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Abstract

Recent work on semantic parsing has shown
that seq2seq models find compositional gener-
alization challenging. Several strategies have
been proposed to mitigate this challenge. One
such strategy is to improve compositional gen-
eralization via data augmentation techniques.
In this paper we follow this line of work and
propose ARCHER, a data-augmentation strat-
egy that exploits alignment annotations be-
tween sentences and their corresponding mean-
ing representations. More precisely, we use
alignments to train a two step generative model
that combines monotonic lexical generation
with reordering. Our experiments show that
ARCHER leads to significant improvements in
compositional generalization performance.

1 Introduction

Semantic parsing is the task of mapping natu-
ral language sentences (NLs) to their correspond-
ing meaning representations (MRs). Sequence-to-
sequence (seq2seq) transformers based on encoder-
decoder architectures have become predominant for
this task and have shown impressive performance
(Banerjee et al., 2022; Yin et al., 2021; Kamath and
Das, 2019). However, seq2seq models have been
shown to have a limited compositional generaliza-
tion ability (Keysers et al., 2020; Lake and Baroni,
2018).

One natural approach to improve compositional
generalization is to feed seq2seq models with addi-
tional data, increasing the set of observed patterns
(Qiu et al., 2022a; Akyürek et al., 2021; Andreas,
2020). The additional data is assumed to be auto-
matically generated from the available training set
using a generation strategy: this is usually referred
to as data augmentation.

In this paper we follow this line of research
and propose ARCHER: Align and Augment foR
Compositional Hard GEneRalization. ARCHER

is a data augmentation strategy that utilizes word

alignments between NL and MR pairs. In a first
step, a recursive model generates monotonically
aligned NL/MR pairs. In a second step, a reorder-
ing model rearranges symbols in the MRs, ensur-
ing correct alignment with the NLs. This com-
bines the strengths of traditional recursive models,
which excel at modelling sequence distributions,
and seq2seq architectures, which excel at inducing
arbitrary features of the input and output sequences.

We evaluate ARCHER on two multilingual
datasets annotated with word alignments:
GEOALIGNED (Locatelli and Quattoni, 2022),
an extension of the GEO benchmark, and ATI-
SALIGNED, which we introduce as part of our
research, similarly extending the ATIS benchmark.
Our experiments demonstrate that ARCHER signifi-
cantly enhances the compositional generalization
capabilities of seq2seq semantic parsers. In the
English GEO dataset’s length partition, with
ARCHER data a parser accuracy almost doubles to
46%. Similarly, in the query partition, performance
improve from 72% to 82%.

Compared to alternative augmentation ap-
proaches, ARCHER leads to higher improvements
in compositional generalization, especially on the
most challenging length partitions.

The contributions of our work are:

• We introduce ARCHER, a new data augmen-
tation technique that utilizes word alignments
with a two-step generative process.

• Our approach significantly improves composi-
tional generalization in seq2seq models, with
remarkable improvements on length splits.

• An analysis of the data generated by ARCHER

shows that it can produce more accurate and
diverse samples than alternative approaches.

• As a side contribution, we introduce ATI-
SALIGNED, a semantic parsing dataset aug-
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mented with word alignment annotations1.

2 Related Work

Data Augmentation. Various works have ex-
plored data augmentation within the context of
semantic parsing. Some methods have recom-
bined samples by softly interpolating input/output
examples (Guo et al., 2020), utilizing rules to
swap tokens appearing in similar contexts (An-
dreas, 2020) or by transformations based on sym-
metries (Akyurek and Andreas, 2023). Other ap-
proaches used grammars for sampling, such as
SCFG (Jia and Liang, 2016; Oren et al., 2021)
or QCFG (Qiu et al., 2022a). Recombined data
has also been obtained through subtree substitu-
tions (Yang et al., 2022; Li et al., 2023), prototype-
based generative models for recombination and
resampling (Akyürek et al., 2021), or through the
exploitation of crosslingual datasets (Rosenbaum
et al., 2022). Other approaches have focused on
generating an MR first, followed by the use of a
generative model to predict an associated utterance
(Zhong et al., 2020; Tran and Tan, 2020; Wang
et al., 2021b). However, different from the focus
of our work, these last three approaches were not
tested on compositional generalization.

Compositional Generalization. Recently, re-
searchers have raised the question of whether mod-
els can perform compositional generalization (Lake
and Baroni, 2018; Finegan-Dollak et al., 2018; Kim
and Linzen, 2020). The general consensus within
the community is that sequence to sequence mod-
els struggle significantly in this aspect (Loula et al.,
2018; Keysers et al., 2020; Kim and Linzen, 2020).
One approach to test compositional generalization
is to train a semantic parser on sequences up to a
fixed length and test it on longer ones, forcing the
model to predict novel combinations (commonly re-
ferred as the length partition). This is a challenging
task, similar to how traditional grammatical infer-
ence algorithms are tested in the formal language
community. The fact that seq2seq models fail at
this type of generalization has been widely doc-
umented (Anil et al., 2022). Further studies have
suggested that employing large pretrained language
models does not appear to aid compositional gener-
alization (Oren et al., 2020; Qiu et al., 2022b), and
that both structural (Bogin et al., 2022) and length
factors make it particularly challenging. While

1The dataset is available at https://github.com/interact-
erc/AtisAligned.git

compositional generalization has mostly been stud-
ied in the context of semantic parsing, it has also
been observed that models struggle with it in other
tasks (Yao and Koller, 2022). Consequently, these
findings have spawned a plethora of works dedi-
cated to improving compositional generalization
performance (Li et al., 2019; Liu et al., 2020a; Gor-
don et al., 2020; Chen et al., 2020; Nye et al., 2020;
Oren et al., 2020; Zheng and Lapata, 2021; Conklin
et al., 2021; Shaw et al., 2021; Csordás et al., 2021;
Liu et al., 2021a; Zheng and Lapata, 2022; Weißen-
horn et al., 2022; Jambor and Bahdanau, 2022; Lin-
demann et al., 2023b; Zheng et al., 2023; Yin et al.,
2023). In this context, it has been observed that
alignments are highly valuable for compositional
generalization (Shi et al., 2020), and it has been
suggested that parsers may be hindered by the lack
of alignment usage (Zhang et al., 2019). As a re-
sult, efforts have been made to create datasets with
alignment annotations (Shi et al., 2020; Herzig and
Berant, 2021; Locatelli and Quattoni, 2022) and
numerous models have been proposed to leverage
alignment information (Lei et al., 2020; Wang et al.,
2021a; Herzig and Berant, 2021; Liu et al., 2021b;
Sun et al., 2022; Cazzaro et al., 2023; Lindemann
et al., 2023a).

3 Preliminaries

This section introduces the preliminary background
on word alignments and Weighted Finite state Au-
tomata (WFA) necessary to understand ARCHER.

3.1 Word alignments

We assume that we are given a pair of sequences
(x,y) where x = x1, . . . , xn is a sequence of n
tokens and y = y1, . . . ym is a sequence of m to-
kens. Because the concept of token alignments
was originally developed in the context of machine
translation, tokens are usually referred as words.

Formally, a word alignment A, is defined as a
set of bi-symbols, where each bi-symbol b = (xi,
yj) pairs the i-th word in x with the j-th symbol
in y. If a word xi is not aligned to any word in
y, then it is aligned to a special symbol ε and the
resulting bi-symbol is denoted by (xi, ε). Similarly,
if a word yj is not aligned to any word in x, this
will be denoted with the bi-symbol (ε, yj) 2

2Note that this framework allow for 1-to-many and many-
to-1 alignments. For example, if we wish to align words xi, xj

to a single word yk we can choose a ’head word’ among
the x pair and align the ’non-head’ words to ε. In practice,
annotators have shown a large degree of agreement in their
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Figure 1: Example of a sample from the GEOALIGNED
dataset. From top to bottom: first is shown the NL/MR
pair with the corresponding alignments, then the associ-
ated bi-symbols sequence and finally the NL/MR pair
reordered monotonically. Notice that the NL remains
identical while the MR is in a different order.

In the case of semantic parsing the sequence pair
(NL,MR) will consist of a natural language sen-
tence and its corresponding meaning representation.
Hence, NL denotes a sequence of words and MR a
sequence of meaning representation symbols.

A pair of aligned sequences can be mapped to a
sequence of bi-symbols, this is achieved by fix-
ing the order of one of the two sequences and
re-ordering the second sequence according to the
alignments.

For example, take the pair of sequences x =
ABCD and y = FGH and suppose word A is
aligned to F, word B to H, word C to G and word
D is not aligned. Keeping the order of x fixed,
this alignment will be mapped to the sequence of
bi-symbols [(A,F ), (B,H), (C,G)(D, ε)]. If we
extract the x words from the bi-symbols sequence
we obtain x = ABCD but extracting the words of
y would result in y = FHG, where the words H
and G have been re-ordered (Figure 1).

For our semantic parsing data-augmentation
strategy we will be learning a generative model
of aligned NL/MR bi-symbol sequences. In this
case we will maintain the order of the NL sentence
but the order of the MR symbols might differ from
their original MR order.

In fact, it is easy to see that for all NL/MR pairs
that are not monotonically aligned the mapping to
a sequence of bi-symbols will result in at least one
reordering of the MR sequence.

3.2 WFA
A Weighted Finite Automata over an alphabet Σ
is defined as a tuple A = {α1, α∞, {Aσ}} where
Aσ ∈ Rn×n is the transition matrix associated to

choices of head words (Locatelli and Quattoni, 2022)

each symbol σ ∈ Σ and α1, α∞ ∈ Rn are the
initial and final weight vectors. Given a sequence
x = x1, . . . , xn where xi ∈ Σ a WFA realizes the
function:

fA(x) = α⊤
1 Ax1 , · · · , Axnα∞ (1)

A WFA is a recurrent neural network with linear ac-
tivation function, this equivalence has been proven
in Rabusseau et al. (2019).

Due to the linearity of the activation function,
the parameters of this subclass of RNNs can be
estimated in closed-form via what is usually re-
ferred as the spectral method. For more details on
WFAs and their training algorithms we refer the
reader to Balle et al. (2014). We also implement the
optimizations described in Quattoni et al. (2017).

Probabilistic finite state automata are a subclass
of WFAs, thus WFAs can be used to model se-
quence distributions. In this case, the learning al-
gorithm is designed to minimize an l2 loss function
over the observed sub-sequence expectations. That
is why when spectral learning is used to estimate
a (probabilistic) sequence distribution it is usually
described as moment-matching. This nomenclature
refers to the fact that the loss function will attempt
to match the empirical sub-sequence distribution
observed in training. For a more detailed descrip-
tion of WFAs in the context of language modeling,
as well as comparisons to other models, we refer
the reader to Quattoni and Carreras (2019).

We conducted preliminary experiments in which
we explored the possibility of modeling the bi-
symbol sequence distribution with Transformers
and LSTMs. However, we found it challenging due
to calibration problems (Desai and Durrett, 2020).
We also experimented with simpler ngram models,
which not surprisingly also failed since these mod-
els are unable to make proper generalizations from
relatively small training sets. As a result, we made
the decision to use WFAs to model the bi-symbol
sequence distribution. This seemed like the natu-
ral choice since moment matching is specifically
designed for density estimation.

We suspect that the difficulty in performing den-
sity estimation with other deep sequence model
architectures might explain why generative data
augmentation via explicit use of word alignments
has not been attempted before in the literature. That
being said, it is important to note that the corner-
stone of our data-augmentation strategy is to model
and sample from the (aligned) bi-symbol sequence
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Figure 2: Schematic illustration of the ARCHER data augmentation approach. We begin with a set of training data
and utilize word alignment information to extract aligned data. This aligned data is used to train our Generator
and Reorderer models. The Generator model is trained on NL/MR sequences of reordered bi-symbols. On the
other hand, the Reorderer model is trained on MR pairs, which consist of the original MRs and their corresponding
monotonically aligned versions. The Generator outputs data that is then passed through the Reorderer, resulting in
augmented data. This augmented data, along with the training data, is fed into the semantic parser.

distribution. Consequently, we believe it is worth
exploring other density estimation methods to learn
sequence distributions. However, this is outside the
scope of this paper and we leave it for future work.

4 Data augmentation with ARCHER

In this section we present our main contribu-
tion, ARCHER: a two-step data augmentation ap-
proach that improves compositional generaliza-
tion by leveraging a generative recursive sequence
model over aligned bi-symbols. Figure 2 provides
a graphical illustration of our approach.

We assume that we are given a training set T con-
sisting of NL/MR pairs (x, y) which have been an-
notated with word-alignments, mapping NL words
to MR symbols (described in the previous section).
Our objective is to create an additional training set
T ′ by generating new samples (x′, y′). We will
then train a semantic parser using the original train-
ing set T augmented with the additional samples
in T ′. Ideally, the generation process should create
novel patterns that will improve the compositional
generalization of the default semantic parser.

Generator. We start by reordering aligned
NL/MR pairs to enforce a monotonic alignment
between the NLs and MRs tokens. By applying
this transformation to all training pairs in T , we
obtain a dataset Tmonotonic consisting of sequences
of bi-symbols and we use it to train a generative
model of the bi-symbol distribution. We can then

sample from the learned distribution and generate
new bi-symbol sequences.

We choose to model this distribution using
WFAs for two main reasons: (1) WFAs are de-
fined as generative models and can naturally model
the prefix distribution necessary for generation;
(2) since they are recursive they seem the natural
choice to generate longer sequences from a distri-
bution estimated from short sequences. This is im-
portant because our focus is on compositional gen-
eralization, which requires the ability to recombine
known elements to create longer novel structures.
This being said, ARCHER is a general approach and
the essence of the idea is to model and sample from
the bi-symbol distribution estimated from aligned
data: in this sense other models could also be used
to model the bi-symbol distribution.

We now turn our attention to some details on how
we train and sample from the WFA. When training
the WFA we append special beginning <BOS> and
end of sequence symbols <EOS> to every sequence
of bi-symbols. To generate a sequence we initialize
the process with the <BOS> prefix. We continue
to generate new bi-symbols bi by sampling from
the conditional distribution PWFA(bi|b1:i−1), where
b1:i refers to the prefix: [b1, b2, . . . , bi]. In prac-
tice, when sampling we only consider the top-k
bi-symbols with highest probability.

In principle, the generation stops when the spe-
cial <EOS> symbol is generated. However, in order
to bias the process to produce longer sequences we
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fix the conditional probability of <EOS> to 0 un-
til a desired minimum length t is reached. After
generating t bi-symbols we reset the <EOS> prob-
ability to its true value and continue sampling. In
other words, the sample is never cut abruptly. In
appendix C we look at the generation without the t
constraint including experimental results.

After we generate an initial set of samples we
remove all duplicates and samples present in T .
Finally, we observed that simple filtering strategies
can further improve the quality of the generated
samples, this is described in more detail in 4.1.

Reorderer. From the generated bi-symbols we
can extract an NL/MR pair by simply removing
all epsilons. However, since the bi-symbol distri-
bution was trained over a transformed dataset, i.e.
Tmonotonic, the symbols in the MR might not be in
the correct order and cannot be directly used for
data augmentation. To address this problem we use
the word-aligned data to train a re-orderer model
which takes an unordered MR sequence and out-
puts it in the correct order. The re-orderer model is
trained from pairs (MR,MRmono), where MR is
the original sequence and MRmono is the sequence
obtained after the transformation that enforces a
monotonic alignment between the MR and its cor-
responding NL.

More specifically, for the re-orderer model we
train a standard encoder-decoder mBART model.
At decoding time we do not impose any constraints
in the output generation. That is, we don’t enforce
that the output sequence has to be a permutation of
the input. We don’t even require that the re-ordered
MR has the same length as the input MR. Thus
the reordering model is free to add, substitute and
delete symbols of the input MR.

In preliminary experiments we observed that
when given this freedom, the re-orderer model
could rectify some errors made by the generative bi-
symbol model, errors in structure that went beyond
symbol re-ordering. We also experimented with
a constrained decoding strategy that restricts the
outputs to be permutations of the input, however
no significant gain was observed (appendix B).

After running the re-orderer model over the se-
quences sampled from the learned bi-symbol dis-
tribution we obtain the final sequences T ′ that aug-
ment the original sequences in T . Both sets are
then used to train the final semantic parser.

4.1 Filters
As expected, the data generation process is not
error-free and will generate some malformed
NL/MR pairs. Errors can be of different types:
e.g. the NL might be malformed, the MR might
be malformed or they might be both independently
correct but the combination might be wrong. To
improve the quality of the generated samples we
experimented with different filtering strategies.

Given that our bi-symbol generator is a density
estimator, we can compute the probability assigned
to each generated sample. We can then filter out
samples whose probability is lower than a certain
threshold. Alternatively, we could also train addi-
tional density estimators for the NL and the (mono-
tonically transformed) MR sequences separately.
We could then score a sample based on the proba-
bility given by the independent NL or MR models.

It is important to note that although filtering gen-
erated samples based on their probability might
seem natural, it has an important limitation. If we
where to select only the most probable samples, we
run the obvious risk of generating an augmented
set of low sample diversity (relative to the original
training set) that will add no useful novel informa-
tion. Therefore, there is always a trade-off between
the correctness and diversity of the augmented data.

To complement the previous distributional strate-
gies, we also considered a different approach based
on using the re-orderer model for detecting badly
formatted MRs. Recall that the re-orderer is uncon-
strained and can add, delete or substitute symbols
of the generated MR. We observed that while a few
corrections might fix some errors of the generator,
a large deviation in the number of symbols between
the original and the reordered MR tends to signal
that the generated MR is badly formed. Therefore
with an appropriate threshold this can be used to
filter out badly generated samples.

In the experiments we validate the choice of filter
on a development set. Overall, the re-ordering filter
was the best for most data-sets and partitions.

5 Experimental setup

5.1 Datasets
We evaluate our data augmentation approach on
two widely-used semantic parsing benchmarks: the
multilingual GEO dataset and the English ATIS.
Both of these datasets define two standard bench-
marks that are used to evaluate compositional gen-
eralization: (1) the query partition, introduced by
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Finegan-Dollak et al. (2018), is designed to be com-
positional by ensuring that the templates of the test
set MRs are never seen during training; (2) the
length partition, introduced by Herzig and Berant
(2021), assigns the longest MR sequences to the
test. The length partition is known to be the most
challenging and it could be argued that is the most
rigorous, since it forces the parser to learn proper
recursions. In fact, this type of evaluation mim-
ics the classical way in which language models
are evaluated in the formal language community.
The statistics of the datasets after augmentation are
detailed in appendix D.

GEOALIGNED. Locatelli and Quattoni (2022)
extended the popular GEO dataset (Zelle and
Mooney, 1996) with word alignment annotations.
The dataset contains 880 questions about US geog-
raphy annotated with MRs in the FunQL formalism
(Kate et al., 2005). It is available in three languages:
English, Italian, and German, providing a multilin-
gual aspect to our evaluation. We follow Wang et al.
(2021a) in removing brackets.

ATISALIGNED. The original ATIS dataset Dahl
et al. (1994) revolves around flight booking queries
in English and contains 5409 samples. We use
the FunQL formalism. We have augmented the
dataset with word alignment annotations and made
it publicly available. We also removed brackets
from the MRs. Appendix A includes more details.

5.2 Semantic parsing model

As a base semantic parser we use a sequence-to-
sequence transformer model: MBART (Liu et al.,
2020b). This is the multilingual version of BART
and has been shown to give state-of-the-art per-
formance for semantic parsing (Bevilacqua et al.,
2021). We validate hyper-parameters on the de-
velopment set and all the results reported are the
average of multiple runs.

5.3 Data augmentation techniques

ARCHER. Our data augmentation technique pre-
sented in section 4. We normally refer to ARCHER

as using the ground truth alignments, however we
also experiment with automatically induced align-
ments obtained with IBM model 5 (Brown et al.,
1993). We refer to the setting with auotomatic align-
ments as ARCHERIBM. Both the hyper-parameters
of the WFA and the MBART re-orderer were vali-
dated on the dev set.

SELF-TRAINING. As a strong baseline, we con-
sider a self-training approach. One of the motiva-
tions of this baseline is to evaluate what can be
gained from self-training alone (i.e. without lever-
aging word-aligments). In this approach we use the
original training data to train four models:

1. A decoder-transformer trained on NL se-
quences.

2. A decoder trained on MR sequences.

3. A seq2seq encoder-decoder that takes NL
sequences and predicts their corresponding
MRs. This is essentially the base semantic
parser trained on the original data only.

4. A seq2seq encoder-decoder that takes an MR
and predicts a corresponding NL. This is also
trained using the original data but swapping
inputs and outputs.

With these four models we can test two self-
training strategies: generating an NL using the NL
encoder first and predicting its corresponding MR
using the NL to MR encoder-decoder; and gener-
ating an MR using the MR encoder first and then
predicting its corresponding NL.

For each dataset and partition, we validated the
best self training strategy on the development set.
We also applied and validated the filtering strate-
gies. The self-training results reported in the next
section correspond to the best sampling strategy
and filter (chosen in development). In preliminary
experiments we also tried WFAs for models 1) and
2) but without any significant improvements.

GECA Andreas (2020). A method for data aug-
mentation based on identifying fragments of train-
ing examples that appear in similar contexts and
recombining them to generate new data.

SCFG Jia and Liang (2016). A method for ob-
taining data recombination using an induced syn-
chronous context-free grammar.

SUBS Yang et al. (2022). Based on subtree sub-
stitution for compositional data augmentation.

5.4 Evaluation

For evaluation we use the standard exact match
accuracy: the prediction is correct if the predicted
MR is the same as gold.
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Model
GEO ATIS AVG

EN IT DE EN -

Q LEN Q LEN Q LEN Q LEN -

mBART 72.36 27.50 76.59 23.33 56.30 18.20 62.15 28.71 45.64
+ GECA 87.64 29.16 83.57 30.83 65.12 22.97 61.10 27.69 51.01
+ Self-Training 77.07 27.37 81.46 28.21 64.38 23.93 64.91 26.25 49.20
+ SCFG 73.41 31.07 74.47 28.09 59.02 20.23 - - -
+ SUBS 79.74 43.03 78.78 28.80 65.36 25.59 - - -
+ ARCHER 82.11 46.31 82.43 38.33 72.68 31.19 63.31 29.79 55.77
+ ARCHERIBM 81.30 44.16 79.02 30.59 69.51 29.16 62.92 29.63 53.27

Table 1: Exact-match accuracy scores on all compositional partitions. Q stands for the query partition and LEN for
the length partition. The last column, AVG, reports the average of all scores as a single aggregation metric.

6 Results

Table 1 shows the performance of the different data
augmentation techniques on all datasets and com-
positional partitions. We start by examining the per-
formance in the length partition (LEN). ARCHER

outperforms the other methods significantly and
exhibits a substantial improvement over the base
semantic parser. In contrast, the other methods
obtain rather moderate improvements with the ex-
ception of SUBS in English.

Looking at the query partition (Q), we observe
that all the data augmentation techniques lead to
significant improvements over the base semantic
parser with the only exception being SCFG. For
this partition there doesn’t seem to be a clear win-
ner and the different techniques seem to perform
similarly. The only exceptions being GEO-EN for
which GECA is significantly better and GEO-DE
for which Archer is significantly better.

From this experiment we conclude that ARCHER

is an effective data augmentation technique that
can significantly improve the compositional gener-
alization of seq2seq models, especially in length
generalization. These results show that a recursive
generative model can successfully leverage aligned
data and generate samples that are both diverse and
accurate. Section 7 further complements these con-
clusions by evaluating directly the correctness and
diversity of the different augmentation strategies.

Finally, in Table 2, we present the results for the
standard IID partitions. These partitions are less
challenging and do not require compositional gen-
eralization. As expected, the data-augmentation
techniques designed to improve compositional gen-
eralization do not have any significant impact. The

Model GEO ATIS

EN IT DE EN

mBART 87.38 86.67 75.50 85.26
+ GECA 87.49 87.50 74.76 83.02
+ Self-Training 88.33 85.47 75.23 84.96
+ SCFG 84.40 83.69 73.45 -
+ SUBS 85.83 84.28 73.39 -
+ ARCHER 86.42 82.50 74.52 84.37
+ ARCHERIBM 86.60 82.47 74.46 84.15

Table 2: Exact-match accuracy on the IID partitions of
GEOALIGNED and ATISALIGNED.

simple IID partition does not benefit by seeing
novel recombinations since most templates in the
test partition are observed in the original training
partition. Note that the generation is not perfect
and some generated samples can contain errors that
our filtering methods fail to detect. Therefore we
hypothesize that in this case the errors that we in-
troduce are not counterbalanced by the benefits of
our approach and thus we might have some minor
drop in performance.

7 Analysis of Generated Data

In this section, we analyze the quality of the
data generated by three different strategies on
GEOALIGNED. We focus on evaluating the cor-
rectness and diversity of the generated samples.
Correctness ensures accurate representation of de-
sired patterns, enhancing reliability. Diversity aids
compositional generalization, allowing the model
to handle novel combinations effectively. Refer
to Table 8 in Appendix E for some examples of
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ARCHER generations.

7.1 Methodology

Sampling. To analyze data quality we randomly
select samples of different lengths (ranging from
7 to 11). More precisely we select 20 samples for
each length. In total we will evaluate 100 generated
samples for each data augmentation technique.

Correctness. Two annotators3 rated the quality
of the generated NL/MR pairs by answering the
following questions:

1. Is the natural language sentence correct? (NL
column in Table 3)

2. Is the meaning representation correct? (MR
column)

3. Is the combined NL/MR pair correct? (BOTH
column)

We instructed annotators to label nonsensical
sentences such as "How many people live in a
river?" as correct, since its semantic incorrectness
can only be deduced from world knowledge. Since
this might be seen as a soft definition of correctness,
annotators were also asked: Is the pair semantically
correct? (SEM column). Although this annotation
task might seem complex, annotators showed a
high degree of agreement, disagreeing on around
15% of the examples. Each disagreement was dis-
cussed and resolved by reaching a consensus.

Diversity. For all samples in which both the NL
and the MR were correct, we measure diversity us-
ing the BLEU metric (Papineni et al., 2002). BLEU
scores range from 0 to 1, indicating similarity be-
tween a target sequence and a reference set. We as-
sess diversity in two ways: inter-diversity (compar-
ing samples to the training data) and intra-diversity
(examining diversity within the generated set).

To calculate both diversity measures, we com-
pare each generated sample against all other sam-
ples in the reference set. The highest BLEU score
is recorded, and the average score across all gen-
erated samples is calculated. By using the maxi-
mum BLEU score, we capture the closest similarity
between the generated sample and the reference
samples. The final diversity score is obtained by

3As annotators we chose students that had previous experi-
ence with the datasets since the annotation task is not trivial.
To render the process unbiased, we shuffled samples from the
different generations methods, so that an annotator had no way
of telling which method produced a specific sample.

Approach NL MR BOTH SEM

GECA 0.49 0.48 0.4 0.36
Self-Training 0.66 0.26 0.26 0.25
ARCHER 0.45 0.61 0.43 0.38

Table 3: Proportion of GEO augmented examples la-
beled as correct by all annotators.

Approach NL MR

Inter Intra Inter Intra

GECA 0.31 0.39 0.45 0.49
Self-Training 0.35 0.42 0.54 0.61
ARCHER 0.43 0.52 0.52 0.58

Table 4: Diversity scores of GEO augmented examples.

subtracting the average score from 1. We run this
procedure on the NLs and the MRs separately so
that we can estimate both the diversity of natural
language sentences and meaning representations.

7.2 Overview of diversity and correctness

Table 3 presents the results of our data augmenta-
tion correctness analysis. ARCHER generates the
most correct sample pairs (BOTH) and the best
MRs. For SEM, GECA closely trails ARCHER,
suggesting that both methods successfully capture
contextual information related to the recombined
elements. Notably, Self-Training outperforms other
approaches in NL correctness, likely due to its uti-
lization of pre-trained embeddings, which provides
a natural advantage in generating coherent NLs.

Table 4 shows the diversity scores for the three
augmentation methods. ARCHER demonstrates sig-
nificantly higher inter- and intra-diversity. This is
most evident in the NL scores. In terms of MRs,
Self-Training produces more diverse samples, but
ARCHER lags behind by just 0.03 points. Never-
theless, when considering correctness (Table 3), it
is evident that a majority of the Self-training MRs
are incorrect, thus showing that ARCHER offers the
best trade-off of correctness and diversity. Over-
all, considering both correctness and diversity, our
analysis shows that ARCHER yields better samples.

8 Conclusion

This paper introduced ARCHER, a novel data aug-
mentation method that utilizes word alignment in-
formation in a two-step process. First, it generates

376



a (monotonically aligned) NL/MR pair, then it re-
orders the MR. We evaluated our method on mul-
tilingual semantic parsing datasets and observed
consistent improvements in the compositional gen-
eralization of the base semantic parser, especially in
length generalization. We also presented a comple-
mentary analysis of the generated data that showed
that ARCHER generates more accurate and diverse
samples than other augmentation techniques.

Limitations

One limitation of ARCHER is that it is relatively
computationally demanding to run, since it involves
training multiple models on top of the base seman-
tic parser, including the generator, the reorderer,
as well as models for the filters. While this is true
also for the self-training baseline that we compared
with, GECA is a simpler rule-based approach that
does not require as many computational resources.

Another limitation of our work is that we fo-
cused solely on the FunQL formalism for the MRs.
Future research should explore the application of
the ARCHER technique to additional datasets, in or-
der to determine if the performance improvements
observed are consistently applicable across differ-
ent formalisms. The reason why we primarily fo-
cused on FunQL is partly due to the scarcity of
word alignment annotations available for semantic
parsing datasets in alternative formalisms.
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A ATISALIGNED

ATISALIGNED is an extension of the popular ATIS

benchmark (Hemphill et al., 1990), in its seman-
tic parsing version with FunQL MRs. In ATI-
SALIGNED, 5410 NL and MR pairs are annotated
by a team of four annotators for word alignments.
Two annotators labeled the entire dataset, while the
other two labeled a subset of 100 examples each,
in order to examine the level of agreement of the
labels.

Annotators were provided with an initial align-
ment, which was automatically generated using
IBM Model 5 (Brown et al., 1993), displayed as
bi-symbols of NL and MR tokens. They were then
tasked with correcting the alignment. On average,
annotators reported having to correct around 80%
of the alignments. However, most of the correc-
tions were minor and generally involved at most
4 simple swaps per example, which resulted in a
faster annotation process compared to annotating
alignments from scratch. We also found that an-
notators displayed a high level of agreement in
the choice of head words. Disagreements were
resolved by taking the majority vote among anno-
tators.

In terms of the type of word alignments we ob-
tained, we found that just over 9% of the examples

are monotonic in this dataset, indicating that ATI-
SALIGNED contains more complex patterns than
GEOALIGNED, which contains more monotonicity.

B Constrained reorderer

In Table 5 we present the results of experiments
where we constrain the re-orderer in the augmenta-
tion process. Specifically, our constrained decoding
strategy restricts the output of the re-orderer to be a
permutation of the input. In this way the re-orderer
can not add, substitute or delete symbols of the in-
put MR. Note also that in doing so the filter based
on the re-orderer has no effect since the output
MR will always have the same number of sym-
bols as the input. We run these experiments on the
GEO dataset and leave everything else unchanged
in our pipeline. The constrained decoding strategy
obtains improvements only on two of the IID par-
titions while being inferior on all the other cases,
especially in the compositional partitions. These
results further justify our architectural choice of
leaving the re-orderer unconstrained.

C Analysis of length constraint

In our work we set ARCHER generation to have a
minimum length constraint. We chose to do this
in order to bias the process to produce longer se-
quences. We now show in this section that this is
not the reason why we obtain very good perfor-
mance on the length splits. We do so by showing
the results of two experiments:

• ARCHER without the usage of a minimum
length constraint. Note that in this case we
use the same amount of augmented samples
as ARCHER with the constraint.

• The GECA and Self-Training comparison
where we only keep the generated samples
that pass the minimum length constraint.

We report the results in table 6. We can observe
that the performance between the same method
is usually not dissimilar, with the exception of
GECA in the query partition where adding the
length constraint seems to hamper results. Besides
that, ARCHER continues to perform well even with-
out the length constraint.

D Augmented datasets

In table 7 we present the size of the augmented
dataset for each partition after the filtering has been
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Model EN IT DE

IID Q LEN IID Q LEN IID Q LEN

ARCHER 86.42 82.11 46.31 82.50 82.43 38.33 74.52 72.68 31.19
w. constraints 85.71 79.18 38.03 84.04 79.02 32.44 74.87 71.37 29.28

Table 5: Comparison on all partitions of the GEO dataset of ARCHER with unconstrained reorderer vs ARCHER
with a constrained reorderer.

Model
GEO ATIS

EN IT DE EN

Q LEN Q LEN Q LEN Q LEN

Without length constraint

GECA 87.64 29.16 83.57 30.83 65.12 22.97 61.10 27.69
Self-Training 77.07 27.37 81.46 28.21 64.38 23.93 64.91 26.25
ARCHER 84.87 43.93 82.11 39.64 70.89 30.71 63.66 29.15

With length constraint

GECA 77.72 27.02 80.32 31.97 60.97 24.28 60.48 26.22
Self-Training 74.30 28.81 75.60 29.28 60.16 24.40 61.83 28.15
ARCHER 82.11 46.31 82.43 38.33 72.68 31.19 63.31 29.79

Table 6: caption.

Dataset IID Q LEN

GEO EN 18332 17119 9261
GEO IT 19669 16720 11218
GEO DE 12121 16745 14330
ATIS 15136 15838 9529

Table 7: Sizes of the augmented datasets after filtering
has been applied.

applied. For GEO we generate 40000 new samples
and for ATIS 100000.

In Figure 3 we show the distribution of the
lengths of the generated samples. We consider the
english length partition of GEO and generate them
with a minimum length threshold of 7. The graph
includes only those samples that have successfully
passed the filtering step. This shows that our gener-
ation method is capable of producing longer sam-
ples to augment the dataset.

E Example of ARCHER generations

Table 8 reports some examples of NL and MR
pairs generated by ARCHER. We show examples
that have been labeled for correctness differently by

Figure 3: Distribution of the lengths of the augmented
samples in the english length partition of GEO after
filtering has been applied.

the annotators. These include: a correct example,
where both the NL and MR are deemed correct; an
incorrect example; one where the MR is correct, but
the NL is not; and one where the NL and MR are
both correct, but the result is nonsensical according
to the semantics of the sequences. Additionally,
we show a correct example that showcases the abil-
ity of ARCHER to generate longer sequences with
accurate recursions.
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Correct generation
NL: what’s the largest of the cities which are in maine
MR: answer(largest(city(loc_2(stateid(maine)))))

Incorrect generation
NL: what capital is the population of texas by state
MR: answer(capital(population_1(stateid(texas))))

Correct MR and incorrect NL
NL: what state has the highest population average urban population density
MR: answer(largest_one(density_1(state(all))))

Correct except semantically
NL: what is the biggest state in the state of nevada
MR: answer(largest(state(loc_2(stateid(nevada)))))

Correct recursion
NL: what states border states that border the state that borders utah
MR: answer(state(next_to_2(state(next_to_2(state(next_to_2(stateid(utah))))))))

Table 8: Examples of ARCHER generations.

F Computational details

mBART has around 610 million parameters while
the WFA around 30 million (could be less depend-
ing on number of states). We run our experiments
on Nvidia V100 gpus for an estimated total time
of 1000 hours. The WFA was instead run on cpu.
For mBART we employ the implementation of the
HuggingFace library (Wolf et al., 2020), specifi-
cally facebook/mbart-large-50. We validate hyper-
parameters on the development set, usually the best
configuration consists in 25 epochs, a batch size
of 4 and a learning rate of 5e−5. All the results
reported are the average of multiple runs.
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