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Abstract

We have deployed an LLM-based spoken dia-
logue system in a real hospital. The ARI so-
cial robot embodies our system, which patients
and their companions can have multi-party con-
versations with together. In order to enable
this multi-party ability, multimodality is crit-
ical. Our system, therefore, receives speech
and video as input, and generates both speech
and gestures (arm, head, and eye movements).
In this paper, we describe our complex setting
and the architecture of our dialogue system.
Each component is detailed, and a video of
the full system is available with the appropri-
ate components highlighted in real-time. Our
system decides when it should take its turn, gen-
erates human-like clarification requests when
the patient pauses mid-utterance, answers in-
domain questions (grounding to the in-prompt
knowledge), and responds appropriately to out-
of-domain requests (like generating jokes or
quizzes). This latter feature is particularly re-
markable as real patients often utter unexpected
sentences that could not be handled previously.

1 Introduction

Both commercial and research spoken dialogue
systems (SDSs), conversational agents, and social
robots have been designed with a focus on dyadic
interactions. That is, a two-party conversation be-
tween one individual user and a single system/robot.
These are only guaranteed in specific settings, like
people interacting with Siri on their own phone,
or with Amazon Alexa in single-occupant homes.
When Alexa is in a family home, their lack of multi-
party capabilities are apparent (Porcheron et al.,
2018), but this becomes a critical limitation when
deploying social robots in public spaces. Families
visit museums and libraries, groups of friends roam
shopping malls and bars, and couples travel through
airports and support each other at hospital appoint-
ments. Social robots are being deployed and tested
in all of these settings (Al Moubayed et al., 2012;
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Figure 1: Hospital memory clinic visitors using our SDS
on the ARI social robot (Cooper et al., 2020).

Keizer et al., 2014; Furhat Robotics, 2015; Foster
et al., 2019; Vlachos et al., 2020; Gunson et al.,
2022), in which multi-party conversations (MPCs),
involving people talking to both the robot and each
other, do commonly occur (see Figure 1).

Tasks that are typically trivial in the dyadic set-
ting become considerably more complex when con-
versing with multiple users (Traum, 2004; Gu et al.,
2022b): (1) The speaker is no longer simply the
other person, so the meaning of the dialogue de-
pends on recognising who said each utterance (see
(A) in Table 1); (2) addressee recognition is sim-
ilarly more complicated (see Sec 3.2) as people
address each other, the robot, and groups; and (3)
response generation depends on who said what to
whom, relying on the semantic content and sur-
rounding multi-party context. To make things even
more difficult, MPCs provide additional unique
challenges that are underexplored. Dyadic SDSs
must identify and answer the user’s goals to be
practically useful. In MPCs, users can provide an-
other person’s goal (see (B) in Table 1), answer
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[ Example User | Utterance [ Note of Interest |
(A) Ul I think it is London If turn 2 was U2, it would be agreement,
Ul Yeah... London so speaker recognition changes meaning.
[ ® Ul [ My husband needs the bathroom [ Providing other user’s goal. |
©) Ul What time is my appointment? U2 answers U1’s question, but addressee
U2 | It’s at 10am was ambiguous without gaze info.
(D) Ul We are hungry Shared goal indicated by ‘we’, and robot
ARI The café is through the door on your left, | can point to the ‘left’. Fasting is in red as
but you should fast before your visit. it is a world-knowledge hallucination.
Ul Name a song by... This is an OOD question that could not
(E) ARI | By who? be answered without the LLM-based
Ul Queen SDS. The partial utterance is handled
ARI | Bohemian Rhapsody naturally which improves accessibility.

Table 1: Utterances and interactions that illustrate behaviours of interest to this paper (referred to where appropriate).
Examples B & C from MPCs with hospital memory clinic patients, their companions, and our SDS on the ARI
robot. Example A: (Schauer et al., 2023). Examples D & E: (Addlesee, 2024).

each other’s goals (see (C) in Table 1), and even
share goals (see (D) in Table 1, (Eshghi and Healey,
2016)). We therefore established multi-party goal-
tracking in previous work (Addlesee et al., 2023d).

Both dyadic and multi-party human conversa-
tions are subtly guided and supported by visual
cues (Goodwin, 1981; Bavelas and Gerwing, 2011;
Addlesee et al., 2019). Screwing-up of the face,
brow furrows, looking up, nodding, smiling, eye-
contact, etc... though crucial, are lost completely
by current commercial SDSs. Due to the added
complexity of MPCs, visual cues are even more
crucial (Moujahid et al., 2022). For example, It
is ambiguous who Ul is addressing in Example
(C) in Table 1 because gaze behaviour is essential
(Auer, 2018), yet missing.

In this paper, we present our multi-party mul-
timodal SDS embodied by the ARI social robot
(Cooper et al., 2020) that is currently deployed
in a hospital, and interacts with memory clinic
patients and their companions. It can give direc-
tions, provide light entertainment (like quizzes and
jokes), and inform people about bus times, the cafe
menu, and more. Large language models (LLMs)
have revolutionised our field, they are excellent at
language understanding, and this includes MPCs
(Hu et al., 2019; Gu et al., 2021, 2022a; Zhong
et al., 2022) as their pre-training includes scripts
and meeting transcripts containing multiple people.
They also hold a wealth of general knowledge, en-
abling abilities like question answering (QA), joke
telling, and playing quizzes. Our SDS is therefore
LLM-based to provide a state-of-the-art experience
for hospital patients. We first describe our setting,
and then detail each module of our system’s archi-
tecture in Figure 2. A demo video of this system is
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available on YouTube!.

2 The Hospital Setting

Dementia diagnosis is a stressful process. Patients
typically spend entire days at the hospital with
a friend or family member for support. The hours
are filled with multiple appointments, but a large
portion of the day is also spent waiting anxiously
for test results or the next appointment. Our goal
is to provide a system that is both practically use-
ful, but also entertaining, to provide participants
with some light distraction from their otherwise
stressful day. The research staff at the hospital are
our collaborators on the SPRING project, and they
run the experiments with volunteer patients, their
companions, and the ARI robot (see Figure 1).

The EU’s H2020 SPRING project aims to ex-
plore “how to create robots able to move, see, hear
and communicate with several actors, in complex
and unstructured populated spaces”?. We are one
of eight project partners, and our focus is the SDS.
Other partners work on collision prevention during
navigation, route planning, ego-noise suppression,
gaze tracking, running live experiments with pa-
tients in the hospital, and more.

3 Dialogue System

Our system presented in this paper has been itera-
tively improved through regular user tests and in-
terviews with patients visiting the hospital memory
clinic. The initial system (Gunson et al., 2022) was
developed before the recent LLM advance, relying
on a ‘traditional’ modular architecture based upon

1ht’cps: //www. youtube.com/watch?v=xMCpcsLhN_I
2https://spring-h2020.eu/
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Figure 2: The architecture of our multi-party multimodal dialogue system deployed on the ARI robot.

Alana V2 (Papaioannou et al., 2017; Curry et al.,
2018). As patients were usually accompanied by
a companion, the lack of multi-party capabilities
proved problematic. It interrupted users as it re-
sponded to every turn, not allowing them to talk to
each other at any point. We therefore designed and
ran a multi-party data collection in a wizard-of-oz
setup (Addlesee et al., 2023c,d), and have used this
data to motivate and evaluate the system we present
here. Not only is this new system multi-party and
multimodal, it improves QA accuracy, improves
accessibility to people with dementia (Addlesee,
2024), and enables added functionality. Where pre-
viously, we had to specifically design the system to
tell jokes and run entertaining quizzes (Addlesee
et al., 2023a; Schauer et al., 2023), LLMs can now
handle this inherently due to their world knowl-
edge. Most importantly, both users and the hospital
staff have reported that the user experience has im-
proved drastically. In this section, we detail each
system component illustrated in Figure 2.

3.1 Robot Platform

Our system is deployed on the ARI humanoid robot,
designed for use as a socially assistive companion
(Cooper et al., 2020). ARI is 1.65m tall, has a mo-
bile base, a touch-screen on the torso, movable
arms to gesture, and a head with LCD eyes that
enable gaze behaviour. A photo of ARI can be
seen in Figure 1 and component (A) in Figure 2.
It is equipped with a ReSpeaker Mic v2.0 array?,
an RGB camera (in the head), and a 180° fish-eye

3https ://wiki.seeedstudio.com/ReSpeaker_Mic_
Array_v2.0
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camera (in the chest) allowing us to capture and
record the audio and video of the whole interaction
from the robot’s perspective. The robot verbalises
given responses using Acapela Text-To-Speech®.

3.2 Detecting the User’s Addressee

Dyadic SDSs reply to every user turn. As discussed
in Section 1, people talk to both the robot and each
other in MPCs. If the robot replied to Ul in Ex-
ample (C), Table 1, then it would have interrupted
U2. The addressee of U1’s turn is ambiguous given
the text alone. Alternatively, if the user said “Do
you want to sit down?”, it would be clear that ARI
is not being addressed from just the text. In or-
der to measure how effective gaze information is
to determine the addressee in our specific setting,
we annotated real MPCs collected in the hospital.
We have video recordings of the interactions with
the robot’s cameras and an external camera. Using
both the video and audio, the gold addressee of
each turn was annotated along with whether the
user was looking at ARI or not.

Using the Vicuna-13b-v1.5 LLM (Chiang et al.,
2023), we created two addressee detectors. In one
case, we prompted it with the dialogue history and
current user’s turn. In the second case, we added
whether the user is looking at ARI or not. Both
prompts asked the LLM whether the user “is cur-
rently addressing the other person or the robot™.

Addressee detection accuracy increased from
53.35% to 85.40% when given the gaze informa-
tion. Reducing interruption of the user is a huge

4https://www. acapela-group.com/

SAll the exact prompts can be found on GitHub https:
//github.com/AddleseeHQ/mp-11m-demo-prompts.
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improvement, but we do not want the robot to start
ignoring people entirely. That is, we do not want
the patient to address the robot and get no response.
It is therefore critical to maximise recall, which
increased from 31.33% to 91.00% when provided
gaze information. A gaze detection model (Tonini
et al., 2023) is used to get information on when
a speaker is looking at ARI, and this is fed into
component (B) in Figure 2.

3.3 Generating Clarification Requests

In a hospital’s memory clinic, voice accessibility
is critical (Addlesee, 2023), and people with de-
mentia pause more frequently and for longer dura-
tions mid-sentence due to word-finding problems
(Boschi et al., 2017; Slegers et al., 2018). These
pauses are mistaken as end of turn by the ASR, re-
sulting in the user being interrupted with nonsense
or a generic response like “I’m sorry, I didn’t un-
derstand that”. The user is forced to repeat their
entire turn again, a frustrating and unnatural in-
teraction (Nakano et al., 2007; Jiang et al., 2013;
Panfili et al., 2021).

Accessibility settings, in Siri for example (Apple,
2022), allow users to modify how long the ASR
waits until it decides that a sentence is complete.
This is a wonderful temporary solution for people
with more progressed cognitive impairment, but it
is not naturally interactive, as the user would then
have to wait for long durations between every turn.
Producing incremental clarification requests (iCRs)
is, therefore, important for building naturally inter-
active SDSs (Chiyah-Garcia et al., 2023).

3.3.1 CR Corpus and Taxonomy

Corpora of interrupted sentences paired with their
meaning representations were recently released
(Addlesee and Damonte, 2023a,b), finding that in-
terrupted sentence recovery pipelines reliant on
CRs were best at recovering the intended meaning
of the question. They did not focus on generat-
ing natural, human-like iCRs in response to partial
sentences. Using a subset of their SLUICE corpus
(Addlesee and Damonte, 2023a), we elicited 12
CRs from annotators for 250 interrupted questions.
This new corpus SLUICE-CR, therefore, contains
a total of 3,000 human CRs (Addlesee, 2024).

All CRs within SLUICE-CR are intended to
elicit how the interlocutor would have gone on
to complete their turn. Example (E) in Table 1 il-
lustrates this. Each CR in the corpus is classified
into one of four distinct categories. First, there are
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Table 2: Clarification request generation results. SMA:
Sluice Match Accuracy. SentCR: Sentential CR. RCR:
Reprise CR. SCR: Sluice CR. Prompt styles = Basic,
Annotation, and Reasoning.

Model Prompt | SMA | SentCR RCR SCR
Human - - 3.8 39.6 352
B 11.7 91.2 0.0 0.0
GPT-4 A 98.4 6.8 1.2 79.6
R 97.6 0.8 12 86.0
Llama-2 B 33 91.6 0.4 0.0
13b-chat A 0.0 100 0.0 0.0
R 2.0 99.2 0.0 0.0
Llama-2 B 2.6 99.6 0.0 0.0
70b-chat A 91.6 69.2 7.6 8.4
R 86.0 51.6 20.0 120
Vicuna B 11.7 98.4 0.0 0.0
13bv1.5 A 83.9 73.2 00 204
R 87.0 66.4 24 200

sentential CRs (SentCRs), and these stand on their
own as full sentences (e.g. “Who wrote what?”).
We can see in Table 2 that humans rarely generated
these, but LLMs that were not exposed to SLUICE-
CR (the basic prompt) relied predominantly on
SentCRs. All other CRs in the corpus are iCRs,
fragments that are constructed as a continuation or
completion of the truncated turn. iCRs are classi-
fied further. Reprise CRs (RCRs) simply retrace
some of the words from the end of the truncated
turn to localise the point of interruption (Howes
et al., 2012), for example, responding “zipcode of?”’
in response to “What is the zipcode of...”. Sluice
CRs (SCRs) are similar to RCRs, but they end in
a wh-word (who, what, where, etc...). For example,
“zipcode of who?” or Example (E) in Table 1.

3.3.2 CR Results

With that taxonomy in mind, we evaluated LLMs
using SLUICE-CR (Addlesee, 2024). The results
relevant to the hospital deployment can be found
in Table 2. The ‘basic’ prompt simply passed the
truncated turn to each LLM with no context. The
‘annotation’ prompt contained the task instructions
given to the human annotators, which contains CR
examples, and the ‘reasoning’ prompt added a rea-
son for each example (Fu et al., 2022).

Of the models that learned to generate iCRs,
GPT-4 and Vicuna-13b-v1.5 both relied more on
SCRs. Llama-70b-chat generated more RCRs, opt-
ing to commonly forego the sluice entirely. Gener-
ating human-like iCRs is practically useless if they
are not semantically appropriate. 85.5% of the hu-
man CRs contained a sluice, so we devised a new
metric called the sluice match accuracy (SMA):
measuring the percentage of model generated CRs
with a wh-word that is an exact match to at least



one of the wh-words in the 12 human CRs for each
partial question. SMA thereby preserves semantic
type ambiguity captured by the human-annotators.

From these metrics alone, it is clear that GPT-
4 is outstanding if data privacy is not a concern.
In sensitive settings without hardware limitations,
Llama-2-70b-chat is best. Given our sensitive set-
ting with hardware limitations, we use Vicuna-13b-
v1.5 as our system’s core LLM. In order to handle
our user’s incomplete sentences, we first ask the
LLM whether the turn was a complete sentence. If
it is not, we use the ‘reasoning’ prompt to generate
an iCR to create a more accessible and naturally
interactive conversational system. This can be seen
in the architecture in Figure 2, denoted by (C).

3.4 Generating Responses

Unlike older dialogue systems, we interface with
our core LLM using prompts. As mentioned in
Section 3.3, we are using Vicuna-13b-v1.5. We
provide the hospital information in a prompt with
some additional guardrails, like “you are not qual-
ified to give any medical advice or make medical
diagnoses” and “you do not have access to indi-
vidual patient records or schedules”. Both patients
and hospital staff reported that our new LLM-based
system has improved greatly, compared to our pre-
vious system (Gunson et al., 2022). In order to
measure the improvement in its QA capabilities,
we created a set of 100 in-domain questions that
were designed to provide broad coverage of the
modular system capabilities. These were a mix of
hand-crafted and real questions asked by patients
in our collected data. In-domain error rates, where
incorrect or no information was given in response
to the question, improved from 29.2% to 11.5%.

One huge benefit of using LLMs is their inher-
ent ability to perform general chit-chat, tell jokes,
and access a wealth of general knowledge. In the
original system, we could only respond suitably
to utterances that the system was pre-designed to
handle — and we would attempt to respond to unex-
pected utterances with tips, teaching the user what
the system can do (e.g. “I’m not sure, but I can
help you with directions and menu information.”).
Many of these unexpected utterances can now be
handled directly by the LLM.

34.1 Grounding Responses to the Provided
In-prompt Knowledge

Certain LLMs, like ChatGPT and Bard, are regu-
larly asked general knowledge questions and ex-
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pected to understand chit-chat. General LLM
evaluation has therefore focused on their world
knowledge learned at pre-training. For example,
the popular Hugging Face Open LLM benchmark
(the de facto standard leaderboard) ranks each
model based on their performance across four tasks:
(1) The AI2 Reasoning Challenge (Clark et al.,
2018), a set of grade-school science questions; (2)
MMLU (Hendrycks et al., 2020), a set of elemen-
tary level questions covering mathematics, US his-
tory, computer science, law, and more; (3) Hel-
loSwag (Zellers et al., 2019), testing whether the
model can select “what will happen next?” given
a common sense scenario and some options; and
(4) TruthfulQA (Lin et al., 2022), a set of 817 ques-
tions on various topics, like law and politics.

These corpora highlight the field’s effort to re-
duce model hallucination. It is vital to clarify that
they focus on hallucination reduction of outputs
generated from the LLM’s static world knowledge.
In fact, this world knowledge can generate harmful
hallucinations due to conflicts with the information
given in the prompt. The text in red in Example (D)
in Table 1 highlights this issue. Our prompt does
not state that patients must fast before their appoint-
ment, and this response would result in a hospital
patient going hungry. Other examples include how
long a patient must wait for their medication to
wear off before driving (Addlesee, 2024).

To tackle this problem, we must coax the LLM
to ground its response to the in-prompt knowledge
given at runtime, and not rely on non-domain-
specific and potentially out-of-date knowledge
learned at pre-training. To measure the impact of
in-prompt grounding strategies, we used 50 ques-
tions from our project paired with a text passage.
We do not always know what an LLM is trained
on, and this could potentially include the website
of our real hospital, so this passage described a fic-
titious hospital that no LLM could possibly know.
We provide four prompts:

Basic: The passage followed by the question.

Jodie: Our prompt provides the passage as a quote
by Jodie W. Jenkins, a fictitious non-celebrity name
(according to Google). We then ask the LLM to
answer according to Jodie. The exact pattern is
this: ‘Jodie W. Jenkins said “PASSAGE”. Answer
according to Jodie W. Jenkins. QUESTION’.

Expert: In order to ensure any prompt-grounding
benefit is not simply a result of adding “according
to”, we again provide the passage as a quote by
Jodie W. Jenkins, but add “Answer according to



Table 3: Knowledge grounding results. ,:] indicates an improvement compared to the ‘basic’ prompt. |:| indicates
a performance drop compared to the ‘basic’ prompt. Bold marks the best scores per model (Addlesee, 2024).

LLM Basic Prompt | Jodie Prompt | Expert Prompt | Wikipedia Prompt
Quip Acc | Quip Acc | Quip Acc | Quip Acc
Dolly-12b 38.71 36 | 35.74 42 | 28.08 32 39.21 34
GPT-4 41.04 94 | 4292 98 | 4261 92 38.66 90
Llama-7b-chat 4306 56 | 4456 84 4164 72 | 40.84 74
Llama-13b-chat 4851 60 | 4118 60 4404 50 | 44.29 58
Llama-70b-chat 4410 64 | 5873 82 | 5244 70 53.78 68
Llama-70b-chat (0.95 temp) | 44.52 68 | 53.18 80 | 52.01 70 52.82 68
Vicuna-13b-v1.1 6493 46 | 80.95 54 | 2917 12 31.93 26
Vicuna-13b-v1.5 4097 70 | 4114 74 | 3630 @ 52 34.17 56

UnitedHealth” instead of Jodie W. Jenkins.
Wikipedia: The Expert prompt with one word re-
placed. The expert name is set to “Wikipedia”.

3.4.2 Response Grounding Results

In related work, Weller et al. (2023) measured
LLM grounding to world knowledge. In order to
measure how well an LLM’s output was grounded
to Wikipedia, they devised a metric: QUIP-score.
This score is the character n-gram precision of the
generated output compared to the source corpus. It
is a useful metric in our case too, as we can mea-
sure how precisely each LLM’s output is grounded
in the given in-prompt knowledge. This focus on
precision also punishes a model’s output when it
hallucinates — our goal here too. Using our corpus
(Addlesee, 2024), we used this QUIP-score and the
answer’s accuracy to measure in-prompt grounding
performance, as grounding is impractical if it does
not preserve QA performance.

Table 3 illustrates the impressive performance of
our ‘Jodie’ prompt. The Quip-score did decrease
for two of the models, but the accuracy never dete-
riorated, and increased by up to 28% (mean: 10%).
Even though the ‘Expert’ and ‘Wikipedia’ prompts
differ from the ‘Jodie’ prompt by just one name,
they generate more text that is not contained in the
given prompt (as shown by the lower Quip-scores),
and these additional hallucinations result in an ac-
curacy drop.

Our current SDS utilises this ‘Jodie’ prompt in
component (D) in Figure 2 to improve in-prompt
grounding, reducing potential user harm.

3.5 Gesture Generation

As discussed in Section 1, MPCs are far more
complex than two-party interactions. The SDS
must track who said what to whom (Gu et al.,
2022b), track the goals of multiple users (Addlesee
et al., 2023d), and generate responses fo specific
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addressees. As our SDS is embodied by the ARI
social robot (Cooper et al., 2020), we can produce
helpful gestures with its controllable arms, head,
and eyes. While some gestures are charming, like
facing the robot’s palms upward when welcoming
a user to an interaction, other gestures are more
functional. The robot can look at the user it is
addressing, point when giving directions, and in-
dicate that it is passing the turn to another user
with its arm. These functional gestures are what
we evaluate here. In component (E) in Figure 2,
you can see that we generate gestures using the
Vicuna-13b-v1.5 LLM (component (F)) in paral-
lel with the grounded answer generation. In the
prompt, we provide some examples of functional
gestures, using the gesture tags that the robot ex-
pects (Cherakara et al., 2023). The answer text is
passed to ARI’s text-to-speech, and the generated
gesture tags are passed to ARI’s movement con-
trols. We do not generate gestures when listening
to the user, as the microphones become saturated
by ego-noise (motor sounds), and the ASR fails to
hear the user’s utterance (Addlesee et al., 2023b).
We annotated a set of 110 generated system re-
sponses with gold functional gesture tags. Using
our gesture generation method, the generated ges-
tures were accurate 86% of the time. Generating an
incorrect gesture (e.g. pointing in the wrong direc-
tion) is more problematic than missing a gesture,
and the gesture generation precision was 0.91.

4 Conclusions and Future Work

We have iteratively developed and deployed a mul-
timodal, multi-party spoken dialogue system in a
hospital memory clinic. This SDS is embodied by
the ARI social robot, allowing us to generate ges-
tures in addition to speech. Using data collected
with real memory clinic patients in this complex
setting, our system is able to decide when to take
its turn, generate natural clarification requests (im-



proving accessibility for people with memory im-
pairment), answer in-domain questions grounded to
our domain specific knowledge, and respond appro-
priately to out-of-domain requests like generating
jokes, quizzes, and general chit-chat.

We are currently running further data collection
in the hospital with the LLM-based SDS. Using
this data, we will further refine our system and
curate corpora that will be released to allow other
researchers to work on this complex, yet vital task.

Ethical Considerations

Some LLMs, like ChatGPT, can only be used
through an API. This is a huge privacy concern,
especially in the healthcare setting. Even if par-
ticipants were instructed carefully, it is impossible
to ensure they would not reveal personally iden-
tifiable information — this problem is exacerbated
in a memory clinic setting (Addlesee and Albert,
2020). For this reason, we must use more open and
transparent LLMs (Liesenfeld et al., 2023). We
selected Vicuna-13b-v1.5 as it was the best per-
forming model that could run on our hardware.

In Section 3.4 we detailed our in-prompt halluci-
nation reduction efforts, but these will never reach
zero. Hospital staff run the experiments, so they
can correct the robot if it ever produces a hospital-
related hallucination. This is also why we do not
provide the SDS with any personal information like
patient appointment schedules — we do not want to
cause confusion.

In a real deployment, prompt poisoning could
be an issue. A bad actor can manipulate the sys-
tem to output incorrect responses through dialogue.
This is not possible in our data collection, as we
reset the system between participants (the patients
are also unlikely to be bad actors). If deployed,
speaker diarization and dialogue history deletion
can mitigate this risk, but it is critical to highlight
that LLMs can be manipulated.
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