
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
System Demonstrations, pages 187–194

March 17-22, 2024 c©2024 Association for Computational Linguistics

DocChecker: Bootstrapping Code Large Language Model for Detecting
and Resolving Code-Comment Inconsistencies

Anh T. V. Dau
FPT Software AI Center

Vietnam
anhdtv7@fpt.com

Jin L.C. Guo
McGill University

Canada
jguo@cs.mcgill.ca

Nghi D. Q. Bui
Fulbright University

Vietnam
nghi.bui@fulbright.edu.vn

Abstract

Comments in source code are crucial for de-
velopers to understand the purpose of the code
and to use it correctly. However, keeping com-
ments aligned with the evolving codebase poses
a significant challenge. With increasing inter-
est in automated solutions to identify and rec-
tify discrepancies between code and its asso-
ciated comments, most existing methods rely
heavily on heuristic rules. This paper intro-
duces DocChecker, a language model-based
framework adept at detecting inconsistencies
between code and comments and capable of
generating synthetic comments. This function-
ality allows DocChecker to identify and rectify
cases where comments do not accurately rep-
resent the code they describe. The efficacy of
DocChecker is demonstrated using the Just-In-
Time and CodeXGlue datasets in various sce-
narios. Notably, DocChecker sets a new bench-
mark in the Inconsistency Code-Comment De-
tection (ICCD) task, achieving 72.3% accuracy,
and scoring 33.64 in BLEU-4 on the code sum-
marization task. These results surpass other
Large Language Models (LLMs), including
GPT 3.5 and CodeLlama.

DocChecker is available for use and evalua-
tion. It is available on https://github.com/
FSoft-AI4Code/DocCheckerGitHub and as
an Online Tool. A demonstration video of its
functionality can be found on YouTube.

1 Introduction

Code summarization is a significant issue in soft-
ware engineering due to its ability to produce ex-
planatory comments for source code, which is es-
sential for ensuring software quality. Identifying
and resolving discrepancies between the source
code and its corresponding comments is an essen-
tial obstacle. Inconsistencies resulting from code
changes not being accurately reflected in comments
or from initially imprecise descriptions can cause
substantial problems in comprehending and manag-

Code Function

Comment
Things we don't need to care about

 func (s *storageZfs) ContainerMount(c container)
 (bool, error) {

 return s.doContainerMount(c.Project(),
c.Name(), c.IsPrivileged())

 }

Figure 1: An example of code-comment inconsistency
from the CodeSearchNet dataset.

ing software. An illustrative example of this incon-
sistency, sourced from the CodeSearchNet dataset,
is depicted in Figure 1 (Husain et al., 2019). These
disparities can cause software defects, degrade soft-
ware quality, and lower developer productivity, as
highlighted in recent studies (Wen et al., 2019; Tan
et al., 2012; Panthaplackel et al., 2021; Steiner and
Zhang, 2022). Moreover, the prevalent issue of
code-comment conflicts in widely used datasets im-
pacts the efficacy of code language models trained
on them (Sun et al., 2022; Shi et al., 2022; Manh
et al., 2023). Recent large models trained specifi-
cally for code understanding and generation tasks
may be able to address these challenges (Wang
et al., 2021; Nijkamp et al., 2022; Wang et al., 2023;
Di Grazia and Pradel, 2023). However, these mod-
els’ efficacy depends on the quality of the training
data, emphasizing the importance of accurate and
consistent code-comment pairs.

To address these issues, we introduce Doc-
Checker, a framework designed specifically for
detecting inconsistencies between code and com-
ments (ICCD)). Leveraging the capabilities of
AI4SE and insights gained from advancements
in code LLMs, DocChecker addresses the critical
need for high-quality, consistent documentation in
software development. The key idea is to leverage
an encoder-decoder backbone network and then

187

https://github.com/FSoft-AI4Code/DocChecker
https://github.com/FSoft-AI4Code/DocChecker
http://4.193.50.237:5000/
https://youtu.be/FqnPmd531xw

pre-train code-text pairs. This pre-training process
employs a multi-faceted approach, including con-
trastive learning to bootstrap code and text features,
binary classification to discern consistent from in-
consistent pairs, and text generation to create co-
herent comments. The backbone of this system is
UniXcoder (Guo et al., 2022), chosen for its ef-
fectiveness and efficiency in handling multi-modal
content. DocChecker is specifically designed not
only to detect but also to resolve inconsistencies
between code and comments by generating replace-
ment comments that accurately reflect the current
state of codebase. Furthermore, compared to state-
of-the-art CodeLLMs, our method excels signif-
icantly on ICCD and code summarization tasks.
DocChecker outperforms StarCoder by 30% and
surpasses GPT-3.5 and CodeLlama by 10% in
terms of accuracy, even though such models are
pre-trained on larger-scale datasets. In summary,
the key contributions of DocChecker are:

• We propose DocChecker, a framework built on
a code language model, jointly pre-trained with
three objectives: contrastive learning between
code and text, binary classification, and comment
generation.

• The experiments show that DocChecker achieves
state-of-the-art results on ICCD and code sum-
marization, compared to existing methods and
LLMs such as StarCoder, GPT-3.5, and CodeL-
lama.

• DockChecker is released as an easy-to-use pack-
age that can be deployed and installed on a local
machine, facilitating its adoption in real-world
software development scenarios.

2 Related Work

2.1 Pre-trained Code Language Models
Large language models have demonstrated re-

markable success in code understanding and gen-
eration, giving rise to code models such as several
notable ones, each specializing in different aspects
of code processing. Encoder-decoder models like
UniXCoder (Guo et al., 2022), CodeT5 (Wang
et al., 2021), CodeT5+(Wang et al., 2023) ex-
cel in both understanding and generating code.
Encoder-only models, such as CuBERT (Kanade
et al., 2020) and CodeBERT (Feng et al., 2020),
are adept at code-understanding tasks, with Cu-
BERT focusing on Python and CodeBERT ex-
tending to six languages. Meanwhile, decoder-

only models such as CodeLlama (Roziere et al.,
2023), StarCoder (Li et al., 2023), and Magi-
coder (Wei et al., 2023), CodeGen(Nijkamp et al.,
2022, 2023), and DeepSeek-Coder (Guo et al.,
2024) specialize in code generation. Other mod-
els are trained based on additional structural fea-
tures of source code, such as InferCoder (Bui et al.,
2021a) and Corder (Bui et al., 2021b). These mod-
els are typically trained on large-scale datasets from
Github (Kocetkov et al., 2022; Lu et al., 2021), with
heuristic rules (Manh et al., 2023) used to select
only high-quality parts for training

2.2 Detect Inconsistency Between Code and
Comment

Source code comments are important in under-
standing the meaning of the code function. The
significance of comments aligning with source
code is divided into two categories: inconsistent
code-comment detection and comment updates.
Rabbi and Siddik (2020) measures the similarity
between code functions and comments, identify-
ing inconsistency when the score falls below a set
threshold. Panthaplackel et al. (2021) develops
a deep learning-based approach to comprehend
and establish relationships between comments and
code changes. Instead of using machine learn-
ing approaches, others propose rule-based meth-
ods for analysis. Ratol and Robillard (2017) intro-
duces Fraco, an Eclipse plugin for fragile comment
detection during identifier renaming, while Shi
et al. (2022) develops an automated code-comment
cleaning tool for accurate noise detection in the
CodeSearchNet dataset Husain et al. (2019). Al-
though rule-based methods are clear and straight-
forward, they struggle with new datasets and lack
semantic understanding. Recent research explores
automatic comment updating, with tools like CUP
(Liu et al., 2021) and HebCUP (Lin et al., 2021) ef-
fective for simple changes (a single token change)
but not for complex ones. In contrast, our frame-
work excels at detecting and updating inconsistent
code-comment pairs.

3 Overview of DocChecker

In this section, we describe DocChecker as a
Python package and demonstrate its user interface.
For full customization and detailed documentation
of DocChecker, users can reference our GitHub
repository.

188

https://github.com/FSoft-AI4Code/DocChecker

Figure 2: Screenshot for the Input Example.

Figure 3: Screenshot for the Output file Example.

3.1 Python Package

We bundle DocChecker into an easy-to-use li-
brary that can be installed via Pypi.

Input: User must provide their source code file as
well as the corresponding programming language.
DocChecker is able to extract all code functions
and their metadata (e.g. function name) by using
the AST parser 1. An example of how to use Doc-
Checker is illustrated in Figure 2.

Output: DocChecker returns in the form of a list
of dictionaries corresponding in number to input
code functions, including the name of each func-
tion in raw code, code snippet, associated docstring,
as well as its prediction, and the recommended
docstring. If a code-text pair is considered as “In-
consistent!”, DocChecker will generate a complete
docstring to replace the old ones; otherwise, it will
keep the original version. Figure 3 is a screenshot
that shows the result of DocChecker’s prediction.

3.2 User Interface

We show a demo interface of DocChecker as de-
picted in Figure 4. It consists of a coding field for
directly entering source code or uploading existing
code files, a select widget specifying the program-
ming language used for their code, and a button
that triggers the query process. When the front-end
receives the query result, it displays the previously
mentioned list of dictionaries.

1We use tree-sitter as the parser https://github.com/
tree-sitter/tree-sitter.

Figure 4: Screenshot for the user interface.

4 Building Blocks of DocChecker

This section outlines the architecture of Doc-
Checker (see Section 4.1), the objectives guiding
its pre-training (Section 4.2), and the specific setup
used during pre-training (Section 4.3). Initially,
the model undergoes pre-training focusing on con-
trastive learning and code-to-text generation, fol-
lowed by fine-tuning for the specific Inconsistency
Code-Comment Detection (ICCD) task.

4.1 Architecture

DocChecker’s design is influenced by the effec-
tiveness of pre-trained models. Instead of build-
ing from scratch, it utilizes existing pre-trained
encoder-decoder models. For this project, we se-
lected UniXcoder, an encoder-decoder model (Guo
et al., 2022), as our backbone network due to its
customizable nature and efficient performance with
relatively fewer parameters (details in Section 6.3).

4.2 Pre-training Objectives

DocChecker’s pre-training involves three pri-
mary objectives:

Code-Text Contrastive Learning (CTC): This
aims to align the feature spaces of code and text
encoders. We enhance model accuracy by empha-
sizing similarities in positive code-text pairs and
differentiating them from negative pairs. Negative
samples are generated following the methodology
in (Li et al., 2021), focusing on hard negative pairs
based on contrastive similarity.

189

https://pypi.org/project/docchecker/
https://github.com/tree-sitter/tree-sitter
https://github.com/tree-sitter/tree-sitter

Code Sequence Text Sequence

Block

FC Layer FC Layer

Contrastive Learning

Encoder Decoder

FC Layer

Block

Block

Binary Classification Text Generation

Figure 5: Overview of the DocChecker framework.

Binary Classification (BC): This objective as-
sesses the alignment between code and text. The
model distinguishes between consistent (positive)
and inconsistent (negative) code-text pairs, enhanc-
ing its ability to detect inconsistencies.

Comment Generation (CG): This objective fo-
cuses on creating comments that explain a specific
code snippet. Training the model to optimize cross-
entropy loss in an autoregressive manner improves
the model’s ability to generate coherent comments.

In addition to these objectives, DocChecker ben-
efits from multi-task learning, sharing the weights
between the text encoder and decoder to improve
text representation. Separate, fully-connected lay-
ers are utilized to capture task-specific differences
and minimize task interference.

4.3 Pre-training Setup

DocChecker uses UniXcoder (Guo et al., 2022),
which excels at multi-modal contexts and uni-
fied cross-modal models. Our goal is to make
Dockchecker lightweight and easy to install on a
local machine. With 12 hidden layers, 768 hidden
sizes, and 3072 intermediate sizes, UniXcoder’s
architecture of 124M parameters meets our re-
quirements. UniXCoder is also pre-trained on
CodeXGLUE, which includes a variety of program-
ming languages. This diverse dataset is critical to
ensuring the model’s performance in a wide range
of software engineering scenarios.

5 Experiment Setup

In this section, we first present the tasks and the
datasets used to assess the performance of Doc-
Checker. Then, we describe the baselines and met-
rics used for evaluation.

5.1 Evaluation Tasks
DocChecker is evaluated for two tasks: ICCD

and Code Summarization.

ICCD: For this task, given a comment C with a
corresponding code method M , determine whether
comment C is semantically out of sync with code
function M . To address this challenge, we utilize
the post-hoc setting in (Panthaplackel et al., 2021),
where code changes that resulted in the mismatch
are unknown; Only the current version of the code
snippet and old comment are available. This setting
is similar to our work, where we want to detect
inconsistency for code-text pairs.

Code Summarization: This task aims to gener-
ate a natural language summary to explain a given
piece of code. By summarizing key concepts and
features into a concise format, code summariza-
tion addresses the challenge of comprehending pro-
gramming constructs, especially as codebases con-
tinue to grow in complexity.

5.2 Datasets
As we assess the performance of DocChecker

across two distinct tasks, we rely on two datasets:
the Just-In-Time dataset for the ICCD task and the
CodeXGLUE dataset for the code summarization
task.

Just-In-Time Dataset ((Panthaplackel et al.,
2021)): In this dataset, each sample is the
comment-method pair from 2 versions: before and
after updating (C1,M1) and (C2,M2) . In the post-
hoc setting, C = C1 and M = M2. They assume
that developers updated the comment because it
became inconsistent as a result of code changes;
they take C1 to be inconsistent with M2, conse-
quently leading to a negative example. For posi-
tive examples, they additionally examine cases in

190

which C1 = C2 and assume that the existing com-
ment has been revised to align consistently with the
corresponding code snippet. For a more reliable
evaluation, they manually check to get 300 clean
examples from the test set and note it as the cleaned
test set.

CodeXGLUE dataset (Lu et al. (2021)): This
dataset comprises six programming languages:
Python, Java, JavaScript, Ruby, Go, and PHP. They
come from publicly available open source non-fork
GitHub repositories, with each documentation rep-
resenting the first paragraph.

5.3 Baselines:

Baselines for ICCD task: We select the follow-
ing existing work to compare against DocChecker
for its effectiveness on the ICCD task:

• SVM (Corazza et al., 2018): This bag-of-words
approach classifies whether a comment is co-
herent with the method using an SVM with TF-
IDF vectors corresponding to the comment and
method;

• Deep-JIT: (Panthaplackel et al., 2021) presents a
method for detecting inconsistencies between nat-
ural language comments and source code. With
different ways of encoding, they consider three
types and note them as SEQ, GRAPH, HYBRID.
Deep-JIT is the existing SOTA method on the
Just-In-Time dataset.

• Pretrained Language Models of Code: We
evaluate a range of language models specifically
designed for code. Firstly, we focus on three
prominent and powerful CodeLLMs: GPT-3.5-
Turbo, StarCoder (15B) (Li et al., 2023), and
CodeLlama (34B) (Roziere et al., 2023). These
models are assessed using both zero-shot (0-shot)
and few-shot (3-shot) prompting approaches. In
the zero-shot setup, no examples from the Just-In-
Time dataset are provided, while the few-shot ex-
periment incorporates three code-text pairs with
correct labels from the dataset in each prompt.
These prompts are then applied to all selected
LLMs. Additionally, we also incorporate a com-
parative analysis with two established pre-trained
models: CodeBERT (Feng et al., 2020) and
CodeT5 (Wang et al., 2021).

Baselines for Code Summarization task: In this
experiment, we focus on the fine-tuning setting and
compare our method with smaller-scale LMs, in-

Method Cleaned Test set Full Test Set

F1 Acc F1 Acc

SVM 53.9 60.7 54.6 60.3
Deep-JITSEQ 63.0 60.3 66.3 62.8

Deep-JITGRAPH 65.0 62.2 67.2 64.6
Deep-JITHYBRID 63.3 55.2 66.3 58.9

CodeBERT 67.9 66.9 70.7 69.8
CodeT5 69.5 68.8 70.2 70.1

GPT-3.5 0-shot 60.9 65.1 62.5 64.6
StarCoder 0-shot 43.7 43.1 45.2 43.9

CodeLlama 0-shot 70.2 68.7 62.6 61.8

GPT-3.5 3-shot 66.4 67.0 66.1 61.4
StarCoder 3-shot 44.2 43.6 42.8 42.2

CodeLlama 3-shot 70.5 69.2 62.3 62.1

DocChecker 73.1 70.7 74.3 72.3

Table 1: Results for post hoc settings on the Just-In-
Time dataset

cluding RoBERTa (Liu et al., 2019), CodeBERT
(Feng et al., 2020) trained with masked language
modeling; PLBART (Ahmad et al., 2021) is based
on BART and pre-trained using denoising objec-
tive; CodeT5 (Wang et al., 2021), adapted from T5,
takes into account important token-type informa-
tion in identifiers; and the variant of UniXcoder
(Guo et al., 2022) since we utilize UniXcoder as
the backbone network.

5.4 Evaluation Metrics
Metrics for ICCD: We use two common classi-
fication metrics: F1 score (w.r.t. the positive label)
and Accuracy (Acc) to report the performance of
methods.

Metrics for Code Summarization: For this task,
we use the smoothed BLEU-4 (Lin and Och, 2004)
as the evaluation metric and report the overall score
of six programming languages.

6 Evaluation Results

6.1 Effectiveness of DocChecker on ICCD
Table 1 presents results for all baselines un-

der the post-hoc setting and LLMs. In general,
we find that our model can significantly outper-
form all of the baselines. Despite CodeBERT and
CodeT5 being pre-trained models with more pa-
rameters and showcasing efficiency in numerous
downstream tasks, their performance is behind ours.
DocChecker achieves a new SoTA of 72.3% accu-
racy and 74.3% F1 score on the full test set of
Just-In-Time. On the other hand, although previous
literature has empirically explored various capabil-

191

Method Summarization
BLEU-4

RoBERTa 16.57
CodeBERT 17.83
PLBART 18.32
CodeT5-small 19.14
CodeT5-base 19.55
UniXcoder 19.30
-w/o contras 19.20
-w/o cross-gen 19.27
-w/o comment 18.97
-w/o AST 19.33
-using BFS 19.24
-using DFS 19.25
DocChecker 33.64

Table 2: Results on the code summarization task.

ities of LLMs in diverse natural language process-
ing and code generation tasks, billion-parameter
LLMs such as StarCoder, GPT 3.5, and CodeLlama
still struggle with ICCD, even with the construc-
tion of various types of prompts. In particular,
DocChecker produces significant improvements of
+10% accuracy and F1 score compared to the se-
lected LLMs.

The experiment results suggest that DocChecker
benefits from using a pre-trained language model
with our novel pre-training objectives. It supports
that our method effectively detects inconsistent
samples in the code corpus.

6.2 The effectiveness of DocChecker on Code
Summarization

Our results on this task are shown in Table
2. DocChecker is compared to a number of pre-
trained code language models during our eval-
uation. Following DocChecker’s pre-training
for three aforementioned objectives, our method
outperforms others significantly. DocChecker’s
BLEU-4 score is twice that of RoBERTa and Code-
BERT. Furthermore, despite the fact that CodeT5-
base uses a 12-layer encoder and a 12-layer de-
coder, which are twice as powerful as our architec-
ture, its performance is significantly lower. Doc-
Checker outperforms CodeT5 and the backbone
network UniXcoder by +13 BLEU-4 scores.

6.3 Influence of the backbone network on
DocChecker

DocChecker functions as a framework, so choos-
ing an encoder-decoder model for the backbone net-
work is flexible. This section demonstrates the ef-
fect of several pre-trained models on DocChecker’s
effectiveness. We use CodeBERT, CodeT5, and

Backbone
Network

Cleaned test set Full test set
F1 Acc F1 Acc

CodeBERT 68.2 67.1 71.5 70.4
CodeT5 70.1 69.5 71.9 71.5
UniXcoder 73.1 70.7 74.3 72.3

Table 3: Results of DocChecker pre-trained with differ-
ent backbone networks on the Just-In-Time dataset.

Code Function

Original Comment
Syntax sugar.

Recommended comment from DocChecker
Send and Receive the response.

 public <R> sendAndReceive(final Function
 <HttpResponse, R> responseHandler){
 return responseHandler.apply(send());
 }

 Path renameToFinalName(FileSystem fs, Path tempPath)
 throws IOException, StageException {

 return fsHelper.renameAndGetPath(fs, tempPath);
 }

Code Function

Original Comment
This method should be called every time we finish writing
into a file and consider it done .

Recommended comment from DocChecker
Renames the given path to the final name .

Figure 6: Some inconsistent code-comment examples
were collected from the CodeXGlue dataset and our
recommended comment to replace.

UniXcoder as the backbone network for Doc-
Checker. Each chosen backbone is pre-trained in
the DocChecker framework and fine-tuned using
the Just-In-Time dataset. The results in Table 3
show that the pre-trained models perform better
after re-pre-training compared to their original ver-
sions. However, UniXcoder emerges as the most
effective backbone model for this task, so we use it
for all of our experiments.

6.4 Practical Application

Aside from demonstrating DocChecker’s perfor-
mance, we highlight its effectiveness in real-world
scenarios. We consider the popular CodeXGlue
dataset, which extracts functions and paired com-
ments from Github repositories. Although this
benchmark dataset is expected to be of high qual-
ity, noise is unavoidable due to variations in cod-
ing conventions and assumptions used in modern
programming languages and IDEs. Using Doc-

192

Checker, we can filter the dataset’s inconsistent
code-comment samples and create new comprehen-
sive summary sentences for them.

Figure 6 shows an example of an inconsistent
sample identified by DocChecker in the Code-
SearchNet dataset. The comment associated with
the code snippet is misaligned and needs to be up-
dated. Beyond detection, our method generates a
detailed summary sentence for each sample, which
replaces the outdated ones.

7 Conclusion

In this paper, we present DocChecker, a frame-
work to filter and generate replacement comments
for inconsistent code-comment pairs. The experi-
mental results demonstrate the effectiveness of this
method compared to SoTA existing methods and
LLMs, showcasing its applicability in both aca-
demic and practical contexts. We have released
DocChecker as an easy-to-use library, comple-
mented by a user-friendly interface to enhance user
interaction.

References

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi
Ray, and Kai-Wei Chang. 2021. Unified pre-training
for program understanding and generation. arXiv
preprint arXiv:2103.06333.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021a.
Infercode: Self-supervised learning of code represen-
tations by predicting subtrees. In 2021 IEEE/ACM
43rd International Conference on Software Engineer-
ing (ICSE), pages 1186–1197. IEEE.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021b.
Self-supervised contrastive learning for code retrieval
and summarization via semantic-preserving transfor-
mations. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 511–521.

Anna Corazza, Valerio Maggio, and Giuseppe Scan-
niello. 2018. Coherence of comments and method
implementations: a dataset and an empirical investi-
gation. Software Quality Journal, 26:751–777.

Luca Di Grazia and Michael Pradel. 2023. Code search:
A survey of techniques for finding code. ACM Com-
put. Surv., 55(11).

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and natu-
ral languages.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. pages
7212–7225.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the
large language model meets programming–the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. CoRR, abs/1909.09436.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,
and Kensen Shi. 2020. Learning and evaluating con-
textual embedding of source code. In Proceedings of
the 37th International Conference on Machine Learn-
ing, ICML’20. JMLR.org.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li,
Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jer-
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf,
et al. 2022. The stack: 3 tb of permissively licensed
source code. arXiv preprint arXiv:2211.15533.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare,
Shafiq Joty, Caiming Xiong, and Steven Chu Hong
Hoi. 2021. Align before fuse: Vision and language
representation learning with momentum distillation.
Advances in neural information processing systems,
34:9694–9705.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Bo Lin, Shangwen Wang, Kui Liu, Xiaoguang Mao, and
Tegawendé F. Bissyandé. 2021. Automated comment
update: How far are we? In 2021 IEEE/ACM 29th In-
ternational Conference on Program Comprehension
(ICPC), pages 36–46.

Chin-Yew Lin and Franz Josef Och. 2004. Orange: a
method for evaluating automatic evaluation metrics
for machine translation. In COLING 2004: Pro-
ceedings of the 20th International Conference on
Computational Linguistics, pages 501–507.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Zhongxin Liu, Xin Xia, David Lo, Meng Yan, and Shan-
ping Li. 2021. Just-in-time obsolete comment de-
tection and update. IEEE Transactions on Software
Engineering, pages 1–1.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-

193

http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2002.08155
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://doi.org/10.1109/ICPC52881.2021.00013
https://doi.org/10.1109/ICPC52881.2021.00013
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692

fano, MING GONG, Ming Zhou, Nan Duan, Neel
Sundaresan, Shao Kun Deng, Shengyu Fu, and Shu-
jie LIU. 2021. CodeXGLUE: A machine learning
benchmark dataset for code understanding and gener-
ation. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track (Round 1).

Dung Nguyen Manh, Nam Le Hai, Anh T. V. Dau,
Anh Minh Nguyen, Khanh Nghiem, Jin Guo, and
Nghi D. Q. Bui. 2023. The vault: A comprehensive
multilingual dataset for advancing code understand-
ing and generation.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-
vio Savarese, and Yingbo Zhou. 2023. Codegen2:
Lessons for training llms on programming and natu-
ral languages. arXiv preprint arXiv:2305.02309.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric,
and Raymond J Mooney. 2021. Deep just-in-time in-
consistency detection between comments and source
code. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 427–435.

Fazle Rabbi and Md Saeed Siddik. 2020. Detecting
code comment inconsistency using siamese recurrent
network. In Proceedings of the 28th International
Conference on Program Comprehension, ICPC ’20,
page 371–375. Association for Computing Machin-
ery.

Inderjot Kaur Ratol and Martin P Robillard. 2017. De-
tecting fragile comments. In 2017 32nd IEEE/ACM
International Conference on Automated Software En-
gineering (ASE), pages 112–122. IEEE.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Lin Shi, Fangwen Mu, Xiao Chen, Song Wang, Junjie
Wang, Ye Yang, Ge Li, Xin Xia, and Qing Wang.
2022. Are we building on the rock? on the impor-
tance of data preprocessing for code summarization.
In Proceedings of the 30th ACM Joint European Soft-
ware Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 107–
119.

Theo Steiner and Rui Zhang. 2022. Code comment
inconsistency detection with bert and longformer.
arXiv preprint arXiv:2207.14444.

Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li.
2022. On the importance of building high-quality
training datasets for neural code search. In Proceed-
ings of the 44th International Conference on Software
Engineering, pages 1609–1620.

Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T.
Leavens. 2012. @tcomment: Testing javadoc com-
ments to detect comment-code inconsistencies. In
2012 IEEE Fifth International Conference on Soft-
ware Testing, Verification and Validation, pages 260–
269.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023.
Codet5+: Open code large language models for
code understanding and generation. arXiv preprint
arXiv:2305.07922.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H.
Hoi. 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

Fengcai Wen, Csaba Nagy, Gabriele Bavota, and
Michele Lanza. 2019. A large-scale empirical
study on code-comment inconsistencies. In 2019
IEEE/ACM 27th International Conference on Pro-
gram Comprehension (ICPC), pages 53–64. IEEE.

194

https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
http://arxiv.org/abs/2305.06156
http://arxiv.org/abs/2305.06156
http://arxiv.org/abs/2305.06156
https://doi.org/10.1109/ICST.2012.106
https://doi.org/10.1109/ICST.2012.106
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859

