APE: Active Learning-based Tooling for Finding Informative Few-shot
Examples for LLM-based Entity Matching

Kun Qian* and Yisi Sang and Farima Fatahi Bayat’ and Anton Belyi and Xianqi Chu

Yash Govind and Samira Khorshidi and Rahul Khot and Katherine Luna and Azadeh Nikfarjam

Xiaoguang Qi and Fei Wu* and Xianhan Zhang and Yunyao Li®
kungian, yisi_sang, f_fatahibayat, a_belyy, xchu23, yash_govind, samiraa

r_khot, kluna, anikfarjam, xiaoguang_qi, fwu7, xianhan_zhang, yunyaoli@apple.com

Abstract

Prompt engineering is an iterative procedure
often requiring extensive manual effort to for-
mulate suitable instructions for effectively di-
recting large language models (LLMs) in spe-
cific tasks. Incorporating few-shot examples
is a vital and effective approach to providing
LLMs with precise instructions, leading to im-
proved LLM performance. Nonetheless, iden-
tifying the most informative demonstrations
for LLMs is labor-intensive, frequently entail-
ing sifting through an extensive search space.
In this demonstration, we showcase a human-
in-the-loop tool called APE (Active Prompt
Engineering) designed for refining prompts
through active learning. Drawing inspiration
from active learning, APE iteratively selects
the most ambiguous examples for human feed-
back, which will be transformed into few-shot
examples within the prompt. Demo recording
can be found with the submission or be viewed
at https://youtu.be/OwQ6MQx53-Y.

1 Introduction

Prompt engineering typically serves as the initial
step when developing LLM-based applications be-
cause it is a relatively fast process and requires
fewer technical skills than fine-tuning. Prompt en-
gineering involves crafting and optimization of in-
structions provided to LLMs. These prompts need
to be carefully designed to direct the behavior of
LLMs towards performing specific tasks or gener-
ating desired outcomes (Liu et al., 2023). While
LLMs (e.g., ChatGPT and GPT-4) show impressive
capabilities for zero-shot tasks without prior train-
ing, their performance can be further enhanced by
integrating clear and informative few-shot demon-
strations alongside the prompts (White et al., 2023).
These demonstrations not only guide the LLMs but

“Work done while working at Apple
"Work done while interning at Apple
*Work done while interning at Apple
$Work done while working at Apple

1

also provide examples that contribute to more ac-
curate and contextually relevant outputs, especially
for ambiguous cases.

Prompt engineering is a dynamic and iterative
process that typically consists of the following
stages: (1) Task Description: clearly outline the
intended task for LLMs, (2) Few-shot Demonstra-
tion: provide a small number of concrete and help-
ful demonstrations to illustrate the precise seman-
tics of the task, (3) Task Input and Completion
Request: present the actual task input and request
an LLLM completion. For all three steps, minor
prompt rephrasing is typically needed, but this task
is relatively light and does not require many iter-
ations. However, choosing informative few-shot
demonstrations can be a labor-intensive and time-
consuming process due to the large search space
of the problem. For instance, to identify only 3
demonstration examples out of 100 examples, there
are 970,200 (i.e., 100 x99 x98) different combina-
tions, a daunting manual task.

Identifying representative and ambiguous
examples to enhance the performance of machine
learning models is a well-established subject within
the active learning community. We can view the
few-shot example identification as an active learn-
ing problem, where the goal is to find the most in-
formative examples to be included in the prompt to
help improve LLMs’ performance. Recently, (Diao
et al., 2023) proposed the idea of using various ac-
tive learning sampling strategy to identify few-shot
examples prompt engineering. Our work follows
the same direction with the main focus being
building an interactive tool (with an intuitive user
interface) that identifies the most informative few-
shot examples through simple human interaction.

In this paper, we present APE (Active Prompt
Engineering), an intuitive and intelligent prompt
engineering tool that iteratively identifies the most
informative and ambiguous examples for which a
given LLM will likely make a mistake, and then

Proceedings of the Fifth Workshop on Data Science with Human-in-the-Loop (Language Advances), pages 1-3
June 20, 2024 ©2024 Association for Computational Linguistics


https://youtu.be/OwQ6MQx53-Y

5. Next Iteration

1.Sampling based on

current prompt

) -
Pool Data
.l
2. Annotation e - Prompt 4.Evaluation
Updating

Figure 1: System Overview

provide them in the prompt as few-shot examples
after seeking human annotation. Unlike (Diao et al.,
2023), which focuses on the backend algorithm
services, our goal is to hide the technical details
by a carefully designed graph user interface so that
we can have a usable tool that truly harnesses the
power of active learning.

2 Methodology

The main goal of APE is to identify a handful of
informative few-shot examples that can boost an
LLM’s performance. As an active learning tool, it
follows the iterative procedure outlined in Figure 1,
involving interaction with both a human user and
the LLM API for prompt engineering.

The best way to understand APE end to end is
to watch the video demo of the tool (see the link in
the abstract). At a high level, in each iteration, we
start with sampling informative examples based on
the prompt of the current iteration, which includes
applying a user-configured sampling strategy to let
the LLM choose the ambiguous examples from the
user-provided sampling pool. Next, users anno-
tate the selected examples, potentially including
explanations for Chain-of-Thought-style prompt-
ing. These newly annotated examples are then used
to update the prompt. Lastly, the new prompt is
evaluated against evaluation data to report its per-
formance.

The core of the active learning process is the
sampling strategy; for simplicity, we will use entity
matching, a classic binary classification task, to il-
lustrate the sampling methodology behind APE.
Given a set P = {p1,...,pm} of entity pairs,
where p; consists of a pair (e}, eb) of entities, the
task of entity matching is to learn a binary classi-
fier f : (e%,e4) — {0,1}. In this case, the binary
classifier is the LLLM in consideration, and the be-
havior of the classifier is dynamically controlled by
the prompts created by APE. In our demo video,
we used the DBLP-Scholar dataset sampled from

(Kopcke et al., 2010) to illustrate APE.

2.1 Active Sampling Strategy

The core of APE is to find the most informative
examples for human annotation to boost the per-
formance of the LLMs. LLMs can be considered
excellent student models that can learn effectively
from examples. Inspired by active learning, we pro-
posed identifying examples that LLMs are uncer-
tain about to be used as few-shot examples for in-
context learning. While both task-specific sampling
strategies and task-agnostic sampling strategies can
be integrated with APE, due to limited space, we
focus on the task-agnostic approaches because they
allow APE to be easily applied to a wide range
of problems. In this demo, we introduce two task-
agnostic strategies: (1) random-based sampling and
(2) self-consistency-based sampling.

Random-based. We randomly select k& examples
(no replacement) from the sampling pool in each
active iteration. Random sampling is simple and
fast, and it would work reliably well for many sim-
ple tasks. However, for more sophisticated tasks
where zero-shot LLMs do not perform well, the
chance that random sampling would find informa-
tive examples to boost LLMs’ performance is low.

Self-consistency-based. To overcome the issue
of random sampling, we support self-consistency-
based sampling, a strategy inspired by self-
consistency (Wang et al., 2023). The core idea is to
either run multiple different prompts or the same
prompt multiple times in the style of Chain-of-
Thought (Wei et al., 2023), allowing the model to
generate the final answers with multiple reasoning
paths. The consistent answers (e.g., the majority an-
swer) are then chosen as the final answer. A similar
idea, known as query-by-committee (QBC)(Seung
et al., 1992), has been heavily used in active learn-
ing to identify uncertain examples (Settles, 2009).
QBC works by training a committee of & slightly
different classifiers, e.g., five deep-learning-based
classifiers with different architectures, and then let
the committee make inferences over the same ex-
amples. The disagreement ratio of the committee
is used as a proxy to quantify the uncertainty of the
examples. The examples with high disagreement
ratios are then sent for human annotation.

Our self-consistency-based strategy follows the
same idea. Concretely, when selecting exam-
ples from the sampling pool, for every entity pair
(e1, e2), we run the same prompt m times, where



m is a hyperparameter that is usually a small num-
ber (in our case, 3). However, each run of the
prompt would use a different temperature ¢, where
t gradually grows from O to 1 depending on the
number of runs. For instance, if m = 3, then the
three runs of the prompt would have temperatures:
0,0.5, 1.0, respectively. Varying the temperature
is a way to control the creativity and consistency
of LLMs, and we use it to build a committee of
slightly different LLMs for uncertain example sam-
pling. Specifically for our entity matching demo
scenarios, we collect the m binary labels for a given
entity pair p, we then compute the label distribu-

tions of the m predictions. We denote the ratio

of positive labels as R™ (p) (i.e., w),

and obviously the ratio of negative labels would be
1 — R™(p). With that, we can then compute the
label distribution entropy H (p) as follows:

—R*(p)log R*(p)—(1—-R"(p))log (1 — R*(p))

the entropy can be viewed as a proxy for uncer-
tainty, and the higher the entropy value, the higher
the uncertainty. We then select the examples with
the top-k entropy (breaking tie arbitrarily) for hu-
man annotations. The annotated examples will be
included as new few-shot examples. Note that vary-
ing temperatures is for sampling mode only, we set
the temperature to zero during prompt evaluation.

Incremental or Fixed Sampling. We offer both
incremental sampling and fixed sampling. Incre-
mental sampling accumulates examples labeled in
each iteration to form the final few-shot demon-
strations. In contrast, fixed sampling selects a pre-
determined number of examples iteration without
accumulating them to create the final prompt.

Human Annotation. By default, we only ask the
annotator for the ground truth of a selected exam-
ple, but for self-consistency-based, we also ask for
an explanation of the label provided. Both settings
are user-configurable.

3 Concluding Remarks

Due to limited space, we focus on the tooling as-
pect of APE in this demo paper, and are currently
working on a research paper that will provide a
comprehensive description of the system design,
theoretical foundation underlying this optimization
problem, and experimental evaluations.

References

Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong
Zhang. 2023. Active prompting with chain-of-
thought for large language models.

Hanna Kopcke, Andreas Thor, and Erhard Rahm. 2010.
Evaluation of entity resolution approaches on real-
world match problems. Proceedings of the VLDB
Endowment, 3(1-2):484-493.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9).

Burr Settles. 2009. Active learning literature survey.

H. S. Seung, M. Opper, and H. Sompolinsky. 1992.
Query by committee. In Proceedings of the Fifth
Annual Workshop on Computational Learning The-
ory, COLT ’92, page 287-294, New York, NY, USA.
Association for Computing Machinery.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn,
Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse
Spencer-Smith, and Douglas C. Schmidt. 2023. A
prompt pattern catalog to enhance prompt engineer-
ing with chatgpt.


http://arxiv.org/abs/2302.12246
http://arxiv.org/abs/2302.12246
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/130385.130417
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2302.11382
http://arxiv.org/abs/2302.11382
http://arxiv.org/abs/2302.11382

