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Abstract
While the Large Language Models (LLMs)
dominate a majority of language understand-
ing tasks, previous work shows that some of
these results are supported by modelling spuri-
ous correlations of training datasets. Authors
commonly assess model robustness by evaluat-
ing their models on out-of-distribution (OOD)
datasets of the same task, but these datasets
might share the bias of the training dataset.
We propose a simple method for measuring a
scale of models’ reliance on any identified spu-
rious feature and assess the robustness towards
a large set of known and newly found prediction
biases for various pre-trained models and de-
biasing methods in Question Answering (QA).
We find that the while existing debiasing meth-
ods can mitigate reliance on a chosen spurious
feature, the OOD performance gains of these
methods can not be explained by mitigated re-
liance on biased features, suggesting that biases
are shared among different QA datasets. Fi-
nally, we evidence this to be the case by mea-
suring that performance of models trained on
different QA datasets rely on bias features com-
parably to the ID model. We hope these results
will motivate future work to refine the reports
of LMs’ robustness to a level of adversarial sam-
ples addressing specific spurious features.

1 Introduction
Unsupervised pre-training and vast parametrization
(Devlin et al., 2019; Radford and Narasimhan, 2018)
enable Large Language Models (LLMs) to reach
close-to-human accuracy on complex downstream
tasks such as Natural Language Inference, Senti-
ment Analysis, or Question Answering. However,
previous work shows that these outstanding results
can partially be attributed to models’ reliance on
non-representative patterns in training data shared
with the test set, such as the high lexical intersec-
tion of the entailed hypothesis to premise (Tu et al.,

*First two authors contributed equally

Figure 1: We quantify model reliance on a spurious
feature using bootstrapped evaluation on segments of
data separated by exploiting chosen bias (left) and sub-
sequently, by measuring the difference in model’s per-
formance over these two groups (right), that we refer to
as Prediction bias (§3).

2020) in Natural Language Inference (NLI) or the
intersection of the question and answer vocabu-
lary (Shinoda et al., 2021) in extractive Question
Answering (QA).

A primary motivation for mitigating models’ re-
liance on such features is to enhance their robust-
ness in practice, avoiding fragility to systematic er-
rors when responding the open-ended user requests.
Models’ robustness is commonly assessed by mea-
suring prediction quality on samples from other out-
of-distribution (OOD) datasets (Clark et al., 2019a;
Karimi Mahabadi et al., 2020; Utama et al., 2020b;
Xiong et al., 2021). However, the OOD datasets
might share training biases introduced by shared
features, such as data collection methodology, or hu-
man annotators’ background (Mehrabi et al., 2021).
In such cases, conversely, a model reliant on biased
correlations can reach higher OOD score despite
being more fragile to the adversarial inputs exploit-
ing the biased correlation.

With this motivation, we propose a framework
to evaluate models’ reliance on a biased feature
in prediction by splitting evaluation data to two
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groups based on a biased feature and comparing
the prediction quality on these two groups (Fig. 1).
This way, we assess a reliance on bias of diverse QA
models for several previously and newly identified
bias features identified in this work. Finally, we
assess the efficiency of the state-of-the-art debiasing
methods in mitigating reliance on spurious features
over a resampling baseline and compare the findings
to the commonly assessed OOD performance.

We find that avoiding reliance on spurious fea-
tures does not imply improvements in OOD perfor-
mance; in many cases, debiasing methods mitigate
the model’s prediction bias, but the OOD perfor-
mance drops, while counterintuitively, a magnifi-
cation of bias reliance can also bring large OOD
gains. Aiming to explain this, we directly evaluate
the prediction bias of models trained on different
datasets and confirm that even models trained on
OOD datasets often rely on the same spurious corre-
lations comparably to the ID models. This finding
motivates the presented assessment of model ro-
bustness towards known biases, in addition to OOD
performance.

This paper is structured as follows. Section 2
overviews data biases observed in NLP datasets, re-
cent debiasing methods, and the previous methods
related to measuring inclination to spurious correla-
tions. Section 3 presents our method for measuring
the significance of specific biases. We follow in
Section 4 with details on our evaluation setup, in-
cluding the tested debiasing methods, addressed
bias features, and the design of a set of heuristics
that can exploit them. Subsequently, in Section 5,
we measure and report models’ robustness to bi-
ases and OOD datasets before and after applying
the selected debiasing methods and wrap up our
observations in Sections 6 and 7.

Problem definition Given a set of inputs X =
x1..i with corresponding labels Y = y1..i from a
datasetDID, a model M learns a task T by identify-
ing features F1..n that map each xj to a correspond-
ing yj , assuming that the learned features must be
consistent with DID. Since the learned F1..n are
distributed in M and can not be directly evaluated,
we assess whether the learned features are robust
for the task T by evaluating M on samples XOOD
of the same task, but drawn from DOOD ̸≈ DID; we
assume that ifF1..n ∈M are robust, the model will
also perform well on XOOD. However, the consis-
tency of the learned Fk with both XID and XOOD
is merely a necessary and not a sufficient condition

for Fk to be robust; If there exists a pair (x, y) such
that the pair is a valid sample of the task T , but is
not consistent with Fk, we denote Fk as spurious
or bias features for T and refer to models’ reliance
on such features as prediction bias.

2 Background

Spurious correlations of NLP datasets Previ-
ous work analyzing LLMs’ error cases identified
numerous false assumptions that LLMs use in pre-
diction and can be misused to notoriously draw
wrong predictions with the model.

In Natural Language Inference (NLI), where the
task is to decide whether a pair of sentences entail
one another, McCoy et al. (2019) identify LLMs’
reliance on a lexical overlap and on specific shared
syntactic units such as the constituents in the pro-
cessed sentence pair. Asael et al. (2022) identify
the model’s sensitivity to meaning-invariant struc-
ture permutations. Similarly, Chaves and Richter
(2021) identify BERT’s reliance on the invariant
morpho-syntactic composition of the input.

In Question Answering, LLMs often rely on the
positional relation of the question and possible an-
swer words, such as assuming their close proximity
(Jia and Liang, 2017). Bartolo et al. (2020) find that
models tend to assume that questions and answers
contain similar keywords, remaining vulnerable to
samples with none or multiple occurrences of the
keywords in the context. Ko et al. (2020) show
models’ preference for the answers in the first two
sentences of the context, being statistically most
likely to answer human-curated questions.

A perspective direction circumventing the bi-
ases introduced in data collection is presented in
adversarial data collection (Jia and Liang, 2017;
Bartolo et al., 2020) where the annotators collect
the dataset with the intention of fooling the likely-
biased model, possibly enhancing the model-in-the-
loop in several fine-tuning iterations. Still, some
doubts remain, as other work provides evidence that
models trained on adversarial data may work better
on adversarial datasets but underperform on other
datasets (Kaushik et al., 2021), or introduce its own
set of biases (Kovatchev et al., 2022). Nevertheless,
our experiments (§5.2) show that training models on
an adversarially-collected AdversarialQA dataset
turns out to be among the most effective approaches
to mitigating known prediction biases in question
answering.
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Debiasing methods A well-established line of
work proposes to address the known dataset biases
in the training process. Karimi Mahabadi et al.
(2020) and He et al. (2019) obtain a more robust,
debiased model by (i) training a biased model that
exploits the unwanted bias, followed by (ii) train-
ing the debiased model as a complement to the bi-
ased one in a Product-of-Experts (PoE) framework
(Hinton, 2002). Clark et al. (2019a) extend this
framework in the LearnedMixin method, learning
to weigh the contribution of the biased and debiased
model in the complementary ensemble. Niu and
Zhang (2021) simulate the model for non-biased,
out-of-distribution dataset through counterfactual
reasoning (Niu et al., 2021) and use the resulting
distribution for distilling target (Hinton et al., 2015),
similarly to the LearnedMixin. Biased samples can
also be identified in other ways, for instance, by the
model’s overconfidence (Wu et al., 2020).

In a complement to PoE approaches, other works
apply model confidence regularization on the sam-
ples denoted as biased. Feng et al. (2018) and
Utama et al. (2020a) downweigh the predicted prob-
ability of the examples marked as biased by humans
or a model. Xiong et al. (2021) find that a more pre-
cise calibration of the bias-detection model might
bring further benefits to this framework, consis-
tently with our observations (§6). Distributionally
Robust Optimization (DRO) methods are another
group of reweighting algorithms, addressing as-
sumed imperfection of training datasets by (i) seg-
menting data into groups of diverse covariate shifts
(Sagawa et al., 2020) and (ii) minimizing the worst-
case risk over all groups (Zhou et al., 2021). We
note that our bias measurement method closely re-
lates to group DRO methods and can, for instance,
serve as a method for quantifying per-group risk.

Robustness measures Most of the work on en-
hancing models’ robustness evaluates the acquired
robustness on OOD datasets. In some cases, the
evaluation utilizes datasets specially constructed
to exploit the biases typical for a given task, such
as HANS (McCoy et al., 2019) for NLI, PAWS
(Zhang et al., 2019) for Paraphrase Identification,
or AdversarialQA (Bartolo et al., 2020) for Ques-
tion Answering, that we also use in evaluations.

Similar to us, some previous work quantified
dataset biases by splitting data into two subsets,
comparing model behaviour between these groups.
McCoy et al. (2019) perform such evaluation over
MNLI, demonstrating large margins in accuracy

func measure_bias(M,X, h, Th):
Ah ← h(X)

X1 ← x1 ∈ X : Ah(x1) ≤ Th

X2 ← x2 ∈ X : Ah(x2) > Th

foreach X ′
1 ∈ repeat(sample(X1)) do

E1 ← E1 + evaluate(M (X ′
1))

foreach X ′
2 ∈ repeat(sample(X2)) do

E2 ← E2 + evaluate(M (X ′
2))

dist← max(0; E↓
1 − E↑

2 ; E
↓
2 − E↑

1)

return dist

Algorithm 1: We measure Prediction bias of
the model M exploited by the heuristic h on
dataset X , as a difference of M ’s performance
on two groups (X1 and X2) obtained by seg-
menting the samples of X by the attribute
Ah = h(X) on a given threshold Th.
We bootstrap both evaluations, (samples = 800,
trials = 100, and obtain two sets of measure-
ments (E1 and E2), of which we subtract the up-
per and lower quantilesE↑ andE↓ (q↑ = 0.975,
q↓ = 0.025) and consider such distance a scale
of the learned prediction bias.

over the two groups and superior robustness of
BERT over previous models. Similarly, Utama et al.
(2020b) compare two groups based on prediction
confidence. Our Prediction bias measure follows
a similar approach in QA but provides a more reli-
able assessment thanks to bootstrapping. Further,
compared to the previous work, we assess models’
reliance on a range of 7 spurious features, making
our overall conclusions more robust.

An ability to measure a model’s reliance on un-
desired features is also applicable in quantifying
socially problematic biases. Previous work also
utilizes specialized domain knowledge in models’
bias evaluation but might not scale to other bias
features; Parrish et al. (2022) collect ambiguous
contexts and assess the models’ inclination to uti-
lize stereotypes as prediction features. Bordia and
Bowman (2019) quantify LMs’ gender bias by the
co-occurrence of selected gender-associated words
with gender-ambiguous words, such as doctor.

3 Measuring Prediction Bias

We assess a model’s sensitivity to a known spurious
feature in the following sequence of steps. This
methodology is visualized in Figure 1, described in
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Algorithm 1 and can be used to measure biases of
any other QA model using the project repository1.

We start by (i) implementing a heuristic, i.e.
a method h : X → R, that for all samples of
dataset X computes an attribute Ah ∈ R corre-
sponding to the feature F that we suspise as non-
representative, yet predictive for our training set and
(ii) we compute h(x) for each sample x of evalua-
tion dataset X . (iii) We choose a threshold Th that
we use to (iv) split the dataset into two segments by
Ah. Finally, (v) we evaluate the assessed model M
on both of these segments, in our case using Exact
match evaluation, and (vi) measure model predic-
tion bias as the difference in performance between
these two groups. Using bootstrapped evaluation,
we mitigate the effect of randomness by only com-
paring selected quantiles of confidence intervals.
We propose to perform a hyperparameter search
for the heuristic’s threshold Th that maximizes the
measured distance.

Interpretation Given the reliance on bootstrap-
ping, we state that the model’s true performance
polarisation is 0.975× 0.975 = 95.06%-likely to
be equal or higher than the measured Prediction bias
(with q↑ = 0.975, q↓ = 0.025 as in Algorithm 1).

Nevertheless, one should note that the proposed
measure should not be used in a standalone but
rather in a complement to an ID evaluation, as one
can reduce the Prediction bias merely by lowering
the performance on the better-performing ID subset.
Therefore, we report the values of Prediction bias to-
gether with the performance on a worse-performing,
i.e. presumably non-biased split.

Another consideration concerns the “natural” po-
larisation of difficulty between samples; That is a
portion of Prediction bias which can be explained
by the featuresF that are representative for the eval-
uated task (§1). One should note that the reduction
of Prediction bias is meaningful only down to the
level of the natural sample difficulty.

The validation set of SQuAD contains the anno-
tations by three annotators that we use to quantify
a level of Prediction bias that can be explained by
the questions’ natural difficulty (further denoted as
Human model); We report the minimum over Pre-
diction biases of the annotators among each other.

Finally, even though we perform a hyperparam-
eter search for optimal heuristics’ thresholds Th

feasible for a given size of dataset splits, there
are no guarantees on the maximality of the found

1https://github.com/MIR-MU/isbiased

Th. Hence, Prediction bias only provides the lower
bounds of the model’s polarisation.

4 Experiments
Our main objective is to assess the efficiency of dif-
ferent training decisions in mitigating the reliance
of the model on spurious correlations that can be
present in datasets. In Question answering, previ-
ous work identifies several spurious covariates in
the SQuAD dataset (Rajpurkar et al., 2016); we
build upon these findings and further extend the list
of covariates learnable from SQuAD.

For each suspected bias feature, we first describe
and implement the exploiting heuristics that we use
to segment groups in the Prediction bias measure
(§4.1). Subsequently, we observe the impact of the
selected pre-training strategies (§4.2) and debiasing
methods designed to address the over-reliance on
biased features (§4.3 – §4.4) on the Prediction bias
and OOD performance of the resulting models.

4.1 Biases and Exploiting Heuristics
Our work extends the list of previously reported
QA biases based on our experience with two novel
bias features that we later assess as significant. The
spurious features newly identified in this work are
preceded with +.

Together with each bias, we also briefly de-
scribe it’s exploiting heuristic computing the non-
representative feature Ah (Algorithm 1).

Distance of Question words from Answer words
(word-dist) Jia and Liang (2017) propose that the
models are prone to return answers close to the
vocabulary of the question in context. Hence, word-
dist computes how close the closest question word
is to the first answer in the context and computes
the distance (Ah) as a number of words between
the closest question word and the answer span.

Similar words between Question and Context
(sim-word) Shinoda et al. (2021) report the com-
mon occurrence of a high lexical overlap between
the question and the correct answer over QA
datasets. In sim-word heuristic, we represent the
lexical overlap by the number of shared words be-
tween the question and the context. Both are defined
as sets, and the intersection size of these two sets is
computed as the heuristic’s evaluation (Ah).

Answer position in Context (ans-pos) Ko et al.
(2020) report that QA models may learn to falsely
assume the answer’s occurrence in the first two
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sentences. The exploiting heuristic first segments
the context into sentences, and then identifies the
sentence containing the answer and yields a scalar
corresponding to the rank of the sentence within
the context that contains the answer (Ah).

Cosine similarity of Question and Answer (cos-
sim) Clark et al. (2019a) use the TF-IDF similar-
ity as a biased model for QA, implicitly identifying
a bias in undesired reliance of the model on the
match of the keywords between the question and re-
trieved answer. We exploit this feature by (i) fitting
the TF-IDF model on all SQuAD contexts, (ii) in-
ferring the TF-IDF vectors of both questions and
their corresponding answers, and (iii) returning the
scalar (Ah) as cosine similarity between the TF-IDF
vectors of question and answer.

Answer length (ans-len) Bartolo et al. (2020)
show that QA models trained on SQuAD make er-
rors much more often on questions asking for longer
answers, implicitly identifying models’ reliance on
a feature that the answer must comprise at most a
few words. We exploit this feature by simply com-
puting Ah as the length of the answer.

+Number of Question’s Named Entities in Con-
text (sim-ents) We suspect that the in-context
presence of multiple named entities, such as multi-
ple personal names or locations, might perplex the
QA model’s prediction. This might suggest that
models tend to reduce the QA task to a simpler
yet irrelevant problem of Named Entity Recogni-
tion. We utilize a pre-trained BERT NER model
provided within spaCy library (Honnibal and Mon-
tani, 2017) to identify named entities of the ques-
tion type (i.e., personal names if the question starts
with "Who"). Then, we count Ah as the number of
matching named entities in the context.

+Position of Question’s subject to the correct
Answer in Context (subj-pos) Our observations
suggest that the position of the question’s subject in
the context impacts the predicted answer spans of
QA models. In the corresponding heuristic, using
SpaCy library, we (i) identify the questions’ subject
expression and (ii) locate its occurrences in the con-
text. We (iii) locate the answer span and compute
Ah as a relative position of the answer: either be-
fore the subject, after the subject, or after multiple
occurrences of the question subject.

4.2 Evaluated Models
To estimate the impact of selected pre-training
strategies on the robustness of the resulting model,
we conventionally fine-tune a set of diverse pre-
trained LLMs for extractive QA.

We alternate between the following models:
BERT-Base (Devlin et al., 2019), RoBERTa-Base
and RoBERTa-Large (Liu et al., 2019), Electra-
Base(Clark et al., 2020) and T5-Large (Raffel
et al., 2020). This selection allows us to outline
the impact of the various features on the robustness
of the final QA model: (i) pre-training data volume
(BERT-Base vs RoBERTA-Base), (ii) model size
(RoBERTA-Base vs RoBERTA-Large), (iii) pre-
training objective (BERT-Base vs Electra-Base),
or (iv) extractive vs. generative prediction mode
(T5 vs. others).

We also evaluate the prediction bias of recent
multi-task in-context learners, without fine-tuning:
T0 (Sanh et al., 2022) trained for zero-shot in-
context learning excluding SQuAD, and Flan-T5
(Chung et al., 2022) trained on a mixture of more
than 1,800 tasks, including SQuAD.

4.3 Debiasing Baseline: Resampling (ReSam)
Based on the heuristics and their tuned configura-
tion, our baseline method performs simple super-
sampling of the underrepresented group (X1 or X2

in Algorithm 1) until the two groups are represented
equally. This approach shows the possibility of
bias reduction by simply normalizing the distribu-
tion of the biased samples in the dataset, requir-
ing only the identification of the members of the
under-represented group. ReSam closely follows
the routine of Algorithm 1 and splits the data by the
optimal threshold of the attributes of the heuristics
corresponding to each addressed bias.

4.4 Assessed Debiasing Methods
We assess the efficiency of debiasing methods in
eliminating Prediction bias for the representatives
of two diverse debiasing methods. In addition to
Prediction bias, we also report the resulting per-
formance on three OOD datasets. We follow the
reference implementations as closely as possible
while scaling the scope of experiments from one
to seven separately-addressed biases. Complete de-
scription of training settings is in Appendix B.2.

LearnedMixin (LMix) method (Clark et al.,
2019b) is a popular adaptation of Product-of-
Experts framework (Hinton, 2002), with a set of
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Figure 2: Prediction bias per pre-trained model. The worse-performing split performance (lower bars) and
Prediction bias (upper bars, sorted by group average) of QA models trained from different pre-trained LLMs, trained
and evaluated on SQuAD for Exact match. Per-group bootstrapping of 100 repeats with 800 samples.
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refinements (§2), that uses a biased model as a com-
plement of the trained debiased model in a weighted
composition. We reimplement the reference imple-
mentation with the following alterations. Instead of
the BiDAF model, we use stronger BERT-Base as
the trained debiased model. Instead of using a TF-
IDF-based bias model custom-tailored for a single
bias type, we opt for a universal approach for ob-
taining biased models (Appendix B.2.1). We rerun
the parameter search and choose a different entropy
penalty (H = 0.4) throughout all experiments.

Confidence Regularization (CReg) aims to re-
duce the model’s confidence, i.e. the predicted
score over samples marked as biased. Utama et al.
(2020a) propose to reduce the confidence of the
biased samples using a distillation from the con-
ventional QA teacher model, scaled down by the

relative scores of a biased predictor. In our experi-
ments, we consistently use BERT-Base for both the
teacher and bias model. To enable comparability
with LMix, we use identical bias models for both
methods (Described in Appendix B.2.1).

5 Results

5.1 Impact of Pre-training

Figure 2 compares the Prediction bias of the fine-
tuned models of diverse pre-training data volumes
and objectives, followed by in-context learning
models and a human reference.

The results suggest that increased amounts of
pre-training data of the base models (cf. BERT-
Base and others) might mitigate the models’ re-
liance on the bias. The results are less conclusive
in a comparison of different pre-training objectives
(cf. RoBERTa-Base and Electra-Base); While
Electra is less polarised in 4 out of 7 cases, the
differences are minimal. The largest reduction of
Prediction bias (−1.2 on average) is achieved by
increasing the model size of RoBERTa-Large.

Analogically, Figure 3 compares OOD perfor-
mance on selected QA datasets: AdversarialQA (Jia
and Liang, 2017), NaturalQuestions (Kwiatkowski
et al., 2019) and TriviaQA (Joshi et al., 2017). The
concluding robustness ranking is mainly consistent
with the Prediction bias ranking, with the exception
of generative fine-tuning (T5), which outperforms
others on OOD datasets but not on a reduction of
the reliance on spurious features.
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Figure 4: Prediction bias per dataset. The worse-performing split performance (lower bars) and Prediction bias
(upper bars) of RoBERTa-Large trained on different QA datasets, evaluated on a validation split of SQuAD for
Exact match. All evaluation splits are identical, identified as maximal for the SQuAD-trained model (Appx. C).

5.2 Prediction bias of OOD models
Figure 4 compares Prediction bias over RoBERTa-
Large models trained on different datasets. All
evaluations are split on heuristics’ thresholds Th

optimal for the SQuAD model, which allows com-
parability to the shared human reference but implies
that larger Prediction bias for OOD models might
exist. We see that all Prediction biases learned on
SQuAD are also learned from at least one OOD
dataset. For the Trivia model, all types of biases
identified in SQuAD are magnified.

We specifically note the comparison of the Pre-
diction bias of the SQuAD model to the model
trained on AdversarialQA, collected adversarially
to a SQuAD model. We find that the AdversarialQA
model is the only OOD model lowering reliance on
all biased features that are over the level of natural
bias, supporting the argued efficiency of adversarial
data collection in addressing original dataset biases.

5.3 Impact of Debiasing
Figure 5 compares the biases of Question Answer-
ing models obtained within three debiasing meth-
ods (§4.3 – §4.4), applied to the most-biased BERT-
Base model. We observe that debiasing methods
are not consistent in the efficiency of mitigating
the reliance on the addressed bias feature. In fact,
only ReSam baseline lowers the bias of the original
model consistently. We attribute this inconsistency
to methods’ sensitivity to bias model, further dis-
cussed in §6. While LMix is the most efficient in
addressing Prediction bias in average, consistently
to Clark et al. (2019a) we see that this often comes
for a price of the ID performance.

Table 1: OOD performance of debiasing methods.
Differences of F1-scores of QA models trained on
SQuAD using specified debiasing methods (§4.4) to
address selected bias features (§4.1) evaluated on three
OOD datasets; AdversarialQA / NaturalQuestions / Triv-
iaQA, respectively. Largest gains per dataset are in bold.

Original model 29.8 / 67.8 / 46.1
ReSam LMix CReg

AQA / NQ / Trivia AQA / NQ / Trivia AQA / NQ / Trivia
ans-len −0.8 / −5.6 / −1.7 −0.9 / −19.7 / −3.3 −0.4 / +5.5 / +2.1
word-dist +0.5 / +1.3 / +0.0 +0.9 / − 6.4 / +1.5 +1.4 / +7.5 / −0.5
cos-sim −0.1 / +0.3 / −1.3 +0.4 / −11.3 / −4.1 −0.3 / +7.4 / +1.1
sim-ents +1.1 / +1.5 / +0.3 −0.1 / −9.5 / −1.2 −1.0 / +5.9 / +2.0
sim-word +0.3 / +0.1 / +0.4 −0.3 / −21.4 / −2.9 −0.7 / +3.9 / +1.4
subj-pos −1.6 / −0.7 / −2.2 −1.3 / −14.8 / −1.3 +0.0 / +5.1 / +1.6

Average −0.45 −5.31 +2.33

Table 1 enumerates the OOD performance of de-
biased models over three diverse QA datasets. By
comparing these results to Prediction bias (Fig. 5),
we see many cases where the reduction of Predic-
tion bias can not explain improvements of OOD;
For instance, addressing word-dist bias using CReg
improves average F1-score on OOD datasets by
2.8% and by 7.5 specifically on NaturalQuestions,
but the Prediction bias of such model increases by
1.1 points. Similarly, CReg delivers 1.5-point av-
erage gain of F1-score on OOD when addressing
sim-word bias but this also raises Prediction bias
by 0.9 points.

Figure 6 further evaluates the impact of address-
ing one bias to other known biases in cases where
each method delivers the largest Prediction bias re-
duction. We see that addressing a specific bias also
affects the scope of the model’s reliance on other
covariates. Results suggest that CReg might be
more robust to enlargening of other biases, increas-
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Figure 5: Prediction bias per debiasing methods. The worse-performing split performance (lower bars) and
Prediction bias (upper bars) of BERT-Base trained using selected debiasing methods, evaluated for Exact match on
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Figure 6: Cross-bias evaluation of debiased models. A
relative change of Prediction bias by all spurious correla-
tions, caused by applying inspected debiasing methods
on BERT-Base QA model, in addressing specified spu-
rious correlation. A full matrix is in Appx. A, Fig. 7.

ing other Prediction biases by 0.31 on average, as
compared to LMix (0.6) and ReSam (0.38).

6 Discussion

Pre-training and models’ robustness The bias-
level analyses of diverse pre-trained models (§5.1)
suggest that the mere increase of pre-training data
and model parameters guide the fine-tuned mod-
els to lower reliance on biased features. How-
ever, we can find exceptions, such as in the case
of RoBERTa-Large and Electra-Base on ans-
len. We speculate that even larger volumes of data
might make the model more attracted to taking a
shortcut through easier problem formulations, such
as through Named entity recognition (cf. BERT-
Base and RoBERTa-Base on sim-ents).

Comparing the prediction bias of in-context
learners with the fine-tuned models, we see that
multi-task learning does not necessarily result in
lower prediction bias or increased performance in

the harder group; While Flan-T5 on average re-
duces bias almost to the human level, T0’s quality
is affected by spurious features even more than the
models fine-tuned on biased SQuAD.

OOD performance and Prediction bias relation
Our results conclude that the previously reported
improvements in OOD performance attributed to
the debiasing might not be attributed to the mit-
igated reliance on a spurious correlation; (i) We
measure that Prediction bias of the models trained
directly on OOD datasets is still present over the
level of human Prediction bias (§5.2). Therefore,
it is possible to maintain OOD gains by learning
to rely on biased features. (ii) In practice, we find
cases where applying a debiasing method magni-
fies Prediction bias, but the resulting model still
performs better in most OOD evaluations (§5.3).

Practical aspects of applying debiasing methods
While we confirm that debiasing methods enable
improvements in the OOD, we find that the signifi-
cance of such improvements largely varies between
the addressed biases, and the suitable configuration
for one bias and dataset pair is often suboptimal
for others. The scope of this variance can be seen
in Table 1 from the comparison of average OOD
performance of LMix and CReg on word-dist, used
to pick methods’ hyperparameters and bias mod-
els (Appendix B.2), and other biases; Both of the
methods perform best on the bias used in parameter
tuning, and the differences are often large. Bias-
specific parameter tuning is further convoluted by
the speed of the convergence of debiasing methods,
which we measure as approximately 4 times slower
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for CReg and 3.5 times slower for LMix, compared
to the standard fine-tuning of QA models.

The bias model is an important parameter of both
assessed debiasing methods. We find that the scores
have to be rescaled for trained bias models to avoid
perplexing the trained model on biased samples
and that the optimal scaling parameter is also bias-
specific. The selection of the bias model also affects
the optimal Entropy scaling H of LMix; we find
that the optimal value (H = 2.0) for Adversari-
alQA reported by LMix authors is also not close to
optimal (H = 0.4) for our bias model.

7 Conclusion
Our work sets out to investigate the impact of
various training decisions, including different pre-
training and debiasing strategies, on models’ re-
liance on specific spurious features in QA, com-
plementing the commonly used out-of-distribution
evaluations. We use SQuAD to survey the existing
and to identify new biased features but evaluate the
reliance on these features for models trained on four
different QA datasets.

We find that (i) the OOD performance of dif-
ferent base models usually corresponds to models’
reliance on bias features. However, (ii) the state-
of-the-art debiasing methods can improve OOD
performance without minimizing the model’s re-
liance on spurious features, suggesting that dataset
biases might be shared among QA datasets. (iii) We
further evidence this by measuring the reliance
on a spurious feature of models trained on other
(OOD) datasets and find OOD models similarly or
even more reliant on spurious features learnt from
SQuAD.

We hope that our analyses will motivate future
work to assess models’ robustness also on a more
detailed level of specific bias features, evading false
conclusions on models’ robustness, and, ultimately,
accelerating progress towards creating more robust
and reliable language models.

Limitations
We highlight the limitation of our proposed evalua-
tion method in the non-trivial interpretation of the
measured results, which we discuss in Section 3;
We propose to measure the models’ reliance on
a bias feature as a difference of confidence inter-
vals of model performance on two data splits. This
makes the conclusions about models’ reliance (vs
non-reliance) on a biased feature more robust, but

it also perplexes the interpretation of measured ab-
solute values. As a consequence, in the cases of
different bias features (F1, F2) with very close pre-
diction bias values, one should restrain from state-
ments such as “model M is more biased towards F1

than F2”.
We also underline that some biased features cor-

relate with a natural difference in the samples’ dif-
ficulty. In such settings, a polarization of model
performance might not be caused by its reliance
on the spurious feature, but rather by other, natural
features of the task. To disentangle the model’s
over-reliance on a biased feature from other aspects,
we recommend contextualizing measured predic-
tion bias with additionally measuring a human level
of prediction bias, that can be assessed on a set of
duplicate annotations.

In our experiments, we measured considerable
differences in natural difficulty only for a single
feature – answer length – where it is likely more
difficult to delimit the answer span for longer an-
swers properly. We find that most models rely on
this feature comparably to humans and refine our
conclusions in Section 5.1 accordingly.
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Figure 7: Full cross-bias evaluation of debiased mod-
els. A relative change of Prediction bias by all spurious
correlations, caused by applying inspected debiasing
methods on BERT-Base QA model, in addressing spec-
ified spurious correlation.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: Paraphrase Adversaries from Word Scram-
bling. In Proc. of the 2019 Conf. NAACL-HLT, pages
1298–1308, Minneapolis, USA. ACL.

Chunting Zhou, Xuezhe Ma, Paul Michel, and Graham
Neubig. 2021. Examining and Combating Spurious
Features under Distribution Shift. In Proceedings of
the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning
Research, pages 12857–12867. PMLR.

A Cross-Bias Matrix of All Debiased
Models

Figure 7 shows the change of Prediction bias by
applying the listed debiasing methods to eliminate
the associated bias feature. We see that some biases
are more difficult to address, while other ones can
be transitively addressed through others.

B Details of Training Configurations
This section overviews all configurations that we
have set in training the debiased models (§4.3 – 4.4)

as well as the conventional QA fine-tuning com-
paring the impact of pre-training on QA models’
robustness (§4.2).

B.1 Standard Fine-tuning
For model fine-tuning, we use following hyperpa-
rameters: learning rate: 2e−5, batch size: 16, eval-
uation: each 200 steps and train epochs: 3. We
also set the early stopping patience to 10 evalua-
tion steps, based on a validation loss of the train-
ing dataset (SQuAD) also used for selecting the
evaluated model. The validation loss of the eval-
uated model is 1.02. All other parameters can be
retrieved from the defaults of TrainingArguments of
HuggingFace (Wolf et al., 2020b) in version 4.19.1.

We use the listed configuration also in training
the generative T5 model. We use the Adaptor li-
brary (Štefánik et al., 2022) in version 0.1.6 for
fine-tuning T5 for generating answers.

B.2 Debiasing Training Experiments
B.2.1 Bias models
The canonical debiasing implementations utilize
bias-specific models for identifying bias; Clark et al.
(2019b) use the TF-IDF model as a scalar of pos-
sible bias for each QA sample, while Utama et al.
(2020a) experiment with a percentage of the shared
words and cosine embeddings between word dis-
tances, in NLI context.

As we scale our experiments to six different bi-
ases, we opt for a universal approach for obtaining
bias models for both LMix and CReg and train each
biased model on a better-performing segment of
the dataset identified using the approach described
in Section 3. For all our biased models, we train
BERT-Base architecture from scratch and pick the
checkpoint with a maximal difference of the F1-
score between the two segments from the validation
split of SQuAD.

While our approach scales well over many bi-
ases, a significant difference between the learned
bias models original ones, such as TF-IDF, is the
scale of prediction probabilities; As the trained bias
models become very confident on a biased subset,
often reaching probabilities close to 1 for the biased
samples. A “perfect” bias model causes problems
for both LMix and CReg as such model forces the
trained model to avoid correct predictions on the
biased samples completely. We learn to address this
problem by rescaling bias predictions and tuning
the scaling interval based on a validation perfor-
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mance of the debiased model. Consequently, we
scale the bias probabilities to ⟨0; 0.2⟩ for LMix and
⟨0; 0.1⟩ for CReg. Further details on bias models
can be found in Appendix B.2.

In the initial phase, we experiment with diverse
configurations and sizes of bias models, intending
to maximize the polarization of performance on the
biased and non-biased subsets. Among different
configurations of model sizes and configurations,
we find that the highest polarisation can be reached
using BERT-Base architecture trained from scratch.
We fix this decision and the parameters (learning
rate 4e−5, a number of training steps 88,000) with
respect to the maximum OOD (AdversarialQA)
F-score of this model of LMix model addressing
word-dist bias. Our bias models reach between 18%
and 59% of accuracy on easier, i.e., biased data split
while between 4% and 19% on the non-biased one.

B.2.2 Baseline debiasing: Resampling
We train the ReSam analogically to Baseline Fine-
tuning experiments (§B.1). Compared to other debi-
asing methods, ReSam baseline is non-parametric,
including no dependence on the bias model.

Even though we find ReSam to be the only
method mitigating Prediction bias in all the cases,
our further analyses show that its enhancements on
OOD datasets vary among biases. Figure 8 shows
validation losses from the training on SQuAD re-
sampled using ReSam by word-dist, while analog-
ically, Figure 9 shows the losses for sim-ents bias.
While in the former case, ReSam does not stably
reach lower loss on OOD datasets, in the latter case,
validation losses are consistently lower between
steps 7,000 and 8,000, where the SQuAD valida-
tion loss used to pick the best-performing model
plateaus.

B.2.3 Learned Mixin
In addition to the implementation and default pa-
rameters of Clark et al. (2019a), we find that the ad-
ditional entropy regularization component H makes
a significant difference in the resulting model eval-
uation. Therefore we perform a hyperparame-
ter search over the values of H used for QA by
Clark et al. (2019a) on word-dist bias, optimizing
the OOD performance on AdversarialQA (Bartolo
et al., 2020) and eventually fix H = 0.4 over all our
experiments.

Following the low initial OOD performance
of LMix as compared to the results of Clark
et al. (2019a), we further investigate covariates

of this result and identify LMix’s high sensitiv-
ity to bias model; while in the original imple-
mentation, TF-IDF similarities of question and an-
swer segment likely never reach 1.0, our generic
bias models reaches 1.0 probability for most of
the samples marked as biased. Hence, we in-
troduce a parameter of scaling interval ⟨0;x⟩ of
bias model’s scores, where we optimize x ∈
⟨0.2; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.95⟩ according to
the maximum ID F-score of the debiased model
addressing word-dist bias, fixing optimal x = 0.8
throughout all other experiments. All other param-
eters remain identical to the standard fine-tuning
(§B.1).

B.2.4 Confidence Regularization
While the authors of CReg (Utama et al., 2020a)
find benefits in its non-parametricity, we find that
CReg also shows high sensitivity to a selection of
bias model, guiding us to also rescale the prediction
of the bias model in the training distillation process.
We use the same methodology to pick the scaling
interval ⟨0;x⟩ for CReg as for LMix and fix x =
0.9 as the optimal one. All other parameters remain
the identical to the standard fine-tuning (§B.1).

We implement CReg using Transformers library
(Wolf et al., 2020a) in version 4.19.1.

C Exploiting Heuristics Configuration
Here we enumerate the optimal thresholds over all
pairs of the implemented heuristics, as picked ac-
cording to BERT-Base-Cased model.

We assess the candidate thresholds among all
possible values within the range of the computed
values Ah computed over X = SQuADvalid (see
Algorithm 1), with steps of 1 for possible values
higher than 1 and 0.1 for values between 0 and
1, within the valid interval; We set the validity in-
terval such that the resulting splits of the dataset
must each have a size of at least two times of the
sample size parameter, except where there is only
one significant threshold, and its size is larger than
the sample size. The optimal threshold value is
then the one that delivers the highest Prediction
bias value. We find and use the following opti-
mal thresholds of BERT-Base-Cased evaluated on
X = SQuADvalid for specific biases: 7 for word-
dist, 3 for sim-word, 4 for ans-len, 0.1 for cos-sim,
0 for sim-ents and 1 for subj-pos. A corresponding
number of samples in the underperforming groups
of SQuADvalid (n=10,570) are following: 1,651 for
word-dist, 3,281 for sim-word, 3,124 for ans-len,

2191



954 for cos-sim, 5,006 for sim-ents and 1,672 for
subj-pos.

The implementations of some biases’ heuristics
utilize external libraries for entity recognition or
TF-IDF vectorization. For these, we used SpaCy
in version 3.4.1 and NLTK in version 3.4.1.

D Experimental Environment
Our experiments utilized a single NVidia A100
GPU with 80 GB of VRAM, a single CPU core,
and less than 32 GB of RAM. However, all our ex-
periments can be run using a lower compute config-
uration, given a longer compute time; The inference
of a single-sample prediction batch of RoBERTa-
Large as our largest model requires only 13 GB
of VRAM. The debiasing training runs take longer
to converge, as compared to standard fine-tuning;
While the conventional training and ReSam con-
verge within 10,000 steps (Figures 8 and 9) we find
that LMix requires between 60,000 and 100,000
steps, and CReg needs between 20,000 and 30,000
steps to converge, making the debiasing training
4–8 times slower in average. In our training con-
figuration, each of the reported training runs takes
between 50 minutes and 1 hour per 10,000 updates.
Given that our evaluation already aggregates the
bootstrapped results, we perform a single run for
each experiment, which might result in a wider con-
fidence interval and consistently smaller measured
volumes of Prediction bias.
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Figure 8: Development of validation loss of ReSam addressing word-dist bias (darker plots) and standard fine-tuning
(lighter plots) for Question Answering on SQuAD, also evaluated on other (OOD) datasets, for the first 10,000 steps.

Figure 9: Development of validation loss of ReSam addressing sim-ents bias (darker plots) and standard fine-tuning
(lighter plots) for Question Answering on SQuAD, also evaluated on other (OOD) datasets, for the first 10,000 steps.
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