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Abstract
The escalating debate on AI’s capabilities war-
rants developing reliable metrics to assess ma-
chine “intelligence.” Recently, many anecdo-
tal examples were used to suggest that newer
large language models (LLMs) like ChatGPT
and GPT-4 exhibit Neural Theory-of-Mind (N-
ToM); however, prior work reached conflicting
conclusions regarding those abilities. We in-
vestigate the extent of LLMs’ N-ToM through
an extensive evaluation of 6 tasks and find that
while LLMs exhibit certain N-ToM abilities,
this behavior is far from being robust. We
further examine the factors impacting perfor-
mance on N-ToM tasks and discover that LLMs
struggle with adversarial examples, indicating
reliance on shallow heuristics rather than ro-
bust ToM abilities. We caution against drawing
conclusions from anecdotal examples, limited
benchmark testing, and using human-designed
psychological tests to evaluate models.

1 Introduction
Theory of Mind (ToM) is the ability to understand
that other people have thoughts, beliefs, and emo-
tions that differ from one’s own (Wimmer and
Perner, 1983). As ToM is inherently linked to hu-
man cognition, imbuing machines with capabilities
that mimic or resemble ToM has the potential to
lead to the “ELIZA effect” (Weizenbaum, 1976),
wherein human-like intelligence or even sentience
and consciousness is incorrectly ascribed to the ma-
chine (e.g., Kosinski, 2023; Bubeck et al., 2023).

In light of these possibly illusory ToM abilities,
there is a pressing need to develop robust metrics
for assessing Neural-ToM (N-ToM) in machines.
This is particularly crucial given the escalating
stakes of the debate on the extent to which ma-
chines possess ToM-like abilities and the potential
ramifications of overblown claims in AI.1,2

* These authors contributed equally to this work.
1https://futureoflife.org/open-letter/

pause-giant-ai-experiments/
2https://amcs-community.org/open-letters/

Two recent papers addressed whether Large Lan-
guage Models (LLMs; Brown et al., 2020; Bom-
masani et al., 2021; Zhao et al., 2023) have a ToM,
and came to opposite conclusions: Sap et al. (2022)
shows they lack this ability and Kosinski (2023)
claims this ability has emerged in the newer mod-
els spontaneously. The latter was criticized for
its flawed methodology (Marcus and Davis, 2023).
Ullman (2023) further showed that simple changes
to the ToM questions break LLMs. But to para-
phrase the saying, hype gets halfway around the
world before rigorous experiments put on their
boots; other researchers continue to spread the
word about N-ToM, claiming that GPT-4 “has a
very advanced level of theory of mind” based on a
few anecdotal examples (Bubeck et al., 2023).

Do LLMs have robust N-ToM? This paper aims
to address the discrepancy and limited scope of pre-
vious work (that each tested 2 tasks) by performing
an extensive evaluation on 6 tasks targeting various
aspects of ToM. We also experiment with differ-
ent probing methods (i.e., generative QA format
vs. probability of answer choices). We find that
contemporary LLMs demonstrate certain N-ToM
abilities, but these abilities are not robust (§4).

ToM or Spurious Correlations? We investigate
through a series of experiments the factors influ-
encing performance on N-ToM tasks. We show
that LLMs perform worse on datasets that were de-
signed to prevent annotation artifacts. We also en-
hanced the dataset originally proposed by Kosinski
(2023) to incorporate adversarial examples inspired
by Ullman (2023). We find that the performance of
LLMs decreases for adversarial examples, suggest-
ing that LLMs don’t have robust ToM abilities but
rather rely on shallow heuristics (§5).

We summarize these findings and additional in-
sights in §6. In particular, we warn against drawing
conclusions from anecdotal examples, testing on
a few benchmarks, and using psychological tests
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designed for humans to test models.
Our contribution: (1) to contribute to the ongo-

ing discussion regarding the capabilities of LLMs.
Our work presents the largest and most compre-
hensive quantitative analyses of ToM to date and it
reproduces existing experiments as well as presents
many novel results. (2) we also created two new
test sets. Those test sets are created by experts and
focus on high-quality adversarial examples that
point out the use of shallow heuristics (“Clever
Hans”) by LLMs and that they are not negligi-
ble. (3) We caution against drawing conclusions
from anecdotal examples, limited benchmark test-
ing, and using human-designed psychological tests
to evaluate models. The consequences of the suc-
cess of psychological tests do not straightforwardly
transfer from humans to models.

2 Background: ToM and Clinical Tests
ToM has a long history starting in philosophy
(Lewis, 1966) and later in psychology and cogni-
tive science (Premack and Woodruff, 1978). ToM
involves understanding mental states, beliefs, de-
sires, intentions, and emotions of the self and of
others. Clinical psychology tests were developed
to test ToM abilities in humans, such as the false
belief and faux pas tests detailed here.

2.1 False Belief Test
In a false belief test (Wimmer and Perner, 1983)
the examinee is told a story in which a character
in the story is exposed to partial information and
therefore mistakenly believes in something that is
not true (“false belief”) in contrast to the listener
who is exposed to the full story.

A widely used clinical psychology task to assess
false belief understanding is the Sally–Anne Test
(Baron-Cohen et al., 1985) or unexpected transfer.
In this test, Sally has a basket, and Anne has a box.
Sally puts a marble in her basket and leaves the
room. Anne takes the marble out of the basket and
puts it in her box. The examinee is asked about
first order belief, i.e. where will Sally look for
her marble?; about the reality, i.e. where is the
marble?; and about their memory, i.e. where was
the marble in the beginning?.

The answers are that Sally will look in the basket,
where she left the marble. Sally’s belief is false
because she is unaware of the marble’s relocation
to the box. However, a listener exposed to the entire
story knows that the marble is no longer in Sally’s
basket and that Sally will look in the wrong place.

In more complex versions, Second Order Belief
question would be, where does Anne think Sally
will look for her marble?

In a different version of a false belief task, known
as the Smarties Test (Perner et al., 1987), the pro-
tagonist is dealing with unexpected content, i.e.,
unaware of the actual contents of a container be-
cause of false labeling.

2.2 Faux Pas Test
Faux Pas occurs when “a speaker says some-
thing without considering if it is something that
the listener might not want to hear or know, and
which typically has negative consequences that
the speaker never intended” (Baron-Cohen et al.,
1999). An example of a faux pas situation is when
a guest tells their hosts that they “like cakes except
for apple pie”, without realizing that the hosts have
made an apple pie for them. The complexity of
the situation depends not only on the content of
the statement (“except for apple pie”) but also on
the context in which it was made (e.g., the host
had made an apple pie and the guest was unaware).
Faux pas is the “uh-oh!” emotion most people
would feel when they reveal the reality of the con-
text. In this context, the statement wouldn’t be
problematic if the hosts made a cheesecake instead.

In the original test, the subject is told 10 stories
that contain faux pas. At the end of each story,
the subject is asked 4 questions: detection - In the
story did someone say something that they should
not have said?; identification - What did they say
that they should not have said?; And two questions
that differ by story: comprehensive - e.g., Where
does the event take place?, and false belief - did
they know or remember that?

2.3 From Human Tests to Machine Tests
Studies have explored the use of NLP techniques
to model basic ToM skills. For example, in de-
tecting mental states and emotions (Tausczik and
Pennebaker, 2010; Guntuku et al., 2017; Gordon
and Hobbs, 2017; Rashkin et al., 2018a,b; Shapira
et al., 2021) or by generating a humorous response
when the interlocutor is in a playful mood (Shani
et al., 2022; Shapira et al., 2023a). Recent work is
focused around creating datasets testing whether
and to what extent models have ToM (see §3). It is
important to note that the consequences of the
success of these tests do not straightforwardly
transfer from humans to models (see §6). One
may say that it looks like a discrepancy - what
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Dataset Inspired by Theory/Test Test
Size

Construc
-tion

Example

Triangle
COPA
Gordon
(2016)

Interpreting the social be-
haviour of fictional charac-
ters

100 Experts A circle is in the house moving around. A triangle bursts in through the door. The circle
turns around and freezes. How does the circle feel?
(a) The circle is surprised by the triangle’s sudden entrance into the room.
(b) The circle is excited to see the triangle.

SocialIQa
Sap et al.
(2019)

Reasoning about motiva-
tions, what happens next
and emotional reaction

400
random
sample
out of
37,588

Crowd-
sourcing

In the school play, Robin played a hero in the struggle to the death with the angry villain.
How would others feel afterwards?
(a) sorry for the villain
(b) hopeful that Robin will succeed
(c) like Robin should lose

ToMi
Le et al.
(2019)

Unexpected transfer task,
first and second order false
belief; (Baron-Cohen et al.,
1985)

400
random
sample
out of
above
1000

Synthetic Jackson entered the hall. Chloe entered the hall. The boots is in the bathtub. Jackson exited
the hall. Jackson entered the dining_room. Chloe moved the boots to the pantry.
(Memory) Where was the boots at the beginning? (bathtub)
(Reality) Where is the boots really? (pantry)
(First order) Where will Chloe look for the boots? (pantry)
(Second order) 7 Where does Chloe think that Jackson searches for the boots? (bathtub)

ToMi’
This paper,
based on
ToMi ad-
justments

180
questions
30
stories

Experts <Same story as in ToMi>
(Memory) At the beginning, the boots were in the (bathtub)
(Reality) The boots are really in the (pantry)
(First order) Chloe will look for the boots in the (pantry)
(Second order) Chloe thinks that Jackson searches for the boots in the (bathtub)

epistemic
_reasoning
Cohen
(2021)

Verbs, factive and non-
factive, that describe epis-
temic mental states; intra-
personal, inter-personal and
inference reasoning; (Wim-
mer and Perner, 1983; Hin-
tikka, 1962)

2000 Experts
with 10
templates

Premise: John knows that Ann thinks that there is milk in the kitchen.
Hypothesis: Ann thinks that there is milk in the kitchen. (Entailment = 1)
Hypothesis: John thinks that there is milk in the kitchen. (Entailment = 0)

Premise: John thinks that Ann knows that there is milk in the kitchen.
Hypothesis: Ann thinks that there is milk in the kitchen. (Entailment = 0)
Hypothesis: John thinks that there is milk in the kitchen. (Entailment = 1)

Adv-CSFB
This paper,
based on
Kosinski
& Ullman
(2023)

Unexpected content or
transfer task, integrate
commonsense reasoning,
first-order false belief;
(Baron-Cohen et al., 1985;
Perner et al., 1987)

183
questions
40
stories

Experts On the shelf, there is a bottle. It is full of beer and the label on this bottle says “beer”. Mark
walks into the room looking for beer and notices the bottle. He has never seen it before. He
reads the label.
(a) He opens the bottle and looks inside, He can clearly see that it is full of (beer)
(b) He believes that it is full of (beer)
(c) He calls his friend to tell them that he has just found a bottle full of (beer)

FauxPas
-EAI
Shapira
et al.
(2023b)

Recognition of faux pas
(Baron-Cohen et al., 1999)

176
questions
44
stories

Experts
__and
AI+Experts

Jeff was in an interview. When he finished the interview he sank into a couch in the lobby.
Sarah and Tim, the executives who interviewed him, went out of the room and into the lobby
while Sarah said: “He asked for 179K, could have asked for much more. We need to make
him an offer quickly at the salary he asked for”. Tim saw Jeff and said “Oh, goodbye”.
(Faux Pas) In the story did someone say something that they should not have said? (Yes)
(Identification) What did they say that they should not have said? (“He asked for..)
(Comprehensive) Who was interviewed? (Jeff)
(False Belief) Did Sarah know Jeff is sitting on one of the couches in the lobby? (No)

Table 1: Theory of Mind (ToM) datasets used in this work.

would be the point of testing ToM tasks if there is
no direct transfer between human and LLMs. Half
of our tests aren’t meant for humans. In addition,
ultimately, we argue that when LLMs achieve pos-
itive results on benchmarks designed for humans,
we should be careful about interpreting them as
“LLMs have this human capability.” To that end,
we used these tests designed for humans to show
that the performance of LLMs is sensitive to the
introduction of adversarial examples, which indi-
cates reliance on shallow heuristics and/or famil-
iarity with specific examples from their pretraining
(as opposed to N-ToM). As a general recommenda-
tion, we think future dataset creators should take
this in mind and not blindly apply tests designed
for humans to models.

3 Data

We used all datasets listed in Table 1 in our exper-
iments. A brief description of each dataset is in

Appendix §7.3. The creation of ToMi’ (based on
ToMi) is described immediately after ToMi (§7.3).
Below is the creation of Adv-CSFB (§3.1). 3

3.1 Creation of Adv-CSFB
Inspired by the disagreeing conclusions reached by
prior work, we introduce the ADVersarial Common-
Sense with False-Belief (Adv-CSFB) dataset. Adv-
CSFB contains 110 examples of the unexpected
contents task and 73 examples of the unexpected
transfer task (§2.1). Each manually-created ex-
ample in the dataset consists of a short paragraph
describing two objects O1 and O2, and is followed
by questions pertaining to reality, i.e. whether a
certain container contains O1 or O2, and the pro-
tagonist’s belief regarding the content.

The examples in Adv-CSFB are categorized to
false belief, i.e. the original examples from ToM-

3The code and data is available at: https://github.com/
salavi/Clever_Hans_or_N-ToM
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k (Kosinski, 2023), true belief, and adversarial
examples inspired by Ullman (2023).

False Belief. In the false-belief examples from
Kosinski (2023), the protagonist’s belief about the
container’s contents is different from its actual con-
tents. The examples are variants of the correspond-
ing original tests, e.g., the unexpected contents ex-
amples are variants of the Sally-Anne test. Notably,
Kosinski only created false-belief scenarios.

True Belief. For a more fair evaluation setup, we
enhance the unexpected contents task with true
belief examples, i.e. in which the protagonist’s
belief about the content of the container is the same
as its actual contents. We do so by modifying each
of the false belief examples such that the label now
indicates the true content of the container, O1. We
mention the alternative content O2 in a way that
doesn’t change the answer, e.g. Mark walks into
the room looking for O2 but finds a bag with O1

labelled as “O1”. One author of this paper created
a variation for each applicable example, which was
then verified by another author.

Adversarial Examples. Ullman (2023) showed
that LLMs that achieve near-perfect performance
on the false belief examples fail to solve a number
of adversarial examples where new information is
introduced. In particular, LLMs still predict false
belief even when new information suggests that
the protagonist should know the truth. For exam-
ple, the LLM predicts that a protagonist looking
at a bag full of popcorn that is labelled as “choco-
late” believes the bag is full of chocolate, even if
the bag is transparent or if the protagonist cannot
read. Ullman’s counter examples are sufficient in
showing that LLMs did not robustly acquire ToM
abilities. To further quantify the LLMs’ abilities,
we created up to 4 additional examples for each of
the false belief examples, following each of the al-
terations suggested by Ullman (2023): transparent
access, uninformative label, trustworthy testimony,
and late labels for the unexpected contents task,
and transparent access, in→on, trustworthy testi-
mony, and other person for the unexpected transfer
task (see Appendix 7.2 for an example for each
variation). Again, the examples were created by
one author and verified by another.

4 Experiments & Results

To investigate the ToM abilities of LLMs, we ex-
plore various aspects. The first experiment presents

Figure 1: Accuracies of top-performing models on each
of the ToM tasks, compared to a most frequent class
(MFC) baseline. For several datasets, the best model
achieves performance comparable to the MFC baseline,
suggesting very limited ToM ability.

a meta-evaluation of 15 LLMs evaluated on mul-
tiple ToM-related datasets in a zero-shot manner
(§4.1).4 We then investigate to what extent LLMs
are sensitive to the probing method (§4.2). We
examine the performance of 15 different LLMs.
LLMs’ list and technical details regarding prompt-
ing and decoding parameters in Appendix 7.4.

4.1 How well do LLMs perform on ToM
tasks? Meta-Evaluation

We conducted an evaluation of the performance of
15 LLMs in a zero-shot manner (Liu et al., 2021)
on all ToM-related datasets considered (§3), and
compare to a most-frequent-class (MFC) baseline
that always predicts the most frequent answer in
each dataset. The summary of the results is pre-
sented in Figure 1, and the complete results, the
exhaustive accuracy for all LLMs, in Table 2.

Our findings demonstrate that while some
LLMs achieve near perfect accuracies on some
datasets (e.g., TriangleCOPA with 96% accuracy
by flan-t5-xxl), others datasets remain challeng-
ing for LLMs with considerably lower performance.
For instance, the best performing LLM on the Faux-
PasEAI dataset achived 27% accuracy which is
inferior to a simple most-frequent-class baseline.

Notably, the best LLMs performance seems cor-
related to the dataset’s age (i.e., the older the
dataset, the better the performance). This trend
could be attributed to the fact that the increasing
sophistication of LLMs is driving the creation of
more challenging datasets, prompting researchers

4In the initial stage of the research, we tested for varied
temperature settings {0, 0.01, 0.1, 0.2, 0.3, 0.6, 0.9, 1}, each
setting 100 times with different random seeds. This phase
helped us determine that the most preferable results came
from fixing the temperature to zero (the results and the expla-
nation are detailed in Appendix 7.5). We later continued for
simplicity with the zero fixed temperature results only.
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Model Performance over Theory of Mind Datasets
Model Triangle SocialIQa ToMi Epistemic Adv-CSFB FauxPas

COPA Reasoning EAI

MFC 52 36 56 63 32, 25 55, 30

Flan-ul2 95 84 81 60 65, 23 60, 07
Flan-T5-xxl 96 86 75 57 60, 17 68, 18
Flan-T5-xl 92 81 81 61 65, 21 68, 14
Flan-T5-large 92 79 78 44 61, 24 53, 07
Flan-T5-base 84 67 81 52 58, 36 52, 07
Flan-T5-small 58 46 52 54 42, 26 58, 07
gpt4-0314 94 79 70 43 75, 57 74, 27
gpt-3.5-turbo-0301 84 67 70 45 70, 42 73, 25
text-davinci-003 95 60 67 59 79, 61 67, 07
text-davinci-002 92 19 39 58 76, 53 63, 14
j2-grande-instruct 06 08 00 37 64, 47 58, 00
j2-jumbo-instruct 48 04 13 47 63, 45 45, 00
j2-grande 75 45 50 63 57, 40 45, 00
j2-jumbo 68 40 54 63 57, 36 38, 00
j2-large 58 38 53 63 57, 41 31, 00

Table 2: Accuracy (%) of LLMs on different datasets compared to a most frequent class baseline. For Adv-CSFB
and FauxPas-EAI we report two metrics: question level and story level.

LM MC CoT

Si
qa

davinci-003 55 60 68
GPT-3.5 - 67 69
GPT-4 - 79 72

To
M

i davinci-003 67 67 71
GPT-3.5 - 70 73
GPT-4 - 70 73

Table 3: Accuracy of the recent GPT models on a ran-
dom sample of 400 instances from SocialIQa (Siqa) and
ToMi. The probing method affects the performance. For
example, in Siqa there is a 7% difference in the accuracy
of GPT-4 between MC-probing and CoT-probing.

to set a higher bar. Another possibility is that LLMs
have had more opportunities to train on the older
datasets, resulting in better performance (see §7.6).

Based on this meta-evaluation, our results sug-
gest are that while some models exhibit strong ToM
abilities on some datasets, no model robustly ex-
hibits ToM on all datasets. These findings are con-
sistent with Sap et al. (2022) and Ullman (2023).

4.2 How sensitive are LLMs to the probing
technique?

We examine the effect of the different probing meth-
ods detailed below on LLM performance. Certain
techniques have shown to be superior to others
(e.g., Wei et al., 2023). However, we argue that to
claim that a model has N-ToM abilities, it is essen-
tial that it performs well across probing techniques.
On one hand, the most efficient method can poten-
tially reveal latent capabilities, while on the other
hand, there is a reasonable expectation for LLMs

to succeed in the tasks regardless of the probing
approach used to extract information.

LM-probing predicts the option with the highest
probability (Brown et al., 2020; Sap et al., 2022).

MC-probing prompts the LLM with the context,
question, and answer choices, and asks it to gener-
ate the answer in the form of “a, b, c”. This method
is applicable for LLMs such as GPT-3.5 and GPT-4
that don’t produce probabilities (Hu et al., 2022).

CoT-probing asks the model to first “reason”
about the question step-by-step and then give a
final answer, which generally contributes to better
performance (Wei et al., 2023).5

Table 3 shows that the probing techniques in-
fluence the LLM performance on both datasets.
CoT generally demonstrates enhanced performance
(Camburu et al., 2018; Shwartz et al., 2020; Wei
et al., 2023). Nonetheless, there are cases where
this trend does not hold, since the reasoning may
result in erroneous conclusions (Jung et al., 2022).

5 Clever Hans vs. Generalized Reasoning

We conducted a series of experiments to enhance
our understanding of the factors influencing per-
formance in the context of N-ToM tasks. The re-
search question that guided us was: Do the models
that solve the tasks possess a general ability or do
they rely on memorization and shallow heuristics
(“Clever Hans”; Kavumba et al., 2019)?

5We used zero-shot without providing reasoning examples.
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Dataset ToMi’ ToM-k

Subset All question No second
order All questions

text-davinci-003 10 21 87
GPT-3.5 27 48 65
GPT-4 20 52 87

Table 4: Comparison of LLMs’ accuracy on ToM-k vs.
ToMi’. Both datasets examine the unexpected transfer
task. ToM-k contains only first-order questions. ToMi’
also contains simple alternations such as omission or
duplication of information, and second-order questions.
The subset “No second order” was created manually to
better compare to ToM-k dataset. Lower accuracy sug-
gests the dataset is more robust to spurious correlations.

We showed the existence of shallow heuristics
and that they are not negligible. Our investiga-
tions, especially with ToMi’ (§5.1) and Adv-CSFB
(§5.2) are meant to isolate the use of heuristics by
design by introducing adversarial examples that
could reveal the LLMs’ use of heuristics. We fol-
low extensive prior work on using adversarial exam-
ples to show reliance on spurious correlations (e.g.,
Hendrycks et al., 2021; Wu et al., 2021; Kaushik
et al., 2019; Geirhos et al., 2020; Glockner et al.,
2018).

5.1 Do LLMs Rely on Spurious Correlations?
ToMi and ToM-k datasets examine the unexpected
transfer task. While ToM-k contains variants of
the original Sally-Annie test, ToMi also contains
simple alternations such as omission or duplication
of information that create negative examples (e.g.,
Appendix 7.1) and second-order questions.

To ensure a fair comparison between the ques-
tion answering format of ToMi and the sentence
completion format of ToM-k (see the effect of prob-
ing methods on performance in §4.2), we adjusted
ToMi to match the sentence completion format (de-
tails about the adjustments can be found at §7.3).
Additionally, we analyzed the results separately for
second-order questions in order to facilitate a more
accurate comparison with the ToM-k dataset.

Table 4, shows significantly lower scores in
ToMi’. The notable discrepancy between the perfor-
mance of the two datasets suggests that the model’s
abilities are not based on generalization. Instead
of true understanding of the problem at hand, such
as accurately determining one’s exact thoughts, the
model might be recognizing patterns from the Sally-
Anne story in other ToM-k examples and generat-
ing responses based on those patterns. Conversely,
the performance on ToMi’ is worse because it is
more robust to spurious correlations.

5.2 Is N-ToM Robust to Adversarial Changes?

To test the robustness of the LLMs’ N-ToM, we test
the performance of GPT models on each of the cate-
gories in Adv-CSFB (§3.1), using MC-probing. To
ensure correct formatting and prevent unintended
outputs (e.g., explanation of why the answer is cor-
rect), we prepend to the prompt one out-of-domain
example from ToMi, which has a similar format.
We report the average accuracy of questions 2 and
3, both focusing on an agent’s belief rather than
objective truth. Finally, to ensure maximum repro-
ducibility of the results, we set the temperature to 0.
Our main finding is that LLMs don’t exhibit ro-
bust performance across different categories. In
particular, later LLMs excel in some categories
while completely failing on others. Details below.

Figure 2 illustrates the performance of GPT
models on different categories within the unex-
pected transfer segment of Adv-CSFB. It is evi-
dent that both false belief (i.e. the original exam-
ples from ToM-k) and trusted testimony (i.e., some-
one tells the protagonist that the object has been
moved) have improved in newer models. GPT-
4 achieves 97.5% and 83.3% on the two cate-
gories respectively. Nevertheless, there has been a
gradual decline in the performance of subsequent
models on other categories, such as other person
(from 93.8% by davinci-002 to 68.8% by GPT-
4), in→on (from 71.4% by davinci-002 to 0% by
GPT-4), and transparent access (from 66.7% by
davinci-002 to 0% by GPT-4).

Figure 3 showcases the performance of the GPT
family on various categories within the unexpected
contents segment. It becomes apparent that, akin
to the unexpected transfer segment, newer mod-
els such as GPT-3.5-Turbo and GPT-4 demonstrate
improved performance in handling samples that
involve false belief and transparent access (i.e.,
the container is transparent). Furthermore, nearly
all models since text-davinci-002 exhibit strong
performance on true belief samples. However, both
GPT-3.5-Turbo and GPT-4 experience a substantial
decline in performance compared to their earlier
counterparts when it comes to transparent access,
late label (e.g., the protagonist is the one who wrote
the label), and uninformative label (i.e., the protag-
onist can’t read the label).

We regenerated the responses multiple times,
consistently obtaining similar results, so we can
conclude that the models exhibit confidence in their
predictions, even if they are incorrect. It is impor-

2262



Figure 2: Performance of GPT models on various categories within the unexpected transfer segment of Adv-CSFB.
Results are the average accuracy of question 2 (e.g., Maria thinks that the bananas are in the _) and question 3
(e.g., When Maria comes back, she will first look for the bananas in the _), which focus on agent’s beliefs rather
than objective truth. Notably, GPT-4 achieves an accuracy of 97% on the subset of false belief samples (original
examples from ToM-k), while failing on adversarial samples as transparent access or relationship change (in→on).

Figure 3: Performance of GPT models on various categories within the unexpected content segment of Adv-CSFB.
The results are average accuracy of question 2 (e.g. He believes that it is full of _) and question 3 (e.g. He calls his
friend to tell them that he has just found a bottle full of _), that focus on agent’s beliefs rather than objective truth.

Figure 4: ToMi’s accuracies with different splits of the
dataset. While GPT-3.5 (the best-performing model)
achieves a total of 0.7 accuracy score (see Figure 1), it
achieves only 0.46 on the subset questions “false belief”.

tant to note, however, that the results obtained from
LM-probing may slightly differ from MC-probing.
In MC-probing, even with our 1-shot setup, the
model may produce responses that are not applica-
ble, such as “none of the above” or “both”. This
is particularly noticeable in verbose models like
GPT-3.5-Turbo and GPT-4. These models tend
to be careful to avoid providing incorrect answers
and, as a result, generate longer phrases. With that
said, as we argue in §4.2, a LLM exhibiting robust
N-ToM ability should be able to answer questions
correctly regardless of the probing method.

Figure 5: SocialIQa’s accuracies for the questions that
focus on the main character vs. others. While GPT-4
(the best-performing model) achieves a total of 79%
accuracy score, it achieves only 61% on the subset ques-
tions of “others effect”.

5.3 Are Spurious Correlations a Trend?
In previous experiment §5.2, we saw that Adv-
CSFB contain both difficult and easy questions.
Here we show this recurring phenomenon across
two more datasets, inspired by Sap et al. (2022).

Figure 4 describes ToMi accuracies on different
question types: (1) facts vs. beliefs (mind), and
(2) true or false beliefs. While GPT-3.5 (the best-
performing model) achieves 81% accuracy, on the
subset questions “false belief”, it achieves close to
random performance (46%).

Figure 5 shows the SocialIQa accuracies for
questions focusing on the main character vs. others.
While GPT-4 (best-performing model) achieves a
total of 79% accuracy score, on the subset ques-
tions of “others”, it achieves only 74.5%.
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6 Summary of Findings and Insights

We investigated whether LLMs robustly display N-
ToM abilities. By quantifying their performance on
6 N-ToM benchmarks, we found that while some
datasets have been nearly “solved” (e.g., Triangle-
COPA with 96% accuracy by flan-t5-xxl), oth-
ers remain challenging for LLMs with considerably
lower performance (e.g., FauxPas-EAI with 27%
accuracy by GPT-4, which is even below the ma-
jority baseline). We also created Adv-CSFB, a
new ToM benchmark designed to uncover whether
LLMs solve ToM questions for the right reasons, or
merely rely on surface cues and shallow heuristics.

So... Do LLMs have ToM? Our results show that
while some datasets have been successfully solved,
others remain challenging for LLMs. Thus, mod-
els do not have robust N-ToM abilities. These
findings are inconsistent with Kosinski (2023),
who claimed that ToM has emerged in LLMs as
a byproduct of their development, a claim further
echoed by Bubeck et al. (2023). We argue that
these conclusions were over-generalized based on
a specific aspect of ToM and a small number of ex-
amples (40 for Kosinski (2023) and 10 for Bubeck
et al. (2023)). Following Ullman (2023), we empiri-
cally showed that even the best models fail on small
variations of the original tasks, proving that even
GPT-4 does not display robust N-ToM abilities.

Clever Hans, Heuristics & Shortcuts The per-
formance gaps between different question types
suggests that LLMs rely on shortcuts, heuris-
tics, and spurious correlations, which often lead
them astray. In Adv-CSFB (§5.2), the bad perfor-
mance on some of the adversarial categories might
be partly attributed to reporting bias (Gordon and
Van Durme, 2013; Shwartz and Choi, 2020). Peo-
ple don’t share obvious facts (Grice, 1975), so it
is likely that LLMs are biased towards generating
surprising rather than unsurprising continuations.
In most of these categories, the protagonist belief
is the same as the truth, making a boring story.

Furthermore, the newer models such as GPT-
3.5 and GPT-4 are trained in addition to the LM
objective to follow natural language instructions
and generate helpful answers. This might make
them cooperative and lead to LLMs assuming that
all details are important, rather than that the input
is adversarial. For example, they might pay too
much attention to the mention of the false label
in the unexpected contents task, failing to see that

the label doesn’t matter if the person can’t read
it or if the container is transparent. The fact that
LLMs perform reasonably well on true belief exam-
ples (Figure 3) might be attributed to recency bias
(O’Connor and Andreas, 2021), since the correct
content is typically the last one to be mentioned.

Finally, we reassess the finding of Sap et al.
(2022) that LLMs perform better on predicting
the mental states of the main character vs. others
(§5.1); Sap et al. suggested that this might be due
to centering theory (Grosz et al., 1995) i.e., texts
tend to focus on describing a single protagonist.

ELIZA Effect & Anecdotal Generative vs. Au-
tomatic Large-Scale Multiple-Choice Testing
The impressive anecdotal examples produced by
LLMs (e.g., ChatGPT/GPT4 web-demo; Bubeck
et al., 2023), tends to captivate non-expert. How-
ever, it is important to recognize that these models
are designed to generate text that appears high-
quality to human observers (Ouyang et al., 2022).
This inherent bias in their design can lead to the
“ELIZA effect” (Weizenbaum, 1976; Shapira et al.,
2023b), i.e. the human assumption that computer
behaviors are analogous to human behaviors. Thus,
the illusion that a LLM has acquired human-
like N-ToM often says more about the human
reader than the model itself (Whang, 2023).

Moreover, later models are by design trained
to practice “epistemic humility” (i.e., hedge and
provide multiple possible answers; Ouyang et al.,
2022, p .17). This often leads them to provide ratio-
nales for each given answer without committing to
actually answering the question. But humans might
fall prey to confirmation bias and simply see the
right answer and its rational and conclude that the
model has gotten it correctly. We thus argue that
in order to conclude whether a certain model pos-
sesses a certain ability, it is crucial to quantify the
performance across multiple large-scale datasets,
preferably using an automatic evaluation method.

Using psychological tests designed for humans
on LLMs Clinical psychology tests designed for
humans are carefully constructed and vetted to en-
sure that they have external and internal validity,
i.e., they measure what they aim to measure (Frank
et al., 2023). While there is evidence that a per-
son’s success in one ToM task can indicate their
ToM abilities (e.g., Milligan et al., 2007), this does
not transfer to models. Therefore, it is important to
be cautious when drawing conclusions about ToM
in models based on their performance on a few
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tasks (Marcus and Davis, 2023). In general, when
a system succeeds on an instrument designed for
humans, we can’t draw the same conclusions as we
would for humans (e.g., that they have ToM). In-
stead, we need to consider other explanations (e.g.,
that they are relying on heuristics). The same holds
in the other direction, when analyzing how models
work in order to learn about the human brain.

Machine intelligence and Anthropomorphism
There is also a need for caution when discussing
the abilities of machines in relation to concepts re-
ferring to human cognition, such as ToM. While
it is common in computer science to use human-
related concepts and metaphors for AI systems, we
caution readers to interpret “neural ToM” carefully
and without aiming to make claims about “AI cog-
nition,” especially since given our propensity for
anthropomorphizing non-human animals and com-
puters (Epley et al., 2007; Kim and Sundar, 2012);
our performance measures on these benchmarks
is not meant as an endorsement of the pursuit of
a human-like social intelligence for AI systems.6

Instead, in light of the hype around AI and it’s “in-
telligence,” we sought out to provide a more sober
look at the empirical performance of LLMs on
tasks related to social intelligence and ToM.

“Solving” a ToM benchmark is necessary but
not sufficient Methodologically, if a model fails
at least one ToM task, it does not have ToM in gen-
eral. Success on one example or task is not a sound
proof that a model has ToM. Future work will
need to continue to develop benchmarks testing
various ToM aspects, and these benchmarks will
need to be designed to assess LLMs directly rather
than using clinical tests designed for humans.

Additionally, reporting the aggregated perfor-
mance of LLMs on benchmarks obscures the per-
formance differences across questions of different
types and complexities. To overcome this, one ap-
proach is to pair a difficult question with an easy
question, requiring model to answer both correctly.
This methodology resembles the “joint score” em-
ployed in FauxPas-EAI, Adv-CSFB, and ToMi. In
situations where pairing is challenging, a recom-
mendation for future works is that dataset difficulty
could be evaluated by calculating the final score
across different splits of the dataset. The difficulty
level of the dataset can then be determined based
on the lowest score obtained among these splits.

6We leave the question of whether LLMs could develop
human-like cognition and ToM up to philosophers.

Emergence vs. Supervised Learning vs Train-
ing on the Test set Prior work claimed that ToM
abilities emerged as a byproduct of the LLM train-
ing (Kosinski, 2023). We argue that claims about
emergence are (i) unfounded, and (ii) unfalsifi-
able without access to the LLMs’ training data.
To make a statement regarding emergent ToM, a
careful experiment is needed to ensure that ToM
did indeed appear spontaneously and not as a re-
sult of other factors such as training on related
datasets, exposure to descriptions of clinical tests
online, interactions with users, and more.7 How-
ever, since the data used to train the GPT models
is not publicly available, it is impossible to quan-
tify the degree of the potential data leakage.8 We
echo calls by Dodge et al. (2021) for increased
transparency and open-access to the training data
of LLMs, which is crucial for scientifically valid
and reproducible experiments (Rodgers, 2023).

Conclusion Based on our research and replica-
tion studies, we conclude that contemporary LLMs
demonstrate an enhanced yet limited degree of N-
ToM abilities. We find that their abilities are not
robust, and in some instances, we identify evidence
of their over-reliance on simple heuristics rather
than generalized reasoning. In our research, we
concentrated on analyzing the current models and
highlighted pitfalls that the current literature en-
counters. We caution against concluding anecdo-
tal examples, limited benchmark testing, and us-
ing human-designed psychological tests to evaluate
models.

Limitations

Benchmark scope and more versions of ToM
tests The datasets used in this study were limited
in scope and size; ToM is required in most human
interaction, and thus unbounded in scope. In our
study, we used only 6 different test sets. There are
many other versions of ToM clinical tests (For a
detailed review see Osterhaus and Bosacki, 2022)
or new NLP tasks that check different aspects of N-
ToM e.g., through intersectional ToM (Kim et al.,
2023; Zhou et al., 2023).

Ambiguous Test Questions Parts of the datasets
could be ambiguous, either due to lack of context or
inherent ambiguity (Plank, 2022). We used existing

7OpenAI acknowledged that GPT-4 was trained on test
data from BIGBench (OpenAI, 2023, footnote 5).

8See Appendix 7.6 for an attempt to quantify data leakage.
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clinical tests formulated by previous researchers
and tested on humans. There is an inherent am-
biguity in every question that has some judgment.
Perhaps if we had asked clearly, LLMs might have
been more successful, but we want to ask in ways
that are conducted in front of humans because we
aim for LLMs to understand language at the same
level as humans.

Sharma et al. (2023) in their recent study sug-
gests that human feedback may also encourage
model responses that match user beliefs over truth-
ful ones (a behavior known as sycophancy) and
that analyzing existing human preference data, they
found that when a response matches a user’s views,
it is more likely to be preferred, and humans prefer
convincingly written sycophantic responses over
correct ones a non-negligible fraction of the time.

Due to this potential ambiguity, some LLMs
were safeguarded and refused to answer certain
questions; while we attempted to instruct them to
respond in the correct format, some LLMs still did
not output the right format. This was only an issue
for MC-probing, but probability distributions were
not available for all LLMs. Future work should
investigate how to mitigate this issue via better in-
structions or methods that map generated answers
to multiple choice better (e.g., Niu et al., 2021;
Bulian et al., 2022).

Improving N-ToM (by CoT or other methods)
We engaged with the concept that to determine that
LLMs display robust N-ToM abilities in its out-
puts, it should perform accurately across many dif-
ferent tasks and many different probing styles. As
long as we find an adversary method that makes the
models fail in N-ToM tasks (e.g., by different prob-
ing methods or by different test sets) this indicates
that the models don’t hold a robust N-ToM (intrin-
sic abilities, if exist, don’t contradict this claim).
One of the goals of our work is to critically exam-
ine claims made by Kosinski (2023) and Bubeck
et al. (2023), which all rely on zero-shot setups,
so we kept zero-shot to be experimentally rigor-
ous. Some works use CoT prompting, and others
e.g., algorithms that involve world tracking (Sclar
et al., 2023). However, these works are all focused
on improving neural ToM as measured by those
benchmarks, which is not our goal. Our goal is
to examine zero-shot ToM abilities of LLMs with-
out explicit handholding, to rebut previous claims
that ToM abilities have somehow “emerged” in
zero-shot format. It is feasible that techniques such

as CoT would enhance the performance of GPT-4
where it currently performs poorly. Nevertheless,
we need to exercise caution to ensure that the
utilization of methods like CoT or others does
not excessively guide the models by essentially re-
vealing the task structure to them—just like Clever
Hans who appeared proficient in math merely due
to subtle hints given by the owner.

Limited text-only LLMs Our experiments were
conducted with a limited number of LLMs that
were accessible at the time of writing, and we did
not explore the full spectrum of LLMs that are
currently available. Future work could explore the
N-ToM abilities displayed by other LLMs, and
additionally, explore multimodal models.

ToM tasks that require low-level processes
There is a range of ToM abilities that require low-
level processes that models/humans have to master
to answer true ToM questions, some of the fail-
ures in tests point to failures in lower-level skills
(e.g., Ullman’s transparent container access re-
quires knowledge of physics, which presumably
a blind baby would not have either). ToM should
be constrained in given requirements and reasoning
level, like in advanced clinical psychological ToM
tasks that require world-model too, e.g., the faux
pas test for 7-11 years-old children (Baron-Cohen
et al., 1999). Note that we also looked at “pure”
ToM tasks and showed that current models failed
on them too (Table 4).

Ethical Statement

Data. All the existing and new datasets used in
this study are publicly available. The narratives
were evaluated by the authors to ensure that they
do not contain offensive content.

Models. LLMs may generate offensive content
if prompted with certain inputs. However, we used
them for evaluation only, with non-offensive inputs,
and we did not record their responses.
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7 Appendices

7.1 Example of ChatGPT Failure
Table 5 shows an example inspired by the ToMi
dataset. The unexpected transfer test discusses an
unexpected (false belief) rather than trivial (true
belief) case. ChatGPT solves the more complex
task (false belief) while failing on the trivial task,
likely due to its exposure to the Salley-Anne task.

7.2 Ullman’s Variations

Figure 6: An illustration of Ullman’s Variations for the
unexpected contents task. Image is taken from Ullman
(2023).

Figures 6 and 7 illustrate the variations proposed
by Ullman for the examples in ToM-k.

7.3 Existing Benchmarks & Variants
Triangle COPA (Gordon, 2016). A set of 100
problems, each describes a short sequence of events
involving the characters of the Heider and Sim-
mel (1944) film: two triangles and a circle moving
around a box with a hinged opening. The questions

Figure 7: An illustration of Ullman’s Variations for the
unexpected transfer task. Image is taken from Ullman
(2023).

require understanding the action sequence and so-
cial reasoning, and two answer choices are given.

SocialIQa (Sap et al., 2019). A large-scale (38k)
dataset for commonsense reasoning about social
situations. Questions in SocialIQa require reason-
ing about people’s motivations and mental states,
causes and effects. The questions in SocialIQa
were crowdsourced along with correct and incor-
rect answers. Additional distractors were added by
using the correct answer for a different question on
the same context, using a framework that mitigates
stylistic artifacts.

ToMi (Le et al., 2019). Inspired by the Sally-
Anne test, ToMi is an improved iteration of prior
datasets (Weston et al., 2015; Grant et al., 2017;
Nematzadeh et al., 2018), comprising over 1,000
distinct stories and questions regarding memory,
reality, and first and second-order false belief. This
synthetic dataset was automatically generated for
a range of essential objects and actions and was
further processed for artifact prevention.9

ToMi Adjustments (ToMi’) ToMi stories are in
question-answering format. We randomly sampled

9See Appendix 7.1 for an example.
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False Belief (Positive Example) True Belief (Negative Example)

Natalie and Michal are in the same room. Natalie and Michal are in the same room.
Natalie puts a ring in box A. Natalie puts a ring in box A.
Natalie leaves the room. Michal opens box A,
Michal opens box A, takes the ring from inside and transfers it to box B.
takes the ring from inside and transfers it to box B. Where will Natalie look for the ring?
Natalie enters the room.
Where will Natalie look for the ring?

ChatGPT: ChatGPT:
Natalie will look for the ring in box A, Natalie will most likely look in box A,
where she initially put it. where she initially put the ring.
She is not aware of Since Natalie did not witness
Michal’s actions Michal moving the ring to box B,
and assumes that the ring is still in the original box. she would assume that the ring is still in box A.
Therefore, her natural inclination would be It is possible that Natalie may eventually check box B,
to look in the place where she left it. but her initial instinct would be to look in box A.

Table 5: An example of ChatGPT failure on an instance inspired by ToMi.

30 stories (each story has 6 questions, 180 ques-
tions in total) from the ToMi dataset and modified
them to match a sentence completion format with
the same meaning.10 For example the question:

“Where does Oliver think that Emma searches for
the grapes?”. Was adjusted to the following sen-
tence completion task: “Oliver thinks that Emma
searches for the grapes in the”.

Epistemic Reasoning (Cohen, 2021). This
dataset is part of BIG bench (Srivastava et al.,
2022). It combines ToM with natural language
inference. The tests pertain to epistemic mental
states (Wimmer and Perner, 1983) and epistemic
logic (Hintikka, 1962). This is done by using spe-
cific verbs related to knowledge and belief: factive
(i.e., know, understand, recognize, see, remember,
learn), and non-factive (i.e., believe, think, sus-
pect, assume). The dataset contains 3 types of
tests: (1) intra-personal tests: reasoning about the
mental states of a single agent; (2) inter-personal
tests: reasoning about the mental states of multiple
agents; and (3) inference reasoning: recognizing
that other agents are making inferences (i.e., if X
entails Y, and Bob believes that X, then, it is rea-
sonable to conclude that Bob believes Y).

FauxPas-EAI (Shapira et al., 2023b). Based on
the clinical faux pas test (Baron-Cohen et al., 1999),
the set contains 44 stories (22 faux pas and 22
equivalent control) with 4 corresponding questions.
The stories require both social reasoning skills and
detecting false belief. The stories were created by
experts and a small part of the stories was created
by ChatGPT with rephrasing and fixes by experts.

10This was done manually by one of the authors.

7.4 Generative LLMs

We provide the technical details regarding the
prompts (§7.4.1) and decoding parameters (§7.4.2).

7.4.1 Prompts

As input to the LLMs, we used (unless written oth-
erwise) an MC-probing setup (§4.2), i.e., concate-
nation of the original test with all possible answers
and an instruction to choose an option. Table 7
exemplifies the prompt for each task.

7.4.2 Decoding Parameters

A single sample (the first) was selected from each
model for the analysis of the stories. We used the
hyperparameters detailed below. We chose hyper-
parameters that minimize randomness, predict the
most probable answer (i.e., low temperature, sam-
pling method), and allow for a sufficient number of
tokens.

FlanT5 (Chung et al., 2022). Python pack-
age transformers implementation (AutoMod-
elForSeq2SeqLM, AutoTokenizer); torch; Gen-
eration by generate function; do_sample=True;
max_length=50, from_pretrained:google/flan-t5-
small, google/flan-t5-base, google/flan-t5-large,
google/flan-t5-xl, google/flan-t5-xxl; tempera-
ture=0.0001

FlanUl2 (Tay et al., 2022). Python
package transformers implementation
(T5ForConditionalGeneration, AutoTok-
enizer); torch; Generation by generate function;
do_sample=True; max_length=50; tempera-
ture=0.0001
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On the shelf, there is a bottle. On the shelf in the company’s headquarters, there is a hard drive
It is full of beer; there is no wine in it. that contains only audio files and no video files.
Yet, the label on this bottle says ‘wine’ and not ‘beer’. Yet, confusingly, its label clearly states ‘video files’ and not ‘audio files.’
Mark walks into the room and notices the bottle. The newly hired computer engineer finds the hard drive on the shelf.
He has never seen it before. He reads the label. She has never seen this hard drive before. She reads the label.

Table 6: Variations that demonstrate the pattern similarity. Besides the lexical match (black) there are also semantic,
grammatical, and pragmatic matches e.g., “beer” and “audio files” both share the same POS-tag and place in the
parsing tree; “full of” and “contains” share the same semantic meaning for the purpose of the question.

Dataset Example Prompt

Triangle
COPA

A circle knocks on the door. A triangle goes to the door, but hesitates to open it.
Why does the triangle hesitate to open the door?
a. The triangle hesitates to open the door because it is unsure if it wants to let the circle in.
b. The triangle hesitates to open the door because it is excited to see the circle.
Answer with “a” or “b”.
Answer:

epistemic
reasoning

Premise: Olivia suspects that Evelyn understands that a man plays a piano painted with an
image of a woman on it.
Hypothesis: Evelyn understands that a man plays a piano painted with an image of a woman on it.
Is entailment? answer with “0” or “1”.
Answer:

FauxPas
EAI

Abby’s father publishes short stories in the newspaper every week.
She told him “Dad, I want to learn how to write just like you!”
and he replied: “Well then my dear why don’t you go to a writing class?”
Abby goes to a first lesson in a class she found and David the teacher says:
“Today we’ll look at some bad and good examples of story-writing”.
He shows the class a story Abby’s father wrote last week and says:
“And now I’ll give you a good example of the writer Pichnik and you will say what the differences are.”
In the story did someone say something that they should not have said?
Answer with “Yes” or “No” only, without explanations.
In case of doubt, answer according to the most probable answer.
Answer:

Table 7: An example prompt used for each task.

GPT (Brown et al., 2020). Python package
openai model=text-davinci-002, text-davinci-003;
Generation by Completion.create function; temper-
ature=0, max_tokens=50

ChatGPT (Achiam et al., 2023). 11 Python
package openai model=gpt-3.5-turbo-0301, gpt-4-
0314; Generation by ChatCompletion.create func-
tion; temperature=0

AI21. 12 Python package ai21 model=j2-jumbo-
instruct, j2-grande-instruct, j2-jumbo, j2-grande,
j2-large; Generation by Completion.execute func-
tion; temperature=0, max_tokens=50, topKRe-
turn=0, topP=1, without any panalty

7.5 Complete Results

Table 8 contains the exhaustive accuracy results for
varied temperature settings {013, 0.01, 0.1, 0.2, 0.3,

11https://chat.openai.com/chat
12https://www.ai21.com/blog/introducing-j2
13Note that there are models that can’t be set to exactly 0,

in those cases we set the temperature to 0.00001.

0.6, 0.9, 1}, each setting 100 times with different
random seeds. As can be seen, there is a linear
decrease trend in the accuracy as the temperature
increases. For reproducible reasons, zero temper-
ature is preferred because the zero temperature is
constant. Worth noting, that since the zero temper-
ature is always the lowest (the most accurate), this
allows a fair reference point between all models.
Additional models and other data sets showed simi-
lar behavior. This initial phase helped us determine
that the most preferable results came from fixing
the temperature to zero. We later continued for
simplicity with the zero fixed results only.

Running the well-organized code provided by
Kosinski (2023) we found that task 2 (Unexpected
Transfer Task) scored lower than reported for GPT
3.5. Specifically, two samples resulted in clear
mispredictions and one sample had borderline pre-
dictions that provided the correct answer but in a
format that differed from the expected answer (i.e.,
the first word was not the expected answer). As
a result, the score for task 2 was either 85% or
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Temperature 0 0.01 0.1 0.2 0.3 0.6 0.9 1

Flan-t5-small 58.00 57.77 56.94 55.96 55.3 53.58 52.67 51.03

Flan-t5-base 84.00 83.99 83.74 83.24 82.37 79.31 76.35 75.15

Flan-t5-large 92.00 92.00 91.70 91.07 90.55 89.39 87.63 86.94

Flan-t5-xl 92.00 92.00 92.24 92.30 92.43 92.32 91.80 91.49

Flan-t5-xxl 96.00 96.00 95.94 95.89 95.97 95.52 94.47 94.05

Table 8: Accuracy (%) of different temperatures, each setting 100 times with different random seeds, for the Flan-t5
for the “TriangleCOPA” test set.

Average score Joint score

Reality Memory First
order

Second
order

w.o
Second
order

All

Devinci003 100 96.6 61.6 25.0 20.6 10.3

Turbo-0301 100 90.0 73.3 40.0 41.3 17.2

Table 9: ToMi’ zero-shot subsets comparison. All num-
bers are percentages.

90%, and the average score across the two tasks
was either 85% or 87.5%, which is lower than the
reported average of 93%.

7.6 “Emergence” or test data contamination?

We would like to determine whether LLMs gener-
alize or memorize when they solve the ToM tasks
(Daumé, 2017). We explored the possibility that
the increase in performance is a result of training
on the test data itself. for that purpose we used
a second, secret, test set for SocialIQa that was
purposefully kept hidden to avoid data contamina-
tion and is only available to the original SocialIQa
authors as well as through the AI2 leaderboard.14

For each test set (i.e., the standard and secret test
sets) we randomly sample 11 subsets of 100 ques-
tions on which we evaluate gpt3.5-turbo-0301
and gpt-4-0314. Comparing the performance of
both models on both test sets samples with a T-test,
we found no significant differences, making it in-
conclusive whether the models were trained on the
normal test set or not. As we discuss in Sec 6, this
doesn’t mean that ToM has “emerged” in LLMs,
since they may have been exposed to training data
or similar examples.

7.7 ToMi’ subsets analysis

Table 9 provides the complete results from the eval-
uation of GPT-3.5 on the ToMi’ dataset. The same

14https://leaderboard.allenai.org/socialiqa/
submissions/public

overall conclusion can be drawn from this table
as well: although the model can correctly answer
simple reading comprehension questions, it doesn’t
answer questions that require ToM skill (first and
second order) with similar accuracy.

We divided the results into the average score and
joint score. The average score is calculated as a
simple average on the different types of questions,
while the joint score is considers the prediction as
correct only if the model answered correctly all
the questions from the same story (with a total of
30 stories). The average results emphasize the ma-
jor gaps between the model’s accuracy on reading
comprehension questions to first order questions
(“Chloe will look for the boots in the”) and be-
tween the first order questions to the second order
questions (“Chloe think that Jackson searches for
the boots in the”). The joint score reveals that even
when the model correctly answers questions about
the story, it might still fail to answer more complex
questions.
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