbors. On average, around 60% of the
nearest neighbors of a high school physics ques-
tion are also from the high school physics domain.
In contrast, a nearest neighbor of a college chem-
istry question is equally likely to be about college
chemistry or clinical knowledge. This suggests that
models with strong knowledge of college chem-
istry are likely to have strong knowledge of clinical
knowledge as well. This is perhaps due to frequent
co-occurrence of these subjects in pre-training data.

Anchor Points Capture Model Performance,
Not Language Semantics Notably, Figure 4(b)
reveals that high school physics and college physics
questions are often not nearest neighbors, despite
these datasets having the largest vocabulary over-
lap (21%) of any pair within the 6 MMLU datasets
(Figure 14). This highlights that the semantic simi-
larity of two questions is often a poor proxy for sim-
ilar model performance on the questions, explain-
ing why embedding-based approaches to sample-
efficient model evaluation tend to fail. Anchor
Point Selection is more akin to test-distribution
aware active learning, where points are selected
based on the information they provide about future
model predictions (MacKay, 1992; Kirsch et al.,
2021).

8 Limitations

Anchor Points Show Diminishing Returns We
discuss in Appendix A that APW correlation begins
to plateau as the evaluation set size grows to 100
points due to an inherent upper bound. We also
discuss that for large evaluation sets, anchor points
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(a) Anchor Point Map of 6 Combined MMLU datasets.
The map is computed using the predictions of 13 source
models. We color each point according to the dataset to
which it belongs. We observe that all datasets overlap,
but points tend to cluster with other points from the same
dataset or a related dataset.

(b) For each question type (i.e dataset), we show the dis-
tribution of question types of its 10 nearest neighbors (on
average). For example, the top row shows that 49% of
the nearest neighbors of clinical knowledge (CK) ques-
tions tend to also be clinical knowledge, while 19% tend
to be high school European history (HSEH). Labels: CK =
clinical knowledge, CC = college chemistry, CP = college
physics, GF = global facts, HSES = high school European
history, HSP = high school physics.

Figure 4: Analysing Patterns in Model Knowledge using MMLU Anchor Point Map.

can underperform random selection. More work
is needed to develop methods that are robust to
evaluation set size.

Anchor Points Do Not Always Generalize In
order for anchor points and anchor point maps to
generalize, the predictive trends of source mod-
els must be consistent with that of target models.
While Table 7 shows that anchor points often trans-
fer both within and across model families, the cor-
relations of randomly selected source models do
not necessarily generalize to all target models (e.g.
Figure 13). We currently lack rigorous theory to
guide source model selection for evaluation of a
given set of target models.

Anchor Points Can be Further Optimized In
its current form, Anchor Point Maps require com-
puting correlations between all pairs of points in the
dataset. This is computationally expensive for huge
datasets. Multi-dimensional scaling with missing
values or correlation matrix completion could dra-
matically decrease these costs.

9 Conclusion and Future Work

We present Anchor Point Selection, a technique
that finds maximally-representative subsets from
large datasets which can be used to efficiently rank
models and estimate model behavior over the entire

dataset. We also present Anchor Point Maps, a
tool to visualize how well models generalize across
various subsets of datasets.

Important future work includes developing bet-
ter theory underlying when models share predictive
correlations and designing intelligent source model
selection strategies to ensure anchor point general-
ization to desired sets of target models.

The fact that diverse language models make
highly correlated predictions on many pairs of ex-
amples suggests that modern benchmarks contain
many redundant examples. An interesting future
direction would be to use predictive correlations to
guide benchmark development by selecting fewer
redundant examples, which would ideally lead to
more diverse and difficult benchmarks.

The potential to extend Anchor Point Maps and
Anchor Point Selection to tasks beyond language
classification is exciting. Perhaps other continu-
ous performance metrics are strongly correlated
between examples, such as BLEU scores or the
rewards given by a reward model. Exploiting such
phenomena could allow a dramatic reduction in the
number of examples that modern language models
must be evaluated on, leading to reduced costs for
model development.
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Ethics Statement

We aim to encourage the research community to
consider how modern NLP models can be evalu-
ated more efficiently. While this endeavor could
ideally reduce the compute required to develop
models, minimizing evaluation set size poses the
risk of excluding minority subsets of the data dis-
tribution. This could harm model generalization
and lead to reduced performance in rarer use cases,
e.g. on low-resource languages. As an empirical
example, observing where Figures 9(a) and 9(b)
differ reveals a small subset of points in sparser re-
gions that are poorly captured by the anchor points.
We find that examples in this region remain poorly
captured across random seeds and anchor point set
sizes, highlighting a systematic lack of generaliza-
tion to this minority subset.

To mitigate the risks of our work, we 1) empha-
size that our ultimate goal is not to replace large
benchmarks but rather provide cheaper signal about
model benchmark performance and 2) remain can-
did about the limitations of our approach to lay
the foundation for future work in efficient, robust
model evaluation strategies.
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Random AP Weighted AP Predictor

SST-2 0.668 0.744 0.714
QQP 0.606 0.729 0.701
RTE 0.335 0.372 0.453
QNLI 0.449 0.514 0.312
MRPC 0.648 0.711 0.668
MNLI 0.302 0.366 0.411

Average 0.502 0.573 0.543

Table 4: Area Under the (Kendall’s τ ) Correlation Curve
from 1 to 30 points for ranking the accuracy of 15 OPE-
NAI model-prompt pairs on 6 GLUE datasets. We ran-
domly select 10 free, open-source models to be source
models for the AP methods and rank the remaining 7
models, averaging over 100 randomized runs. The best
score is bolded. We observe that APW and APP have
an average improvement over random by 0.07 and 0.04
AUCC respectively. This highlights that the anchor
point methods can reduce the cost of ranking expensive
target models with minimal source model costs.

A Anchor Points Generalization Analysis

We perform further investigations to assess un-
der what conditions the predictive correlations of
source models generalize well to target models.
Figure 7 shows how well strong positive and strong
negative trends in source model predictions gener-
alize to target model predictions. We observe that
positive trends generalize more reliably than neg-
ative trends. Negative trends suggest that models
struggle to correctly label both of two examples
correctly: greater confidence in the correct class in
one example correlates with lesser confidence in
the correct class of the other example. We hypothe-
size that this characteristic is a weakness of some
models that does not generalize to stronger models,
leading to poor generalization. Note that Equation
1 selects points with strong positive trends, avoid-
ing this issue.

Figure 8 shows the correlation matrix of 50 ran-
domly selected SST-2 points, computed across the
predictions of all 87 models. We observe that
nearly all correlations are positive, with a notable
exception. This exception is a highly contentious
example: "we root for ( clara and paul ) , even like
them , though perhaps it ’s an emotion closer to
pity, " labeled as positive sentiment. We observe
in Figure 8(b) that prompted language models tend
to follow a negative trend between this example
and others, while fine-tuned BERT models do not.
This suggests a distinction in how fine-tuned and
prompted models fit the task distribution. Notably,
it highlights that different model families may have
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predictive correlations that do not generalize to
other families. Further analysis of these properties
could lead to the design of intelligent source selec-
tion schemes for evaluating a given set of target
models.

Figures 15 and 16 show the Kendall tau corre-
lation curves for the various model ranking meth-
ods. For many settings, APW correlation begins
to plateau as the evaluation set size grows to 100
points. For 19 of the 30 settings, the random se-
lection curve eventually reaches the APW curve at
some evaluation set size smaller than 100 points.
This is natural: a randomly-selected evaluation set
is sufficiently representative when sufficiently large.
These diminishing returns occur more quickly for
simpler datasets (e.g. SST-2) and less so for more
complex datasets (e.g. MNLI), reflecting that more
complex distributions require larger evaluation sets
to be well-represented. However, it is surpris-
ing that random selection eventually surpasses the
APW curve in 5 of these 19 settings. This is a
result of the APW curve having a tighter upper
bound than random selection: in the limit where
|Xacq| = |Xeval|, instance-level confidence in the
correct class averaged over the entire dataset does
not perfectly correlate with accuracy over the entire
dataset. This upper bound does not exist for APP.

B Anchor Points for Ranking Massive
Multitask Language Understanding

Model

1. huggyllama/llama-7b
2. huggyllama/llama-13b
3. mosaicml/mpt-7b
4. tiiuae/falcon-7b
5. facebook/opt-350m
6. facebook/opt-125m
7. facebook/opt-6.7B
8. mistralai/Mistral-7B-Instruct-v0.1
9. Eleuther/pythia-12b
10. openlm-research/open_llama_7b
11. meta-llama/Llama-2-7b
12. openlm-research/open_llama_3b
13. openlm-research/open_llama_7b
14. openlm-research/open_llama_13b

Table 8: LLMs used for MMLU experiments. Models
can be accessed at https://huggingface.co/models.

We perform a small scale experiment to evaluate
anchor points at ranking models on 6 Massive Mul-
titask Language Understanding (Hendrycks et al.,
2021) datasets: clinical knowledge, college chem-
istry, college physics, global facts, high school

European history, and high school physics. Each
dataset contains multiple choice questions requir-
ing extensive real-world knowledge. Table 6 shows
results of the Anchor Point Predictor, Anchor Point
Weighted, and baselines at ranking 7 target mod-
els using 7 source models with 1-30 anchor points.
Due to the complexity of these tasks, we substitute
the fine-tuned BERT embedding baselines with
BAAI/bge-large-en-v1.5, a state-of-the-art embed-
ding model.

We find that Anchor Points Weighted is the
strongest performer overall, outperforming random
selection on 5 of the 6 datasets with an average
improvement of 0.07 AUCC. However, the Anchor
Points Predictor outperforms random on only 3 of
6 datasets. Notably, both methods are far below
random on the Global Facts dataset. This is perhaps
due to the randomness and specificity of the Global
Facts questions: many have answers that are likely
to be rare in pre-training data, such as ’What is the
percentage of children aged 13-15 in the United
States who reported being bullied at least once in
the past couple of months as of 2015?" The correla-
tions learned between these questions (using only
7 source models) are likely to be weak or spurious.
Increasing the source model set size would improve
the probability of learning generalizable predictive
correlations.

Interestingly, the improved performance of Pre-
trained Weighted in MMLU relative to GLUE sug-
gests that semantic similarity in questions can be
an effective proxy of model performance similar-
ity when questions emphasize intensive knowledge
rather than simple language understanding. How-
ever, the inconsistency of these approaches still
warrants a more reliable technique such as Anchor
Points Weighted.

C Hyperparameters, Compute, and
Packages

For each GLUE task, we finetune all BERT-family
with a batch size of 32, learning rate of 2e-5, and
weight decay of 0.01 for 3 epochs. We did not per-
form extensive hyperparameter tuning; thus, model
performances do not necessarily represent their
ideal performance. We chose to not perform hyper-
parameter tuning in order to assess whether anchor
points could reliably evaluate models with a wide
range of performances. This training process, as
well as the process of training code development
and model inference, took approximately 120 GPU

1588



(a) QQP Anchor Point Map Colored with Estimated
deberta-v3-base predictions. The estimates achieve an
MAE of 0.11 and agreement of 89%.

(b) QQP Anchor Point Map Colored with Estimated
text-davinci-003 (Prompt 1) predictions. The estimates
achieve an MAE of 0.16 and agreement of 76%.

(c) QQP Anchor Point Map Colored with True deberta-
v3-base predictions.

(d) QQP Anchor Point Map Colored with True text-
davinci-003 (Prompt 1) predictions.

Figure 5: Anchor Point Map for 1000 QQP examples. The map is computed using the predictions of 60 randomly-
selected source models. We then estimate the predictions of the two held-out target models, deberta-v3-base and
text-davinci-003, by evaluating each on 30 anchor points. We color the remaining 970 test points in 5(a) and 5(b)
with these estimates. Finally, we color maps 5(c) and 5(d) with the true target model predictions. We observe that
the estimated predictions achieve low MAE and high agreement with the true predictions.
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Nearest Source Neighbor Anchor Points

Dataset N = 5 N = 10 N = 30 N = 50 N = 5 N = 10 N = 30 N = 50

SST-2 0.780.19 0.830.16 0.860.12 0.870.12 0.780.15 0.830.12 0.850.11 0.850.12
QQP 0.770.21 0.840.15 0.870.13 0.880.13 0.790.15 0.810.13 0.840.11 0.850.12
RTE 0.740.24 0.800.21 0.840.18 0.860.16 0.780.19 0.830.17 0.800.18 0.870.16
QNLI 0.730.22 0.780.19 0.830.17 0.830.16 0.690.17 0.760.17 0.770.17 0.770.16
MRPC 0.770.16 0.800.15 0.820.15 0.830.15 0.750.15 0.790.14 0.850.10 0.810.15
MNLI 0.650.27 0.710.26 0.760.24 0.78.24 0.760.20 0.790.20 0.800.20 0.790.20

Average 0.74 0.79 0.83 0.84 0.76 0.80 0.82 0.82

Table 5: Anchor Point Agreement for Various Source Model Set Sizes on GLUE. We assess Nearest Source
Neighbor and Anchor Points using B = 10 points in all settings. We observe that Anchor Points are the stronger
performer for smaller source model sets, but are surpassed by Nearest Source Neighbor for larger sets. Note that
anchor points are stronger across the board for MNLI and weaker across the board for QNLI, indicating that the
nature of the dataset plays a large role.

Random Random Pretrained Pretrained BGE BGE Weighted AP AP
Mean Weighted Weighted Weighted Predictor

Datasets Exact Corr Exact Corr Exact Corr Corr Exact

Clinical Knowledge 0.532 0.638 0.593 0.705 0.542 0.491 0.711 0.640
College Chemistry 0.390 0.445 0.148 0.332 0.384 0.472 0.477 0.267
College Physics 0.251 0.280 0.310 0.206 0.077 0.30 0.343 0.130
Global Facts 0.251 0.116 0.117 0.118 0.384 0.109 0.151 0.052
HS Euro. History 0.596 0.656 0.612 0.678 0.677 0.741 0.667 0.620
HS Physics 0.245 0.215 0.307 0.339 -0.014 -0.27 0.324 0.307

Average 0.378 0.392 0.350 0.406 0.341 0.262 0.445 0.336

Table 6: Area Under the (Kendall’s τ ) Correlation Curve from 1 to 30 points for ranking the accuracy of 7 language
models on 6 MMLU datasets. We randomly select 7 models (see Table 8) to be source models for the AP methods
and rank the remaining 7 models, averaging over 100 randomized runs. "Exact" indicates the method generates a
score that is intended to approximate the true aggregate performance directly, while "Corr" indicates the method
generates a score intended only to rank correlate with true performance. The best score is bolded and second best
score is underlined.

Figure 6: Transfer table showing the mean absolute er-
ror of trend lines fit to the instance-level predictions of
one model family and used to estimate the instance-level
predictions of another family. Along the diagonal, we
partition the family into source and target halves ran-
domly. Results are averaged over 1000 points pairs from
each of the 6 GLUE tasks. Point pairs are randomly se-
lected from all pairs having a Pearson correlation greater
than +0.8 within the source model predictions.

Figure 7: Mean Absolute Error Distribution for regres-
sion lines fit to source model predictions with moderate-
to-strong fit (R2 > 0.64) and used to predict target model
predictions. Generalization is worse for trends with neg-
ative slopes.
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(a) Pairwise Correlation Matrix of 87 Model-Prompt
Pairs Correct Class Confidences on 50 SST-2 Ex-
amples. Rich structure indicates the relatedness of
various examples. Notably, a dark bar at index 13 in-
dicates an example that tends to negatively correlate
with all other examples.

(b) Correct Class Confidences of 87 Models on Two
Selected SST-2 sentence pair examples. Example 1
(x-axis) corresponds to the dark bar in 8(a), a highly
contentious example. Prompted models follow a
negative trend while BERT models follow no trend,
highlighting the distinct behavior of fine-tuned vs.
prompted models.

Figure 8: Predictive Correlations at the Instance-Level Across Language Models: SST-2 Case Study

hours with a single A100.
We used Sentence Transformers 2.2.2, Scipy

1.10.1, transformers 4.25.1, tokenizers 0.11.4,
numpy 1.23.5, scikit-learn 1.2.2, kmedoids
0.4.3, and the Eleuther Evaluation Harness
(https://github.com/EleutherAI/lm-evaluation-
harness).

D Prompts

We enumerate the zero-shot prompts used for each
dataset below. All prompts are randomly selected
from Prompt Source (Bach et al., 2022)

QQP

1. Can an answer to "{{question1}}" also be
used to answer "{{question2}}"?

2. I received the questions "{{question1}}" and
"{{question2}}". Are they duplicates?

3. Are the questions "{{question1}}" and
"{{question2}}" asking the same thing?

SST-2

1. Does the following sentence have a {{"posi-
tive"}} or {{"negative"}} sentiment? {{sen-
tence}}

2. Someone just said to me "{{sentence}}".
Do you think they are {{"sad"}} or
{{"happy"}}?’

3. I’m reading a review that says "{{sentence}}".
Do you think the review is {{"positive"}} or
{{"negative"}}?

RTE

1. Does the claim "{{sentence2}}" follow from
the fact that "{{sentence1}}"? Please answer
either {{"yes"}} or {{"no"}}

2. Is the relationship from the first to the sec-
ond sentence "{{"entailment"}}" or "{{"not
entailment"}}"?

3. Does "{{sentence1}}" imply that "{{sen-
tence2}}"? Please answer either {{"yes"}}
or {{"no"}}

QNLI

1. Can you answer the question "{{question}}"
based only on the following: {{sentence}}

2. {{sentence}} Does that sentence have all you
need to answer the question "{{question}}"?

3. Does knowing that "{{sentence}}" imply that
I know the answer to "{{question}}

MNLI

1. Suppose it’s true that {{premise}} Then,
is "{{hypothesis}}" {{"always"}}, {{"some-
times"}}, or {{"never"}} true?

2. Question: {{hypothesis}} True, False, or Nei-
ther?
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(a) SST-2 Anchor Point Map Colored with Es-
timated Falcon-7b (Prompt 3) Predictions. The
estimates achieve an MAE of 0.09 and agreement
of 92%.

(b) SST-2 Anchor Point Map Colored with True
Falcon-7b (Prompt 3) Predictions.

Figure 9: SST-2 Validation Set Anchor Point Map. The locations of all 872 points are learned using the predictions
of 60 randomly-selected source models on SST-2. We then evaluate Falcon-7b (held-out) on 30 anchor points,
shown by green triangles in 9(a). Next, the model’s predictions on only these anchor points is used to estimate the
models’ predictions on the remaining 842 points, with a mean absolute error of 0.09 and 92% agreement with the
true predictions. The estimates are also shown in 9(a). achieving 0.09 MAE and 92% agreement with the models’
true predictions. Finally, we color the Anchor Point Map with Falcon-7B’s true predictions in 9(b). The estimated
predictions successfully identify regions where the model is weak (red regions).

3. {{premise}} Using only the above description
and what you know about the world, "{{hy-
pothesis}}" is definitely correct, incorrect, or
inconclusive?

MRPC

1. {{sentence1}} paraphrase (that is, mean the
same thing as) this sentence? {{sentence2}}

2. Can I replace the sentence {{sentence1}} with
the sentence {{sentence2}} and have it mean
the same thing?

3. Are the following two sentences "{{"equiv-
alent"}}" or "{{"not equivalent"}}"? {{sen-
tence1}} {{sentence2}}
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(a) Slope-Intercept Plot of trend lines fit across the pre-
dictions of 10 source models randomly selected from all
families on 200 randomly-selected MNLI points.

(b) Slope-Intercept Plot of trend lines fit across the pre-
dictions of 10 source models randomly selected from all
families on 200 randomly-selected SST-2 points.

(c) Slope-Intercept Plot of trend lines fit across the pre-
dictions of 87 source models from all families on 200
randomly-selected MNLI points.

(d) Slope-Intercept Plot of trend lines fit across the pre-
dictions of 87 source models from all families on 200
randomly-selected SST-2 points.

Figure 10: Slope-Intercept Plots of Trend Lines Fit Across the Predictions of Source Models on all pairs of 200
points randomly selected from MNLI and SST-2. Note that high Pearson correlations naturally emerge when trend
lines have a slope near one and intercept near zero. This holds even when the number of source models is small (e.g.
10), suggesting that spuriously high correlations are not common.
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Figure 11: Anchor point sets can be highly representative despite being small. This figure shows three SST-2 Anchor
Points. The Anchor Point Weighted Score computed using these three points achieves a Kendall Tau correlation
of 0.68 with true model performance on the SST-2 validation set (872 points), sufficient to identify the stronger
performer of a randomly selected pair of models with 84% probability. (Evaluating the pair on three randomly
selected points would identify the stronger performer with 67% probability). By observing the distribution of the
correct class confidence of many models on these three points, we see that these points correspond to easy (0),
moderate (1), and difficult (2) examples.

Algorithm 1 Anchor Points Predictor Fit
K ← number of anchor points
P ← NxDxQ tensor of N source models’ output probabilities on D points over Q classes
P ← logit(P ) ▷ take logit transform of predictions
M ← empty (D −K)×K ×Q array ▷ To store slopes
B ← empty (D −K)×K ×Q array ▷ To store biases
R← empty (D −K)×K ×Q array ▷ To store residuals
N ← empty (D −K)×K ×Q array ▷ Zero-initialized tensor to indicate nearest anchors
C ← sum([corrcoef(P [:, :, i] for i in range(Q)]) / Q ▷ D ×D averaged correlation matrix
AP ← K-MEDOIDS(1 - C, K) ▷ length K array of anchor point indices
T ← {0...D − 1} \AP ▷ length D - K array of test point indices
for q in range(Q) do

for i, test ∈ enumerated T do
for j,anchor ∈ enumerated AP do

x← P[:,j,q]
y ← P[:,i,q]
m, b, r← LinearRegression(x, y) ▷ Slope, bias, and residual of trend line
M[i,j,q]← m
B[i,j,q]← b
R[i,j,q]← r

end for
end for
nearest← argmin(R[:,:,q], axis = 1) ▷ nearest anchor indices to each point
N[arange(D-K),nearest,q]← 1 ▷ populate indicator array

end for
return AP, N, T, M, B
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(a) 1000 QQP Points Embedded with Sentence-
BERT and colored with the correct class confi-
dence of bert-large-cased.

(b) 1000 QQP Points Embedded with the CLS
token of bert-base-uncased (fine-tuned on QQP).
Points are colored with the correct class confidence
of bert-large-cased.

(c) 1000 QQP Points Visualized with the Anchor
Point Map using 60 source models and colored with
the correct class confidence of bert-large-cased.

Figure 12: Comparison of model performance trends within various embedding spaces. Only the Anchor Points Map
results in clean localization of model performance where a held-out model’s performance on each point correlates
with its performance on neighboring points. This allows fine-grained comparison of how different models perform
on the same dataset distribution.

Algorithm 2 Anchor Points Predictor Predict
Require: AP, N, T, M, B ▷ Returned by Anchor Points Fit

P← length K array of a target model’s gold label predictions on the K anchor points
P ← logit(P) ▷ take logit transform of predictions ▷ To store estimated target model predictions
preds← (M * P[newaxis,:,:] + B) ▷ Prediction step
preds← sum(preds * N, axis = 1) ▷ Prune predictions from non-nearest anchors
Y← expit(preds) ▷ Inverse of the logit transform

return Y
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(a) QQP Anchor Point Map Colored with Esti-
mated text-curie-001 (Prompt 1) predictions. The
estimates achieve a large MAE of 0.30 and poor
agreement of 54%.

(b) QQP Anchor Point Map Colored with True
text-curie-001 (Prompt 1) predictions.

Figure 13: Anchor Point Failure Case: The map is computed using the predictions of 60 randomly-selected source
models on QQP and used to estimate the predictions of text-curie-001 with Prompt 1 (13(a)). The estimates achieve
a large MAE and near random agreement. Upon inspecting the true predictions (13(b)), we observe that the behavior
of text-curie-001 is not localized in the Anchor Point Map. Model performance appears sporadic. This suggests that
text-curie-001 does not follow the same predictive correlations as the source models, preventing effective estimation
of the model’s predictions.

Figure 14: Vocabulary overlap of our MMLU datasets. Each cell indicates the portion of words in dataset 1 that are
also in dataset 2. Labels: CK = clinical knowledge, CC = college chemistry, CP = college physics, GF = global
facts, HSEH = high school European history, HSP = high school physics.
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Random Random Pretrained Pretrained Fine-Tuned Fine-Tuned AP AP
Mean Weighted Weighted Weighted Weighted Predictor

Datasets Family Exact Corr Exact Corr Exact Corr Corr Exact

SST-2 BERT 0.485 0.607 0.512 0.637 0.594 0.738 0.696 0.593
QQP BERT 0.459 0.631 0.670 0.613 0.572 0.756 0.691 0.555
RTE BERT 0.478 0.406 0.316 -0.001 0.486 0.335 0.591 0.597
QNLI BERT 0.346 0.523 -0.252 0.613 -0.430 0.510 0.665 0.571
MRPC BERT 0.730 0.741 0.737 0.749 0.692 0.786 0.778 0.721
MNLI BERT 0.684 0.748 0.646 0.653 0.676 0.735 0.733 0.720

BERT Avg. 0.530 0.609 0.438 0.543 0.432 0.643 0.699 0.626

SST-2 GPT 0.440 0.278 0.548 0.215 0.651 0.531 0.441 0.632
QQP GPT 0.561 0.591 -0.557 -0.537 0.720 0.752 0.777 0.825
RTE GPT 0.188 0.138 -0.119 -0.251 0.133 0.082 0.378 0.452
QNLI GPT 0.101 0.076 0.209 0.197 0.185 0.130 0.158 0.126
MRPC GPT 0.475 0.460 0.155 0.321 0.360 0.360 0.516 0.681
MNLI GPT 0.033 0.059 -0.517 -0.382 0.181 0.099 0.201 0.494

GPT Avg. GPT 0.300 0.267 -0.470 -0.730 0.371 0.325 0.410 0.535

SST-2 IGPT 0.655 0.722 0.726 0.728 0.606 0.760 0.814 0.719
QQP IGPT 0.734 0.801 0.264 0.276 0.824 0.893 0.884 0.845
RTE IGPT 0.389 0.322 0.220 0.03 0.391 0.323 0.671 0.629
QNLI IGPT 0.404 0.400 0.512 0.469 0.449 0.296 0.597 0.690
MRPC IGPT 0.727 0.680 0.520 0.651 0.651 0.712 0.776 0.738
MNLI IGPT 0.265 0.305 -0.074 -0.088 0.460 0.420 0.434 0.317

IGPT Avg. 0.529 0.538 0.361 0.344 0.563 0.566 0.696 0.656

SST-2 OAI 0.666 0.697 0.774 0.871 0.761 0.833 0.734 0.661
QQP OAI 0.610 0.651 -0.090 -0.080 0.676 0.722 0.747 0.637
RTE OAI 0.362 0.303 0.206 0.066 0.381 0.294 -0.378 0.411
QNLI OAI 0.451 0.453 0.381 0.378 0.286 -0.03 0.497 0.309
MRPC OAI 0.633 0.661 0.533 0.563 0.550 0.673 0.714 0.705
MNLI OAI 0.300 0.278 -0.015 -0.181 0.559 0.490 0.350 0.486

OAI Avg. OAI 0.503 0.507 0.298 0.270 0.536 0.497 0.570 0.535

SST-2 ALL 0.685 0.705 0.734 0.725 0.730 0.787 0.757 0.727
QQP ALL 0.669 0.678 0.189 0.233 0.766 0.770 0.756 0.701
RTE ALL 0.366 0.308 0.143 -0.052 0.354 0.275 0.483 0.462
QNLI ALL 0.321 0.331 0.192 0.294 0.127 0.144 0.439 0.303
MRPC ALL 0.687 0.679 0.528 0.604 0.641 0.681 0.726 0.716
MNLI ALL 0.438 0.433 0.177 0.166 0.523 0.453 0.544 0.517

Avg. ALL 0.528 0.522 0.327 0.328 0.523 0.518 0.612 0.571

Table 7: Area Under the (Kendall’s τ ) Correlation Curve from 1 to 30 points for ranking language models at 6
GLUE tasks from each model family. We randomly select 5 source models each for the InstructGPT and OpenAI
Families and 10 each for the BERT, GPT, and ALL families. We then rank the remaining models within each family
and average over 100 randomized runs. AP Weighted and AP Predictor prove to be the most effective at accurately
ranking models in this small-data regime. In each row, the best score is bolded and second best score is underlined.
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(a) QNLI

(b) MRPC

(c) MNLI

Figure 15: Kendall Tau Rank Correlation between Model Rankings on Small Evaluation Sets and Full Validation
Sets for QNLI, MRPC, and MNLI. We rank 77 language models belonging to all model families using various
evaluation selection techniques. Anchor Points are fit to 10 source model predictions. Each point is the mean of 100
runs with randomized source and target models. Shading indicated standard error. Anchor Points Weighted achieves
the most reliable performance overall at low evaluation set sizes.
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(a) QQP

(b) RTE

(c) SST-2

Figure 16: Kendall Tau Rank Correlation between Model Rankings on Small Evaluation Sets and Full Validation
Sets for QQP, RTE, and SST-2. We rank 77 language models belonging to all model families using various evaluation
selection techniques. Anchor Points are fit to 10 source model predictions. Each point is the mean of 100 runs with
randomized source and target models. Shading indicated standard error. Anchor Points Weighted achieves the most
reliable performance overall at low evaluation set sizes.
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(a) MNLI (b) MRPC

(c) QNLI (d) QQP

(e) RTE (f) SST-2

Figure 17: Correlation Matrices of Correct Class Confidence Predictions from 87 models across all model families.
Each plot shows the correlations between 50 examples sampled from the validation Sets of GLUE Tasks.
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Model Parameter Count MNLI SST-2 QQP RTE MRPC QNLI

1. Bio-ClinicalBERT 110M 0.502 0.875 0.815 0.472 0.384 0.595
2. albert-base-v2 11M 0.325 0.927 0.797 0.472 0.522 0.505
3. bart-base 139M 0.834 0.954 0.841 0.747 0.855 0.626
4. bart-large 400M 0.891 0.915 0.639 0.527 0.892 0.505
5. bert-base-cased 110M 0.444 0.917 0.639 0.519 0.504 0.505
6. bert-base-multilingual-cased 110M 0.478 0.890 0.828 0.472 0.392 0.505
7. bert-base-uncased 110M 0.468 0.917 0.639 0.476 0.318 0.630
8. bert-large-cased 336M 0.319 0.509 0.639 0.487 0.627 0.505
9. bert-large-uncased 336M 0.611 0.916 0.639 0.472 0.387 0.505
10. bert-mini 11M 0.479 0.845 0.819 0.476 0.664 620
11. bert-tiny 3M 0.428 0.803 0.784 0.530 0.479 0.639
12. biobert-v1.1 110M 0.539 0.894 0.825 0.50 0.540 0.617
13. deberta-base 100M 0.876 0.940 0.639 0.631 0.884 0.505
14. deberta-large 350M 0.344 0.950 0.639 0.527 0.904 0.505
15. deberta-v3-base 304M 0.320 0.950 0.850 0.837 0.880 0.663
16. deberta-v3-xsmall 22M 0.352 0.924 0.850 0.678 0.865 0.660
17. distilbert-base-cased 67M 0.820 0.90 0.831 0.570 0.818 0.618
18. distilbert-base-uncased 66M 0.820 0.896 0.840 0.570 0.830 0.613
19. electra-base-discriminator 102M 0.863 0.943 0.830 0.761 0.892 0.645
20. legal-bert-small-uncased 24M 0.415 0857 0.831 0.472 0.450 0.597
21. roberta-base 125M 0.873 0.938 0.834 0.736 0.870 0.505
22. scibert-scivocab-uncased 110M 0.528 0.891 0.830 0.550 0.436 0.599
23. sentence-bert 110M 0.413 0.919 0.8225 0.545 0.321 0.505
24. sentiment-roberta-large-english 335M 0.890 0.951 0.693 0.580 0.840 0.505
25. twitter-roberta-base 125M 0.835 0.930 0.833 0.588 0.855 0.590
26. xlm-roberta-base 279M 0.835 0.916 0.633 0.527 0.860 0.505
27. xlm-roberta-large 355M 0.353 0.509 0.639 0.602 0.884 0.505

Table 9: BERT-Family Model Accuracies on Six GLUE Tasks. Hyperparameters are in Appendix C. Models can be
accessed at https://huggingface.co/models.

Model Parameter Count

1. Cerebras-GPT-1.3B 1.3B
2. Cerebras-GPT-111M 111M
3. Cerebras-GPT-256M 256M
4. bloom-1b7 1.72B
5. gpt-neo-1.3B 1.3B
6. gpt-neo-125m 125M
7. gpt2-large 774M
8. gpt2-medium 355M
9. gpt2 137M
10. openai-gpt 120M

11. RedPajama-INCITE-Instruct-7B-v0.1 7B
12. falcon-7b-instruct 7B
13. mpt-7b-instruct 7B
14. mt0-xl 3.7B
15. bloomz-3b 3B

16. text-ada-001 Not publicly known
17. text-babbage-001 Not publicly known
18. text-curie-001 Not publicly known
19. text-davinci-002 Not publicly known
20. text-davinci-003 Not publicly known

Table 10: GPT, InstructGPT, and OpenAI Family Model Zero-Shot Models and Parameter Counts (Used
for GLUE experiments). OpenAI Model parameter counts are unknown. Models can be accessed at
https://huggingface.co/models and https://platform.openai.com/docs/models.
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