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Abstract
Language models are typically trained on large
corpora of text in their default orthographic
form. However, this is not the only option; rep-
resenting data as streams of phonemes can offer
unique advantages, from deeper insights into
phonological language acquisition to improved
performance on sound-based tasks. The chal-
lenge lies in evaluating the impact of phoneme-
based training, as most benchmarks are also
orthographic. To address this, we develop a
pipeline to convert text datasets into a continu-
ous stream of phonemes. We apply this pipeline
to the 100-million-word pre-training dataset
from the BabyLM challenge, as well as to stan-
dard language and grammatical benchmarks,
enabling us to pre-train and evaluate a model
using phonemic input representations. Our re-
sults show that while phoneme-based training
slightly reduces performance on traditional lan-
guage understanding tasks, it offers valuable
analytical and practical benefits.
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1 Introduction

The use of orthographic text to train neural net-
works is so commonplace that it is considered the
default. This has not always been the case.

When neural networks were first applied to lan-
guage, models were primarily trained on contin-
uous streams of phonemes or graphemes, rather
than orthographic text with its written artefacts.
These early neural models demonstrated a strik-
ing ability to acquire phonology, syntax and se-
mantics (Elman, 1990; Seidenberg and McClel-
land, 1989; Prince and Smolensky, 1997). As tech-
nology scaled, subword representations became
the dominant representation, offering key advan-
tages such as reducing computation costs and better

character 
tokenization

no word 
boundaries


phonemic 
representation


h i  t h e r e

hi there

h a ɪ ð ɛ r

hithere haɪ ðɛr

Figure 1: An illustration of all three adjustments that
we make to convert text input to continuous streams of
phonemes.

capturing out-of-vocabulary items (Sennrich et al.,
2016). Written text became favored over speech
transcriptions due to matching the domain of down-
stream tasks and due to the abundance of diverse
texts available through web-scraping (Bansal et al.,
2022). Today, “large language models” (LLMs)
all use subword-based text inputs and perform im-
pressively on a variety of language understanding
tasks (Zellers et al., 2019; Hendrycks et al., 2020;
Suzgun et al., 2023).

The success of these models on downstream
tasks has motivated researchers to examine the in-
ternal representations of LLMs and analyze their
ability to learn grammatical generalizations (He-
witt and Manning, 2019; Hu et al., 2020; Manning
et al., 2020). However, their phonological capabil-
ities remain understudied due to the orthographic
nature of training data.

An alternative input representation for text-based
language models is to use phonemes rather than
graphemes, corresponding to how words are pro-
nounced, rather than how they are written. The use
of phonemes, such as those described by the Inter-
national Phonetic Alphabet (IPA), as an underlying
input representation, presents the following ana-
lytical and practical benefits over an orthographic
representation that is the modern-day default.
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Analytical: A phoneme-based representation is
useful when using language models to study
the distributional properties of phonemes (Mayer,
2020) and phonological systems of languages more
broadly (Eden, 2018). Many language acquisi-
tion studies prefer using phonemes as a representa-
tion that more closely represents the human learn-
ing environment, which facilitates statistical learn-
ing experiments ranging from word segmentation
(Çöltekin, 2017), to past-tense formation (Kirov
and Cotterell, 2018), and broader lexico-syntactic
knowledge (Lavechin et al., 2023).

Practical: IPA-encoded text has been found to
be beneficial for a variety of NLP tasks including
lyric generation (Ding et al., 2024), text-to-speech
(Sundararaman et al., 2021; Li et al., 2023) and low-
resource language modeling (Leong and White-
nack, 2022). Phonemes also benefit multi-lingual
language modeling by establishing a universal rep-
resentation shared between languages (Feng et al.,
2023; Zhu et al., 2024).

Despite the analytical and practical advantages
of training language models with phonemes, a key
question remains: Can modern language model
architectures encode grammatical knowledge and
succeed at language understanding tasks when
trained with phoneme-based representations?

Answering this question is challenging for two
reasons. First, training and evaluation data need
to be provided to a model in both a phonemic
and graphemic representation. Second, it is non-
trivial to select the transformations to convert or-
thographic text into phonemic representations and
to evaluate how these individually affect a model’s
performance across a wide variety of benchmarks.

In this work, we address these challenges as fol-
lows. We first present a method for converting
training data and evaluation benchmarks into a uni-
fied IPA representation. This enables language
models to be trained and evaluated on graphemic
and phonemic representations of the same data. We
then identify three key transformations which en-
able us to map from the written representation typi-
cally used to train language models to the phone-
mic representation often used in analytical studies
(see fig. 1). Finally, we conduct a careful ablation
of the three transformations: we train a language
model on the same corpus of 100 million words
with all combinations of the three transformations
(23 configurations), evaluating the model’s gram-

matical capabilities and its resulting performance
on downstream language understanding tasks.

We find that large language models are power-
ful statistical learners capable of learning grammar
from a phonemic input representation. Although
we observe a decrease in performance on some
tasks, the degradation is not as substantial as has
been anecdotally suggested by previous studies.
Our ablation studies indicate that the impact of
each transformation that we use to convert ortho-
graphic text to continuous phoneme streams de-
pends on the downstream task; tasks in the BLiMP
Supplement set are particularly sensitive to the use
of phonemes, while those in GLUE are sensitive to
character tokenization. A deeper analysis into these
ablations reveals that many evaluation instances
rely on information only present in written text
(such as punctuation). Finally, we take advantage
of the fact that we train models using phonemic
streams and evaluate our models for phonological
knowledge using the BabySLM benchmark. Our
models achieve the best scores on this benchmark
to date.

2 Related Work

The standard input representation for training large
language models consists of written text split into
subword units. By contrast, studies that train mod-
els using a phonemic input representation tend to
split words into individual phonemes, without word
boundaries (as spoken utterances are produced con-
tinuously, without clear pauses between words).

We identify three key transformations that bring
us from the standard input representation used
by language models to this alternative phoneme
stream representation:

• Character tokenization Treating each
phoneme or grapheme as a token, rather than
using subwords.

• Word boundary removal Removing whites-
pace or other word boundary cues from the
input.

• Phonemic transcription Converting words
to a phonemic representation.

Each transformation can be made independently or
in combination, as illustrated in fig. 1.

Previous literature has extensively explored
these three transformations but they have typically
been studied independently and been used for dif-
ferent downstream purposes.
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2.1 Training with Phonemes

Several language models have been trained with
phonemic input (Sundararaman et al., 2021; Gale
et al., 2023) but it remains a challenge to do so
due to the lack of large phonemic corpora. While
a number of well-known speech-based datasets
include phonemic transcriptions, such as Switch-
board (Godfrey et al., 1992) and TIMIT (Garo-
folo et al., 1993), these datasets are small com-
pared to the trillions of tokens contained in stan-
dard language model pre-training corpora (Elazar
et al., 2024). The majority of works that use phone-
mic representations typically rely on grapheme to
phoneme conversion tools (Bisani and Ney, 2008;
Hasegawa-Johnson et al., 2020) to generate coarse
phonemic transliterations of text data.

It is also a challenge to evaluate the broad capa-
bilities of language models trained with phonemes,
as most benchmarks assume a graphemic represen-
tation, even some that assess phonological knowl-
edge (Suvarna et al., 2024). One benchmark that
assesses both the syntactic and phonological capa-
bilities of language models is BabySLM (Lavechin
et al., 2023). We discuss this benchmark further in
section 5.1.

2.2 Character-based Language Models

The use of characters as the input representation,
rather than words or subwords, has been exten-
sively explored. Character-level language models
offer a simplified input stream compared to the stan-
dard approach of training on learned subword to-
kens. Many studies have developed specialized ar-
chitectures to train language models on characters
(Jozefowicz et al., 2016; Kim et al., 2016; Ma et al.,
2020; Al-Rfou et al., 2019) while other approaches
seek to establish ‘token-free’ training regimes to
eliminate the need for subwords entirely (Clark
et al., 2022; Xue et al., 2022).

Another alternative input representation is to
split words into morphemes, which provide the-
oretical benefits over subwords and have their own
analytical and practical benefits particularly for
morphologically rich languages (Üstün et al., 2018;
Nzeyimana and Niyongabo Rubungo, 2022; Fan
and Sun, 2023). Mapping orthographic text to mor-
phemes continues to be a challenging task, requir-
ing dedicated systems trained on labeled corpora
(Batsuren et al., 2022) and we do not consider mor-
phemes in this work.

2.3 Removal of Word Boundaries

When using a phonemic input representation to
model speech, word boundaries are not typically
included, as word boundaries are not explicitly
marked in the speech stream. The phoneme stream
representation (i.e., the combination of all three
transformations) is the typical representation for
word segmentation studies, where the task is to
learn word boundaries without supervision (Brent,
1999). A wide variety of statistical, dynamic pro-
gramming and neural approaches have been applied
to the task, with consequences for acquisition re-
search and low-resource language modeling (Blan-
chard et al., 2010; Çöltekin, 2017; Algayres et al.,
2022; Goriely et al., 2023).

2.4 Input Representation Comparisons

To the best of our knowledge, a full systematic
comparison of the three input transformations
has not yet been conducted. Hahn and Baroni
(2019) investigated the effect of removing word
boundaries and using a word-level or character-
level tokenization, evaluating on several psycholin-
guistic benchmarks. However, they only used
graphemic text from Wikipedia and did not ab-
late the two transformations, only comparing a
word-level model (with word boundaries) to a
character-level model (without word boundaries).
Nguyen et al. (2022) extend this work, comparing
character-level graphemic input (with and without
word boundaries) to character-level phonemic in-
put (with and without word boundaries) by train-
ing on the Librispeech corpus (Panayotov et al.,
2015). They also compare larger units of tokeniza-
tion (BPE and word-level) for both graphemic and
phonemic text, but only with word boundaries in-
cluded, missing out on several key combinations.

In our work, we provide a complete comparison
of these three input representation transformations
by considering all combinations, leading to new
input representations that have not been studied be-
fore (such as subword tokenization trained without
word boundaries). We also use a larger model than
previous work, a 12-layer transformer rather than a
3-layer LSTM.

3 Phoneme Stream Pipeline

To convert the data to a phonemic representation,
we developed the Corpus Phonemizer tool:1 a li-

1
https://github.com/codebyzeb/

Corpus-Phonemizer
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brary to convert various corpora across many differ-
ent languages to a unified phonemic representation
in IPA, prepare them as Huggingface datasets and
subsequently train Huggingface tokenizers.

3.1 Dataset Phonemization

Our toolkit leverages the phonemizer package
(Bernard and Titeux, 2021) with the espeak-ng
backend2 which uses a combination of a pronunci-
ation dictionary and pronunciation rules to convert
orthographic transcriptions to IPA. We select the
American English accent (en-US) for a consistent
pronunciation.

The tool outputs phonemes separated by spaces.3

For instance, the phonemic representation of “what
a conundrum!” is:

w 2 t ␣ 2 ␣ k @ n 2 n d ô @ m ␣

One limitation of our phonemization tool is that
‘a’ is not reduced to the shwah, ‘@’ as it would
be in continuous speech. We discuss the limita-
tions of this phonemization process in section 6.2.
Crucially, we lose punctuation marks, as they are
an artefact of orthographic text and equivalent in-
formation in speech would be conveyed through
prosody, stress, or non-linguistic signals such as
gestures, none of which are included in this simple
phonemic format. This has potential consequences
for downstream tasks that rely on such markers, as
discussed in section 5.3.

3.2 Tokenizer Preparation

Using the phonemic data transcribed by the Corpus
Phonemizer tool, our pipeline then implements the
three input transformations by preparing different
tokenizers:

• Character tokenization We either train the
tokenizer using the Byte-Pair Encoding (BPE)
algorithm (Sennrich et al., 2016) (✗) or create
a character-based tokenizer by extracting a
vocabulary from the data (✓).

• Word boundary removal We either train the
tokenizer with whitespace included (✗) or use
the tokenizer’s normalizer to strip whitespace
(✓).

• Phonemic transcription The tokenizer is ei-
ther trained on the original orthographic

2
https://github.com/espeak-ng/espeak-ng

3It is common practice to separate phonemes by spaces to
make tokenization simple, as some individual phonemes may
consist of several symbols, e.g. tS or 3I.

dataset (✗), or the phonemized version de-
scribed above (✓).

These transformations can be made indepen-
dently, allowing for all eight combinations of the
transformations to be implemented as individual
tokenizers. For the combination of BPE and no
word boundaries, the whitespace is removed before
training, so the model may learn ‘subwords’ that
cross word boundaries.

Each tokenizer also adds a dedicated “utterance
boundary” token UTT_BOUNDARY to the start of each
sentence, representing the pauses between spo-
ken utterances and serving as a dedicated start-of-
sentence token. When sentences are collated, it
also implicitly acts as an end-of-sentence token, as
discussed in appendix B.2.

4 Experimental Setup

We evaluate the effect of our proposed input ad-
justments by training a GPT-2 model (Radford
et al., 2019) using the BabyLM challenge frame-
work (Choshen et al., 2024). The model is trained
eight times with each combination of the three in-
put adjustments. Following the STRICT track of the
BabyLM challenge, we train on a provided corpus
of 100 million words and evaluate on a series of
benchmarks assessing the grammatical knowledge
and the downstream capabilities of each model. We
additionally evaluate on BabySLM (Lavechin et al.,
2023) which provides syntactic and lexical scores
specifically for speech-based models. Our phone-
mized dataset, trained models and tokenizers are
hosted on Huggingface.4

4.1 Dataset
The BabyLM 2024 pretraining data contains 100
million words sourced from nine different corpora
(Warstadt et al., 2023). Over 50% of the data con-
sists of transcribed or scripted speech and over 40%
comes from child-directed sources (written or spo-
ken). We apply minor cleaning operations to the
dataset, removing extraneous spaces and format-
ting anomalies using regular expressions.

4.2 Tokenizers
For each of the eight combinations of the three
transformations, we train a tokenizer on the ‘train’
portion of the BabyLM dataset. We compare the

4
https://huggingface.co/

collections/phonemetransformers/
from-babble-to-words-66e068b54765a48ff30273c9
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Baby Llama ✗ ✗ ✗ 16,000 what a con und rum ! 73.1 60.6 69.0 94.0 -
LTG-BERT ✗ ✗ ✗ 16,000 what a con und r um ! 69.3 66.5 68.4 75.8 -

✗ ✗ ✗ 16,000 what a con und rum ! 77.8 69.4 71.6 92.8 -
✗ ✓ ✗ 16,000 what acon un drum ! 73.9 64.3 68.6 73.9 -

✗ ✗ ✓ 16,000 w2t 2 k@n 2nd ô@m 74.7 59.6 68.6 85.8 67.3

GPT-2 ✗ ✓ ✓ 16,000 w2t 2k@n 2nd ô@m 71.7 56.7 65.5 74.7 71.2

✓ ✗ ✗ 115 w h a t a c o n u n d r u m ! 77.4 63.6 64.4 94.9 -

✓ ✓ ✗ 114 w h a t a c o n u n d r u m ! 75.1 64.8 64.8 88.3 -

✓ ✗ ✓ 51 w 2 t 2 k @ n 2 n d ô @ m 74.7 58.5 65.6 90.5 89.6
✓ ✓ ✓ 50 w 2 t 2 k @ n 2 n d ô @ m 72.5 57.6 65.4 83.9 87.8

Table 1: Results for the two BabyLM baseline models and the GPT-2 model trained under all eight conditions.
On the left, we compare the effects of each of the three transformations across all eight possible combinations, by
tokenizing the example phrase “what a conundrum!”. The ‘ ’ character denotes word boundaries. On the right, we
report BLiMP, GLUE and BabySLM scores achieved by each model, with the best scores in each column in bold.

output of the eight tokenizers in table 1. We used a
vocabulary size of 16,000 for the BPE tokenizers
to match the vocabulary size used by the two base-
line models provided by the BabyLM challenge
(described below).

Note that the vocabulary size for the character-
level tokenizers operating on phonemes is less than
half the vocabulary size of their orthographic equiv-
alents. This is because the phonemic data only con-
sists of the 47 phonemes produced by the American
English accent, but the orthographic data includes
numbers, punctuation and other symbols.

4.3 Model

Our experiments use the GPT-2 architecture. We
train the model using all eight tokenizers (using
the phonemized dataset for the phoneme-based to-
kenizers) for 400k steps, selecting the checkpoint
with the lowest perplexity.5 See appendix A for
a full description of the chosen model parameters
and training procedure.

We also report the results from two baseline
models which achieved the highest scores at the
2023 BabyLM challenge. These are Baby Llama,
an auto-regressive model, which was trained us-
ing knowledge distillation from an ensemble of

5The best checkpoint for five of the eight models was the
final checkpoint but a visual inspection of the curve revealed
that differences between the final checkpoints were minimal.

teachers (Timiryasov and Tastet, 2023) and LTG-
BERT, an architectural variation of the standard
auto-encoding BERT architecture optimized for
small, speech-based corpora (Samuel et al., 2023;
Charpentier and Samuel, 2023). Both models use
a BPE tokenizer with a vocabulary size of 16,000
and have a similar number of parameters to our
model.6

4.4 Evaluation

We follow the BabyLM Challenge’s framework and
evaluate on BLiMP (Warstadt et al., 2020), BLiMP
Supplement (Choshen et al., 2024) and a subset of
the (Super)GLUE tasks (Wang et al., 2018, 2019).
BLiMP assesses a model’s ability to distinguish
grammatical sentences from ungrammatical sen-
tences across 67 subtasks covering a range of lin-
guistic phenomena. BLiMP Supplement consists
of 5 BLiMP-style tasks covering additional linguis-
tic phenomena not tested by BLiMP. The GLUE
suite assesses a language model’s language under-
standing abilities on typical downstream tasks us-
ing fine-tuning.

We also evaluate our models on BabySLM
(Lavechin et al., 2023), a benchmark specifically
designed for probing speech-based LMs at a syn-
tactic level and a lexical level. The benchmark was

6Our GPT-2 model has 85M non-embedding parameters.
Baby Llama has 41M and LTG-Bert has 110M.
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also designed to compare text-based models (those
considered here, including both orthographic text
and phonemic transcriptions) to speech-based mod-
els (which learn directly from audio) by providing
parallel text and audio test instances. Finally, the
vocabulary items were chosen to be compatible
with children’s language experiences, aiming to
better reflect the input that children are exposed to
as they begin to acquire language.

The BabySLM syntactic metric is similar to
BLiMP, using pairs of grammatical and ungram-
matical sentences, but consists of shorter sentences
across just six simple syntactic phenomena. By
comparison, BLiMP complicated many grammati-
cal phenomena which may be rarely used even in
adult–adult spontaneous conversation.

The lexical metric consists of minimal pairs of
words and pseudo-words in a phonemic represen-
tation, representing a ‘real-word recognition’ task
to assess a model’s lexicon and phonemic capa-
bilities. For instance, the model should assign a
higher likelihood to the real-word t E m p ô @ tS
@ ô (temperature) compared to the pseudo-word t
E m p f @ tS @ ô (tempfature). This metric is re-
lated to the pronunciation of words, rather than the
spelling of words and so cannot be used to evaluate
models trained on orthographic text (which have
no concept of pronunciation).

To evaluate our phoneme-based models, we run
our phonemizer tool on all test instances across
these benchmarks (except for the BabySLM lexical
examples, which are already in IPA).

5 Results

In table 1, we report a summary of the results ob-
tained by the two BabyLM baseline models and our
GPT-2 model trained in all eight conditions. Due
to limited computational resources we only train
a single run per condition, limiting our ability to
critique them individually. Exact results may be
subject to variance across random seeds but we can
still observe trends over the whole set.

The base GPT-2 model with no input adjust-
ments outperforms the two baselines for BLiMP,
BLiMP Supplement and GLUE, validating our se-
lection of hyper-parameters and choice of architec-
ture as described in appendix A.

Comparing the GPT-2 model with no input trans-
formations (top row) to the same model with all
three transformations applied (bottom row), we no-
tice a decrease in performance across all bench-

Figure 2: Mean (with Min and Max range) percentage
difference achieved on each benchmark’s macro score
as a result of the three adjustments.

marks. Although this indicates that the GPT-2
architecture is best suited for the standard or-
thographic input representation (word boundaries,
graphemes and subword tokenization), the decrease
in performance when the three transformations are
applied is not substantial and scores remaining com-
petitive with the baseline models (all combinations
still outperform LTG-BERT on BLiMP). It is clear
that the model is still capable of learning grammat-
ical rules and excelling at downstream tasks when
the input consists of individual phonemes with no
word boundaries.

In section 5.1 we investigate this result further
through an ablation of the three transformations,
noting the effect of punctuation and context size.
In section 5.2 we focus on the BabySLM metrics,
which demonstrate a different pattern to the other
benchmarks. Finally, in section 5.3 we investigate
the consequences of removing punctuation in our
phonemic transcriptions.

5.1 Teasing Apart the Three Transformations

By running our GPT-2 model with all eight combi-
nations of the three input adjustments, we can tease
apart the effect of each transformation.

For each transformation, we can create four pairs
of runs that only differ with respect to that trans-
formation (e.g. the four runs with a phonemic tran-
scription and the four runs with orthographic text).
For each pair, we calculate the percentage increase
in each metric caused by the transformation. In
fig. 2 we plot the average of these four percentage
differences, allowing us to identify the overall ef-
fect of each transformation. We can also use the av-
eraged scores for each subtask within a benchmark
(such as the 67 BLiMP subtasks) to assess whether
differences are significant for BLiMP, BLiMP Sup-
plement, GLUE and BabySLM (Syntactic) using
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a paired t-test (see appendix B.1 for details and
p-values for each test conducted).

Character Tokenization We find that character
tokenization does not significantly decrease perfor-
mance on BLiMP or BLiMP Supplement compared
to subword tokenization. This validates previous
work which found that despite the higher compu-
tation costs, character-based language models are
just as capable of learning language (Al-Rfou et al.,
2019; Hahn and Baroni, 2019). We do find a sig-
nificant decrease for GLUE but this may be due to
the fact that many of the finetuning examples for
GLUE are very long and our model’s context size
is only 128 tokens, leading to severe truncation. As
character-based tokenizers output more tokens for
the same sentence than BPE tokenizers, this means
that for many GLUE tasks, necessary information
is lost.

Word boundary removal We find that removing
word boundaries significantly decreases the BLiMP
score, but the decreases for BLiMP Supplement
and GLUE are not significant.7 In their investi-
gation, Nguyen et al. (2022) found a decrease of
7-8% on their own phonemic version of BLiMP
when word boundaries were removed, but here we
observe only an average decrease of 3.7%. As
they only trained 3-layer LSTMs, it is possible that
larger models like ours are required to overcome
the loss of word boundaries.

Phonemic Transcription Finally, we find that
using a phonemic transcription instead of the origi-
nal written text significantly decreases performance
on BLiMP and GLUE, although the percentage de-
creases are small (3.5% and 1.5% respectively).
It also leads to the largest decrease of 11.3% for
BLiMP Supplement. We discuss a possible expla-
nation for this particular decrease in section 5.3.

5.2 BabySLM

Unlike the other benchmarks, our best BabySLM
score is not achieved by the model trained with the
standard orthographic input representation. Instead,
the best syntactic score of 94.9 is achieved by the
model that uses character-based tokenization (on
written text, with word boundaries) and the best
lexical score of 89.6 is achieved by the model that
uses character-based tokenization for phonemes. It

7Since there are only 5 tasks for BLiMP Supplement it is
difficult to get a p-value below 0.05.

is also worth noting that, to the best of our knowl-
edge, these are the best BabySLM scores to date
(see appendix B.3 for a detailed comparison).

Examining the effect of each condition, we find
that using a phonemic transcription on average re-
duces the syntactic score by 4.0%, which is in line
with the other benchmarks discussed above. Unlike
the other benchmarks, the character tokenization
condition always leads to an improvement for
both BabySLM scores: an average increase of 9.9%
for the syntactic score and 23.9% for the lexical
score. The sentences used for the syntactic test are
all very short compared to the BLiMP sentences
(4 words long on average) so a more fine-grained
representation may be more useful. For the lexical
test, where single words are compared that often
only differ by a single phoneme, it seems more
appropriate to use a character-based tokenization
as the model needs to learn the distributional prop-
erties of individual phonemes, which may be lost
in subword units.

The removal of word boundaries has a contrast-
ing effect on the two scores. It reduces the syntactic
score by 11.9% but increases the lexical score by
1.9%, the only benchmark where removing word
boundaries is a positive change. However, the best
individual lexical score was achieved by the model
that did include word boundaries, suggesting that
word boundaries are a helpful signal for a model
learning to distinguish words from non-words, pos-
sibly because they help separate short sequences of
phonemes that appear across word boundaries but
not within words.

For the syntactic score, the worst scores are
achieved by the models that learn subwords with-
out word boundaries. For these models, the BPE
algorithm is essentially acting as an unsupervised
word segmentation algorithm learning to split en-
tire sentences into useful units. With a vocabulary
size of 16,000, it seems we learn units smaller than
words (morpheme-sized units such as “un” in ta-
ble 1) but also units that cross word boundaries
(such as “acon” in table 1). The resulting implicit
subword boundaries seem to have particular con-
sequences when evaluating the shorter BabySLM
sentences. Using the BPE algorithm in this way
could be of interest for word segmentation studies.

5.3 The Effect of Punctuation
Punctuation is a feature of written text that is rarely
included in phonemic transcriptions, as it does
not typically change the way that words are pro-
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Figure 3: The overall BLiMP scores achieved by
GPT-2 in our eight conditions with and without the
UTT_BOUNDARY token (used to separate sentences) in-
cluded at the end of evaluation instances.

nounced. However, punctuation in written text does
carry important meaning about the structure and
tone of sentences. In speech, this information is
typically conveyed through intonation, stress and
rhythm. By simply stripping punctuation in our
phonemic transcriptions, we may be removing in-
formation that is important for a model’s ability to
learn and process language.

In some instances, naïvely stripping punctuation
can even lead to nonsense sentences. This may
explain the large dip in performance for BLiMP
Supplement, as three of the five subtasks rely on
punctuation to simulate question-answer pairs or
dialogue, such as:

A: What did you break?\nB: I broke a bowl.

In the example above, the line break, colon
and question mark are used to indicate speaker
turns and convey the question-answer nature of the
prompt. Removing the punctuation leads to a non-
sense sentence, especially when read aloud with no
pauses or change in tone to indicate the structure:

2 w 2 t d I d j u: b ô eI k b i: aI
b ô o U k 2 b oU l

Without punctuation, the names “A” and “B”
seem out of place. A model trained on written text
can use punctuation to possibly understand that
these are names, but a spoken model without punc-
tuation would struggle to process this sentence.

This reliance on punctuation seems to be the
leading cause of the drop in performance on
BLiMP Supplement. If we remove the three sub-
tasks where an understanding of punctuation is re-
quired to process the sentence, the effect of switch-
ing to a phonemic representation reduces the drop
in performance considerably from 11.3% to 0.9%.

There is another subtle yet crucial consequence
of removing punctuation: stripping punctuation
at the end of sentences, if not handled correctly,
can lead to significant decreases in performance on
these benchmarks. This is because without an end-
of-sentence marker, certain evaluation examples
are no longer valid. In order to mark the end of
the sentences without puncutation, we needed to
ensure that our dedicated sentence-separation token
was added to the end of each evaluation instance.
The effect of this adjustment is highlighted in fig. 3.
The increase in BLiMP score for our phonemic
models confirms that this change was necessary and
highlights the importance of carefully investigating
the role of tokenization in the evaluation of large
language models. We discuss this effect further in
appendix B.2.

6 Discussion

In this work, we set out to establish whether mod-
ern language model architectures can encode gram-
matical knowledge and succeed at language under-
standing tasks when trained with phonemic input
representations. By identifying three key transfor-
mations, carefully ablating them and evaluating our
models on a wide variety of benchmarks, we found
that these transformations do lead to decreased per-
formance on standard benchmarks, but that this
decrease is not substantial, and the effect of each
transformation varies according to the evaluation.
Generally, we conclude that language models are
capable learners and training with these input rep-
resentations is completely viable.

In this section, we consider explanations for the
difference in performance across the benchmarks
and discuss the limitations of phonemic transcrip-
tions and our monolingual approach. Our work
also has implications for human acquisition investi-
gations and studies that train models directly from
raw audio, which we discuss in appendix C.

6.1 The Effect of Input Transformations

There are many possible explanations for the de-
crease in performance for BLiMP, BLiMP Supple-
ment and GLUE. In section 4.4 and section 5.3
we discuss two possibilities; the fact that charac-
ter tokenization causes more substantial truncation
(affecting GLUE) and the fact that phonemic tran-
scriptions do not include punctuation (which partic-
ularly affects BLiMP Supplement). Another factor
to consider is that although we do not change the
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GPT-2 architecture or training parameters, the vo-
cabulary size does change, which affects the size of
the embedding layer. Character tokenization also
leads to reduced exposure to each sentence during
training (fewer epochs) because each sentence is
represented with more tokens, increasing the num-
ber of steps required for each epoch. Furthermore,
our initial choice of model parameters may have
implicitly favored the standard orthographic input
representation given that the language modeling
community has been collectively optimizing these
architectures to learn representations for written
text, not phonemic streams. Just as the BabyLM
challenge seeks to find solutions for low-resource
language modeling, we may require an equivalent
challenge to identify new methods and architec-
tures for a phonemic input representation.

We also found a different pattern for the
BabySLM benchmark, that certain transformations
increased performance. In some cases, the transfor-
mations were even necessary (the lexical measure
requiring a model to be trained on phonemic in-
put). Given that the BabySLM benchmark more
closely relates to child-language acquisition with
its shorter sentences and vocabulary taken from
child-directed speech, this result will be of interest
to studies using language models to study acquisi-
tion.

6.2 Limitations and advantages of phonemic
transcriptions

One difficulty in training models from ecological
long-form child-centered audio is the lack of cor-
pora available. Papers reporting research on day-
long recordings tend not to release the raw data due
to privacy concerns (e.g. Bergelson et al. (2023);
Léon and Cristia (2024)). Our method allows us to
convert text (which is much more readily available)
into a speech representation (phoneme streams),
meaning that we could quickly prepare a corpus of
100 million words.

There are also limitations in our transcription
generation process. The fact that phonemes are an
abstraction of speech means that we lose key infor-
mation contained in speech such as prosody, stress
and allophonic variation. Using a single accent to
generate our phonemes, we also lose inter-speaker
variability. Children also learn from non-linguistic
cues, multi-modal input and interaction. If any-
thing, it is a striking result that a model trained
only on a set of 51 discrete symbols is able to
demonstrate grammatical knowledge and perform

competitively at downstream linguistic tasks.

6.3 Multi-lingual evaluation

A final important remark is that our experiments
are conducted only in English. It is possible that
language models trained on phonemic data in other
languages would exhibit different trends in down-
stream performance. Although a multilingual anal-
ysis is outside the scope of our paper, we have ap-
plied our data processing pipeline to prepare phone-
mized datasets for 26 of the languages contained
in the CHILDES database and hope to release this
dataset in the near future.

7 Conclusion

Our study explores the effect of training lan-
guage models using phonemic input representa-
tions, which offer both analytical and practical
advantages. We develop a pipeline to convert or-
thographic datasets into a continuous stream of
phonemes and leverage this pipeline to train a lan-
guage model on phoneme streams and evaluate its
grammatical and language understanding abilities.
Our findings suggest that while phoneme-based in-
put representations result in a slight decrease in
model performance on traditional language under-
standing tasks, it is nonetheless a feasible training
paradigm, facilitating future language modeling
work, improving phonological interpretability and
enhancing speech-based applications.
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A Implementation Details

We implement all experiments using the PyTorch
framework (Paszke et al., 2019) and the
Transformers library (Wolf et al., 2020).

A.1 Hardware Details

We use a server with one NVIDIA A100 80GB
PCIe GPU, 32 CPUs, and 32 GB of RAM for all
experiments. Below, we report a subset of the out-
put of the lscpu command:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical,

48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R)

Silver 4210R CPU
@ 2.40GHz

CPU family: 6
Model: 85
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 8
Stepping: 7
BogoMIPS: 4800.11

A.2 Model Parameters and Training
Procedure

Parameter Value

Layers 12
Heads 12
Dropout 0.1
Embedding Size 768
Inner Size 3072
Max Example Length 128
Learning Rate 0.001
Optimizer AdamW
Scheduler Type Linear
Max Steps 400,000
Warm-up Steps 90,000
Per Device Batch Size 32

Table 2: Hyperparameter settings for training the GPT-2
architecture. Vocabulary size varies according to the
tokenizer used, but all other parameters are constant
across experiments. Where values are not reported, they
may be assumed to be default values.

We describe the model and training parameters
in table 2. The model parameters were chosen to
match those of the Pythia-170M model from the
Pythia suite (Biderman et al., 2023). The model has
85M non-embedding parameters and is also equiv-
alent in size to GPT-Neo 125M and OPT-125M.

The Pythia models use the GPTNeoX architecture
which is slightly different to GPT-2. In initial exper-
iments, we found that GPT-2 performed better on
the benchmarks across all eight of our conditions.

Data is prepared into batches by first tokeniz-
ing the entire dataset, combining all tokens into
one long vector, and then splitting the vector into
chunks of 128 tokens. Only the very last example
is padded, if required. At each step during train-
ing, random chunks are selected and combined into
batches.

Checkpoints are taken every 50,000 steps dur-
ing training. At each checkpoint, the perplexity is
evaluated on the held-back evaluation set, and at
the end of training the checkpoint with the lowest
perplexity is returned as the best model.

B Evaluation Details

B.1 Significance Tests

It is difficult to determine whether the results for a
given benchmark are significant given that we only
train a single run for each of the eight conditions.
Instead, we calculate the significance of a particular
transformation by comparing the scores for each
subtask of a benchmark. We average the scores
achieved by the four models with a transformation
applied and average the scores achieved by the four
models without the transformation applied, giving
us paired results for each subtask. We then use a
paired student t-test to assess the significance of
the transformation. We give the p-values for our
significance tests in table 3.

Note that there are 67 subtasks for BLiMP, 5
for BLiMP Supplement, 9 for GLUE and 9 for
BabySLM (Syntactic). With only 5 pairs for
BLiMP Supplement, the test is under-powered and
low p-values are unlikely. There are no subtasks
for BabySLM (Lexical) so significance cannot be
computed in the same way.

B.2 The Effect of End-of-Sentence Tokens

By default, our tokenizers add a special start-of-
sentence token UTT_BOUNDARY to all sentences.
This corresponds to the <s> token often used by
tokenizers to help transformers with sentence-level
processing, and also represents utterance bound-
aries, which unlike word boundaries are a clear
cue present in speech and often included in word
segmentation studies (Feliciano de Faria, 2019).

Since sentences are collated together during
training, this means that these tokens also appear at
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BLiMP BLiMP Supplement GLUE BabySLM (Syntactic)
orthographic vs. phonemic 0.0001 0.0780 0.0149 0.1884
word boundaries vs. no word boundaries 0.0000 0.1831 0.0813 0.0118
character tokenization vs. subword tokenization 0.5069 0.4832 0.0010 0.1500

Table 3: p-values from the paired student t-tests for each experiment. Significant results are given in bold using an
alpha level of 0.05.

the end of every sentence, implicitly acting as end-
of-sentence tokens. As a result, the model may use
them to represent sentence-level information (espe-
cially given that these models are auto-regressive).
However, in most evaluation tasks, sentences are
presented individually (with padding) and so by
default the tokenizer does not add this token to the
end of sentences.

This has consequences for zero-shot evaluation
tasks where the grammaticality of the sentence de-
pends on the sentence being marked as complete,
which is the case for several of the BLiMP subtasks.
For instance, one subtask evaluates a model’s un-
derstanding of filler-gap dependencies by present-
ing grammatical “wh”-phrases with “that”-phrases
that are ungrammatical due to a missing depen-
dency. An example is given in table 4 along with
the tokens produced by two of our tokenizers. Cru-
cially, our phonemic transcriptions do not include
punctuation (see section 5.3) and for this task, with-
out an end-of-sentence marker, the “ungrammatical”
sentence is no longer ungrammatical, as it could
just be incomplete.

This means that the subtask remained a valid test
for our orthographic models (due to the inclusion
of punctuation to mark the end of the sentence),
but not the phonemic ones, since for the phonemic
models both the “grammatical” and “ungrammat-
ical” sentences could be considered grammatical.
Since this task is not balanced, any preference for
the word “that” over the “wh”-words would lead
to the model consistently choosing the “that” sen-
tences and achieving results below chance (which
is 0.5 for all BLiMP tasks).

In our initial experiments we found that the mod-
els trained on phonemes achieved scores between
0.06 and 0.14 for this task whereas the orthographic
models achieved scores between 0.35 and 0.53. We
then added the UTT_BOUNDARY token to the end of
every evaluation instance and found that the phone-
mic models could then achieve scores between 0.26
and 0.34 (with little change for the orthographic
models). These results also held for several other
BLiMP tasks with similar constructions.

We thus decided to ensure that the token was

added to the end of every evaluation instance for
all benchmarks reported in this paper for two rea-
sons. First, it acts as a necessary end-of-sentence
marker to ensure certain tests remain valid for the
phonemic models, and second, because the token
may encode useful sentence-level information for
all models (particularly for GLUE tasks, as only the
encoding of the final token is used for predictions).

We present the effect of this decision in fig. 3
which reports the overall BLiMP scores for our
eight conditions with and without the inclusion of
the UTT_BOUNDARY token at the end of each evalu-
ation sentence. There is a very large increase for
all four phonemic models with little change for the
orthographic models, confirming how crucial this
change was to make.

B.3 BabySLM Comparison

In table 1 we report the BabySLM scores achieved
by our models and in section 5.2 we mention that
these are the highest scores achieved on this bench-
mark to date. It is worth noting that this is only
in comparison to the baseline scores released with
the BabySLM benchmark (Lavechin et al., 2023),
as at the time of writing no other scores have been
published for this benchmark, given how recently
it was introduced.

In their study, Lavechin et al. (2023) achieved
their highest syntactic score of 70.4 using Baby-
BERTa (Huebner et al., 2021) trained on only 5
million words from CHILDES (MacWhinney and
Snow, 1985). All of our models beat this score,
with the highest achieving 94.9. BabyBERTa also
uses a BPE tokenizer whereas we found that a
character-based tokenizer consistently gave better
performance (see section 5.2). There is also an
architectural difference, BabyBERTa is an autoen-
coder trained using masked language modeling,
whereas our model is autoregressive, using next-
token prediction. The LTG-BERT baseline, which
is a similarly sized model also trained on 100 mil-
lion words, only achieves a score of 75.8. The Baby
Llama baseline, by comparison, achieves 94.0. It
is possible that the autoregressive architecture is
much more suited to the syntactic task than the

51



Grammatical Ungrammatical

Original Patrick revealed what a lot of men wore. Patrick revealed that a lot of men wore.

BPE Text Tokenizer
<s> patrick revealed what

a lot of men wore .
<s> patrick revealed that

a lot of men wore .

BPE Phoneme Tokenizer
<s> pætôIk ôIvi:ld w2t

2 lAt 2v mEn wOô
<s> pætôIk ôIvi:ld Tæt

2 lAt 2v mEn wOô

Table 4: An example sentence pair from the wh_vs_that_with_gap subtask in BLiMP and the outputted tokens
from our two tokenizers that use subwords but do not remove word boundaries. The ‘ ’ character denotes word
boundaries and the ‘<s>’ token represents our UTT_BOUNDARY token which acts as an utterance boundary and a
start-of-sentence token.

autoencoder architecture of BERT.
When it comes to the lexical test, the high-

est score achieved by Lavechin et al. (2023) was
75.4 using a 3-layer LSTM trained on 1.2 million
words from the Providence corpus (Börschinger
et al., 2013) which they converted to a stream of
phonemes with no word boundaries using a sim-
ilar tool to ours. Our highest-scoring model was
also trained with character-based tokenization of
phonemes, but did include word boundaries, achiev-
ing a score of 89.6. Our model without word bound-
aries got the second-highest score with 87.8.

In both cases, our model is larger (12 layers) and
trained on much more data (100 million words)
than the BabySLM baselines. Also, our pre-
training dataset contains a wider variety of sen-
tences than just the child-directed utterances in
CHILDES. We are currently investigating the effect
of model size and training size on the BabySLM
scores. In initial experiments, we found that even a
6-layer model trained on only 7 million words from
CHILDES was able to achieve a lexical score of 82,
but this model also only achieved a syntactic score
of 70. We hypothesize that lexical-level knowledge
can be learned with less data and by smaller models
when compared to learning syntactic knowledge,
but this research is ongoing.

C Further Implications

C.1 Comparing Human Acquisition to
Language Model Learning

The capacity of LMs to learn language from text
alone has spurred interest in using such models
for acquisition and psychology studies, such as
comparing model learning trends to child learning
behaviour (Evanson et al., 2023) and using model
outputs to predict human reading times (Hollen-
stein et al., 2021).

To push this research further, recent efforts aim

to make language modeling more cognitively plau-
sible (Beinborn and Hollenstein, 2024) by reducing
the advantages that typical language models have
over humans during the learning process (Warstadt
and Bowman, 2022). One approach is to limit
and curate the dataset to that which a typical hu-
man may be exposed to, such as is done in the
BabyLM challenge (Warstadt et al., 2023). An-
other approach is to use an input representation
that more closely mimics speech rather than writ-
ten text (Dupoux, 2018). Finally, we must consider
whether the architectures themselves are suitable
linguistic theories, given that they were developed
for downstream tasks (Baroni, 2022).

In this work we contribute to all three approaches
by training a language model with streams of
phonemes and assess whether the language model
architecture used is advantaged or disadvantaged
by these changes according to a wide variety of
benchmarks. We hope that this leads to further
work studying acquisition using phoneme streams
as an input representation. However, while streams
of phonemes may seem more cognitively plausible
than written text, many studies go further than we
do and seek to train directly on raw audio.

C.2 Learning directly from audio

Our study focused on alternative input representa-
tions for text-based language models, but there is
also a field of work dedicated to training models di-
rectly from raw audio. In recent years, the Zero Re-
source Speech Challenge has helped pioneer the de-
velopment of models that learn unsupervised from
raw audio (Dunbar et al., 2022). Models such as
STELA (Schatz et al., 2021; Lavechin et al., 2022)
use a two-stage approach, learning a discrete sym-
bolic representation by clustering 10ms chunks of
audio, then feeding these to a multi-layered LSTM
language model.

52



These models are also used to study acquisition,
regarding raw audio as an input representation that
is more cognitively plausible than phonemes; a con-
tinuous signal full of noise and non-linguistic infor-
mation that children must learn to filter. Whether
adults even use phonemes as a core linguistic rep-
resentation, and whether children learn phonemic
categories before other stages of acquisition both
continue to be a matter of debate (Kazanina et al.,
2018; Matusevych et al., 2023) and the symbolic
representations learned by models such as STELA
have a duration four times shorter than phonemes,
challenging the assumption that phonemic cate-
gories are precursors to later stages of acquisition.

The gap in linguistic performance between text-
based models and audio-based models continues
to be substantial. Lavechin et al. (2023) developed
BabySLM to compare text-based models to speech-
based models and highlighted this gap, but further
noted that even speech-based models may not al-
ways train on plausible input, many often using au-
diobooks as their training data (Kahn et al., 2020).
When training the STELA model on 1024 hours
of ecological long-form child-centered audio com-
pared to 1024 hours of audiobooks, Lavechin et al.
(2023) found that the model trained on long-form
audio achieved chance-level syntactic and lexical
capabilities, highlighting how far we are from pro-
ducing architectures that can learn from the same
signals as human children.
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