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Abstract
This study evaluates the extent to which semantic information is preserved within sentence embeddings generated
from state-of-art sentence embedding models: SBERT and LaBSE. Specifically, we analyzed 13 semantic
attributes in sentence embeddings. Our findings indicate that some semantic features (such as tense-related
classes) can be decoded from the representation of sentence embeddings. Additionally, we discover the lim-
itation of the current sentence embedding models: inferring meaning beyond the lexical level has proven to be difficult.
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1. Introduction

Word embeddings have frequently been used as
input in deep neural networks. Sentence em-
beddings are supposed to encapsulate sentence
meanings into vectors. However, representing an
entire sentence as a vector of fixed length poses
significant challenges. Obtaining sentence embed-
dings is not as straightforward as extracting word
embeddings based on contextual information from
text. Embeddings merely based on surrounding
text can be less representative at the sentence
level.

Additionally, evaluating the quality of sentence
embeddings or assessing whether these embed-
dings effectively encapsulate the meanings of sen-
tences often requires a human-annotated corpus
with well-defined semantic categories or sentence
similarity scores.

In this study, we convert Czech sentences in the
COSTRA dataset into sentence embeddings us-
ing SBERT and LaBSE models. COSTRA dataset
(BaranCikova and Bojar, 2020) is a collection of
Czech sentences with semantic labels. Each set
consists of a ‘seed’ sentence and transformation
sentences that are derived from the seeds. The ob-
jective of this study is to assess whether sentence
embeddings trained by SBERT and LaBSE retain
semantic information and whether vectors in the
same transformation class (with some similarity in
semantics) show affinity in high dimensional space,
which is tested by using clustering and classifica-
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tion algorithms to investigate whether vectors from
the same class can be distinguished from vectors
of other classes in high dimensional space.

The content of our paper is structured as follows:
Section 3 presents a detailed introduction to the
COSTRA dataset and an overview of our evalua-
tion methods. In Section 4, we implement the di-
mension reduction technique to visualize sentence
embeddings in 2D graphs. Section 5 attempts to
predict new sentence embeddings with extracted
transformation vectors. Section 6 implements clus-
ter separation tests to assess within-class cohesion
and between-class separation for 13 transforma-
tion classes. In Section 7, supervised methods
are employed to train and predict transformation
labels. Finally, Section 8 compares the results in
all evaluation tasks and discusses the separability
of transformation vectors.

2. Previous Studies

In this section, we introduce previous research on
sentence embeddings, as well as the evaluation
methods employed for assessing sentence embed-
dings.
2.1. Previous Studies on Sentence
Embeddings

Word embeddings represent word meanings in
space, and sentence embeddings are supposed
to encapsulate sentence meanings into vectors,
ideally of fixed lengths. There are two approaches
to generating sentence embeddings. One is unsu-
pervised learning of sentence embeddings. For
instance, Yang et al. (2018) and Arora et al.
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Class Description Example (Translated from Czech)

seed original sentence Four members of my family lost their lives.

ban negative imperative Four members of my family cannot lose their lives!
possibility possibility modality Four members of my family probably lost their lives.
past past tense In those days, four members of my family lost their lives.
future future tense Four members of my family will one day lose their lives.

opposite meaning
generalization
minimal change
nonsense
different meaning
formal sentence
simple sentence
nonstandard
paraphrase

opposite sense
make it more general
minimal alteration

by shuffling words

by shuffling words

a more formal style
a simplistic style

a colloquial style
paraphrase

Four members of my family were born.

Four people died.

Four members of that family lost their lives.

Life lost members of my family.

Four members of my family lost a member.

Four members of my family closed their eyes forever.
Four people of my family died.

Almost my whole family died there.

Four of my relatives died.

Table 1: Seed and Transformation classes in COSTRA

(2019) proposed an unsupervised method to con-
struct sentence embeddings. They calculate the
weighted sum of word embeddings’ and then re-
move principal components to enhance embedding
quality.

Nevertheless, the dominant method in prior re-
search for generating sentence embeddings is su-
pervised learning towards the relations (e.g. natu-
ral language inference, Conneau et al., 2017) we
want to get from the embeddings.

The sequence-to-sequence architecture was
used to generate sentence embeddings in machine
translation tasks, with the encoder’s output serving
as the sentence representation. LASER (Artetxe
and Schwenk, 2019) is an instance. It is a multilin-
gual LSTM-based encoder-decoder model trained
on parallel corpora across 93 languages (Goswami
et al., 2021). However, it is challenged due to the
suboptimal semantic representation. Reimers and
Gurevych (2020) state that LASER fails in assess-
ing the similarity of sentence pairs, despite its good
performance in identifying exact translations.

More recently, transformer and BERT-based
models have received increased attention. SBERT
(Reimers and Gurevych, 2019) stands as a state-
of-the-art model for generating sentence embed-
dings (Ham and Kim, 2021). Multilingual models
have also been studied in recent years. Reimers
and Gurevych (2020) fine-tune the monolingual
SBERT model (Reimers and Gurevych, 2019) with
a parallel corpus that includes 50 languages and
leveraged knowledge distillations. Chidambaram
et al. (2019) propose mUSE (Multilingual Universal

'The actual deep learning tasks in which the word
embeddings obtained can vary, such as autoregressive
(e.g. LSTM) or non-autoregressive language modelling.
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Sentence Encoder), trained on parallel data in 16
languages. LaBSE (Feng et al., 2022) is another
multilingual BERT-based model, trained on a dual
encoder with 6 billion sentence translation pairs
across 109 languages. These three multilingual
models have demonstrated strong performance
in previous studies (Devine et al., 2021; Reimers
and Gurevych, 2020; Ham and Kim, 2021). In our
study, we use SBERT and LaBSE, two models that
support the Czech language to generate sentence
embeddings.

2.2. Sentence Embedding Evaluation

The evaluation of sentence embeddings in previ-
ous studies includes linguistic probing tests, se-
mantic similarity tests, and other downstream clas-
sification tests (Conneau and Kiela, 2018).

Linguistic probing tasks start with investigat-
ing surface information, like decoding sentence
lengths or assessing whether the original words
can be detected from a sentence embedding (Adi
et al., 2016). The syntactic evaluation examines
whether sentence embeddings can detect neigh-
bouring word shifts, part of speech tags, coordina-
tion inversion, number or gender agreement, depth
of the syntactic tree, etc. (Perone et al., 2018; Pi-
mentel et al., 2020; Hupkes et al., 2018). Other
downstream classification tasks involve sentiment
analysis and opinion polarity (Perone et al., 2018,
Conneau et al., 2018).

The semantic similarity test is also popular in
sentence embedding evaluation. Models are as-
sessed by computing the correlation between the
human-labeled similarity scores of sentence pairs
and the model-predicted distance (e.g. cosine dis-



SBERT Sentence Embeddings (1A) LaBSE Sentence Embeddings (1B)

SBERT Transformation Vectors (2A) LaBSE Transformation Vectors (2B)

- 11 - 11

19 19
- 28 -} 23. - 28
- 31 - 31
— 34 34
65 65
72 72
77 77
86 86
88 $ @ 88

i

3 ]

»
UMAP: metric=cosine, n_neighbors=15, min_dist=0.1 | UMAP: metric=cosine, n_neighbors=15, min_dist=0.1f ...

%

&

== ban
different meaning
formal sentence
future

mmm generalization

m=m minimal change

=== nonsense

nonstandard sentence

opposite meaning

paraphrase

past

possibility

simple sentence

== ban
different meaning
formal sentence
future

mmm generalization

mms minimal change

== nonsense

nonstandard sentence ¢

opposite meaning 4

paraphrase

past

possibility

simple sentence

CYOON
+_n2ighbors=65, min_dist=0.1][ _... +_r.2ighbors=65, min_dist=0.1

Figure 1: Visualization of sentence embeddings (1A) & (1B) and transformation vectors (2A) & (2B).
(1A) & (1B) illustrate sentence embeddings of 10 randomly selected seeds and their corresponding
transformed sentences. Each set of a seed sentence and its derived sentences is indicated by a seed

index and represented with a distinct colour.

tance) of two sentence embeddings.

However, many semantic studies on sentence
embeddings often fall short in providing insights
into instances where models consistently under-
perform. Our research adopts a novel approach,
potentially serving as a controlled experiment. By
maintaining consistency in the seed sentences’ in-
formation while altering only specific features in 13
classes, our research offers advantages in examin-
ing embedding transformations in detail.

3. Dataset and Sentence Embeddings

COSTRA (Barancikova and Bojar, 2020) is the
evaluation dataset in our study. It comprises 6,968
Czech sentences, out of which 126 are seed sen-
tences. The remaining sentences are transforma-
tion sentences derived from the seed sentences.
These transformation sentences are categorized
into 13 classes. Table 1 presents the descrip-
tions of the 13 transformation classes and exam-
ple sentences translated from the Czech COSTRA
dataset.

In our study, we use SBERT? and LaBSE, two
multilingual models with Czech language support
to generate sentence embeddings. We differenti-
ate two types of vectors: sentence embeddings
and transformation vectors. Sentence embed-
dings are generated directly from SBERT and
LaBSE models. Transformation vectors are vec-
tors with their corresponding seed embeddings
subtracted, in order to remove additional informa-
tion from the seed sentence. In other words, given
a transformed e.g. generalized sentence (with its
embedding denoted as generalization; for short),
we also consider the corresponding seed sentence

2To produce SBERT Sentence embeddings we used
pre-trained multilingual model ‘paraphrase-multilingual-
MiniLM-L12-v2'.

(with the seed embedding denoted as seed;) The
transformation vector of this sentence pair is repre-
sented as generalization; - seed;.

In the following sections, we aim to study
whether transformation vectors in one class demon-
strate a clustering tendency (within class cohesion)
and whether they can be distinguished from trans-
formation classes of other types (between-class
separation).

4. Dimension Reduction and
Visualization

This section presents a preliminary study of sen-
tence embeddings and transformation vectors
through dimension reduction and visualization.
UMAP (Uniform Manifold Approximation and Pro-
jection) (Mclnnes et al., 2018) was employed as
our dimension reduction technique and visualiza-
tion tool.®

Firstly, we explore the spatial distribution of the
sentence embeddings. Our assumption is that
a seed sentence, sharing more identical words
with its derived sentences, may lead to closer
proximity to its transformed sentences than sen-
tences belonging to other seed sets. To test the
hypothesis, we randomly visualize 10 seed sen-
tences along with sentences that are derived from
them. Secondly, our analysis aims to explore
whether transformation vectors (obtained by sub-
tracting seed embeddings from their sentence em-
beddings) within the same transformation class
(e.g. future transformation vectors) tend to group
together.

Sentence embeddings from SBERT and LaBSE
are depicted in Figure 1 (1A) & (1B). Each set

3PCA and T-SNE are also tested in the initial experi-
ments, while the performance is much worse than UMAP,
thus not presented in the paper.
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Figure 2: Cosine Similarity Computation between True and Predicted Sentence Embeddings

of sentence embeddings (the seed sentence and
sentences derived from it) generally forms a cluster,
suggesting that sentences tend to be situated close
to their seed sentences.

In the results in Figure 1 (2A) & (2B), the ten-
dency of the transformation vectors of the same
class clustering together is observed only for cer-
tain classes, particularly tense-related classes
(‘past’ and ‘future’). Some classes form a cluster
with only a part of the sentences, such as ‘opposite
meaning’ and ‘simple sentences’. However, trans-
formation vectors of other classes (e.g. ‘nonstan-
dard sentence’ and ‘generalization’) are dispersed
across the space.

Additionally, it is worth noting that despite
the different model architectures, and different
lengths/dimensions of sentence embeddings of
SBERT and LaBSE, their visualization results af-
ter the dimension reduction display comparable
behaviour.

5. Predictive Capacity of
Transformation Vectors

Section 4 demonstrates that transformation vectors
in some (though not all) transformation classes
are grouped together after dimension reduction.
This section further evaluates the potential of trans-
formation vectors to predict other sentence em-
beddings based on their seed embeddings. We
assume the following property holds for transforma-
tion vectors: given a future-tense transformation
vector (future; - seed;), and the embedding of a
different seed (seed;), we can predict the embed-
ding future_sentence; (sentence of its future tense)
using Equation 1.
future; = future; — seed; + seed,; (1)
In the actual experiment, 80% of the sentences
in each class are used to extract transformation
vectors. We compute the average of the 80% trans-
formation vectors to predict the sentence embed-
dings for the remaining 20% of the sentences (as
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class SBERT LaBSE
possibility 0.94 0.95
past 0.93 0.91
future 0.92 0.91
different meaning 0.91 0.91
nonsense 0.90 0.90
formal sentence 0.88 0.88
minimal change 0.87 0.92
ban 0.85 0.91
paraphrase 0.82 0.81
nonstandard sentence 0.81 0.82
simple sentence 0.81 0.79
opposite meaning 0.75 0.83
generalization 0.70 0.66

Table 2: Cosine Similarity of predicted embeddings
and true derivation sentence embeddings

shown in the illustration in Figure 2). The quality
of transformation vectors is assessed using the
cosine similarity between the predicted sentence
embeddings and the true sentence embeddings.

5.1. Cosine Distance between Predicted

and True Embeddings

The results in Table 2 show that the majority of
the transformation classes have a cosine similar-
ity score above 0.8. These findings imply that a
number of predicted vectors lie close to their true
sentence embeddings, especially those in ‘possibil-
ity’ and ‘past’ classes, both with very high scores.

However, in contrast, the ‘generalization’ class
exhibits the lowest score (0.70 in SBERT and 0.66
in LaBSE), falling below the baseline (ranging from
0.72 t0 0.78), obtained by using the same dataset
but with shuffled transformation labels within each
seed set.

This could be attributed to the varying degrees



of transformation when a seed sentence is trans-
formed into multiple generalization forms. If the
transformation vectors do not align in a consistent
vector direction, relying on the average of 80% of
the vectors is inaccurate in predicting sentence
embeddings. It is also worth mentioning that the
cosine distance of the baseline with shuffled trans-
formation labels reaches 0.72, suggesting that the
embeddings of any arbitrary sentence and the ar-
bitrary transformation of the sentence are close to
each other.

5.2. Cosine Distance across Classes

To deal with the aforementioned challenge of vary-
ing transformation degrees within a class and
the limitation of assessing transformation vectors
solely relying on cosine distance from their true
embeddings, we extend our assessment to the co-
sine distance of predicted sentence embeddings
with actual embeddings across 13 classes.

Our underlying assumption is that although trans-
formation vectors with varying degrees might not
exhibit a consistent vector direction in space, trans-
formation vectors in one class may still be re-
stricted within a region that is distinguishable from
the regions of other transformation classes. As
a result, predicted sentence embeddings should
show the highest cosine similarity with sentence
embeddings of the target class, compared to those
from other classes. For example, the sentence
embedding predicted by the ‘generalization’ trans-
formation vector, is compared with the true em-
bedding generalization; (with the assumed highest
cosine similarity), as well as with sentence embed-
dings of other classes derived from seed;, such
as past;, ban;, nonsense;, etc. (with an assumed
lower cosine similarity).

Figure 3 displays the results of the comparison
across classes. Each row is normalized using min-
max normalization. Darker hues indicate closer to
1, while lighter hues indicate scores near 0. We
call it normalized predictability score, measuring
how well the embeddings of the target classes are
predicted from the transformation vectors of the
source class.

The results suggest that the diagonal cells typi-
cally get the darkest hue and the remaining cells
in the same row often display lighter shades. It im-
plies a generally higher cosine similarity between
the predicted embeddings and the actual embed-
dings of the target class compared to embeddings
of other classes. In particular, the sentence embed-
ding of ‘ban’ is the best-predicted class, although
its cosine similarity score discussed in Section 5.1
does not rank high among the 13 classes.

However, the predictability varies across transfor-
mation classes. In the results of SBERT, the predic-
tions of four classes (‘different meaning’, ‘minimal
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Figure 3: Cosine similarity between true and pre-
dicted embeddings. (Each row is normalized
with min-max normalization. Darker hues indi-
cate scores closer to 1, while lighter hues indicate
scores near 0.)

change’, ‘non-sense’, and ‘paraphrase’) display the
highest cosine similarity scores with embeddings
in a different class. For instance, the predicted
embeddings of ‘different meaning’ show the high-
est cosine similarity with ‘minimal change’ embed-
dings, while the predicted ‘non-sense’ embeddings
correlate most strongly with the true embeddings
of ‘different meaning’. Additionally, the cosine sim-
ilarity values of the ‘formal sentence’ and ‘simple
sentence’ classes are not sufficiently distinguished
from the values of other classes.

We note that LaBSE outperforms SBERT in this
experiment. There is only one instance of incongru-
ence: predicted ‘paraphrase’ embeddings exhibit
the highest cosine similarity with sentence embed-
dings of ‘different meaning’. The generally better
performance of LaBSE can also be observed in
Figure 3.

6. Cluster Separation Test

This section analyzes whether the transformation
vectors of the same class cluster together and
are separated from other classes in space. We
present a cluster separation test using the Calinski-
Harabasz index.

'l

The Calinski-Harabasz index* (Equation 2) mea-
sures the ratio of between-cluster dispersion to

K n
Yo X Klldi —exl®

CH — | Zi—iulle —c|)?
N —-K

K—1

()

4K means the number of clusters; n is the number of
points in k¢, cluster; ¢y represents the number of points
and centroid of the ky;, cluster; c is the global centroid;
N is the total number of data points.
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Figure 4: Pairwise Calinski-Harabasz index of transformation vectors from SBERT and LaBSE.

SBERT LaBSE mixSBERT mixLaBSE
28.415 44.885 0.563 0.565

Table 3: Cluster separation test on 13 classes

inter-cluster dispersion. A higher value signifies
well-separated clusters (Calinski and Harabasz,
1974).

In this study, we compute CH-Index in two ways.
Firstly, we compare the performance of the two
models by assessing transformation vectors in the
13 classes. Secondly, we conduct a pairwise test to
assess the degree of separation of transformation
classes in pairs.

We establish benchmarks for the CH Index by
mixing up the transformation labels of the dataset.
The CH index scores for 13 classes are shown in
Table 3. LaBSE has a better performance than
SBERT. Nevertheless, both models significantly
outperform the baselines. Figure 4 presents the
results of pairwise testing. Two baselines of mixed
transformation labels have CH index values rang-
ing from 0.392 to 0.899 for SBERT, and from 0.332
to 1.556 for LaBSE.

We observed that ‘ban’ and ‘future’ generally
exhibit higher values, suggesting their better sepa-
ration from other classes and within-class cohesion.
In the results of LaBSE model, ‘simple sentence’ is
the class with the highest CH-index scores, fol-
lowed by ‘ban’, “future’ and ‘possibility’. While
for SBERT, the advantages of ‘simple sentence’
and ‘possibility’ classes are not observed. It indi-
cates the discrepancies in the distribution patterns
of transformation vectors in space obtained from
SBERT and LaBSE.

Additionally, pairwise tests also show that other
classes such as ‘different meaning’, ‘minimal
change’ and ‘paraphrase’ often fall below the
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benchmark in both SBERT and LaBSE, suggest-
ing insufficient separability of their transformation
vectors in these classes.

7. Classification Task

In previous experiments, we utilized methods such
as visualization, sentence embedding prediction,
and clustering separation to assess the quality of
transformation vectors from SBERT and LaBSE.
This section introduces supervised methods to in-
vestigate whether transformation vectors can be
decoded to predict transformation labels.

The classifiers used in our experiments con-
sist of Random Forests, Support Vector Machine
(SVM), and K-Nearest Neighbors (KNN). Depend-
ing on their unique strengths, these classifiers
may decode transformation vectors in distinct ways.
Random Forests use specific criteria and feature-
based splitting to classify data (Breiman, 2001;
Cutler et al., 2012). SVM has the ability to map in-
puts into high-dimensional spaces using the kernel
trick (Schoélkopf et al., 1999; Smola and Schélkopf,
2004). KNN adopts a local distance-based ap-
proach and assigns labels based on the known
labels of neighbouring data points. We intend to
investigate the potential of these diverse methods
to extract semantic information (transformation la-
bels) from transformation vectors.

In addition to the sentence embeddings from
SBERT and LaBSE, we also generated TF-IDF
weighted encoding of all vocabulary in COSTRA.
The additional TF-IDF embeddings aim to assess
the influence of lexical factors on classification per-
formance. In other words, we aim to test whether
certain words are unique to a particular transforma-
tion class, thereby potentially enhancing the predic-
tion accuracy. Similarly to other tasks in our study,
we use the mixed-up SBERT as our baseline.

The results in Figure 5 indicate high F1 scores
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Figure 5: F1-scores for transformation label prediction

for four transformation classes: ‘ban’, ‘possibility’,
‘past’, and ‘future’. The comparably high F1 score
of TF-IDF embeddings suggests the substantial
impact of the lexical factor on the predictability of
these classes. In other words, sentences in these
four classes tend to contain particular words that
are unique to a class, contributing to their superior
predictability.

Additionally, ‘generalization’ from LaBSE exhibits
F1 scores higher than those of SBERT and TF-IDF.
It on the one hand suggests that LaBSE outper-
forms SBERT in these two instances. On the other
hand, it also implies that LaBSE may have a better
ability to capture semantic information beyond the
word level.

8. Discussion

In this section, we compare the results of the eval-
uation tasks implemented in our study and then
discuss the separability of transformation vectors
and to what extent the semantic features can be
decoded from sentence embeddings.

8.1. Summary of Results in Evaluation

Tasks

Transformation vectors in four transformation
classes (‘ban’, ‘possibility’, ‘past’, and ‘future’)
demonstrate good performance in almost all eval-
uation tasks: dimension reduction & visualization,
sentence embedding prediction, cluster separation,
and classification, and show consistent results in
both models. This is in line with their pronounced
separability from other classes. In contrast, some
classes exhibit weak performance in almost all eval-
uation tasks, for instance, ‘paraphrase’, ‘minimal
change’, ‘formal sentence’, and ‘nonsense’.
Nevertheless, certain classes display varying
performance across our four evaluation tasks and
two models. For example, the LaBSE transforma-
tion vectors in the ‘simple sentence’ class excel in
the sentence embedding prediction task (Figure 3)
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and the cluster separation test (Figure 4), but not
in the classification task as shown in Figure 5.

The dimension reduction and visualization tech-
niqgues may provide insight to speculate the rea-
sons for such variations. Figure 1 displays that
the clusters of the ‘opposite meaning’ and ‘sim-
ple sentence’ classes are formed only by some of
the vectors in these two classes. The remaining
data points within these two classes are dispersed
throughout the space. This property (some data
gathered together but some dispersed in space
for a class) introduces complexity when assessing
their separability with a single value in evaluation
tests. Different evaluation methods may emphasize
distinct properties of the vectors in a class and de-
code them in different manners. This could provide
insight into the observed variations in performance
for these classes across different evaluation tasks.

This analysis also suggests that while dimension
reduction is criticized for the loss of information in
high-dimensional spaces, it can instead offer sup-
plementary insights when combined with visualiza-
tion.

8.2. Separability Analysis

In the section above, we discussed that transforma-
tion vectors in some classes are not separable from
others. It could be attributed to at least two factors.
One factor is the inherent difficulty in distinguishing
these classes from the rest, while the other factor is
related to the limitations of the models themselves.

We notice that certain classes are inherently
challenging to separate. For instance, sentences
in the ‘minimal change’ class are less distinguish-
able from those in the ‘different meaning’ class.
‘Paraphrase’ is less distinguishable from ‘simple
sentence’, ‘formal sentence’ and ‘nonstandard sen-
tence’, simply because all of them are also a form
of a paraphrase. The models’ poor performance in
evaluation tests may potentially correspond to the
uncertainty inherent in human judgment. In other
words, these classes might also pose difficulties in



differentiation even for human assessors.

The second reason for weak performance in
some tests lies in the models’ limitations in cap-
turing semantic information. For example, both
models show relatively low prediction accuracy
for ‘nonsense’ and ‘opposite meaning’ (with F1 for
‘nonsense’ < 0.4; ‘opposite meaning’ < 0.5), two
types that are easy to detect for human assessors.

The good classification results of TF-IDF embed-
dings also reveal that the separability of classes
can to a considerable extent stem from purely lexi-
cal factors. This observation suggests that inferring
meaning beyond the lexical level is difficult for the
two models, and sentence embeddings generated
by current models lack a comprehensive represen-
tation of sentence meaning.

9. Conclusion

Our study analyzed sentence embeddings gener-
ated from two multilingual models: SBERT and
LaBSE, evaluating using the Czech COSTRA
dataset to test whether some semantic information
is preserved and can be decoded from sentence
embeddings.

Our visualization firstly demonstrates that trans-
formation sentences are situated in proximity to
their respective seed sentences in the vector space.
To assess the semantic attributes of 13 transforma-
tion classes exemplified in the COSTRA dataset,
we examined transformation vectors, obtained by
subtracting seed embeddings from sentence em-
beddings to eliminate the original seed sentence
information.

In addition to dimension reduction and visual-
ization, we conducted three other evaluation tasks:
sentence embedding prediction, cluster separation,
and transformation label classification. Our find-
ings indicate that both models exhibit comparable
performance, with LaBSE slightly outperforming
SBERT in certain evaluation tasks.

Furthermore, our analysis highlights that trans-
formation vectors for some classes show better
separability from other classes and reach better
evaluation scores in evaluation tasks. However,
the good outcome may be attributed to specific
words that are exclusive to a particular class, as
suggested by similarly good results obtained using
simple TF-IDF. Although the lower performance ob-
served in other transformation types may be due
to their inherent difficulty in class detection, the
limitations of the current models are not negligi-
ble: inferring meaning beyond the lexical level has
proven to be challenging for them.
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