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Abstract

Prior work has uncovered a set of common
problems in state-of-the-art context-based ques-
tion answering (QA) systems: a lack of atten-
tion to the context when the latter conflicts with
a model’s parametric knowledge, little robust-
ness to noise, and a lack of consistency with
their answers. However, most prior work focus
on one or two of those problems in isolation,
which makes it difficult to see trends across
them. We aim to close this gap, by first out-
lining a set of – previously discussed as well
as novel – desiderata for QA models. We then
survey relevant analysis and methods papers
to provide an overview of the state of the field.
The second part of our work presents experi-
ments where we evaluate 15 QA systems on
5 datasets according to all desiderata at once.
We find many novel trends, including (1) sys-
tems that are less susceptible to noise are not
necessarily more consistent with their answers
when given irrelevant context; (2) most sys-
tems that are more susceptible to noise are
more likely to correctly answer according to
a context that conflicts with their parametric
knowledge; and (3) the combination of con-
flicting knowledge and noise can reduce sys-
tem performance by up to 96%. As such, our
desiderata help increase our understanding of
how these models work and reveal potential av-
enues for improvements. Code and data can be
found here: https://github.com/Shaier/
context_usage_desiderata.git.

1 Introduction

Question answering (QA) systems which are based
on large language models (LLMs) play a larger role
than ever before in our society, due to their ability
to offer quick access to information (Petroni et al.,
2019; Roberts et al., 2020; Shin et al., 2020; Sung
et al., 2021; Jiang et al., 2020a). Many QA systems
can make use of context information when avail-
able, which often contains relevant information to
help systems answer questions, cf. Figure 1. We

1. Context: Barack Obama was born in Hawaii. He 
went to Columbia university and is the current US 
president. Question: Who is the current US 
president?

2. Question: Who is the current US president?
3. Context: Joe Biden was elected to the US senate 

at the age of 29… He is the current US president. 
Question: Who is the current US president? 

Training Corpus

Emma Watson starred in…

Tiramisu is made of…

Barack Obama was born in 
Hawaii and is currently the US 
president 

Training Neural Model

1. Barack Obama
2. Barack Obama
3. Barack Obama

Question 
Answering Task

Prediction

Figure 1: An example where the model was trained
to learn the knowledge "Barack Obama is the current
US president". In the first and second tasks the model
answered the questions correctly. However, in the third
task where the model is given context with conflicting
information it fails to answer the question correctly.

refer to all systems that are able to leverage such
context information as context-based QA systems.

Many aspects of such systems have been eval-
uated by previous work, such as the amount of
their parametric knowledge (Petroni et al., 2019)
and their robustness to noise (Jia and Liang, 2017),
conflicting knowledge (Pan et al., 2021; Longpre
et al., 2021), or irrelevant contexts (Li et al., 2022;
Neeman et al., 2022) . However, looking at such
aspects in isolation makes it difficult to see trends
across problems, e.g., to explore whether there is a
connection between a model’s attention to context
and its ability to handle noise.

Here, we 1) outline a set of – previously dis-
cussed as well as novel – desiderata for context-
based QA models and 2) provide an extensive sur-
vey of related works, which we group and discuss
according to our desiderata. Such desiderata unify
some of the existing aspects from the literature,
e.g., robustness to conflicting knowledge, and out-
line how a QA system should behave from the
perspective of the context. We will publicly release
a toolkit to prepare datasets — both free-form and
multiple choice (MC) type – to evaluate models
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Context Distractor
Known

Knowledge
Unknown

Knowledge

1 Original T T
2 Original T T
3 Alternative A A
4 Alternative A A
5 None T B
6 Irrelevant T B

Table 1: Desiderata table: what should an optimal model
do for different types of contexts? T = true answer; A
= conflicting answer; B = wrong answer/unanswerable;
The distractor (cf. Sec. 3.3) is a string of words that is
concatenated to the context (cf. Sec. 4.1.3); Alternative
context (cf. Sec. 3.4) is a slight modification of the orig-
inal context, where we replace the answer string with
an alternative one (cf. Sec. 4.1.1); Irrelevant context (cf.
Sec. 3.6) is a random context (cf. Sec. 4.1.2).

according to all desiderata at once.
Using our toolkit, we 3) evaluate 15 LLM-based

QA systems and first confirm prior works’ results:
while some systems appear nearly perfect, scoring
99% accuracy on standard datasets, their perfor-
mance is significantly worse according to many of
our desiderata. For instance, their accuracy drops
by up to 93% with noise, such as random strings
as distractors. Second, considering all desiderata
at once, we find that (1) systems that are less sus-
ceptible to noise are more consistent with their
answers when provided with irrelevant context; (2)
most systems that are more susceptible to noise are
more likely to correctly answer according to a con-
text that conflicts with their parametric knowledge;
and (3) the combination of conflicting knowledge
and noise can reduce system performance by up to
96%. Finding these novel trends using our desider-
ata opens new avenues to improve QA models.

2 Desiderata

We now develop a set of desiderata regarding the
context use of a model, before presenting our sur-
vey on what prior work has found with regards
to our desiderata and performing our own experi-
ments in the next two sections. To come up with
our desiderata, which are presented in Table 1, we
consider the question: How would an ideal QA
model behave for different types of context?

The ideal behavior depends on whether the
knowledge in the context is known or unknown
to the model. For example, looking at Table 1, Row
6, while systems are expected to predict the true
answer for known knowledge, as they contain the

relevant context within their parameters, the ideal
system would answer incorrectly/“unanswerable”
for unknown knowledge given irrelevant context.

We follow the work by Li et al. (2022); Xie et al.
(2023); Roberts et al. (2020) and define known
knowledge as questions that a model can answer
correctly without context, and unknown knowledge
as those it cannot.

Proposed Desiderata An ideal model should:∎ For both known and unknown knowledge:
a. Answer correctly with the original context: this

is the standard QA systems evaluation approach.
b. Answer correctly with a noisy irrelevant varia-

tion of the original context: QA systems should
be robust to distractors, as different users and in-
formation retrieval (IR) systems introduce vary-
ing amounts of irrelevant information.

c. Change its answer with conflicting context to
the conflicting knowledge: As our world is con-
stantly changing, QA systems should be dy-
namic in their knowledge. That is, similarly to
Zhou et al. (2023); Li et al. (2022), we believe
that the context should always take priority over
a model’s parametric knowledge, when relevant.∎ For known knowledge:

d. Answer correctly with no context: In our setting
this happens by default for known knowledge,
as by definition known knowledge is questions
that can be answered without context. However,
we expect the ideal system to have the largest
possible amount of knowledge, i.e., to be able
to answer most questions without context.

e. Answer correctly with an irrelevant context:
Since the model answers questions correctly
without context for known knowledge, it should
also answer correctly with irrelevant context.∎ For unknown knowledge:

f. Answer incorrectly/“unanswerable” with no
context: In our setting this happens by default
for unknown knowledge. While the ideal model
should predict “unanswerable” for questions
it cannot answer, most existing datasets do not
include questions that, according to our defini-
tion, are truly “unanswerable,” as they can be
answered with parametric knowledge (cf. Sec.
4.1.2). Hence, we add here that models may
also predict an incorrect answer, as expected
from models that are forced to predict any an-
swer other than “unanswerable” for unknown
knowledge.

g. Answer the same with irrelevant context as with
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no context: The ideal model should be consis-
tent in its answer, even when wrong. Hence, the
model’s answer with irrelevant context and no
context – (f) above – should be the same.

3 Survey of Prior Work

3.1 Known vs. Unknown Knowledge
As mentioned in Sec. 2, the ideal behavior de-
pends on if the knowledge contained in the context
is known or unknown to the model. While most
work evaluate on the entire data without such dis-
tinction, some analyze the known knowledge split:
Xie et al. (2023); Li et al. (2022) analyze models
using a closed-book setting, Neeman et al. (2022)
assume the original contexts are known knowledge,
and Chen et al. (2022) evaluate correctly answered
questions.

3.2 The Standard Approach
Row 1 in Table 1 shows the standard approach for
evaluating QA systems, where systems are tasked
with answering questions using a fixed context. For
lack of space and since the focus of our survey
is not the standard approach, we refer interesting
readers to Zeng et al. (2020) and Dzendzik et al.
(2021) for further reading.

3.3 Context + Distractor
Next, we focus on Row 2 in Table 1: the original
context with a distractor, which measures the ro-
bustness of systems to various types of irrelevant
(but not conflicting) noise.

Overview Many analyze the susceptibility of QA
systems to context-based noise. Jia and Liang
(2017) propose adding sentences that look simi-
lar to questions or random distractor words, which
result in over 50% decrease in performance. How-
ever, Wang and Bansal (2018) mention that such
unnatural distractors allow models to easily distin-
guish them and ignore them. Instead, they modify
their approach by changing the locations of the dis-
tractors in addition to adding more fake answers.
Si et al. (2019) also modify the approach by fur-
ther shuffling the distractor and find that BERT’s
performance drops by 50%. Maharana and Bansal
(2020) propose three new methods to generate QA
adversaries which result in up to 45% performance
drop, while Sen and Saffari (2020) use context shuf-
fling and find that the F1 scores of models decrease
slightly. Cao et al. (2022) generate fluent and gram-
matical adversarial contexts which lower model

confidence on the gold answer or direct the model
towards an incorrect answer, and Si et al. (2021) use
character swapping and paraphrasing and show that
state-of-the-art models are vulnerable. Alexandrov
et al. (2023) use random, structural, and irrelevant
noise, and find that a sufficient amount of noise can
reduce the performance by 70%. Liang et al. (2022)
focus on typos, such as capitalization or common
misspellings, while Schlegel et al. (2021) use ad-
verb modifications and find that models struggle
with most of them. Lastly, Shi et al. (2023) add an
irrelevant sentence to the context which results in a
dramatic decrease model performance.

The discussed work highlight that: 1) models
can be easily dissuade by many types of distractors,
even those that are nonsensical; and 2) the type and
complexity of the distractor matter and can result
in either minimal or substantial performance drop.

Proposed Approaches A popular approach to
improve models’ robustness to distractors is to train
with augmented noisy data (Ribeiro et al., 2018;
Wang and Bansal, 2018; Maharana and Bansal,
2020; Bartolo et al., 2020; Michel et al., 2019; Gan
and Ng, 2019; Moon and Fan, 2020; Cao et al.,
2022; Si et al., 2021; Khashabi et al., 2020; Li
et al., 2022). But some suggest that this has limited
benefits (Jia and Liang, 2017; Wang and Bansal,
2018; Si et al., 2021). Another possibility is to train
models to edit distractor information, as done in
Bao et al. (2021), or to prompt systems to ignore
irrelevant information (Shi et al., 2023).

3.4 Conflicting Knowledge
Next, we focus on Rows 3 and 4 in Table 1: con-
texts with information that is conflicting with the
original context. The question is typically: how
susceptible are systems to contexts that conflict
with their parametric knowledge? While the al-
ternate context conflicts with models’ parametric
knowledge in the known knowledge split, this is not
necessarily the case for the unknown knowledge
split, as the alternate context may already be con-
tained within the model’s parametric knowledge.

Overview The most popular approach to evaluate
systems on conflicting knowledge is entity substi-
tution. Longpre et al. (2021) replace the original
answer entity with either a similar type one, an
alias, an entity from the same corpus, or an entity
based on popularity. This allows them to discover
many aspects that affect models’ over-reliance on
their parametric knowledge, such as their size and
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domain. Zhou et al. (2023) use a similar approach
and focus on improving the robustness of systems
to conflicting knowledge using prompts. Chen et al.
(2022) modify the approach and use multiple con-
texts, and find that the performance of the IR sys-
tem has a large effect on whether a model will use
parametric knowledge. Neeman et al. (2022) use
the same approach but focus on disentangling sys-
tems’ parametric and contextual knowledge, while
Hong et al. (2023) find that models are very brittle
to conflicting information in both in-context few-
shot learning and fine-tuning settings. Eisenstein
et al. (2022) find that models are approximately
3 − 4 F1 points worse with conflicting entities, but
also mention that such substitution can also affect
the context’s grammar. Yan et al. (2022) propose to
use entities of different implications, while, Gard-
ner et al. (2020) find that models’ performance can
be reduced by up to 25% with conflicting entities.

The second most popular approach is to use nega-
tions. Gubelmann and Handschuh (2022) automat-
ically create contexts that are pragmatical specif-
ically for each Transformer model, and find that
most models are sensitive to negation. Sen and Saf-
fari (2020) find that models continuously predict
the original answer with negations, and Kassner
et al. (2021) find that models often think that nega-
tive facts are true. Other methods also exist, such
as using Mechanical Turkers (Pan et al., 2021) or
graduate students Varshney et al. (2023), which
result in a significant performance change. Some
also use a masked language model to create con-
flicting knowledge (Pan et al., 2021; Li et al., 2020),
where the former find that models are vulnerable
to contradicting contexts, the latter mention that
such an approach results in fluent and semantically
preserving context. Pan et al. (2023) use GPT-3.5
to generate conflicting contexts which result in a
significant decline in system performance, while
Li et al. (2022) use T5 (Raffel et al., 2019) and
find that model’s robustness does not scale with
a model’s size increase. Zhong et al. (2023) ran-
domly replace objects and find that models fail on
conflicting multi-hop questions, while Qian et al.
(2022) train a neural perturbation model to modify
demographic terms. Lastly, Gardner et al. (2020)
change the order the events or dates and find that
model performance is greatly reduced.

The discussed work highlight that: 1) systems
over-rely on their parametric knowledge, which
often result in knowledge conflicts; 2) the type of

conflicting information matters, but not necessarily
for the right reasons. For example, Eisenstein et al.
(2022) find that entity substitution can affect the
context’s grammar, which can in general result in a
decrease in performance.

Proposed Approaches As our knowledge is
changing, Zhu et al. (2020) propose the task of
modifying factual knowledge specifically in Trans-
former models (Vaswani et al., 2017), while De Cao
et al. (2021a) use a hyper-network to predict the
weight update of systems. Mitchell et al. (2021)
use a collection of auxiliary networks that update a
pretrained model’s behavior, and Meng et al. (2022)
identify factual-relevant neuron and update their
weights. Hong et al. (2023); Pan et al. (2023, 2021)
propose a misinformation detector, but the latter
mention that the benefits are limited with insuffi-
cient training data. Xie et al. (2023) mention that
improving the coherence of the context can im-
prove the receptiveness of LMs to it, while Long-
pre et al. (2021) suggested to use a perfect retriever
or to augment the training data with conflicting
knowledge. Khashabi et al. (2020); Qian et al.
(2022); Li et al. (2022); Varshney et al. (2023);
Fang et al. (2023); Chen et al. (2022) also sug-
gest to train with data augmentation, but the latter
mention that it does not easily generalize to other
methods of creating conflicting knowledge. Si et al.
(2023); Zhou et al. (2023); Pan et al. (2023) men-
tion that carefully designed prompting strategies
can improve the performance, while Neeman et al.
(2022) suggest that models should generate two
answers – a parametric one and a contextual one.
Zhong et al. (2023) propose to store all edited facts
externally, while Yan et al. (2022) propose entity-
based masking. Lastly, Étienne Fortier-Dubois and
Rosati (2023) propose to use a natural language
inference component to detect contradiction.

3.5 Models’ Parametric Knowledge

Next, we focus on Row 5 in Table 1: an empty con-
text with no distractor. This is the standard setting
for evaluating model-internal knowledge or for de-
termining whether models are “knowledge bases”
(Petroni et al., 2019). The question is: which facts
are known or unknown to the model?

Overview Recently, the size of LMs, which are
the basis of recent state-of-the-art QA models, has
been increasing dramatically (Vaswani et al., 2017;
Radford et al., 2018, 2019; Chowdhery et al., 2022;
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Wei et al., 2021). This in turn allows them to re-
member a massive amount of factual knowledge
(Petroni et al., 2019; Geva et al., 2020; Roberts
et al., 2020; Kassner and Schütze, 2020; De Cao
et al., 2021b; Sung et al., 2021; Jiang et al., 2020a;
Shin et al., 2020). There are several ways to evalu-
ate a model’s parametric knowledge. For example,
Zhong et al. (2021); Shin et al. (2020); Kassner
and Schütze (2020); Sung et al. (2021); Petroni
et al. (2019); Jiang et al. (2020b); Dhingra et al.
(2022); Onoe et al. (2022) use “fill in-the-blank”
cloze statements, Li et al. (2022); Xie et al. (2023);
Roberts et al. (2020) use a closed-book setting,
and Cohen et al. (2023) expand a knowledge graph
around a seed entity by prompting the system.

The success of such models to recall factual in-
formation allows them to be useful in tasks that
require knowledge, without supplying them with
actual context (Kaushik and Lipton, 2018a), and
even becoming competitive with other state-of-the-
art fine-tuned models (Brown et al., 2020). How-
ever, training systems to memorize facts may also
have adverse results. Systems have been shown to
often ignore the context and focus on their para-
metric knowledge (Longpre et al., 2021; Kaushik
and Lipton, 2018b; Mudrakarta et al., 2018). This
results in hallucinations (Longpre et al., 2021), and
poor performance when the knowledge is different
than the training data (Li et al., 2022; Neeman et al.,
2022; Longpre et al., 2021).

The discussed work highlight that: 1) there is no
one correct approach to evaluate systems’ knowl-
edge; 2) developing systems with more knowledge
is not necessarily better. For example, in domains
where knowledge is often changing, it might be
more important for systems to be more flexible to
different contexts than knowledgeable, such as in
medicine, where new treatments often arise.

Proposed Approaches While many evaluate
parametric knowledge, not many directly focus on
increasing it. However, existing experiments show
that bigger models or different architectures can
help (Petroni et al., 2019; Roberts et al., 2020). Fur-
thermore, better knowledge can also be learned via
multimodal training (Aroca-Ouellette et al., 2021).

3.6 Irrelevant Knowledge

Next, we focus on Row 6 in Table 1: irrelevant
context. The question is: how often does a system
changes its answers when given irrelevant context?

Overview What we define as irrelevant context
exists in many datasets, such as the Natural Ques-
tions (Kwiatkowski et al., 2019), SQuAD 2.0 (Ra-
jpurkar et al., 2018), QuAC (Choi et al., 2018),
CoQA (Reddy et al., 2019), and MS MARCO (Ba-
jaj et al., 2018), where the answer to the question
is not supported by the context. Other work also
evaluate such irrelevant context formulation, such
as Li et al. (2022), which define irrelevant contexts
as those that do not entail the answer. They find
that models are strongly interfered by irrelevant
contexts, especially those that share a similar gen-
eral topic as the question. Additionally, Neeman
et al. (2022) find that random irrelevant context is
more challenging to models in some settings.

As the field is moving towards using LLMs
which contain large amount of knowledge, these
type of questions become not truly “unanswerable”
with irrelevant context, or even without any context,
which further reinforce the need to split existing
evaluations into known and unknown knowledge.
This is in comparison to subjective, philosophical,
or imagination questions such as proposed in Yin
et al. (2023), which are truly “unanswerable” by
any system, regardless of their knowledge.

Proposed Approaches While we discuss many
approaches to improve model robustness on con-
texts with added distrators in Section 3.3, not many
evaluate models using irrelevant context of our set-
ting – based on known and unknown knowledge.
Li et al. (2022); Neeman et al. (2022) propose train-
ing with data augmentation, while the latter further
train the model to disentangle its parametric and
contextual knowledge by generating two answers.

4 Defining Desiderata

4.1 Problem Formulation

Given a dataset composed of questions
q1, q2, ..., qn ∈ Q, their corresponding answers
a1, a2, ..., an ∈ A and contexts c1, c2, ..., cn ∈ C,
we evaluate how well a model uses the context or
its modifications, which will be presented in the
following sections, on the given questions.

We note that two types of context-based QA
datasets exist: 1) the questions are about a gen-
eral knowledge concept and the contexts supple-
ment the knowledge, for example, "Who is the cur-
rent president?" Relevant datasets are, e.g., Wik-
iQA (Yang et al., 2015), SQuAD 1.0 (Rajpurkar
et al., 2016), and OpenBookQA (Mihaylov et al.,
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2018); and 2) the questions are specifically about
the contexts, for example, "What did the narrator
mean by [...]". Datasets include, e.g., Race (Lai
et al., 2017), QuAIL (Rogers et al., 2020), and Cos-
mosQA (Huang et al., 2019). We only use the first
type, as those questions can be used to measure
models’ parametric knowledge by omitting the con-
text, while the latter cannot, as without context the
models cannot answer the question.1

4.1.1 Creating Conflicting Context
We follow Pan et al. (2021); Li et al. (2020)’s ap-
proach of using a masked language model. More
formally, we mask the answer string ai from the
context qi when it exists verbatim.2 We then
use DistilBERT (Sanh et al., 2020) to predict the
masked answer, and replace the masked token with
it. For each masked answer we generate 10 differ-
ent answers, and remove any that are similar (i.e.,
exact string match) to the original answer. This
results in up to 10 conflicting contexts for each
question. In the free-form setting, we then replace
the original answer ai with the new predicted an-
swer. For the MC setting, we leave the original
answer as one of the MC options and replace one
wrong answer with the new answer. The ideal be-
havior of systems for such context can be seen in
Table 1 in Rows 3 and 4.

4.1.2 Creating Irrelevant Context
What we define as irrelevant context exists in many
datasets, such as those described in Section 3.6.
These type of questions have been termed “unan-
swerable” questions. However, in our formulation,
if the context is irrelevant or does not exist, models
may still have the parametric knowledge to answer
the corresponding question (e.g., from pretraining),
which makes these questions not truly “unanswer-
able.” We avoid using such datasets as the cor-
rect answer is not provided (e.g., SQuAD 2.0 has
empty strings as labels for its irrelevant contexts),
which prevents us from determining if the model
has the parametric knowledge to answer.

To create irrelevant context we opt for a method
that can be applied to most existing context-based
QA dataset and follow Neeman et al. (2022)’s ap-
proach of selecting random contexts. More for-
mally, for each question qi, we replace the corre-
sponding context ci with a random context cj ∈ C,

1If they do, it is by mere chance.
2The answer string is sometimes paraphrased in the context.

We discard such questions.

where ci ≠ cj . We repeat this 5 times which results
in 5 irrelevant contexts for each question.3 The
ideal behavior of systems for such context can be
seen in Table 1 in Row 6.

4.1.3 Context with Distractor
To add a distractor to contexts we use the AD-
DANY approach (Jia and Liang, 2017), but modify
it to be applicable to free-form and MC settings. In
particular, instead of modifying wi to be the x that
minimizes the expected value of the F1 score, we
update it to be the one that maximizes the perplex-
ity of the answer with respect to the input string in
the free-form setting, and the one which minimizes
the probability of the correct answer for MC.

5 Experiments

In our experiments, each context ci and question qi
are input into the model within the following string:
“question: qi. context: ci.” In the free-form set-
ting and for MCQA, we use exact match (EM) and,
respectively, accuracy to measure model perfor-
mance. That being said, our approach is by design
extremely easily adaptable to different choices of
metrics, such as LLM-based ones (Kamalloo et al.,
2023), which could have a higher correlation with
humans for QA tasks than EM.

5.1 Datasets
We experiment on 5 datasets: 1) SQuAD 1.0 (Ra-
jpurkar et al., 2016),4,5 2) AdversarialQA (Bartolo
et al., 2020), which we both use for free-form QA,
where the answer span is to be generated, as well
as 3) Natural Questions (Kwiatkowski et al., 2019).
Additionally, we also use 4) SciQ (Welbl et al.,
2017) and 5) MedMCQA (Pal et al., 2022), which
are MCQA datasets. For further datasets statistics
see Appendix A.

5.2 Models
We evaluate 5 LLM-based QA models in the free-
form setting: GPT 3.5 (OpenAI, 2023a), GPT
4 (OpenAI, 2023b), BART (Lewis et al., 2019)
base, T5 (Raffel et al., 2019) small, and six LLM-
based QA models in the MCQA setting: BERT

3While there is a small chance that the random context
contain some relevant information, it is unlikely.

4We have two annotators perform a manual analysis of a
subset of 100 SQuAD questions to determine the percentage
of questions that are uniquely answerable without context (see
Appendix B).

5The reason we use SQuAD 1.0 and not the later version
is discussed in Section 4.1.2.
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(Devlin et al., 2018) base, BigBird (Zaheer et al.,
2020) base, Longformer (Beltagy et al., 2020) base,
RoBERTa (Liu et al., 2019) base, ALBERT (Lan
et al., 2020) base, and DistilBERT (Sanh et al.,
2020) base. We finetune each pretrained model on
the training set for 20 epochs, use early stopping
on the validation with patience of 3, and evaluate
them on the test set. As the test sets for SQuAD 1.0
and Natural Questions are not publically available,
we split the validation set into 2 for all models, and
use one half as the test set. Lastly, on the Natural
Questions dataset we evaluate 3 published mod-
els (without further training) from Roberts et al.
(2020) to analyze how they score on our desiderata.
These models are 1) T5-Small,6 2) T5-Large-1.0,7

and 3) T5-Large-0.9.8 The results can be seen in
Appendix C.

5.3 Results and Analysis

Our toolkit takes most context-based datasets, as
described in Section 4.1, and automatically pre-
pares and evaluates all desiderata aspects at once.
We use it to evaluate each of the models described
in Section 5.2 in all of the settings shown in Table 1.
In comparison to previous work, we split desiderata
aspects by finding the context that is known and un-
known to individual models, as the ideal behavior
of models’ depends on if the knowledge contained
in the context is known or unknown to the model.
Our results can be seen in Tables 2 and 3.

Amount of Knowledge We calculate the amount
of knowledge models possess using the closed-
book setting and accuracy, as described in Sec-
tion 4.1. On the SciQ and MedMCQA datasets,
models possess sufficient knowledge to accurately
respond to approximately half and one-third of all
queries, respectively, without additional context.
Interestingly, ALBERT performs the poorest on
both datasets, achieving an accuracy rate of 45.3%
on SciQ and 22.7% on MedMCQA. In contrast,
BigBird and Longformer score the highest on SciQ
and MedMCQA, with accuracies of 56.4% and
32.3%, respectively. This aligns with previous dis-
cussed work in Section 3.5, which suggest that such
models contain abundant factual information and

6https://huggingface.co/google/t5-small-ssm-nq
7T5 large that is fine-tuned on 100% of the train splits

of Natural Questions. https://huggingface.co/google/t5-large-
ssm-nq

8T5 large that is fine-tuned on 90% of the train splits of Nat-
ural Questions. https://huggingface.co/google/t5-large-ssm-
nqo

have the potential to be used as open-domain QA
systems.

In comparison, the free-form models could not
answer even 9% of the questions successfully with-
out context (GPT-4 scores 8.7% on SQuAD).9,10

The significant difference in performance between
the MC and the free-form models may partially be
due to the fact that the MC setting is much easier,
where a model that randomly predicts an answer
gets on average 25% of the questions correctly.11

The Standard Evaluation Almost all models
(except for ALBERT on MedMCQA and T5-small
on SQuAD) score higher on the known vs. the
unknown knowledge split. For example, 99.1% vs
96.6% for BigBird on SciQ and 58.4% vs 4.8% for
GPT-4 on AdversarialQA. This suggests that mod-
els find context that reinforce their knowledge ben-
eficial, which emphasize that future work should
evaluate systems from knowledge perspective.

Distractor Similar to previous work (cf. Sec
3.3), we find a significant reduction in perfor-
mance across all MC models (e.g., on SciQ, Dis-
tilBERT’s performance drops from 97.4% to 4.0%
on known knowledge). Furthermore, the difference
between known and unknown knowledge is visible,
where across almost all models (except for Dis-
tilBERT on SciQ, and Longformer and ALBERT
on MedMCQA) noise affect unknown knowledge
more. While there is also a clear reduction in per-
formance for free-form models, the reduction is not
as large. For example, T5 small drops from 72.6%
in the unknown knowledge split to 68.9%.

Conflicting Knowledge We also find a substan-
tial performance drop across all models when con-
flicting knowledge is introduced. For example,
33.2% for RoBERTa in the known knowledge split
on SciQ, and 50.0% for GPT 3.5 in the known
knowledge split on AdversarialQA. We also find
again, a difference in behavior across almost all
MC models between known and unknown knowl-
edge: the performance drop is lower in the un-
known split, which we believe occurs as, for the
known knowledge split, this type of substitution
conflicts with the model’s parametric knowledge,

9Due to the small number of correct instances, we cannot
draw any strong conclusions regarding such systems in the
known vs. unknown knowledge splits.

10We also have two annotators perform a manual analysis
of a subset of GPT 3.5 outputs, see Appendix D.

11We also try non-finetuned versions of the free-form mod-
els, but the results are comparable.
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Dataset Model K.
Am.

St.
KK

St.
UK

St.
Avg

Dist.
KK

Dist.
UK

Conf.
KK

Conf.
UK

Conf.
Dist.
KK

Conf.
Dist.
UK

Irr.
KK

Irr.
UK

SciQ

BERT 52.7 97.4 95.2 96.3 56.5 46.3 63.1 69.7 29.8 34.9 82.8 73.8
BigBird 56.4 99.1 96.6 97.9 36.7 23.6 75.2 78.6 11.0 13.1 78.9 60.4

Longformer 55.4 99.5 98.4 99.0 71.4 61.5 66.3 71.4 31.2 34.2 81.4 68.4
RoBERTa 51.9 99.5 96.7 98.1 20.0 9.0 73.4 77.9 17.0 7.3 76.6 65.1
ALBERT 45.3 99.2 97.1 98.1 55.0 43.7 69.4 74.6 20.0 25.9 80.5 71.4

DistilBERT 49.6 97.4 94.8 96.1 4.0 4.0 73.0 76.5 1.0 1.0 67.9 61.7

MedMC

BERT 31.1 84.1 81.6 82.9 75.7 64.3 56.5 61.8 73.5 61.3 66.7 61.6
BigBird 27.3 83.9 74.5 79.2 65.5 51.9 47.9 55.4 21.3 32.5 58.8 53.0

Longformer 32.3 84.9 78.4 81.7 61.7 61.1 53.2 55.0 58.7 70.6 53.5 50.2
RoBERTa 28.7 88.3 81.2 84.7 76.6 60.5 62.1 60.6 73.0 64.6 59.4 51.7
ALBERT 22.7 76.6 77.9 77.3 41.6 62.1 39.8 42.3 38.4 58.1 38.8 34.8

DistilBERT 28.8 84.1 76.6 80.3 63.3 53.9 62.5 60.0 40.5 46.3 66.9 62.3

Table 2: Results table: MCQA models. K. Am=Knowledge amount; St=Standard; KK=known knowledge;
UK=unknown knowledge; Dist=distractor; Conf=conflicting; Irr=Irrelevant. Each model’s parametric knowledge
results in different known and unknown knowledge splits which we evaluate using accuracy. In bold, highest
accuracy on each of the desiderata components for each dataset.

while this might not be the case for the unknown
split as discussed in Sec 3.4.

Irrelevant Context We find that all models are
more consistent with their answers for known
knowledge when irrelevant contexts are added. For
example, T5-base generates similar answers to
65.1% of the questions for known knowledge and
only 21.3% to questions for unknown on SQuAD,
while Longformer generates similar answers to
53.5% vs 50.2% for known and unknown knowl-
edge on MedMC, respectively. This might suggest
that systems are more confident about known infor-
mation and hence are less likely to change answers.

Distractor + Conflicting Knowledge Combined
Looking at the combination of distractors with con-
flicting contexts, we find that the performance drop
is generally lower in the unknown split for most
models. We can also see that the combination of
conflicting contexts and added distractor can re-
sult in accuracy drop of close to 96%, such as in
DistilBERT in known knowledge on SciQ.

Distractor + Conflicting Knowledge – Separate
Looking at the models’ performances in the con-
flicting knowledge and distractor addition settings
separately, we can further see that systems that are
more susceptible to noise are often more likely to
correctly answer according to a context that con-
flicts with their parametric knowledge. For exam-

ple, within the MC systems, DistilBERT has the
largest performance decrease for added distracor,
but also performs nearly the best on conflicting
knowledge on SciQ. Similar trends can be seen be-
tween ALBERT and RoBERTa, Longformer and
RoBERTa, BERT and BigBird, and others. A po-
tential reason might be that the susceptibility of
systems to noise occurs as they are more attentive
to everything in the context, which is beneficial for
conflicting knowledge.

Distractor + Consistency Looking at models’
performances for the distractor and irrelevant con-
text settings, we find that systems that are less sus-
ceptible to distractors are not necessarily more con-
sistent with their answers when provided irrelevant
context. BigBird is the more susceptible to distrac-
tors than Longformer on SciQ, and less consistent
than it for unknown data, where opposite trends
occur between BigBird and Longformer.

MC vs. Free-form For added distractors, we
find that MC models are more susceptible than the
free-form ones, and have a larger performance drop.
This may be due to the fact that such models are
less susceptible to noise, or that the optimization
method we use to find noisier sentences in the free-
form is not as strong as the one we apply in the
MC setting (Section 4.1.3). For conflicting knowl-
edge, the reduction in performance between the
MC models and the free-form ones is also visible
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Dataset Model K.
Am.

St.
KK

St.
UK

St.
Avg

Dist.
KK

Dist.
UK

Conf.
KK

Conf.
UK

Conf.
Dist.
KK

Conf.
Dist.
UK

Irr.
KK

Irr.
UK

SQuAD

T5-Small 0.3 70.0 72.6 72.6 60.0 68.9 53.1 63.5 53.1 55.4 45.9 25.8
T5-Base 0.9 82.0 78.4 78.4 76.0 75.4 75.6 64.7 70.7 61.3 65.1 21.3
BART 0.9 68.7 65.4 65.4 60.4 59.9 55.0 50.2 51.3 43.0 48.3 24.0

GPT-3.5 0.3 50.0 0.3 0.4 - - 33.3 0.1 - - 2.7 2.6
GPT-4 8.7 45.3 10.4 13.4 - - 12.1 6.5 - - 32.3 0.6

Adv. QA

T5-Small 2.9 63.6 20.1 21.4 59.0 19.3 6.0 16.5 4.3 14.6 69.6 24.9
T5-Base 4.2 65.0 27.2 28.8 60.3 37.7 11.8 19.2 10.5 20.5 57.1 5.4
BART 4.1 87.0 20.2 23.0 77.4 16.7 9.2 11.8 6.7 7.6 60.2 13.6

GPT-3.5 0.2 50.0 2.4 2.5 - - 0.0 0.5 - - 50.0 0.9
GPT-4 5.9 58.4 4.8 8.0 - - 4.5 1.5 - - 41.5 11.9

Table 3: Results table: free-form models. K. Am=Knowledge amount; St=Standard; KK=known knowledge;
UK=unknown knowledge; Dist=distractor; Conf=conflicting; Irr=Irrelevant. Each model’s parametric knowledge
results in different known and unknown knowledge splits which we evaluate using accuracy. In bold, highest
accuracy on each of the desiderata components for each dataset. The distractor setting is not done for the GPT
models as it requires model accesss.

and somewhat comparable. For example, GPT-4
score is reduced by 53.9% on the known knowl-
edge split when conflicting knowledge is added on
AdvarsarialQA, in comparison to BigBird’s perfor-
mance on MedMCQA decreases by 36.0%.

Model Size We also test similar types of models
in two sizes: T5-small and T5-base, and GPT-3.5
and GPT-4. We find that the larger variant 1) has
a larger amount of known knowledge. For exam-
ple, the T5 models score 0.9% vs 0.3% on SQuAD
and 4.2% vs 2.9% on AdvarsarialQA, where the
GPT models score 8.7% vs 0.3% on SQuAD and
5.9% vs 0.2% on AdvarsarialQA; 2) is more robust
to distractors. For example, T5-base decreases by
6.0% on known knowledge on SQuAD, where the
smaller version decreases by 10.0%; 3) is not nec-
essarily more robust to conflicting knowledge on
known knowledge. For example, GPT-4’s perfor-
mance drop is larger than GPT-3.5 on SQuAD, but
T5-base’s drop is lower than T5-small on the same
dataset; 4) is not necessarily more consistent with
its answers. For example, T5-small is more consis-
tent for unknown knowledge on SQuAD and Ad-
varsarialQA, but less consistent for known knowl-
edge. Oppositely, GPT-4 is more consistent for
unknown knowledge on AdvarsarialQA, but less
consistent on SQuAD.

6 Conclusion

We outline a set of – previously discussed as well
as novel – desiderata for context-based QA systems.
We survey relevant papers to provide an overview
of the state of the field, and evaluate 15 QA systems
according to all desiderata at once. While previ-
ous work examine desiderata aspects in isolation,
by looking at all aspects together, we are able to
find novel trends which increase our understand-
ing of how these models work and reveal potential
avenues to improve such models.

Limitations

While we try to be comprehensive in the survey
and cover many existing influential work, we may
have missed some for the large number of them.
However, we believe that this should not influence
the found trends. Additionally, as a major part
of our analysis is based on splitting the data into
the known and unknown based on models’ para-
metric knowledge, it is important to note that cur-
rently no perfect approach to measure parametric
knowledge exist. Hence, the results may be slightly
skewed, as for example, models may have guessed
on questions in our closed-book formulation which
resulted in more questions in the known data split.

Ethics Statement

The motivation for this paper is to unify many ex-
isting aspects from QA systems so that we can find
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trends and have a better evaluation strategy of such
models. We believe that it is crucial that future
work continues to evaluate and improve model ro-
bustness so they can be safely used in practical
scenarios.
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A Datasets Statistics

SQuAD 1.0 The Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016) is a
widely used benchmark for evaluating reading com-
prehension systems. The version 1.0 release con-
tains over 100k crowd-sourced question–answer
pairs with more than 500 Wikipedia articles. The
questions were created by humans who were in-
structed to submit up to five questions on the con-
texts of the passage they had read. The answer to
each question is a segment of text from the cor-
responding reading passage. In our setting, we
reformulate the original task of predicting a text
segment on the context into free-form text genera-
tion.

AdversarialQA The AdversarialQA dataset
(Bartolo et al., 2020) contains 36k questions which
were created using three different models in the an-
notation process. The annotation approach entails
humans formulating questions designed to test cur-
rent QA models, deliberately crafting queries that
these models struggle to answer accurately. These
questions are then used for annotating the dataset,
resulting in samples collected through adversarial
means.

Natural Questions The Natural Questions
dataset (Kwiatkowski et al., 2019) contains about
320k questions, which were created using real
users’ queries from the Google search engine. Ev-
ery question is linked to a Wikipedia page from the
top-5 search outcomes, and annotators produce a
long response and a concise response if they are
available on the page.

MedMCQA The Medical Multiple-Choice Ques-
tion Answering (MedMCQA) dataset (Pal et al.,
2022) contains 194k MCQA questions in the medi-
cal domain, around 21 medical subjects. The ques-
tions require deep language understanding, as they
assess models’ reasoning capabilities across var-
ious medical subjects and topics, encompassing
over ten different types of reasoning skills.

SciQ The SciQ dataset (Welbl et al., 2017) con-
tains about 13k science exam questions about chem-
istry, physics, biology, and more. The questions
are in MC format, each with four answers where
only one is correct. Most of the questions contain
an additional context paragraph with supporting
evidence for the correct answer. In our setting, we
discard questions that do not.

B Manual Analysis of SQuAD

As noted in Section 4.1, two types of context-based
QA datasets exist, and we only use the first type
as those questions can be used to measure models’
parametric knowledge by omitting the context. To
that end, two annotators perform a manual analysis
of a subset of 100 SQuAD questions to see what
percentage of questions are uniquely answerable
without context and find that 69% of the questions
can be answered without the context.

C Natural Questions Results

We additionally evaluate 3 published models from
Roberts et al. (2020) on the Natural Questions
dataset to analyze how they score on our desiderata.
The results can be seen in Table 4. However, in
comparison to Roberts et al. (2020), which omitted
the questions corresponding to the “unanswerable”
labels and long answers, as they “are nearly im-
possible to predict without the oracle context,” we
evaluate on the entire set.

D Manual Analysis of ChatGPT

While we use exact match in our experiments, two
annotators manually evaluate 100 generated re-
sponses from GPT 3.5 to analyze how many of the
generated responses actually answer the questions
(i.e., not using exact match) and find that number to
be 28%. This is significantly higher than the exact
match scores, which highlights that exact match
may not be the best method to analyze model re-
sponses. That being said, our approach is by design
extremely easily adaptable to different choices of
metrics, such as LLM-based ones (Kamalloo et al.,
2023), which could have a higher correlation to
humans than exact match for QA tasks.
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Dataset Model K.
Am.

St.
KK

St.
UK

St.
Avg

Dist.
KK

Dist.
UK

Conf.
KK

Conf.
UK

Conf.
Dist.
KK

Conf.
Dist.
UK

Irr.
KK

Irr.
UK

NaturalQuestions
T5-Small 11.9 47.4 6.0 10.9 37.5 4.1 2.5 3.2 0.0 1.0 10.0 2.2

T5-Large-0.9 16.9 84.5 21.3 32.0 67.3 28.1 10.7 9.9 10.3 6.9 51.9 23.7
T5-Large-1.0 18.2 85.9 21.0 32.9 80.0 27.2 10.5 9.8 7.1 6.5 44.6 22.3

Table 4: Results table: free-form models on the Natural Questions dataset. K. Am=Knowledge amount; St=Standard;
KK=known knowledge; UK=unknown knowledge; Dist=distractor; Conf=conflicting; Irr=Irrelevant. Each model’s
parametric knowledge results in different known and unknown knowledge splits which we evaluate using accuracy.
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