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Abstract
The rapid advancement of natural language pro-
cessing, information retrieval (IR), computer
vision, and other technologies has presented
significant challenges in evaluating the perfor-
mance of these systems. One of the main chal-
lenges is the scarcity of human-labeled data,
which hinders the fair and accurate assessment
of these systems. In this work, we specifically
focus on evaluating IR systems with sparse la-
bels, borrowing from recent research on evalu-
ating computer vision tasks. taking inspiration
from the success of using Fréchet Inception
Distance (FID) in assessing text-to-image gen-
eration systems. We propose leveraging the
Fréchet Distance to measure the distance be-
tween the distributions of relevant judged items
and retrieved results. Our experimental results
on MS MARCO V1 dataset and TREC Deep
Learning Tracks query sets demonstrate the ef-
fectiveness of the Fréchet Distance as a metric
for evaluating IR systems, particularly in set-
tings where a few labels are available. This
approach contributes to the advancement of
evaluation methodologies in real-world scenar-
ios such as the assessment of generative IR
systems.

1 Introduction

With the rapid advancement of technologies in
fields such as natural language processing, natural
language generation, computer vision, and informa-
tion retrieval (IR), evaluating the performance of
these systems is becoming increasingly challeng-
ing (Gatt and Krahmer, 2018; Hashimoto et al.,
2019; Celikyilmaz et al., 2020; Yang and Lerch,
2020). We must develop new metrics, benchmarks,
and evaluation protocols that are specifically tai-
lored to the unique characteristics of the systems
considering the rapid changes in system architec-
ture, training data, and model configurations (Theis
et al., 2015). In many cases, obtaining high-quality
labeled data that accurately represents the com-
plexity of real-world scenarios can be expensive,

time-consuming, or even impractical. This scarcity
of labeled data adds to the limitations of conduct-
ing extensive evaluations and may lead to biased or
incomplete assessments (Arabzadeh et al., 2022).

Offline evaluation poses a significant challenge
due to the sparsity of labeled data (Clarke et al.,
2023, 2020; Xie et al., 2020; Arabzadeh et al.,
2023a,b). This challenge is particularly prominent
in datasets like MS MARCO, a widely used bench-
mark for ad hoc retrieval reserach (Nguyen et al.,
2016; Arabzadeh et al., 2021; Mackenzie et al.,
2021; Arabzadeh et al., 2024; Huo et al., 2023) in
which, the majority of queries are annotated with
only one relevant judged document. However, to
suit the dataset for effective traininig of deep learn-
ing models, a high number of queries are judged, re-
sulting in sparse labels. Consequently, most queries
have only one relevant judgment, while the rel-
evance of the remaining documents remains un-
known. Other researchers have shown that there
are potentially relevant documents that are as good
as, or even better than, the judged queries (Qu et al.,
2020; Arabzadeh et al., 2022). Given the sparsity
of ground truth labels, it is crucial to recognize
the challenges involved in distinguishing between
rankers when the differences in performance are
small (Yan et al., 2022). The limited labeled data
for retrieved documents introduces noise, making it
challenging to definitively determine which ranker
is performing better (Cai et al., 2022). The incom-
plete judgments can introduce problems in eval-
uations, as they do not capture the full range of
relevant documents (Aslam et al., 2006; Carterette
and Smucker, 2007). This issue becomes even
more pronounced in generative-based tasks. It is
impractical to reassess the generated results, such
as images or text, with each system run due to
their non-deterministic nature (Theis et al., 2015;
Harshvardhan et al., 2020).

Evaluating a generative system’s performance
based on the similarity of generated content
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to sparsely labeled data remains one of the
most effective approaches in many generative-
based NLP and computer vision benchmarks and
tasks (Soloveitchik et al., 2021; Heusel et al., 2017;
Obukhov and Krasnyanskiy, 2020; Dimitrakopou-
los et al., 2020; Zhang et al., 2019). Particularly
in the evaluation of text-to-image generation task,
the Fréchet Inception Distance (FID), has gained
recognition for showing high robustness and corre-
lation with human judgements (Heusel et al., 2017;
Saharia et al., 2022; Yu et al., 2022). FID com-
pares the distribution of generated images across a
set of prompts to the distribution of target images
across the same set of prompts. To compute FID,
features of ground truth images and generated im-
ages are extracted from both sets, and multivariate
Gaussian distributions are fitted to these features.
The Fréchet Distance (FD), which quantifies the
similarity between two probability distributions, is
then computed based on the fitted Gaussian dis-
tributions. A lower FID score indicates a higher
similarity between the distributions, indicating that
the generated images closely match the real images
in terms of their visual features.

In this paper, we shed light on how evaluating
generated results is similar to assessing the qual-
ity of retrieved results with sparse labels in an ad
hoc retrieval setting. Most benchmarks for both
tasks have quite sparse labels i.e., not all the items
are judged and while there are a few annotations
available for some of the candidates, there can be
other unjudged relevant items available. While la-
belling more data is expensive for both tasks, there
could be more than one correct answer in both
tasks. In this work, we mimic an Information Re-
trieval system with sparse relevance judgements as
a generation task where the ground truth targets
are sparse. Due to the success of FID in evaluat-
ing the quality of generated images, especially for
generative adversarial networks (Gafni et al., 2022;
Saharia et al., 2022; Yu et al., 2022; Khan et al.,
2020; Alonso et al., 2019), we explore if we can
quantify the quality of retrieved documents in an
ad hoc retrieval system through Fréchet Distance.
In the context of IR evaluation, we can analogously
consider the relevant judged items as the ground
truth set and the retrieved items as the set of gen-
erated items. Our objective is to extract features
from both sets, the relevant judged items and the
retrieved results, and investigate whether metrics
such as the Fréchet Distance can effectively capture

the quality of the retrieved results with respect to
the ground truth labels in IR systems.

We study the following Research Questions:

• RQ1. Can the Fréchet Distance effectively evalu-
ate IR systems with sparse labels?

• RQ2. Can the Fréchet Distance effectively evalu-
ate IR systems with comprehensive labels?

• RQ3. Can the Fréchet Distance effectively eval-
uate the quality of IR systems when the retrieved
results are not labelled?

• RQ4. How well correlated are the performance
of IR systems, as measured by the Fréchet Distance
vs. and traditional IR metrics?

• RQ5. How robust is the Fréchet Distance for
evaluating IR systems with respect to the feature ex-
traction methods used to represent both the ground
truth and retrieved items?

We conduct our experiments by assessing dif-
ferent retrieval pipelines on the MS MARCO V1
Dev dataset, which has extremely sparse labels,
as well as the TREC Deep Learning Track 2019
and 2020 datasets, which have more complete la-
bels (Nguyen et al., 2016; Craswell et al., 2020,
2021). Our study demonstrates the effectiveness
of the Fréchet Distance as a metric for quantifying
the performance of IR systems especially when the
ground truth labels are sparse.

2 Fréchet Distance for IR evalaution

2.1 Fréchet Distance
The Fréchet distance is a measure of dissimilarity
between two curves or trajectories and has shown
to be useful in numerous applications including
computational geometry, computer graphics, bioin-
formatics and robotics (Alt, 2009; Alt and Godau,
1995; Alt et al., 2001; Jiang et al., 2008; Gheibi
et al., 2014). To understand the Fréchet distance,
let us consider two curves (or trajectories or paths):
A and B. The Fréchet distance between A and B
could be exemplified as measuring the minimum
leash length required by a dog walking along a path
A while its owner walks along path B, with both
the dog and owner potentially traversing their re-
spective paths at different speeds (Alt and Buchin,
2007; Eiter and Mannila, 1994). The leash cannot
be shortened or lengthened during the walk. The
definition is symmetric i.e., the Fréchet distance
would be the same if the dog were walking its
owner. Given two curves, A and B, represented as
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sequences of points in a metric space, the Fréchet
distance, denoted as F (A,B) is computed as:

F (A,B) = infα,βmaxt∈[0,1]d(A(α(t)), B(β(t))) (1)

where A and B are continues maps from [0, 1] to
metric space and α and β are reparameterizations
of the unit interval [0, 1] i.e. they are continuous,
non-decreasing, surjection functions. The require-
ment of non-decreasing reparameterizations, α and
β, ensures that neither the dog nor its owner can
backtrack along their respective curves. The pa-
rameter t as represents the progression of time,
consecutively A(α(t)) and and B(β(t)) represent
the position of the dog and the dog’s owner at time
t (or vice versa). The distance d between A(α(t))
and B(β(t)) corresponds to the length of the leash
between them at time t. By considering the infimum
over all potential reparameterizations of the unit
interval [0, 1], we select the specific paths where
the maximum leash length is minimized.

Apart from quantifying the dissimilarity between
curves, the Fréchet distance can also serve as a mea-
sure to assess the disparity between probability dis-
tributions (Heusel et al., 2017).Given we have two
normal univariate distributions, X and Y , Fréchet
Distance (FD) is given as:

FD(X,Y ) = (µX − µY )2 + (σX − σY )2 (2)

Where µ and σ are the mean and standard deviation
of the normal distributions, respectively.

2.2 Fréchet Inception Distance
In computer vision, the Inception V3 model pre-
trained on the Imagenet dataset is employed to gen-
erate feature vectors to be approximated by multi-
variate normal distribution (Szegedy et al., 2015).
As such, the Fréchet Inception Distance (FID) for
a multivariate normal distribution is computed as:

FID(X,Y ) = ||µX −µY ||2 − Tr(ΣX +ΣY − 2
√
ΣXΣY )

(3)

In this equation, X and Y represent two distribu-
tions derived from two sets of embeddings. These
embeddings correspond to real images and gener-
ated images, respectively, and are obtained from
the Inception model. The vectors X and Y have
magnitudes µX and µY , respectively. The trace
of the matrix is denoted as Tr, while ΣX and ΣY

represent the covariance matrices of the vectors.

2.3 Fréchet Distance for IR
Let us assume C is a collection of items and
Q = {q1, q2, . . . , qn} is a set of n queries, where

each query qi has a set of relevant judged items Rqi .
We define RQ as a set of relevance judged items for
queries in Q, where RQ = {d|d ∈ Rqi , qi ∈ Q}.
Furthermore, we can obtain the top-k retrieved
items by a retrieval system M from C for a given
query q as Mk(q, C) = Dk

q , where Dk
q is a set of

the top-k most relevant retrieved items for query q,
i.e., Dk

q = {dq1, dq2, . . . , dk1}. Given V as a function
that maps any retrieved item to a p-dimensional em-
bedding space, where p is usually in the order of a
few hundred, we can embed all the retrieved items
and relevant judged items through V. For instance,
V(d1) returns a p-dimensional vector embedding
for document d1. To apply Fréchet Distance for as-
sessing the quality of the IR system M , we measure
FDM

Q as follows on query set Q:

FDMk
Q = FD

(
{V(RQ)}, {V(Mk(Q,C))}

)
(4)

Here, FD is the Fréchet Distance (Eq. 3) measures
the distance between the distribution of the set em-
beddings of the relevant judged items {V(RQ)}
and those of the retrieved items {V(Mk(Q,C))}.
The lower FDMk

Q represents the retrieved items
to have higher similarity with the relevant judged
items and thus the better performance of the re-
trieval system M on the query set Q.

3 Experimental Setup

In this section, we describe the general settings of
our experiments including datasets, the traditional
IR metrics, retrieval methods and the pre-trained
language models we used to embed the documents.

3.1 Dataset and Query sets
We perform experiments on the MS MARCO pas-
sage retrieval collection V1 1 , which includes over
8.8 million passages (Nguyen et al., 2016). First,
in section 4, we experiment on the 6980 queries
in MS MARCO small dev set, which are sparsely
labelled. The majority of the queries in this set
(over 94%) have only one relevant judged docu-
ment per query. Second, in Section 5, we experi-
ment on the TREC Deep Learning (DL) track 2019
2 and 2020 3 to study how varying and extending
the relevance judgments would affect the evalua-
tion process (Craswell et al., 2021, 2020). The

1https://microsoft.github.io/msmarco/
2https://microsoft.github.io/msmarco/

TREC-Deep-Learning-2019.html
3https://microsoft.github.io/msmarco/

TREC-Deep-Learning-2020.html
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difference between the two query sets is that while
the MS MARCO dev set has a higher number of
queries (6980) judged, with mostly one relevant
document per query, it leaves us with no extra infor-
mation about the unannotated documents. On the
other hand, the TREC DL tracks have fewer queries
judged (97), but each query has a comprehensive
set of judgments with multi-level judgments rang-
ing from 0-4, indicating the degree of relevance.

We compare the results of the FD score with the
official traditional IR evaluation metrics of each
benchmark, i.e., MRR@10 for MS MARCO and
nDCG@10 for TREC Deep Learning tracks.

3.2 Retrieval models

To conduct experiments on MS MARCO dev set,
we consider a set of 12 retrieval methods that are
well-distinguished for their efficiency or effective-
ness, ranging from traditional high-dimensional
bag-of-word sparse retrievers to more recent dense
retrievers well as trained high-dimensional sparse
models, which are representative of novel retrieval
methods developed over the past five years. Specif-
ically, we consider BM25 as the representative
of the sparse retrievers standalone as well as ap-
plying BM25 to expanded documents through
DeepCT and DocT5Query document expansion
methods (Robertson et al., 1995; Nogueira et al.,
2019a,b; Dai and Callan, 2019). We include a set
of dense retrievers including RepBERT (Zhan et al.,
2020), ANCE (Xiong et al., 2020), Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019), COL-
BERT (Khattab and Zaharia, 2020) and COLBERT-
V2 (Santhanam et al., 2021). We also employ the
more recently proposed high dimensional learnt
sparse retrievers, UniCOIL and SPLADE (Formal
et al., 2021; Lin and Ma, 2021). Furthermore, we
consider hybrid retrievers (Lin et al., 2021b) that
fuse the retrieved items from BM25 and dense re-
trievers, to cover a variety of retrievers and assess
the ability of FD to quantify the quality of retrieval
fairly. We note that we employ some of the re-
trieval models from Pyserini4 (Lin et al., 2021a)
and some of the others from the paper’s original
GitHub repository. For more information about
each of the retrieval models, we kindly refer to the
original papers of each method.

For our experiments with the TREC DL19 and
DL20 query sets, we took the submitted runs for

4https://github.com/castorini/pyserini

each track from the NIST website5. Our exper-
iments compare the results when assessing with
Fréchet distance as well as nDCG@10 for 37 sub-
mitted runs to TREC DL2019 and 59 submitted
runs to TREC DL 2020. These runs cover a com-
prehensive set of retrieval pipelines, typically with
from sparse and/or dense retrieval as a retrieval first
stage followed by one or more neural re-ranking
stages (Craswell et al., 2020, 2021).

3.3 Embeddings

To examine the robustness of FD on IR systems,
we perform experiments using two different types
of transformer-based contextualized models to em-
bed the documents and extract their features. We
employ a general-purpose DistilBERT (Sanh et al.,
2019) to obtain the documents embeddings6 as well
as fine-tuned pre-trained language models on MS
MARCO7 (Reimers and Gurevych, 2019). Both
models were adapted from hugging face. We note
that unless we explicitly mention (Section 7.2) all
the results are reported with the first model, i.e.,
the DistilBERT model that was fine-tuned on MS
MARCO. We believe that by exploring different
document representations, we may better under-
stand the influence of document quality on the uti-
lization of FD for evaluating IR systems.

4 Assessment with Sparse labels

We are interested in investigating how FD can as-
sess the performance of different retrievers when
there are only sparse labels available i.e., on 6980
queries from MS MARCO small dev set. We
present the performance of the 12 retrieval methods,
including the sparse to dense retrievers, sparse re-
trievers with learned representations, and hybrid re-
trievers that were introduced in Section 3.2 in terms
of MRR@10 as well as measuring the Fréchet Dis-
tance between two sets of retrieved items and rel-
evant judged items on the cut-offs of 1 and 10 in
Table 1.

The results for FD@1 and FD@10 demonstrate
the ability of FD to quantify the performance of
retrievers. For example, for the BM25 retriever,
FD@1 is measured as 7.446 and FD@10 as 4.410.
However, for a neural retriever like ColBERT,
which has shown superior performance to BM25
on various benchmarks (Santhanam et al., 2021;

5https://trec.nist.gov/
6https://bit.ly/3Oq39IB
7https://bit.ly/3On7D2B
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Table 1: Performance of different retrievers in terms
of MRR@10 as well as Fréchet distance FD on MS
MARCO dev set. A smallest Fréchet distance corre-
sponds to better performance.

Category Method MRR@10 FD@1 FD@10

Sparse
BM25 0.187 7.446 4.410
DeepCT 0.242 1.453 2.354
DocT5 0.276 3.047 2.050

Dense

RepBERT 0.297 1.881 1.223
ANCE 0.330 1.529 0.995
SBERT 0.333 1.387 1.008
ColBERT 0.335 1.456 0.980
ColBERT V2 0.344 1.453 0.982

Trained
Sparse

UniCOIL 0.351 1.387 0.980
SPLADE 0.368 1.328 0.964

Hybrid
(BM25)

ColBERT-H 0.353 1.494 0.973
ColBERT V2 -H 0.368 1.464 0.998

Khattab and Zaharia, 2020; Thakur et al., 2021),
the FD values are reported as 1.456 and 0.980 for
FD@1 and FD@10, respectively. This indicates
that FD can effectively pickout the better retriever,
particularly when there is a significant difference
between their performances. On the other hand,
when the performance of two retrievers is quite
similar, such as in the case of ColBERT vs. Col-
BERT V2, it becomes more challenging for eval-
uation metrics to assess their performance . For
instance, while MRR@10 for ColBERT vs. Col-
BERT V2 is reported as 0.334 vs. 0.343, FD@10
for the two retrievers is reported as 0.980 and 0.982.
Therefore, as expected, the discriminative power
of FD decreases when it becomes harder to distin-
guish between retrievers. However, It is important
to acknowledge that due to the sparsity of ground
truth labels, previous research has indicated that
distinguishing between rankers becomes challeng-
ing when the differences are small. In such cases,
the noise introduced by limited labeled data for
retrieved documents makes it difficult to defini-
tively determine which ranker is performing better
(Qu et al., 2020). In fact Arabzadeh et al. (2022)
showed that such a small difference in MRR@10 is
not a strong indicator of which retrieval method is
able to address the queries better since they might
have surfaced other unjudged relevant items. They
showed that ordering of the rankers solely based
on MRR and incomplete relevance judgement is
not reliable. Based on the results in Table 1 and
their comparison with MRR@10, we can conclude
that in response to RQ1, we observe that Fréchet
Distance can effectively evaluate IR systems.

To examine the robustness of the FD in the con-
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Figure 1: Performance of bootstrap sampling (N=1000)
of queries in MS MARCO dev set in terms of MRR@10
and FD@10 for the 12 different retrieval methods.

text of IR assessment, and to evaluate the gener-
alizability of the method across different subsets
of queries, we employ a bootstrap sampling (John-
son, 2001; Efron, 2003) from the MSMARCO dev
set for N = 1000 times. This would allows us
to investigate whether the results obtained in the
previous section were influenced by the data or if
they can be reliable. The results are visualized in
Figure 1, in which we present the mean and em-
pirical 0.95% confidence interval for each retriever
across the 1000 query sets in terms of MRR@10
and FD@10. It is important to note that for the
MRR plot, a higher position on the plot indicates
better performance, while for the FD plot, a lower
position indicates better performance. The findings
confirm that despite considering different sample
sets, we observe a consistent pattern and similarity
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Figure 2: Performance of all the submitted runs to TREC DL 2019 (first row) and TREC DL 2020 (second row). In
each sub-figure, X-axis and Y-axis indicate nDCG@10 and FD@10 respectively. FD@10 was measured with 1,5
and 10 relevant items per query in the sub-figures in the first, second and third columns respectively.

in the performance trends.

5 Assessing with Comprehensive labels

In this section, we investigate the performance
of the Fréchet Distance in evaluating IR systems
when the labels are not sparse and we have more
complete labels. We conduct experiments using
the runs submitted to TREC DL 2019 (37 runs)
and TREC DL 2020 (59 runs). Unlike the MS
MARCO dev set which on average each query has
1.06 judged documents, the queries in TREC DL
tracks on average have over 210 judged documents
per query assessed with four different levels of rel-
evance including “not relevant”, “related”, “highly
relevant”, and “perfectly relevant” Craswell et al.
(2020). We notice that the number of judged rele-
vant items per query in these benchmarks varies a
lot. Due to the TREC-style judgment criteria, only
the top few retrieved items from all submitted runs
were judged. Depending on the overlap between
the top retrieved items from different runs, the num-
ber of relevant judged items per query may vary.
When applying FD with an imbalanced number of
relevant judged items per query, it can introduce bi-
ases in the ground truth distribution and potentially
lead to problems in evaluation. To address this is-
sue, we balanced the number of relevant judged
items per query by limiting them to a maximum of
1, 5, and 10 relevant judged items per query i.e., we

randomly select K relevant items from the pool of
relevant judged documents for the query of interest.
We first randomly select from the most relevant
level i.e., level 3 which are perfectly relevant docu-
ments and then when there is not a sufficient num-
ber of perfectly relevant documents, we move on
to highly relevant level and randomly choose from
that grade. This experiment also allows us to ex-
amine how the sparsification of judgments affects
the performance of evaluation metrics. We note
that these modifications in relevance judgements
are only applied for measuring FD and nDCG@10
is measured with all the judged documents without
any modification.

We plotted the nDCG@10 on the x-axis and the
FD with balanced and sparsified judgments on the
y-axis of each sub-figure in Figure 2, for all the runs
submitted to TREC DL19 (first row) and TREC
DL20 (second row). Consistent with our previous
experiments, we observe a highly linear relation-
ship between the two metrics. We also provide the
Kendall τ correlation under each sub-figure. For
instance, when sparsifying the labels and consid-
ering only one relevant judged item per query, we
obtain a Kendall τ correlation of -0.836 for TREC
DL2019 and -0.867 for TREC DL2020, between
nDCG@10 and FD@10 of each dataset.

In addition, we present the Kendall Tau corre-
lation between nDCG when using full relevance
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Dataset 10 qrels 5 qrels 1 qrel
Trec-DL-2019 0.796 0.784 0.594
Trec-DL-2020 0.918 0.891 0.863

Table 2: Kendall Tau correlation between nDCG mea-
sured with full relevance judgements and sparsified rel-
evance judgements.

judgments versus randomly selecting a maximum
of N relevant judgments, where N could be 1, 5, or
10, as illustrated in Figure 2. It is worth noting that
while FD (as demonstrated in Figure 1) exhibits a
higher degree of robustness when evaluated with
sparse labels, nDCG is not as resilient concerning
the chosen relevant judged document (qrel). This
is because FD computes its metrics over the distri-
bution of all queries, contributing to a more stable
evaluation performance. On the contrary, NDCG
with sparse labels tends to be considerably noisy
and heavily dependent on which document is se-
lected as the “one relevant document” per query,
leading to significant variations in the results. In
the Table 2 , we present the Kendall Tau correlation
between nDCG with full relevance judgements and
nDCG when choosing 1, 5, or 10 random relevant
documents. These results highlight the sensitivity
of nDCG to the choice of relevant documents, es-
pecially when only a limited number of relevant
documents are considered.

The experiments on the TREC DL datasets high-
light two key points. First, unlike using the Fréchet
Inception Distance to evaluate the quality of gen-
erated images in text-to-image generation tasks,
where a large number of data points (in the order
of thousands) are required for the evaluation to be
valid, we demonstrated that even with a smaller
number of queries (around 40-50), FD is capa-
ble of distinguishing the performance of different
rankers (Kynkäänniemi et al., 2023; Heusel et al.,
2017). Second, FD is not sensitive to the spar-
sity of the ground truth labels and it performs well
with both sparse and more complete labels. It is
not affected by the number of judgments, as ev-
idenced by the fact that the performance did not
differ greatly when increasing the number of rele-
vant judged items. However, for TREC DL2019,
we observed a small drop in correlation by increas-
ing the number of relevant judgments. Further ex-
ploration revealed that a higher number of relevant
judgments in TREC 2019 resulted in a higher usage
of level 2 relevance judgments (highlight relevant)

instead of level 3 judgments (perfectly relevant).
Consequently, we suggest that FD may be more
sensitive to the quality of relevant judged items
rather than the quantity. Overall, in response to
RQ2, we find that FD works well when using com-
prehensive labels, and consistent with the findings
in Section 4, sparsifying the labels does not com-
promise the quality of assessment.

6 Assessing Unlabeled Retrieved Results

Here, we undertake an evaluation of different IR
systems under an extremely challenging case of
assessing unlabeled retrieved results. This scenario
presents a situation where each query is assumed
to have mostly only one relevant item, and the rel-
evant judged items are not included in the top-k
results. Our objective is to investigate the effective-
ness of the Fréchet Distance in assessing the top-k
Unlabeled Retrieved Results (URR) when no judg-
ments are available for any of the top-k retrieved
items. This is particularly valuable considering the
high cost and limited availability of labeled data,
which often exhibit sparsity. Previous research
has demonstrated that as rankers improve in per-
formance, they tend to retrieve previously unseen
content that may be highly relevant to the original
query (Arabzadeh et al., 2022). If Fréchet Distance
is capable of evaluating the retrieved results in such
cases, it would be a valuable tool for assessing the
relevance of unlabeled data and even beyond that,
for evaluating generative-based responses.

We measure the FD between one set consisting
of the relevant judged items per query and the other
set consisting of the top-k unjudged retrieved item
for each query. In other words, we scan down the
ranked list and retain the first k unjudged document
to assess. This is an interesting aspect to study be-
cause traditional IR metrics such as MRR, nDCG,
and MAP rely on the presence of relevant items in
the retrieved list and would assign a performance
score of zero in cases where no relevant items are
retrieved. They do not account for unjudged doc-
uments. We argue that by utilizing the FD metric,
we can capture the similarity between unjudged
retrieved items and the limited set of judged exam-
ples and measure the performance of the retriever
based on this value.

The results of this experiment are reported in Ta-
ble 3 with two cut-offs of “FD@10” and “FD@1”.
Even when no judged documents appear in the
top-k, FD is still able to quantify the performance
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Table 3: Performance of different retrievers in terms
of MRR@10 as well as Fréchet distance FD assuming
under Unlabeled Retrieved Results (URR) setting. We
note that the MRR@10 is measured on the original
ranked list since with URR setting, all the retrievers
would obtain MRR@10 equals to zero. A smallest
Fréchet distance corresponds to better performance.

URR
Category Method MRR@10 FD@1 FD@10

Sparse
BM25 0.187 8.634 4.705
DeepCT 0.242 4.183 2.591
DocT5 0.276 4.066 2.290

Dense

RepBERT 0.297 2.701 1.364
ANCE 0.330 2.353 1.126
SBERT 0.333 2.266 1.156
ColBERT 0.335 2.308 1.115
ColBERT V2 0.344 2.352 1.121

Trained
Sparse

UniCOIL 0.351 2.302 1.128
SPLADE 0.368 2.300 1.117

Hybrid
(BM25)

ColBERT-H 0.353 2.399 1.115
ColBERT V2 -H 0.368 2.365 1.142

of the retriever. This capability is not present in
traditional metrics. For instance, when there are
no relevant judged items retrieved in the ranked
list, FD@1 quantifies the performance of BM25 as
8.634, whereas the performance for ColBERT is
measured as 2.308. This indicates that even without
relevant judged items, FD is capable of determin-
ing that ColBERT performs better than BM25.

This experiment demonstrates that, unlike tradi-
tional IR metrics, FD is not sensitive to the labeled
documents themselves. Indeed, the Fréchet Dis-
tance is not reliant on the exact positioning of the
relevant judged document in the ranking. Instead,
it focuses on measuring the similarity between the
retrieved items and the relevant judged documents.
This characteristic makes it particularly valuable
for evaluating scenarios with extremely sparse la-
bels, even in cases where the rankers do not retrieve
the labeled data. In response to RQ3, the Fréchet
Distance enables assessment of the remaining un-
labeled data, offering valuable insights into their
relevance. In contrast, traditional IR metrics would
be unable to provide any insights without retrieving
the labeled documents.

7 Further analysis

7.1 Correlation with IR Evaluation Metrics

We aim to examine the correlation between the FD
measure and traditional IR evaluation metrics. To
achieve this, we calculate the ranked-based Kendall
τ correlation, for each pair of metrics in Table

Table 4: Kendall τ correlation between different evalua-
tion metrics over the 12 retrieval methods. URR stands
for “Unlabeled Retrieved Results” and refers to experi-
mental results from section 6. All the correlations are
statistically significant with p-value < 0.05

MRR@10 FD@1
FD@1
URR

FD@10
FD@10

URR
MRR@10 1 -0.473 -0.545 -0.788 -0.636
FD@1 -0.473 1 0.687 0.443 0.290
FD@1-URR -0.545 0.687 1 0.636 0.485
FD@10 -0.788 0.443 0.636 1 0.848
FD@10-URR -0.636 0.29 0.485 0.848 1

1 and Table 3 on the performance of the 12 re-
trievers introduced earlier and report the results in
Table 4. This set of evaluation metrics includes
MRR@10, FD at cut-offs 1 and 10 (Section 4) and
FD at cut-offs 1 and 10 under URR setting when no
labeled data is retrieved (Section 6). As anticipated
and illustrated in Figure 2, FD exhibits a nega-
tive correlation with MRR, as a lower FD value
indicates better performance. Among these corre-
lations, FD@10 shows the highest absolute corre-
lation with MRR@10 i.e., a correlation of -0.788.
We suggest that this is because FD operates based
on the distribution of embedded representations
of documents, which has shown to work most sta-
bly when the number of samples increases (Chong
and Forsyth, 2019; Bińkowski et al., 2018). More
interestingly, FD@1 and FD@1 with Unlabeled
Retrieved Results (URR), obtain a correlation coef-
ficient of 0.687. Similarly, the correlation between
FD@10 (Fréchet Distance at 10) and FD@10 with
unlabeled retrieved items was found to be 0.848.
The high correlation between evaluating the origi-
nal retrieved results vs without having any judged
retrieved results further validates the findings pre-
sented in sections 4 and 6.The Fréchet Distance
not only exhibits a high correlation with traditional
IR metrics but also demonstrates its capability in
assessing unlabeled retrieved items. These exper-
iments let us answer RQ4 that FD shows a no-
table correlation with traditional IR metrics. These
properties increase the reliability of using FD for
assessing IR systems.

7.2 Impact of Document Representation

Here, we examine the robustness of the Fréchet
Distance metric for assessing IR systems with re-
spect to the underlying language model to embed
the retrieved documents and relevance judgments.
We aim to investigate how the choice of language
model impacts the quality of evaluating IR sys-
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Table 5: Comparison of the performance of different
retrievers when assessing with MRR@10 and FD@10
on MS MARCO dev set With DistilBERT fine-tuned on
MSMARCO as well as DistilBERT without any fine-
tuning. DistilBERT fine-tuned on MSMARCO shows
−0.788 Kendall τ correlation with MRR@10 and Dis-
tilBERT without any fine-tuning shows −0.739 Kendall
τ correlation with MRR@10.

FD@10

Category Method MRR@10
DistilBERT
MSMARCO

DistilBERT
No Fine-tuning

BM25 0.187 0.590 4.410
DeepCT 0.242 0.412 2.354Sparse
DocT5 0.276 0.331 2.050
RepBERT 0.297 0.159 1.223
ANCE 0.330 0.121 0.995
SBERT 0.333 0.132 1.008
ColBERT 0.335 0.117 0.980

Dense

ColBERT V2 0.344 0.118 0.982
UniCOIL 0.351 0.123 0.980Trained

Sparse SPLADE 0.368 0.120 0.964
ColBERT-H 0.353 0.116 0.973Hybrid

(BM25) ColBERT V2 -H 0.368 0.126 0.998

tems using the Fréchet Distance measure consider-
ing this change would vary the document feature
vectors. For previous experiments, we utilized a
language model that was fine-tuned on the MS
MARCO dataset for ranking tasks. However, now
we study how the results would be impacted if we
were to embed the retrieved documents and ground
truth in a different space. As such, we present the
same results as in Table 1, using DistilBERT em-
beddings fine-tuned on the MSMARCO training set
as well as the same results with a DistilBERT with-
out any fine-tuning. This analysis aims to inves-
tigate whether a general-purpose language model
can capture the necessary information for accu-
rate assessment, or if a language model specifically
fine-tuned for ranking tasks in retrieval is required.
Table 5 displays the obtained results. Surprisingly,
we observe that changing the language model from
a fine-tuned ranking model to a raw, unfine-tuned
BERT model does not substantially impact the as-
sessment outcomes. The FD metric remains ca-
pable of effectively evaluating the performance of
various retrieval methods. For example, from Table
5, and under “DistilBERT No fine-tuning” column,
we observe that BM25 achieves an FD@10 score
of 4.410, whereas COLBERT, which is expected
to be a better model, achieves a score of 0.980.

The correlation between FD@10 and MRR@10
when using DistilBERT without any fine-tuning,
is -0.739. Comparatively, when using fine-tuned
DistilBERT (as shown in Table 4), the correlation
IS -0.788. As such, having a fine-tuned language

model specifically for ranking task can improve the
correlation with traditional IR metrics. However,
even without fine-tuning, FD still demonstrates
promising performance. Overall, the results indi-
cate that FD remains effective in evaluating the
quality of retrieved results, even when employing
a general-purpose language model without fine-
tuning. Lastly, with respect to RQ5, we note that
FD shows promising robustness w.r.t the document
embedding representation.

8 Conclusion and Future work

In this paper, we leverage Fréchet Distance to ad-
dress the challenges of evaluating IR systems with
sparse labels. We measure the similarities between
the embedded representation of retrieved results
as well as the limited available relevant judged
documents using Fréchet Distance. Through ex-
periments conducted on datasets with sparse and
more complete ground truth labels, including the
MS MARCO DEV dataset and the TREC Deep
Learning Track datasets , we demonstrated the ef-
fectiveness of the Fréchet Distance in evaluating
IR systems. our findings suggest that the Fréchet
Distance has significant implications for evaluating
IR systems in real-world settings where obtaining
comprehensive ground truth labels can be challeng-
ing and expensive. We believe that future research
could utilize the Fréchet Distance to evaluate dif-
ferent generative models, expanding the scope of
evaluation in IR systems. As such, it allows for
having the generated results compared with the
retrieved results in the same playground.

9 Limitations

While our study provides valuable insights into the
effectiveness of the Fréchet Distance in evaluating
IR systems with sparse labels, there are a few limi-
tations that should be acknowledged. First, unlike
traditional IR evaluation metrics, the Fréchet Dis-
tance is not applicable to individual queries and
can only be used with sets of queries. Further ex-
ploration is needed to understand how the sample
size of the queries affects the quality of the assess-
ment. Second, the Fréchet Distance assumes that
the two distributions follow a multivariate normal
distribution. Lastly, it is important to note that the
Fréchet Distance is an unbounded metric, and its
range varies depending on the dataset’s characteris-
tics and the number of samples under investigation.
Building upon the findings of this study,

428



References
Eloi Alonso, Bastien Moysset, and Ronaldo Messina.

2019. Adversarial generation of handwritten text im-
ages conditioned on sequences. In 2019 international
conference on document analysis and recognition
(ICDAR), pages 481–486. IEEE.

Helmut Alt. 2009. The computational geometry of com-
paring shapes. Efficient Algorithms: Essays Dedi-
cated to Kurt Mehlhorn on the Occasion of His 60th
Birthday, pages 235–248.

Helmut Alt and Maike Buchin. 2007. Can we com-
pute the similarity between surfaces? CoRR,
abs/cs/0703011.

Helmut Alt and Michael Godau. 1995. Computing the
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