Integrating Quasi-symbolic Conceptual Knowledge into Language Model
Pre-training

Gabor Berend
Institute of Informatics,
University of Szeged
2 Arpéd tér Szeged, Hungary
berendg@inf.u-szeged.hu

Abstract

In this paper, we investigate the integration
of latent conceptual knowledge into the pre-
training of masked language models. Our solu-
tion is based on the use of an auxiliary model,
from which we extract training signals for train-
ing a student model. We determine the training
signals from the hidden representations of the
student model in an unsupervised way, using
sparse coding. Models trained on latent con-
cepts alone have an improved fine-tunability
on downstream tasks, however, they perform
worse on traditional language modeling, i.e.,
when the goal is to output missing tokens as
opposed to latent semantic classes of words.
In order to preserve the improved fine-tuning
capability of the models, while making them
better at the task of language modeling, we
propose a final stage of pre-training, during
which we perform traditional masked language
modeling. The final stage of pre-training is
based on a model that has already been pre-
trained on the task of modeling latent semantic
properties, with the weights of the backbone
model being frozen. During the final training
phase, we only train a lightweight linear clas-
sifier layer on top of the logits that the model
determines for the latent semantic properties.
With this modification, we can obtain the ben-
efits of both the traditional training paradigms
and the one which is based on the use of la-
tent semantic properties. We release our source
code at github.com/SzegedAI/MLSM.

1 Introduction

Language acquisition involves forming a rich bat-
tery of concepts and the ability to use and manipu-
late those concepts. Even though human cognition
is rooted in concepts, this is not reflected in the
typical pre-training of neural language models. In
contrast, standard pre-training techniques ignore
the concept-oriented nature of language when they
expect a single ground truth token to be predicted
during pre-training time.

Shani et al. (2023) argues for the need of integrat-
ing conceptual information into language models,
while (Berend, 2023) recommended a knowledge
distillation approach for doing so. The Masked
Latent Semantic Modeling (MLSM) approach
(Berend, 2023) relies on an auxiliary teacher model
that steers the pre-training of the student model by
performing sparse coding on its hidden represen-
tation and requiring the student model to recover
those instead of the actual tokens. As the location
of the non-zero coefficients in the sparse contex-
tualized word representations obtained that way
can be viewed as quasi-symbolic latent semantic
concepts (Berend, 2020), the pre-training becomes
driven by concepts as opposed to tokens.

While the favorable properties of MLSM pre-
trained models have been demonstrated in obtain-
ing models with improved fine-tuning capabilities,
models pre-trained with it struggle on tasks that
require language modeling ability, i.e., predicting
actual token substitutes for missing/masked token
positions from an input sequence. This is a con-
sequence of the modeling in MLSM being shifted
from the actual tokens to the latent concepts deter-
mined in an unsupervised way.

In this work, we extend such a modification
to MLSM modeling, which ensures that the final
model does not only have improved fine-tuning ca-
pability, but it is also capable of performing regular
language modeling on the token level. We achieve
this goal by integrating a lightweight post pre-
training phase, during which we keep the weights
of the model determined via MLSM fixed, and add
a small a final linear module to the network (while
freezing the rest of it), such that the token pre-
dictions are made on the logits that the originally
pre-trained model would return towards the latent
concepts. This modification ensures that the pos-
itive properties of MLSM and traditional masked
language modeling (MLM) pre-training can be in-
tegrated into a single final model.

159

The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning, pages 159-165
November 15-16, 2024 ©2024 Association for Computational Linguistics

github.com/SzegedAI/MLSM

2 Masked Latent Semantic Modeling

We first overview the MLSM pre-training tech-
nique, as it plays a central role in our modified
model architecture. The way MLSM works is that
it changes the domain of the output distribution of
the model from its vocabulary of subword units
(as in MLM) to the inventory of quasi-symbolic
latent semantic properties that we determine in an
unsupervised manner. In Figure 1, we provide a
visual comparison between the MLM and MLSM
pre-training techniques.

The way MLSM determines the latent semantic
properties of some token is by relying on an already
pre-trained auxiliary model 7. In a preparatory
phase, a representative sample of hidden represen-
tations produced by 7 is collected from its layer [
as {h(l) cee hg} }. A dictionary learning problem
(Mairal et al., 2009) is then solved of the form

arg min Z |h(l)

DO aJGRI;O j=1

DWa|[3 + Alle 1,

ey
where DU e is a dictionary matrix, with
column vector norms bounded by 1, a5 € R* con-
tains the sparse linear coefficients that indicate the
extent to which the vectors from D) are used in
reconstructing the d-dimensional hidden represen-
tation from the [-th layer of 7T, hg-l) € RZ X serves
as a regularization coefficient, controlling for the
level of sparsity in ;.

Solving (1) is performed in advance to the ac-
tual pre-training, with a negligible (< 1%) com-
putational overhead compared to the costs of pre-
training. Once the dictionary matrix DV is deter-
mined, it is used for determining the sparse contex-

Rdxk

tualized representation for any hgl), i.e., a hidden
state from layer [of T as

arg min th() - DO 2 + M. @

e]Rk

Objective (2) is computationally convenient, as
it does not require optimizing towards DY With
DV being fixed from (1), obtaining the sparse
linear coefficients of «; constitutes an efficiently
solvable LASSO optimization problem.

Due to the non-negativity constraint imposed to-
wards «; in (2), the ¢1-normalized sparse linear co-
efficients can be conveniently treated as probability
distributions over the k latent semantic concepts.

Output Probability
a 0.0

1.0
0.0

cake

zyzzyva 0.0

{ J
r 1 0\ 1 1
Embeddings [J [J [J [J []

Sarah ate

(a) Masked Language Modeling (MLM)

delicious cake

Solve argmin ||h - Dal|* + X |a][,
a

[(o)
A Sbdebds

Co T T e i)

delicious cake

Sarah ate a

(b) Masked Latent Semantic Modeling (MLSM)

Figure 1: Comparison of the MLM and MLSM pre-
training paradigms. The distributions in the green boxes
represent the expected output for the masked token.

MLSM pre-training then considers these sparse
normalized distributions of latent semantic con-
cepts of the masked tokens as the desired target
outputs and computes the Kullback—Leibler diver-
gence as the loss function.

3 Pre-training

Our proposed pre-training consists of three sequen-
tial steps. In the first step, we used classical masked
language modeling for pre-training. The mod-
els pre-trained at this stage serve as the auxiliary
teacher model for the subsequently trained model
(see Figure 1b). As MLSM does not output subto-
kens, it is expected to have limited capabilities in
performing tasks that require outputting distribu-
tions over the vocabulary of the model.

We trained a separate Unigram tokenizer for the
two corpora, with a 25,000 vocabulary size. During
all three stages of pre-training, we used the AdamW
optimizer with a peak learning rate of 0.0001 and
an effective batch size of 1024 (that resulted from
using gradient accumulation over 8 batches). When
masking is involved, we employ the typically cho-
sen 15% random masking rate selected dynamically
from the batches.

160

3.1 Preliminary pre-training

The preliminary phase of pre-training was con-
ducted using vanilla masked language modeling
objective. At this stage, we trained a classical De-
BERTa (He et al., 2021) model of the base size (i.e.,
12 layers, 12 attention heads, 768 hidden dimen-
sions). This model has roughly 100 million non-
embedding parameters and approximately 20 mil-
lion embedding parameters.

When pre-training the auxiliary models, we con-
ducted 100,000 update steps, which roughly cor-
responds to 200 epochs on the 10 million token
dataset, and 20 epochs on the 100 million train-
ing corpus. As it was the number of update steps
that we kept constant, pre-training took roughly the
same time on both corpora, i.e., approximately 2
days on a single NVIDIA A6000 GPU.

3.2 Pre-training involving latent concepts

Once the auxiliary model was created, we deter-
mined the dictionary matrix according to Eq. (1).
We chose to extract £ = 1500 quasi-symbolic
latent properties based on the hidden represen-
tations originating from the last layer of the net-
work (I = 12), using the regularization coefficient
A = 0.05. We selected the hidden representations
from the auxiliary model for 1 million tokens from
the respective corpora for determining the dictio-
nary matrices.

The student models that we trained based on the
dictionary matrices created in a preparatory phase
were also DeBERTa base models. As the archi-
tecture of the student models are identical to the
auxiliary model, it was possible to initialize the
weights of the student models with those of the re-
spective auxiliary model. Unless stated otherwise,
we applied that kind of weight initialization of the
student models.

For this phase, we went for an additional 20
epochs of pre-training. This corresponds to approx-
imately 10,000 and 100,000 update steps for the
10 million and the 100 million pre-training corpora.
This resulted in approximately 5 and 50 hours of
additional GPU compute for the 10 million and the
100 million token corpora, respectively.

We also implemented such variants of MLSM
that perform concept-driven pre-training without
the need to employ special mask tokens. These
variants are based on the observation that the range
of input symbols in MLSM differs from that of
the expected output symbols, i.e., the model re-

ceives subtoken units and outputs a distribution
over k latent quasi-symbolic concepts, which ren-
ders masking during pre-training unnecessary.

The omission of masking has the benefit that we
do not have to restrict ourselves to learning from
only 15% of the input tokens (i.e., the ones that
are masked otherwise), and it also makes the dis-
tribution of the sequences seen during pre-training
more similar to the ones seen in either fine-tuning
or inference time (due to the lack of a special mask
token). Apart from not replacing 15% of the in-
put symbols to a special mask token, this kind
of pre-training is performed in the same way as
MLSM, and we refer to this variant as Latent Se-
mantic Modeling (LSM), reflecting the fact that
no artificial masking token is involved during the
pre-training.

We created two versions of LSM. One was such
that it derived pre-training loss from all the input
tokens, while the other version (the LSM15) is such
that it omits the masking token during pre-training,
but resembles typical pre-training which involves
masking in that only a randomly selected 15% of
the tokens is used for updating the model.

3.3 Language Modeling head training

The goal of this phase is to secure classical lan-
guage modeling capabilities of the models that we
pre-trained in the previous step using latent con-
cepts. To achieve this goal, we take the resulting
model from the second phase and add an extra lin-
ear module on top of it, the goal of which was to
perform token predictions based on the logits that
the model from the previous stage determined for
the distinct latent semantic categories.

As we wanted to preserve the concept forming
capabilities of the model and not alter its fine-
tuning abilities, we froze all the weights of the back-
bone model, the only weights that were learned at
this stage were the ones in the final, newly added
linear layer, which transformed the % latent con-
cepts to the vocabulary of the model. That is, we
introduced an additional 1500 x 25000 parameters
in order to improve the language modeling capa-
bility of our models, resulting in a final model of
158 million parameters (out of which 20 million
were embedding parameters). As this phase of
training only involved the calibration of a single
linear layer, we opted for only 10 thousand update
steps (corresponding to roughly 20 and 2 epochs
on the 10M and the 100M token corpora, respec-
tively).

161

corpus Phase 1 Phase2 Phase 3 MLM MLSM LSMI15 LSM

strict-small ~50h =5h ~2h BoolQ 0.665 0.669 0.668 0.673

strict ~ 50h ~ 50 ~2h CoLA 0.398 0.417 0.384 0.400

(a) GPU hours (on an NVIDIA A6000) MNLI 0.757 0.761 0.758 0.760

MNLI-mm 0.764 0.769 0.768 0.765

corpus Phase I Phase 2 Phase 3 MRPC 0.822 0.819 0.820 0.823

MultiRC 0.646 0.636 0.629 0.633

stict-small ~ ~200 ~20 ~20 QNLI 0.828 0.831 0.833 0.836

strict ~20 0 =20 A2 QQP 0.861 0.862 0.864 0.863

(b) Epochs performed RTE 0.535 0.545 0.566 0.564

SST2 0.893 0.900 0.896 0.892

Table 1: The amount of compute broken down at the WSC 0.415 0.485 0462 0392

individual phases.
Avg. 0.689 0.699 0.695 0.691
This final phase took less than two hours of GPU (2) models pre-trained on the 10M corpus

calculation. In Table 1, we summarize the amount

computation performed for arriving to a final model MLM MLSM LSMI5 LSM

both in terms of GPU hours (Table 1a) and the BoolQ 0.686 0.697 0.689 0.693

number of epochs (Table 1b). CoLA 0509 0484 0511 0.541

. MNLI 0.779 0.789 0.782 0.783

4 Experimental results MNLLmm 0783 0791 0.788 0.790

We evaluate our models using the official evalua- MRPC 0.906 0.905 0913 0.919

tion framework of the shared task that was provided =~ MultiRC 0.629 0.643 0.639 0.635

by the organizers (Warstadt et al., 2023). The evalu- QNLI 0.846 0.853 0.849 0.852

ation involved model fine-tuning on various GLUE QQP 0.868 0.868 0.869 0.869

tasks (Wang et al., 2019) as well as zero-shot eval- RTE 0.616 0.607 0.645 0.632

uations towards the BLIMP (Warstadt et al., 2020) ~ SST2 0.903 0905 0.899 0.898

and EWoK (Ivanova et al., 2024) benchmarks. WSC 0400 0419 0412 0.396

Avg. 0.720 0.724 0.727 0.728

4.1 Fine-tuning experiments

We did not investigated in hyperparameter opti-
mization, simply adopted the default fine-tuning
hyperparameters recommended by the organizers.
The only hyperparameter we modified was the ran-
dom seed of the fine-tuning, and we only modified
it, so that we can report performances that are sta-
tistically more robust by averaging the fine-tuning
performances obtained on the different tasks.

We repeated fine-tuning on all dataset 5 times
(with random seeds ranging from 12 to 16) and
report the mean performance on each task. The
performance metrics we include are accuracy, ex-
cept for the CoLA, MRPC and QQP tasks, where
it is the Matthew Correlation Coefficient for the
former, and the F1 score for the latter two. The
averaged performance metrics are presented in Ta-
ble 2. Those models that were additionally pre-
trained with the objective of being able to predict
the latent semantic properties of the tokens show
better fine-tunability when trained on any of the
pre-training corpora.

(b) models pre-trained on the 100M corpus

Table 2: Fine-tuning results of models pre-trained with
different strategies. Results are the average of 5 indepen-
dent experiments using random seeds ranging between
12 and 16.

Based on the results in Table 2, there seems to
be little difference in the fine-tuning ability of the
models that integrate latent semantic information
during their pre-training (*LSM*), however, our
next experiment reveals the true strength of the
masking-free variants of MLSM. For this experi-
ment, we started the latent semantics-driven pre-
training of DeBERTa models with randomly ini-
tialized weights. In our previous experiments, the
reason for being able to warm start our student
model for the second phase of pre-training, i.e., to
initialize it with the weights of the auxiliary model,
was that the student and teacher models matched
in both their architecture and size.

162

MLM MLSM LSM15 LSM
BoolQ 0.665 0.640 0.677 0.674
CoLA 0.398 0.000 0.176 0.291
MNLI 0.757 0.347 0.750 0.755
MNLI-mm 0.764 0.342 0.756 0.762
MRPC 0.822 0.811 0.822 0.826
MultiRC 0.646 0.576 0.625 0.613
QNLI 0.828 0.509 0.818 0.815
QQP 0.861 0.000 0.854 0.855
RTE 0.535 0.460 0594 0.573
SST2 0.893 0.518 0.882 0.894
WSC 0415 0.523 0.392 0.439
Avg. 0.689 0.430 0.668 0.681

Table 3: Fine-tuning results of models pre-trained on
the 10 million token corpus. Results are the average of
5 independent experiments using random seeds ranging
between 12 and 16. This time the weights of the student
models were randomly initialized and the pre-training
of the student models involved only 10 million updates,
while the auxiliary model was created in 100 million
update steps.

It can, however, often be the case that the student
model we train differs from the auxiliary in either
of its size or architecture. In such cases, simply
continuing the pre-training of the teacher model is
not directly applicable. To this end, we conducted
such experiments, where the student model — al-
beit remaining of the same size and architecture as
the auxiliary model — was initialized with random
weights, so that we can simulate a more general sit-
uation when continued pre-training is not an option
to go for.

The results of this setting, when pre-training was
conducted on the 10 million tokens strict-small
dataset, is included in Table 3. We can see that the
performance of MLSM degrades severely, whereas
its masking-free counterparts do not degrade as
much. In fact, the LSM pre-trained model man-
ages to reach the performance of its teacher from
a randomly initialized state in one tenth of the pre-
training, as the second phase pre-training lasted
only for 10 thousand update steps for the small-
strict corpus, whereas we conducted 100 thousand
training steps for obtaining the auxiliary model. We
omit the results for the 100 million token corpus
for brevity, but the general trends are the same in
that case as well.

It is only the CoLA task, where the LSM model
(initialized from scratch) lags behind the MLM pre-
trained auxiliary model. This is not that surprising

as the CoLA tasks is related to linguistic accept-
ability, for which task a model that was pre-trained
to predict the correct word forms can offer better
transfer compared to a model that was purely con-
structed to model latent semantic categories that
arguably play a less important role when deciding
linguistic acceptability.

4.2 Zero-shot experiments

We report next the results when evaluation is per-
formed on the language modeling capabilities of
the differently pre-trained models, i.e., the evalua-
tion metrics on the BLiMP datasets (Warstadt et al.,
2020) and the EWoK (Ivanova et al., 2024) bench-
mark. Table 4 contains the results of our auxiliary
model, as well as our models prior going through
the third phase of pre-training and after the final
lightweight pre-training phase being completed.

It is not surprising that the models that were pre-
trained with a focus on latent semantic categories
are not performing well in language modeling prior
to the final phase of pre-training. Table 4 reveals
that once the final pre-training phase — which only
involves training a single linear classification layer
and is only conducted for 10K update steps — is fin-
ished, the models that were previously pre-trained
with an emphasis on modeling latent semantic cat-
egories of tokens can perform just as well as the
auxiliary model, which had a sole focus on being
able to accurately predict masked word forms. As
the weights of our backbone model were frozen
during the last phase of pre-training, our models
also preserved their ability to predict latent seman-
tic categories to input tokens and the final token-
level predictions are precisely made based on those
categories determined by the models.

It is worth mentioning, that an alternative way
to achieve that the trained models have a com-
bined command of modeling latent semantic prop-
erties and concrete word forms would be the use
of a multi-task objective, in which the MLM and
MLSM objectives are combined together. Our pre-
liminary experiments showed, however, that mod-
els pre-trained that way do not have better perfor-
mance during fine-tuning. Moreover, this kind of
multitask training objective would be incompatible
with the masking-free variant of latent semantics
based pre-training, as LSM does not replace any of
the input tokens with a special mask token, some-
thing that is required by MLM pre-training.

163

W/o third phase pre-training With third phase pre-training

MLM MLSM LSMI15 LSM MLSM LSMI15 LSM
BLiMP 0.653 0.521 0.528 0.528 0.654 0.642 0.641
BLiMP supplement 0.603 0.511 0.484 0.494 0.590 0.580 0.591
EWoK 0.647 0.680 0.682 0.689 0.652 0.667 0.666
Average 0.634 0.571 0.565 0.570 0.632 0.630 0.633
(a) models pre-trained on the 10M corpus
W/o third phase pre-training With third phase pre-training
MLM MLSM LSMI5 LSM MLSM LSMI15 LSM
BLiMP 0.702 0.446 0.465 0.471 0.696 0.687 0.684
BLiMP supplement 0.623 0.495 0.529 0.533 0.654 0.613 0.608
EWoK 0.657 0.681 0.654 0.659 0.656 0.667 0.669
Average 0.661 0.541 0.549 0.554 0.669 0.656 0.654

(b) models pre-trained on the 100M corpus

Table 4: Zero-shot results of models pre-trained with different strategies.

4.3 Submitted results

In Table 5, we summarize the results that our sub-
mitted models achieved, along with the baseline
scores provided by the shared task organizers, the
BabyLlama (Timiryasov and Tastet, 2023) and the
LTG-BERT (Samuel et al., 2023) models being the
best performing decoder and encoder-based sub-
missions in last years evaluation campaign.

GLUE BLiMP BLiMP suppl. EWoK
BabyLlama 0.633 0.698 0.595 0.507
LTG-BERT 0.603 0.606 0.608 0.489
MLSM 0.733 0.654 0.590 0.508
LSM15 0.721 0.642 0.580 0.508
LSM 0.708 0.641 0.591 0.507

(a) Using the 10M token strict-small pre-training corpus

GLUE BLiMP BLiMP suppl. EWoK
BabyLlama 0.690 0.731 0.606 0.521
LTG-BERT 0.684 0.692 0.665 0.519
MLSM 0.748 0.696 0.654 0.523
LSM15 0.747 0.687 0.613 0.527
LSM 0.741 0.684 0.608 0.522

(b) Using the 100M token strict pre-training corpus

Table 5: The baseline performances provided by the
organizers and our final submitted scores, the results
above the horizontal bars are the baselines provided by
the organizers.

We can see a drop in the EWoK performances
between Table 4 and Table 5. The reason behind

this is that in Table 4, we reported evaluation met-
rics that we obtained using the official evaluation
scripts during the development phase. The orga-
nizers, however, discovered that those scripts pro-
duced inflated scores on EWoK (which were caused
by the way the evaluation framework handled ties
in the probabilities produced by a model). The re-
sults in Table 5 are the ones that contain the EWoK
scores after this issue has been fixed.

5 Conclusions

In this paper, we investigated the integration of la-
tent concepts extracted from an auxiliary model
into the sample efficient pre-training of neural lan-
guage models. We gave multiple modifications
to existing approaches, including a masking-free
variant of the originally proposed approach and
the inclusion of a final, lightweight pre-training
phase into the pre-training procedure, which en-
sures that the final model is not only capable of
modeling semantic properties of tokens, but it
can also accurately predict the identity of masked
word form based on the latent semantic properties
that the backbone model determines. Finally, we
make the models that we pre-trained openly acces-
sible from https://huggingface.co/SzegedAl
(the models named with prefix babylm24).

Acknowledgments

This paper was supported by the Janos Bolyai Re-
search Scholarship of the Hungarian Academy of

164

https://huggingface.co/SzegedAI

Sciences. The research received additional support
from the European Union project RRF-2.3.1-21-
2022-00004 within the framework of the Artificial
Intelligence National Laboratory.

References

Gabor Berend. 2020. Sparsity makes sense: Word sense
disambiguation using sparse contextualized word rep-
resentations. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 8498-8508, Online. Association
for Computational Linguistics.

Gébor Berend. 2023. Masked latent semantic modeling:
an efficient pre-training alternative to masked lan-
guage modeling. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 13949—
13962, Toronto, Canada. Association for Computa-
tional Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. DeBERTa: Decoding-enhanced
BERT with disentangled attention. In International
Conference on Learning Representations.

Anna Ivanova, Aalok Sathe, Benjamin Lipkin, Unnathi
Kumar, Setayesh Radkani, Thomas H Clark, Carina
Kauf, Jennifer Hu, Pramod RT, Gabriel Grand, Vi-
vian Paulun, Maria Ryskina, Ekin Akyurek, Ethan
Wilcox, Nafisa Rashid, Leshem Choshen, Roger
Levy, Evelina Fedorenko, Josh Tenenbaum, and Ja-
cob Andreas. 2024. Elements of world knowledge
(ewok): A cognition-inspired framework for eval-
uating basic world knowledge in language models.
arXiv.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo
Sapiro. 2009. Online dictionary learning for sparse
coding. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, ICML °09,
pages 689—-696, New York, NY, USA. ACM.

David Samuel, Andrey Kutuzov, Lilja @vrelid, and Erik
Velldal. 2023. Trained on 100 million words and still
in shape: BERT meets British National Corpus. In
Findings of the Association for Computational Lin-
guistics: EACL 2023, pages 1954—1974, Dubrovnik,
Croatia. Association for Computational Linguistics.

Chen Shani, Jilles Vreeken, and Dafna Shahaf. 2023.
Towards concept-aware large language models. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 13158-13170, Singa-
pore. Association for Computational Linguistics.

Inar Timiryasov and Jean-Loup Tastet. 2023. Baby
llama: knowledge distillation from an ensemble of
teachers trained on a small dataset with no perfor-
mance penalty. In Proceedings of the BabyLM Chal-
lenge at the 27th Conference on Computational Nat-
ural Language Learning, pages 279-289, Singapore.
Association for Computational Linguistics.

165

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan
Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mos-
quera, Bhargavi Paranjabe, Adina Williams, Tal
Linzen, and Ryan Cotterell. 2023. Findings of the
BabyLM challenge: Sample-efficient pretraining on
developmentally plausible corpora. In Proceedings
of the BabyLM Challenge at the 27th Conference on
Computational Natural Language Learning, pages
1-34, Singapore. Association for Computational Lin-
guistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the
Association for Computational Linguistics, 8:377—
392.

https://doi.org/10.18653/v1/2020.emnlp-main.683
https://doi.org/10.18653/v1/2020.emnlp-main.683
https://doi.org/10.18653/v1/2020.emnlp-main.683
https://doi.org/10.18653/v1/2023.findings-acl.876
https://doi.org/10.18653/v1/2023.findings-acl.876
https://doi.org/10.18653/v1/2023.findings-acl.876
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.1145/1553374.1553463
https://doi.org/10.1145/1553374.1553463
https://doi.org/10.18653/v1/2023.findings-eacl.146
https://doi.org/10.18653/v1/2023.findings-eacl.146
https://doi.org/10.18653/v1/2023.findings-emnlp.877
https://doi.org/10.18653/v1/2023.conll-babylm.24
https://doi.org/10.18653/v1/2023.conll-babylm.24
https://doi.org/10.18653/v1/2023.conll-babylm.24
https://doi.org/10.18653/v1/2023.conll-babylm.24
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321

