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Abstract

The BabyLM Challenge is a community effort
to close the data-efficiency gap between hu-
man and computational language learners. Par-
ticipants compete to optimize language model
training on a fixed language data budget of 100
million words or less. This year, we released
improved text corpora, as well as a vision-and-
language corpus to facilitate research into cog-
nitively plausible vision language models. Sub-
missions were compared on evaluation tasks
targeting grammatical ability, (visual) question
answering, pragmatic abilities, and grounding,
among other abilities. Participants could sub-
mit to a 10M-word text-only track, a 100M-
word text-only track, and/or a 100M-word and
image multimodal track. From 31 submissions
employing diverse methods, a hybrid causal-
masked language model architecture outper-
formed other approaches. No submissions
outperformed the baselines in the multimodal
track. In follow-up analyses, we found a strong
relationship between training FLOPs and aver-
age performance across tasks, and that the best-
performing submissions proposed changes to
the training data, training objective, and model
architecture. This year’s BabyLM Challenge
shows that there is still significant room for in-
novation in this setting, in particular for image-
text modeling, but community-driven research
can yield actionable insights about effective
strategies for small-scale language modeling.

1 Introduction

This paper describes the second BabyLM Chal-
lenge and its findings. The broader goals and mo-
tivation of the challenge have remained constant
since the first iteration last year. At the heart of both
this year’s and last year’s challenge is the observa-
tion that children are incredibly data-efficient lan-
guage learners, whereas artificial neural-network-
based language models are not. On the one hand,
children are exposed to less than 100 million word
tokens by the age of 13 (Gilkerson et al., 2017),

at which point they have mastered their native lan-
guage(s). On the other hand, today’s ANN-based
language models are trained on trillions of words—
five to six orders of magnitude more than the typi-
cal human language learner. For a more in-depth
discussion on the issue of data efficiency, see the
findings of last year’s challenge (Warstadt et al.,
2023) as well as Wilcox et al. (2024), a position
piece written by many of the challenge organizers.

The learning discrepancy between humans and
models raises two important questions: First, how
is it that humans are able to learn language so ef-
ficiently? And second, what insights from human
language learning can be used to improve language
models? It is our hope that by creating a plat-
form for interested parties to experiment with data-
limited and cognitively inspired language model-
ing, we can continue to make progress on these
interrelated questions. In particular, our goal with
BabyLM is to contribute to:

1. Building more cognitively and developmen-
tally plausible models of human language ac-
quisition and processing, which can be used
for the scientific study of language.

2. Optimizing training pipelines prior to scaling,
allowing for faster iteration on architectures
and hyperparameters.

3. Enabling research on language model train-
ing to a wider group of interested researchers,
beyond highly-funded industry labs.

The main difference between this year’s and last
year’s challenge is twofold: First, this year we al-
lowed participants to bring their own datasets, as
long as they stayed within the 100 million word
limit for our Strict track, or the 10 million word
limit for our Strict-Small track. The motivation
behind this decision is that pretraining data qual-
ity has been linked to large improvement gains in
at-scale language models (Gunasekar et al., 2023),
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so this year we allowed participants to improve the
training data beyond the provided dataset, which
was effectively a dataset baseline. Second, this
year included a Multimodal track, in which par-
ticipants trained on aligned text-image data, and
tested their models in a novel text-image evalua-
tion pipeline. Non-linguistic information, such as
visual input, potentially plays a large role in child
language acquisition. While visual input is not
inherently necessary for successful language acqui-
sition (for example, blind children learn language
largely without issue), visual grounding has been
linked to faster language learning (Pérez-Pereira
and Castro, 1992; Campbell et al., 2024). Further-
more, visual grounding has long been hypothesized
to aid word learning: children learn nouns more eas-
ily than verbs (Gentner, 1982; McDonough et al.,
2011), arguably because the former are more easily
linked to visual stimuli than the latter. Additionally,
children learn concrete nouns easier than abstract
nouns (Bergelson and Swingley, 2013). However,
visual grounding also presents several challenges:
Words may be time-delayed with respect to their
referents, or one word may be uttered in a context
with multiple competing possible referents. With
this in mind, our hope was that the Multimodal
track would help to explore the space of possible
computational models for visual grounding during
language acquisition.

Findings and takeaways. This year, we received
31 submissions from 17 different countries making
diverse contributions. Examples included submis-
sions proposing novel architectures, new training
objectives, innovating on knowledge distillation
methods, and proposing curriculum learning meth-
ods, among others. We conduct a meta-analysis
of the results, which yields several concrete rec-
ommendations. The best-performing submissions
constructed their own training datasets, proposed
new model architecture, or new training objectives.
Performance on the BabyLM evaluations also cor-
related strongly with training FLOPs, suggesting
that high-compute training regimes still tend to reli-
ably perform better, even in low-data settings. The
BabyLM research community also showed growing
attention to tokenization and multilingual language
modeling, while maintaining interest in curriculum
learning and applying linguistic biases to language
models.

Our data (pretraining corpora and evaluation
data; [link]), preprocessing code [link], baselines

[link] and evaluation pipeline [link] are all publicly
available. We also release the submitted models of
those who agreed to release them, along with their
hyperparameters and results [link]. The leader-
board may be found here [link].

2 Competition Details

Tracks. The second BabyLM Challenge included
three competition tracks: Strict, Strict-Small, and
Multimodal. Additionally, we opened a standalone
Paper track, accepting research related to cogni-
tive modeling with language models or small-scale
pretraining, similar to a workshop.

The Strict and Strict-Small tracks required that
submissions be trained on 100M words or less
and 10M words or less, respectively. These tracks
no longer required that participants use the fixed
dataset from last year’s challenge, although we still
provided an updated version of this dataset, de-
scribed in Section 3. Models in these tracks were
evaluated on language-only evaluation tasks.

In the Multimodal track, participants trained mul-
timodal image-text models. Participants were al-
lowed to use any model and training procedure
they desired, as long as the model could assign
(pseudo) log-likelihoods to strings of text, condi-
tioned on an image. Again, participants were free
to construct their own datasets, including unlimited
visual inputs, as long as the text data was within
a 100M word budget. To facilitate easier partici-
pation in this track, we released a suggested multi-
modal dataset that consisted of 50% text-only and
50% paired image-text data. Submissions to this
track were evaluated on both language-only and
additional multimodal tasks.

3 Pretraining Corpus

This year, we updated the text-only dataset from the
previous competition and provided a novel image-
text dataset for the Multimodal track. Data for
both the text-only and multimodal datasets can be
downloaded from https://osf.io/ad7qg/.

For the text-only dataset updates, we increased
the proportion of child-oriented data (counting both
transcribed speech and written data) to 70% up
from 39% last year, and we increased transcribed
speech data to 58% up from 55% last year. We
have eliminated the Wikipedia portion of the data
(except for Simple English Wikipedia) due to being
the only non-spoken and non-child-level data, and
we have eliminated the QED portion due to qual-
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Dataset Description # Words (multimodal) # Words (strict) # Images

Localized Narrativesa Image Caption 27M – 0.6M
Conceptual Captions 3Mb Image Caption 23M – 2.3M
CHILDESc Child-directed speech 14.5M 29M –
British National Corpus (BNC), dialogue portiond Dialogue 4M 8M –
Project Gutenberg (children’s stories)e Written English 13M 26M –
OpenSubtitlesf Movie subtitles 10M 20M –
Simple English Wikipediag Written Simple English 7.5M 15M –
Switchboard Dialog Act Corpush Dialogue 0.5M 1M –

Total – 100M 100M 2.9M

Table 1: Datasets for the multimodal and strict tracks of the 2nd BabyLM Challenge. Word counts
are approximate and subject to slight changes. aPont-Tuset et al. (2020a) bSharma et al. (2018a)
cMacWhinney (2000) dConsortium (2007) eGerlach and Font-Clos (2018) fLison and Tiedemann (2016a)
ghttps://dumps.wikimedia.org/simplewiki/ hStolcke et al. (2000)

ity issues. We have also reduced our reliance on
OpenSubtitles, which can include scripted speech,
which is arguably less ecologically valid than other
spoken sources. CHILDES now comprises a sig-
nificantly larger portion of the new dataset. We use
the entire available English portion of CHILDES
including both caregiver and child utterances, in-
creasing the proportion of child-oriented discourse
from 5% last year to 29%.1 We also replaced
last year’s children’s stories and Project Guten-
berg data with a custom children’s stories dataset
sourced entirely from Project Gutenberg. We se-
lect child-appropriate books using the provided
subject metadata, and then select the 1000 most
common books, giving us a combined corpus of
26M words. For more details about other data
sources, see (Warstadt et al., 2023).

In addition, we provide a novel image-text
dataset to facilitate easier participation in the Mul-
timodal track. This dataset has two components:
First, we provide 50M words of text-only data,
drawn from the 100M BabyLM corpus via strati-
fied sampling (that is, we preserve the relative dis-
tribution from the different data sources). Second,
we provide paired text-image data that includes
50M words of text. This paired data comes from
two sources: 27M words from the Localized Nar-
ratives dataset (Pont-Tuset et al., 2020b) and 23M
words from the Conceptual Captions 3M (CC3M)
dataset (Sharma et al., 2018b). For the Localized
Narratives dataset, we used the text captions and
the images from the MS-COCO (Lin et al., 2014)
and Open Images (Kuznetsova et al., 2020) subsets.
For the CC3M dataset, we used the image-caption

1We thank Brian MacWhinney (personal correspondence)
for alerting us to the existence of this additional CHILDES
data.

pairs whose images were still valid in January 2024.
In the OSF directory at the above link, we provided
scripts to download the images. Table 1 gives an
overview of the datasets comprising the BabyLM
pretraining set, and descriptions of each data source
are provided in Appendix A.

3.1 Preprocessing

We released train, validation, and test splits for each
of the ten data sources in Strict and Strict-Small in
proportions 83.3%/8.3%/8.3%, respectively. The
10M word Strict-Small training set is sampled ran-
domly from the Strict training set: after prepro-
cessing, we downsampled and split each source by
randomly sampling chunks of 2000 lines or longer.
The code and instructions for downloading and pre-
processing the raw data are publicly available.2

We performed minimal preprocessing in terms
of filtering and reformatting text. Notably, we pre-
served newlines, meaning newlines do not con-
sistently delimit documents, paragraphs, or sen-
tences, as in some pretraining datasets. We used
WikiExtractor (Attardi, 2015) to extract text from
the xml Simple English Wikipedia dump dated
2022-12-01. We removed <doc> tags in Simple
English Wikipedia and selected the spoken sub-
set of the BNC by taking only lines from the xml
containing the <stext> tag and extracting the text
from the xml. We used code by Gerlach and Font-
Clos (2020) to download and preprocess data from
Project Gutenberg, which we additionally filtered
to contain only English texts by authors born after
1850. The OpenSubtitles and Wikipedia portions
of the pretraining corpus were shared with us in pre-
processed form, having had duplicate documents

2https://github.com/babylm/babylm_data_
preprocessing
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removed from OpenSubtitles and preprocessing
steps performed to Wikipedia similar to our Simple
English Wikipedia procedure.3 We used regular
expressions to remove speaker and dialog act anno-
tations from the Switchboard Dialog Act Corpus
and annotations from the CHILDES data. We pre-
served speaker annotations and scene descriptions
from CHILDES. We performed no preprocessing
on the remaining datasets.

4 Evaluation and Submission

As in last year, we distributed a shared evalua-
tion pipeline based on the LM Evaluation Harness
(Gao et al., 2021). For the Strict and Strict-Small
tracks, evaluation tasks were largely the same as
the previous year: we used BLiMP (Warstadt et al.,
2020), the BLiMP Supplement (Warstadt et al.,
2023), and a subset of (Super)GLUE tasks (Wang
et al., 2019, 2018a) as the public evaluation set.
BLiMP measures whether LMs prefer grammatical
to minimally-differing ungrammatical sentences
(i.e., minimal pairs) and spans a range of grammat-
ical phenomena including subject-verb agreement,
binding, and control/raising constructions. The
BLiMP supplement is a disjoint subset of minimal
pairs designed specifically for last year’s BabyLM
Challenge to test linguistic knowledge not covered
by BLiMP, such as dialogue and pragmatics. (Su-
per)GLUE is designed to measure natural language
understanding across a diverse array of subtasks;
its tasks include question answering and natural
language inference, among others.

For the Multimodal track, participants were re-
quired to evaluate on the evaluation benchmarks
from the text tracks; this was to establish whether
training on image data facilitated sample-efficient
language modeling. In addition, we included a
suite of multimodal evaluation tasks. The public
evaluation datasets included Visual Question An-
swering (VQA; Antol et al., 2015; Goyal et al.,
2017) and Winoground (Thrush et al., 2022). VQA
measures whether vision-language models (VLMs)
prefer correct answers to questions about visual
inputs, and Winoground measures whether LMs
prefer accurate descriptions of images among min-
imally differing options (e.g., given an image of
dirt on top of a light bulb, does the VLM prefer “a
lightbulb on top of dirt”, or “dirt on top of a light-

3We thank Haau-Sing Li for allowing us to use this prepro-
cessed data.

bulb”, and vice versa given another image where
the lightbulb is on top of dirt).

This year, we used the Elements of World Knowl-
edge (EWoK) dataset (Ivanova et al., 2024) as the
hidden task for the text tracks. This task measures
pragmatic, commonsense, and discourse knowl-
edge. For the Multimodal track, the hidden task
was DevBench (Tan et al., 2024); this benchmark
contains subtasks targeted at evaluating visual and
linguistic abilities that emerge at different stages of
children’s development, including subtasks where
(i) the model must pick the correct image associ-
ated with a given word; (ii) the model must pick
the correct image corresponding to a sentence; and
(iii) the model must assign appropriately higher
or lower similarity scores to more or less similar
images. The data for these tasks was released two
weeks before the model submission deadline. We
selected these tasks based on whether they cap-
ture distinct phenomena from the public evaluation
tasks, such that optimizing only for individual tasks
or narrow subsets of linguistic competencies would
not be overly rewarded.

Most of the evaluation tasks were zero-shot.
Zero-shot evaluation entails comparing the proba-
bilities of different sequences of text. Thus, all sub-
mitted models were required to assign a (pseudo)
log-likelihood to a sequence of tokens. Addition-
ally, the (Super)GLUE tasks required fine-tuning a
classification head appended to the model. Models
did not need to generate sequences for any evalu-
ation task; thus, both autoregressive and masked
language modeling architectures could be used.

4.1 Evaluation Pipeline

We provided code to unify the evaluation setup
across submissions. This was released as a public
repository on GitHub.4 The evaluation pipeline
supports models implemented in HuggingFace,
including Transformer-based architectures, struc-
tured state space models (e.g., Mamba; Gu and
Dao, 2024), and recurrent neural networks (Peng
et al., 2023), among other architectures. Note, how-
ever, that we did not restrict the model submissions
to HuggingFace-based models; participants were
allowed to use their own evaluation setup if desired,
so long as they were able to produce predictions

4https://github.com/babylm/
evaluation-pipeline-2024
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in the expected format.5 For model and result sub-
missions, users were required to (i) upload a link
to their model (on any file-hosting service), and
(ii) provide model predictions for each example
of each task; we provided a template specifying
the format of the predictions file in the evaluation
pipeline repository.

Data preprocessing. NLP tasks in our evalua-
tion pipeline often contained vocabulary that is not
contained in the BabyLM pretraining corpora. To
address this mismatch, we filtered each evaluation
task according to its lexical content. We first com-
puted two vocabularies by collecting all words that
appear at least twice in the Strict-Small corpus and
collecting all words that appear at least twice in the
Multimodal corpus. Then, we took the intersection
of these two vocabularies to obtain the final vocab-
ulary. Finally, we iterated through each example
in each evaluation task; if an example contained
any words that appeared less than twice in the final
vocabulary, we filtered the example. Otherwise,
each dataset is presented in its original format. See
Table 4 in Appendix B for details on the size of the
filtered datasets.

4.1.1 Evaluation Paradigms
Zero-shot evaluation. For zero-shot tasks—all
of them except (Super)GLUE—we modified
the lm-eval-harness repository, originally by
EleutherAI (Gao et al., 2021). This provides func-
tionality for scoring autoregressive decoder-only
LMs and encoder-decoder LMs. For encoder-only
LMs, we modified the repository to support masked
language model scoring as described in Salazar
et al. (2020), and as updated by Kauf and Ivanova
(2023).6 We also modified the pipeline to support
multimodal models and tasks.

Finetuning. Prior to the challenge, we experi-
mented with zero-shot learning and few-shot in-
context learning for (Super)GLUE. However, this
often resulted in random-chance accuracies from
our baselines; we therefore employed finetuning.
While finetuning technically adds to the training set
size, we consider this acceptable, as finetuning on a
single GLUE or MSGS task does not meaningfully
add to the domain-general linguistic abilities of

5Upon release of the evaluation pipeline, we announced
that we would provide support as needed to teams training
LMs not based in HuggingFace.

6We used the implementation of Misra (2022) in the
minicons library.

language models. For tasks requiring finetuning—
namely, (Super)GLUE (Wang et al., 2018b, 2019)—
we base our scripts on HuggingFace’s example fine-
tuning scripts for text classification.7 We modified
the script from last year’s pipeline to work with
more recent versions of HuggingFace transformers.
We provided a default set of hyperparameters that
we found to work well across our baseline models,
though participants were allowed to modify hyper-
parameters if they wished. We also provided sup-
port for fine-tuning models via low-rank adapters
(LoRA; Hu et al., 2022). This enabled the possi-
bility of faster and more compute-efficient model
adaptation for our tasks.

4.2 Submission process

Submission format. The submission form was
hosted via OpenReview. We required a link to the
models, as well as a link to the predictions of these
models for all examples for all tasks. The predic-
tions file was formatted as a JSON; each example
had an entry with an example ID as its key, and the
the prediction of the model as its value. For classi-
fication tasks, a prediction was a label ID integer.
For zero-shot tasks, predictions were the string that
received the highest probability according to the
model. The submission process for the competition
consisted of three components, which are outlined
below:

Paper submission. Each participant submitted a
paper detailing their research, methodology, experi-
mental design, and key findings. This was required
for all participants, even if they did not submit a
model to compete in the challenge.

Artifact submission. In addition to the paper,
participants who opted to compete and adhere to
the competition rules were required to provide
supplementary materials, including model outputs,
checkpoints, and pretraining data (unless the de-
fault pretraining dataset was used). Participants
were also required to upload their predictions for
all evaluation tasks.

Submission form. To facilitate comparability
and reproducibility, participants were asked to fill
in a standardized form that captured model meta-
data, including hyperparameters, submission de-

7https://github.com/huggingface/transformers/
blob/211f93aab95d1c683494e61c3cf8ff10e1f5d6b7/
examples/pytorch/text-classification/run_glue.py
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scriptions, and links to custom data if the standard
corpus was not used.

4.3 Baselines

As opposed to last year’s baselines, which were
selected and trained relatively naively, this year’s
baselines were based on the architectures of win-
ning submissions from last year’s challenge. For
the Strict and Strict-Small tracks, we released the
following baselines: LTG-BERT (encoder-only;
Samuel et al., 2023) and BabyLlama (decoder-only;
Timiryasov and Tastet, 2023a). Although a variant
of LTG-BERT (called ELC-BERT) won last year’s
challenge (Charpentier and Samuel, 2023), Wilcox
et al. (2024) showed that similar performance on
BabyLM evaluations can be achieved without the
additional modifications of ELC-BERT. Thus, we
chose LTG-BERT as the baseline, as it is a sim-
pler model. BabyLlama is architecturally similar
to Llama (albeit with far fewer parameters), and is
additionally trained using knowledge distillation.
For the Multimodal track, we released vision lan-
guage models based on GIT (Wang et al., 2022)
and Flamingo (Alayrac et al., 2022) architectures,
both of which are autoregressive.

Implementation details. For LTG-BERT, we ini-
tially used the code provided in the repository
linked in Samuel et al. (2023), but we encountered
unstable training due to loss spikes with this setup.
We therefore used the LTG-BERT model released
on HuggingFace, and trained it using the Hugging-
Face trainer. While training was still relatively
unstable compared to other architectures, this pro-
cedure yielded performance in the expected range
relative to other baselines. For BabyLlama, we use
the code from the repository linked in Timiryasov
and Tastet (2023a), with small changes for com-
patibility with this year’s BabyLM corpus. For
the GIT and Flamingo baselines, we adapt the im-
plementation of Zhuang et al. (2024). Note that
these baselines are not necessarily meant to achieve
high scores on our evaluation tasks; rather, they
are meant to encourage participants to innovate
and improve beyond naive applications of existing
methods.

5 Competition Results

In this section, we discuss the overall results of the
competition (§5.1), track winners (§5.2), and this
year’s Outstanding Papers (§5.3).
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Figure 1: A breakdown of the various approaches used
in the 2024 BabyLM challenge, organized by category
and track. Curriculum learning again takes the top spot
as the most popular approach, followed by training ob-
jective innovations.

We received 31 papers and 64 models in total,
with two models submitted to the paper track. Table
2 shows the submission counts for each track. De-
spite efforts to make text–vision pretraining as ac-
cessible as possible, only three teams submitted to
the Multimodal track, for a total of 8 model submis-
sions. As none of these submissions outperformed
our baselines, we decided not to award a winner in
this track. Despite this disappointment, we hope
that our datasets and evaluation resources serve as
a basis for further exploration of text-image models
in the years to come.

We found that many submissions focused their
efforts on similar techniques. To better quantify
this, we devised, in Figure 1, a typology of the most
common approaches and assigned each submitted
model one or more labels. §6.3 provides more
detailed descriptions of each approach, as well as
results indicating which ones were most effective.

All participants are affiliated with universities
or independent research institutions. Participants’
home institutions are located in 16 different coun-
tries. The number of participants by country is
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# Models # Participants

Multimodal 8 3
Strict-Small 35 18
Strict 19 11

Total 64 31

Table 2: Total number of models and participants per
track. Participants who submitted to multiple tracks are
counted once in the total. Two models were submitted
to the Paper track only.

as follows (multinational submissions are counted
more than once): Germany (8), United States (6),
Netherlands (4), Italy (2), UK (2), Canada (1),
China (1), Greece (1), Hungary (1), Iran (1), Israel
(1), Japan (1), Norway (1), Singapore (1), Sweden
(1), Switzerland (1), and Taiwan (1).

5.1 Overall Results & Track Winners

The results from all submissions are shown in Fig-
ure 2, with the scores of the top-performing models
in each track detailed in Table 3. In the figure,
dashed gray lines show the performance of non-
competition models (either baselines or skylines),
and solid green lines show human performance on
evaluation metrics. For GLUE, we use the human
scores reported in Nangia and Bowman (2019) and
for BLiMP we use the individual human agree-
ment scores reported in Warstadt et al. (2020). For
Winoground, we plot the human group score re-
ported in Thrush et al. (2022), which is slightly
more stringent than our model evaluation setup as
it requires humans to make the correct judgments
over a set of several comparisons. For VQA, we
report the Question + Image score on real images
reported in Antol et al. (2015). Again, the human
task is arguably more difficult than our own eval-
uation as it assesses correctness in open-ended re-
sponses, rather than by comparing ground-truth
captions to distractors. Therefore, the difference
between the human and model scores on the vision
tasks is likely an underestimate of the true differ-
ence between their respective visual capabilities.

We start our discussion by noting several high-
level trends, before turning to the winning mod-
els. First, as with last year, we notice the same
overall pattern of scores between our three differ-
ent tracks—models in the Strict track tend to per-
form better than those in the Strict-Small (although
the variance is higher), and models in the Multi-

modal track perform worse. Ceteris paribus, more
data indeed helps models learn, and learning from
multimodal data remains challenging. Within text
evaluations, models also perform slightly better on
BLiMP compared to GLUE, which is a trend we
observed last year as well.

Did model performance improve over last year?
At the upper end of the distribution, the answer is
yes. This year, one model in the Strict-Small track
beats our Llama skyline on BLiMP, and the best
model in the Strict track is within just 2.5 percent-
age points shy of the human score on this task. In
addition to these few high-performing models, we
also observed a small upward shift in the distri-
bution of model scores compared to last year. For
example, last year only 5 models in the Strict-Small
track achieved a GLUE score of higher than 70; this
year that increased to 7 models. For the Strict track,
this number was 7 last year and 8 this year. One
explanation for this small upward shift is that this
year we allowed contestants to bring their own data
for the Strict and Strict-Small tracks, provided they
stayed within the data limits for each track. Many
contestants modified our provided data by procur-
ing new sources, generating data from auxiliary
language models, or filtering the existing data. As
we shall see in section 6.3, dataset creation was an
effective method, and we hypothesize that perfor-
mance increases on our benchmark tasks over last
year can be partially attributed to such data-related
improvements.

The introduction of EWoK as our hidden eval-
uation allowed us to observe that current systems
do not learn world knowledge within 100M words.
Most submissions perform near chance, at 50%
(where dots are colored purple); the maximum
score was 58.4%.8 This observation highlights a
potential area for future research. It may be that the
current BabyLM corpus—used by many of the sub-
mitting teams—simply does not contain the world
knowledge that EWoK is designed to test. One
other possibility is that existing architectures have
a bias towards learning linguistic phenomena more

8Many masked language model submissions initially re-
ported EWoK scores around 60–70%. This was likely due to a
default behavior of the LM evaluation harness, which assigns
a label of 0 when the probability of both sequences is the same.
When changing this behavior to instead uniformly sample a
label when the sequence probabilities are the same, most mod-
els get closer to 50–60% accuracy. We confirmed these scores
using a scoring script not based in the LM evaluation harness.
This only affected EWoK: we were able to closely reproduce
the participant-submitted scores for all other zero-shot tasks,
with or without uniform sampling.
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Figure 2: Overall results: At left, multimodal models on multimodal tasks; at right, all models on text tasks. N.B.
Human scores for multimodal evals differ somewhat from how we evaluate our models.

easily than relationships between concepts, physi-
cal properties, and other topics covered by EWoK.
Further work on data (perhaps including data attri-
bution methods) and algorithms will help elucidate
why EWoK is so challenging for BabyLM models.

Finally, the Multimodal track proved challeng-
ing, and no submission beat the baselines we re-
leased. We discuss this further in Section 5.2.

5.2 Winning Submissions
Strict and Strict-Small tracks. The winner of
both the Strict and Strict-Small tracks is GPT-
BERT, submitted by (Charpentier and Samuel,
2024). GPT-BERT merges the causal (CLM) and
masked language modeling (MLM) objectives from
GPT and BERT, respectively, using the following
key insight: by shifting MLM predictions one po-
sition to the right, the MLM predictions become
aligned with next-token predictions from CLM.
The authors use this insight to combine both ob-
jectives and seamlessly mix between MLM and
CLM.

To train on MLM and CLM simultaneously, the
authors duplicate the training data, masking and
processing each copy differently for causal and
masked language modeling. For each training
batch, the authors choose to draw data from the
CLM dataset copy with probability p and from the
MLM dataset with probability 1− p. The authors
explore a range of values for p, finding that a 1:7

causal-to-masked ratio tends to give good perfor-
mance across a variety of tasks. GPT-BERT modi-
fies the LTG-BERT architecture by adding gates on
attention heads, as well as the residual connection
reweighting proposed in ELC-BERT (Charpentier
and Samuel, 2023), the winner of Strict and Strict-
Small from last year.

A different submission to this year’s competition,
AntLM (Yu et al., 2024), also explored combining
CLM and MLM by alternating between the two
objectives on a per-epoch basis. The authors found
that the best schedule for training LTG-BERT was
6 epochs of CLM, followed by 60 epochs of MLM,
followed by 6 more epochs of CLM. While AntLM
gets lower scores than GPT-BERT, it performs
well overall, also beating our baselines. We con-
clude that 1) the LTG-BERT architecture remains
a strong backbone for small language models, pro-
vided one can train it effectively, and 2) combining
causal and masked language modeling objectives
clearly improves performance over single objective
baselines.

Multimodal track. We did not award a winner for
the Multimodal track this year. We received three
submissions, and none outperformed the baselines
we released. This speaks to the difficulty of mul-
timodal learning in general. Leveraging both the
text and vision modalities is challenging because
the model can often learn unimodal shortcuts to
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Table 3: Macro averages for each benchmark across the top-performing systems (by overall score), best baseline,
and skylines.

solve tasks (Dancette et al., 2021), or the informa-
tion provided by different modalities may not be
aggregated properly (Gadzicki et al., 2020). Fur-
thermore, even if there are synergistic effects from
multimodal or paired inputs, such as gains in learn-
ing sample efficiency, these gains can be ephemeral
given more training time (Zhuang et al., 2024).

While this year’s Multimodal track presents what
is essentially a negative result, we hope that our
multimodal resources lower the barrier to entry for
future research in this area. Effective methods in
this space remain an unsolved challenge.

5.3 Outstanding Paper Awards

We presented Outstanding Paper awards to “From
Babble to Words: Pre-Training Language Mod-
els on Continuous Streams of Phonemes” (Goriely
et al., 2024) and “Exploring the effect of variation
sets on language model training efficiency” (Haga
et al., 2024).

We selected Goriely et al. (2024) for its explo-
ration of phonology, the study of sound or sign
patterns in language, to inform tokenization. The
authors incorporated phonemes into tokenization
by converting raw text into phonemic transcrip-
tions using the phonemizer package (Bernard and
Titeux, 2021). They carefully ablate character-
based, whitespace, and phoneme-aware tokeniza-

tion schemes, ultimately arriving at a negative re-
sult: the standard BPE tokenization algorithm (Sen-
nrich et al., 2016) outperforms other tokenization
schemes on BabyLM’s text benchmarks. However,
as one might expect, phoneme-aware tokenization
allows models to perform better at tasks that require
phonological knowledge, such as the recognition of
plausible pseudowords, or transcriptions of words
that are slightly mispronounced.

Haga et al. (2024) tackle the observation from
prior work that child-directed speech improves
the efficiency of training language models for cer-
tain downstream tasks, such as semantic extrac-
tion (You et al., 2021) and learning of syntactic
structure (Mueller and Linzen, 2023). They hy-
pothesize that the benefits from training on child-
directed speech could be due to the existence of
variation sets—consecutive rephrasings of the same
sentence—which are common in child-directed
speech. They construct synthetic variation sets by
prompting GPT-4 for paraphrases of sentences se-
lected from CHILDES. Haga et al. find that chang-
ing the proportion of synthetic variation sets in
the training data can indeed improve the perfor-
mance of language models on BabyLM’s evalua-
tion tasks, although the exact characterization of
this relationship remains unclear. We selected Haga
et al. (2024) for the novel connections it makes
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Figure 3: The relationship between training FLOPs and
final score.

between language modeling and specific theories
from cognitive science.

6 Discussion

In this section, we discuss several trends in this
year’s submissions (§6.1–6.3) and spotlight ap-
proaches (§6.4) which we believe point the way
towards novel and interesting work in this area.

6.1 Compute Budget

Although we did not collect systematic metadata
about last year’s models, we observed that our
top-performing submissions tended to be more
resource-intensive, particularly in the sense that
winning models were trained on a large number of
epochs. This raised questions about whether their
high performance was due to architectural innova-
tions or a large compute budget. We investigate this
issue further in Figure 3, by visualizing the rela-
tionship between models’ performance on our text-
only evaluations, and their total training FLOPs.
We observe a positive relationship across all three
tracks. To test this relationship, statistically, we fit
a linear mixed-effects regression model using the
lmer4 package in R, with the average score on the
text evaluations as our response variable, and log
training FLOPs, backbone architecture and track
as covariates. We included random slopes corre-
sponding with the model’s submission ID number,
which indicates the research group that submitted
it. We did not include interactions between the
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Figure 4: Scores aggregated by backbone architecture.
Colors indicate different submissions.

fixed effects or random slopes due to convergence
issues with the model. Inspecting the fitted model,
we find that more training FLOPs leads to better
performance (β = 2.7, p < 0.01), as expected.

6.2 Backbone Architecture
In Figure 4, we visualize the averaged text eval-
uation score broken down by each submission’s
backbone architecture. Relative to last year, we re-
ceived more submissions using Llama. DeBERTa
and HGRN (a type of RNN) lead to the highest
average scores, while the highest-scoring individ-
ual models were all based on LTG-BERT, similar
to last year. To test the impact of the backbone
model, we inspected the fixed effects associated
with model architecture from the linear regression
model described above. We found that no level
of backbone architecture leads to statistically sig-
nificant effects for α = 0.05, however, we did
find large coefficients and smaller p values for
several model architectures including DeBERTa
(β = 9.1, p = 0.06), GPT-2 (β = 8.5, p = 0.07),
Llama (β = 7.7, p = 0.07), and LTG-BERT
(β = 8.5, p = 0.06).

Our interpretation of this result is that there are
likely benefits from certain backbone architectures,
but that these effects might not be strong enough to
be picked up in a statistical analysis of 64 models.
Interestingly, recent work has noted that different
architectures and training setups often tend to con-
verge to neural representations with similar prop-
erties and capabilities (Huh et al., 2024), and we

10



45

50

55

60

65

70

A
ct

iv
e 

Le
ar

ni
ng

Li
ng

ui
st

ic
 b

ia
s

C
ur

ric
ul

um
 le

ar
ni

ng
M

ul
tim

od
al

ity
D

at
a 

pr
ep

ro
ce

ss
in

g
D

at
a 

au
gm

en
ta

tio
n

Te
ac

he
r/

au
x 

m
od

el
s

M
ec

ha
ni

st
ic

 In
te

rp
re

ta
bi

lit
y

S
el

f−
S

yn
th

es
is

A
rc

hi
te

ct
ur

al
 in

no
va

tio
ns

D
at

as
et

 c
re

at
io

n
H

yp
er

pa
ra

m
et

er
 tu

ni
ng

T
ra

in
in

g 
ob

je
ct

iv
e

A
ve

ra
ge

 S
co

re
 (

Te
xt

 E
va

ls
)

Track Multimodal Strict Strict−small

Figure 5: Scores on the BabyLM challenge, aggregated
by approach. Colors indicate different submissions,
which are plotted twice if they use more than one ap-
proach. Axes are zoomed to show variation in the 45-60
range more clearly.

speculate that a similar property might hold for the
best models in this year’s competition.

Furthermore, different backbone architectures
clearly have different variances in average text eval-
uation score (see Figure 4). This exposes another
axis of architecture quality: robustness in training.
For example, in this year’s competition, DeBERTa
(He et al., 2021) had high average scores, compared
to other architectures, and low variance between
scores in submissions. The winning architecture
this year was based on LTG-BERT, but LTG-BERT
also had the highest variance among all backbone
architectures. This suggests that picking the “best”
architecture might involve trading off between ar-
chitectures that can achieve high scores and archi-
tectures that are straightforward to optimize and
result in lower variance.

6.3 Common Methods

In Figure 5 we visualize the models based on the
approaches they employed. Each participant se-
lected the categories that best fit their model, and
categories were largely based on the typology of
approaches we designed for analyzing the results
of last year’s challenge, however, we also let par-

ticipants write-in approaches that we did not list.9

Note that models are counted twice if they use more
than one approach.

We find that modifications with the training ob-
jective, dataset creation, hyperparameter tuning,
and architectural innovations lead to the highest
average scores, although the latter also leads to
a lot of variance across models. As with last
year, curriculum learning, while popular, did not
lead to high scores, on average. To investigate
these trends more rigorously, we fit a mixed ef-
fects linear regression model in lme4. Our re-
sponse variable was the average score for text-
based evaluations, our covariates were dummy-
coded variables indicating the approaches used for
each model. We also included random intercepts
associated with each submission ID number, cor-
responding to the research group that created the
model. We did not include the interactions be-
tween the dummy variables due to convergence
issues with the model. We found effects to be
significant at α = 0.05 for four approaches: train-
ing objective innovations (β = 4.5, p < 0.001),
dataset creation (β = 4.8, p < 0.05), architectural
innovations (β = 3.5, p < 0.05), and linguistic
bias (β = −7.3, p < 0.001). Note that all coeffi-
cients are positive except for linguistic bias, mean-
ing that this approach lead to lower scores. We
also found a negative effect for curriculum learning
(β = −3.6, p = 0.055), although the effect is not
significant at the α = 0.05 level. That being said,
Figure 5 suggests that curriculum learning is not an
effective strategy for improving language models,
at least in the BabyLM setting.

6.4 Spotlighted Approaches

In this section, we highlight trends and new ap-
proaches used in this year’s submissions.

Recurrent Neural Networks (RNNs) RNNs (El-
man, 1990) made their debut in the BabyLM com-
petition this year. The most effective RNN ap-
proach used the HGRN architecture (Qin et al.,
2023), an RNN that adds complex forget gates on
top of the Gated Recurrent Unit (GRU) architec-
ture (Cho et al., 2014). As we noted in §6.2, the
backbone architecture, including both RNNs and
Transformers, did not have a statistically signifi-

9Although some participants wrote “controlled experi-
ments” and “evaluation methods,” we removed these from
our visualization, as every team that submitted a model tech-
nically used these approaches.
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cant impact on the models’ performance on down-
stream evaluations, which is to say that the average
performances across the best architectures were
close. Nevertheless, RNNs and Transformers do
have many differences, including their ability to
express complex functions and the cost of perform-
ing inferences (Merrill et al., 2020; Merrill and
Sabharwal, 2024). Because RNNs may be better
equipped to model human language at an algorith-
mic level and may be more compute effective in
certain settings, it was a notable finding from this
year’s challenge that their performance is roughly
equivalent to that of many Transformers.

Synthetic Data Several contestants explored us-
ing LLMs to create synthetic training data with
simple vocabularies and sentences. For example,
Haga et al. (2024), used GPT-4 to create variation
sets—synthetic data that was inspired by rephrases
in child-directed speech. Theodoropoulos et al.
(2024) extended the TinyStories approach (Eldan
and Li, 2023), sampling a dataset of stories using
the vocabulary of a three to four-year-old child by
prompting GPT-4.

Corpus Construction Since we allowed contes-
tants to construct their own datasets, many submis-
sions made adjustments to the baseline BabyLM
corpus. Common approaches included adding data
with simpler sentences and shorter words (Gha-
nizadeh and Dousti, 2024) or data better suited to
certain downstream evaluations (Charpentier and
Samuel, 2024). Edman et al. (2024) viewed train-
ing corpus construction from the perspective of sec-
ond language learning, skewing the training data
towards sources that explain the rules of a language.

Auxiliary Models Explorations of auxiliary
models and knowledge distillation were largely
based on the BabyLlama approach introduced
in last year’s BabyLM challenge (Tastet and
Timiryasov, 2024; Yam and Paek, 2024). BabyL-
lama (Timiryasov and Tastet, 2023b) trains an en-
semble of causal language models on a dataset and
then distills the ensemble into one final model via
knowledge distillation (Hinton et al., 2015). Exper-
iments revealed that BabyLlama’s two-step training
approach definitively outperforms simply training
one causal language model (Tastet and Timiryasov,
2024). Berend (2024) used an extra training phase
before pretraining, where the model learned to re-
cover the sparsely encoded latent representation of
an auxiliary model.

Tokenization Along with RNNs, a new trend
this year was linguistically inspired tokenization
(Goriely et al., 2024; Bunzeck et al., 2024). Teams
explored how graphemes and phonemes could be
incorporated into the language model tokenization
pipeline. The primary benefit of adding graphemes
and phonemes is to allow language models to per-
form tasks related to morphology or phonology
(how words look and sound): areas where language
models previously were limited (Lavechin et al.,
2023). Grapheme and phoneme-aware tokenization
schemes did not seem to help language models on
the base BabyLM evaluation tasks.

Multi-objective training A highly successful ap-
proach across several submissions was using mul-
tiple objectives during training. GPT-BERT and
AntLM, discussed in §5.2, used different methods
to combine the masked and causal language mod-
eling objectives, and both were highly successful
compared to other submissions.

Training Objective Curricula Finally, a promis-
ing variant of curriculum learning this year in-
volved creating curricula over training objectives.
Salhan et al. (2024) selectively masked different
parts of speech for masked language modeling over
the course of training. This approach goes beyond
changing the data order, which was the approach
used in most curriculum learning submissions we
received. We encourage participants for next year’s
challenge interested in curriculum learning to think
beyond data order.

7 Conclusion

The second BabyLM Challenge has demonstrated
that significant progress can be made in data-
efficient language modeling through community-
driven research efforts. With 31 submissions from
17 countries, the challenge revealed several key in-
sights: innovations in model architecture, training
objectives, and dataset construction proved partic-
ularly effective, with GPT-BERT, a hybrid causal-
masked language model architecture, emerging as
the strongest approach for the Strict and Strict-
Small tracks. However, the strong correlation be-
tween training FLOPs and performance suggests
that computational resources remain a crucial fac-
tor even in low-data settings.

While this year’s challenge added a multimodal
track, in an attempt to model grounded language
learning environments, no submissions outper-
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formed the baselines in this track. This suggests
that effectively integrating visual information dur-
ing language learning remains a significant chal-
lenge for current architectures. This year’s chal-
lenge also featured emerging research directions
not present in the previous iteration, with partici-
pants exploring linguistically-motivated tokeniza-
tion strategies and revisiting recurrent neural archi-
tectures.

Looking ahead, we envision the BabyLM Chal-
lenge continuing to evolve and expand its scope
beyond text-only and vision-language tracks. We
hope that future iterations will explore additional
modalities. such as speech, and extend to more lan-
guages, better reflecting the important fact that hu-
man language development proceeds equally well
in any natural language. By broadening the chal-
lenge’s focus while maintaining its core empha-
sis on data efficiency, we aim to inspire novel ap-
proaches that bridge the gap between artificial and
human language learning. The strong participa-
tion and innovative solutions seen in this year’s
challenge suggest that the BabyLM community is
well-positioned to tackle these ambitious goals, ul-
timately working toward language models that bet-
ter reflect the efficiency and adaptability of human
language acquisition.

Acknowledgments

We would like to thank the organizers of CoNLL
2024 for providing us with a venue to present
BabyLM. We would also like to thank the partici-
pants of the BabyLM Challenge for their innovative
submissions, engagement, and contributions to the
evaluation pipeline and reviewing process.

Author Contributions

• Primary organizers: Alex Warstadt, Ethan
Wilcox, Leshem Choshen, Aaron Mueller,
Chengxu Zhuang, Michael Hu, Candace Ross

• Pipeline implementation and maintenance:
Aaron Mueller

• Baseline model training: Chengxu Zhuang,
Aaron Mueller

• Publicity and communications with par-
ticipants: Leshem Choshen, Ethan Wilcox,
Aaron Mueller, Michael Hu, Candace Ross

• Training dataset compilation: Alex
Warstadt, Candace Ross, Chengxu Zhuang

• Guidance on concept and workshop orga-
nization: Ryan Cotterell, Tal Linzen, Adina
Williams

• Reviewing submissions: Alex Warstadt,
Ethan Wilcox, Leshem Choshen, Aaron
Mueller, Michael Hu, Candace Ross

• Initial draft of findings paper: Alex
Warstadt, Ethan Wilcox, Leshem Choshen,
Aaron Mueller, Michael Hu, Candace Ross

• Editing: All authors

References
Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,

Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in neural
information processing systems, 35:23716–23736.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

Giusepppe Attardi. 2015. Wikiextractor. https://
github.com/attardi/wikiextractor.

Eden Bensaid, Mauro Martino, Benjamin Hoover, Jacob
Andreas, and Hendrik Strobelt. 2021. Fairytailor: A
multimodal generative framework for storytelling.
CoRR, abs/2108.04324.

Gábor Berend. 2024. Integrating quasi-symbolic con-
ceptual knowledge into language model pre-training.
In Proceedings of the BabyLM Challenge. Associa-
tion for Computational Linguistics.

Elika Bergelson and Daniel Swingley. 2013. The acqui-
sition of abstract words by young infants. Cognition,
127(3):391–397.

Mathieu Bernard and Hadrien Titeux. 2021. Phonem-
izer: Text to phones transcription for multiple lan-
guages in python. Journal of Open Source Software,
6(68):3958.

Bastian Bunzeck, Daniel Duran, Leonie Schade, and
Sina Zarrieß. 2024. Graphemes vs. phonemes: Bat-
tling it out in character-based language models. In
Proceedings of the BabyLM Challenge. Association
for Computational Linguistics.

Erin Campbell, Robyn Casillas, and Elika Bergelson.
2024. The role of vision in the acquisition of words:
Vocabulary development in blind toddlers. Develop-
mental Science, 27(4):e13475.

13

https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
http://arxiv.org/abs/2108.04324
http://arxiv.org/abs/2108.04324
https://aclanthology.org/2024.babylm.012
https://aclanthology.org/2024.babylm.012
https://doi.org/10.21105/joss.03958
https://doi.org/10.21105/joss.03958
https://doi.org/10.21105/joss.03958
https://aclanthology.org/2024.babylm.004
https://aclanthology.org/2024.babylm.004


Lucas Georges Gabriel Charpentier and David Samuel.
2023. Not all layers are equally as important: Every
layer counts bert. In Proceedings of the BabyLM
Challenge. Association for Computational Linguis-
tics.

Lucas Georges Gabriel Charpentier and David Samuel.
2024. Bert or gpt: Why not both? In Proceedings
of the BabyLM Challenge. Association for Computa-
tional Linguistics.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. CoRR, abs/1409.1259.

BNC Consortium. 2007. The British National Corpus,
XML Edition. Oxford Text Archive.

Corentin Dancette, Rémi Cadène, Damien Teney, and
Matthieu Cord. 2021. Beyond question-based bi-
ases: Assessing multimodal shortcut learning in vi-
sual question answering. 2021 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages
1554–1563.

Lukas Edman, Lisa Bylinina, Faeze Ghorbanpour, and
Alexander Fraser. 2024. Are babylms second lan-
guage learners? In Proceedings of the BabyLM Chal-
lenge. Association for Computational Linguistics.

Ronen Eldan and Yuanzhi Li. 2023. Tinystories: How
small can language models be and still speak coherent
english?

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179–211. Wiley Online Library.

Konrad Gadzicki, Razieh Khamsehashari, and
Christoph Zetzsche. 2020. Early vs late fusion in
multimodal convolutional neural networks. In 2020
IEEE 23rd International Conference on Information
Fusion (FUSION), pages 1–6.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Dedre Gentner. 1982. Why nouns are learned before
verbs: Linguistic relativity versus natural partitioning.
BBN report; no. 4854.

Martin Gerlach and Francesc Font-Clos. 2018. A stan-
dardized Project Gutenberg corpus for statistical anal-
ysis of natural language and quantitative linguistics.
Computing Research Repository, arXiv:1812.08092.

Martin Gerlach and Francesc Font-Clos. 2020. A stan-
dardized project gutenberg corpus for statistical anal-
ysis of natural language and quantitative linguistics.
Entropy. An International and Interdisciplinary Jour-
nal of Entropy and Information Studies, 22(1). Num-
ber: 126 tex.pubmedid: 33285901.

Mohammad Amin Ghanizadeh and Mohammad Javad
Dousti. 2024. Towards data-efficient language mod-
els: A child-inspired approach to language learning.
In Proceedings of the BabyLM Challenge. Associa-
tion for Computational Linguistics.

Jill Gilkerson, Jeffrey A. Richards, Steven F. Warren, Ju-
dith K. Montgomery, Charles R. Greenwood, D. Kim-
brough Oller, John HL Hansen, and Terrance D. Paul.
2017. Mapping the early language environment using
all-day recordings and automated analysis. American
Journal of Speech-Language Pathology, 26(2):248–
265.

J.J. Godfrey, E.C. Holliman, and J. McDaniel. 1992.
SWITCHBOARD: Telephone speech corpus for re-
search and development. In IEEE International Con-
ference on Acoustics, Speech, and Signal Processing,
volume 1, pages 517–520 vol.1.

Zebulon Goriely, Richard Diehl Martinez, Andrew
Caines, Paula Buttery, and Lisa Beinborn. 2024.
From babble to words: Pre-training language models
on continuous streams of phonemes. In Proceedings
of the BabyLM Challenge. Association for Computa-
tional Linguistics.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the v in vqa
matter: Elevating the role of image understanding
in visual question answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Albert Gu and Tri Dao. 2024. Mamba: Linear-time
sequence modeling with selective state spaces. In
First Conference on Language Modeling.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and
Yuanzhi Li. 2023. Textbooks are all you need.

Akari Haga, Akiyo Fukatsu, Miyu Oba, Arianna
Bisazza, and Yohei Oseki. 2024. Babylm challenge:
Exploring the effect of variation sets on language
model training efficiency. In Proceedings of the
BabyLM Challenge. Association for Computational
Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. DeBERTa: Decoding-enhanced
BERT with disentangled attention. In International
Conference on Learning Representations.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2016. The Goldilocks principle: Reading
children’s books with explicit memory representa-
tions. In 4th International Conference on Learning
Representations.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
ArXiv, abs/1503.02531.

14

https://aclanthology.org/2023.babylm.123
https://aclanthology.org/2023.babylm.123
https://aclanthology.org/2024.babylm.024
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://hdl.handle.net/20.500.12024/2554
http://hdl.handle.net/20.500.12024/2554
https://api.semanticscholar.org/CorpusID:233168594
https://api.semanticscholar.org/CorpusID:233168594
https://api.semanticscholar.org/CorpusID:233168594
https://aclanthology.org/2024.babylm.013
https://aclanthology.org/2024.babylm.013
http://arxiv.org/abs/2305.07759
http://arxiv.org/abs/2305.07759
http://arxiv.org/abs/2305.07759
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://doi.org/10.23919/FUSION45008.2020.9190246
https://doi.org/10.23919/FUSION45008.2020.9190246
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.48550/ARXIV.1812.08092
https://doi.org/10.48550/ARXIV.1812.08092
https://doi.org/10.48550/ARXIV.1812.08092
https://doi.org/10.3390/e22010126
https://doi.org/10.3390/e22010126
https://doi.org/10.3390/e22010126
https://aclanthology.org/2024.babylm.001
https://aclanthology.org/2024.babylm.001
https://pubs.asha.org/doi/10.1044/2016_AJSLP-15-0169
https://pubs.asha.org/doi/10.1044/2016_AJSLP-15-0169
https://doi.org/10.1109/ICASSP.1992.225858
https://doi.org/10.1109/ICASSP.1992.225858
https://aclanthology.org/2024.babylm.003
https://aclanthology.org/2024.babylm.003
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
http://arxiv.org/abs/2306.11644
https://aclanthology.org/2024.babylm.022
https://aclanthology.org/2024.babylm.022
https://aclanthology.org/2024.babylm.022
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301
https://api.semanticscholar.org/CorpusID:7200347


Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Philip A. Huebner and Jon A. Willits. 2021. Using lexi-
cal context to discover the noun category: Younger
children have it easier. In Kara D. Federmeier and
Lili Sahakyan, editors, The Context of Cognition:
Emerging Perspectives, volume 75 of Psychology of
learning and motivation, pages 279–331. Academic
Press. ISSN: 0079-7421.

Minyoung Huh, Brian Cheung, Tongzhou Wang, and
Phillip Isola. 2024. The platonic representation hy-
pothesis.

Anna A. Ivanova, Aalok Sathe, Benjamin Lipkin, Un-
nathi Kumar, Setayesh Radkani, Thomas H. Clark,
Carina Kauf, Jennifer Hu, R. T. Pramod, Gabriel
Grand, Vivian Paulun, Maria Ryskina, Ekin Akyurek,
Ethan Wilcox, Nafisa Rashid, Leshem Choshen,
Roger Levy, Evelina Fedorenko, Joshua Tenenbaum,
and Jacob Andreas. 2024. Elements of world knowl-
edge (ewok): A cognition-inspired framework for
evaluating basic world knowledge in language mod-
els. arXiv preprint arXiv:2405.09605.

Carina Kauf and Anna Ivanova. 2023. A better way to
do masked language model scoring. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 925–935, Toronto, Canada. Association for
Computational Linguistics.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-
jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali,
Stefan Popov, Matteo Malloci, Alexander Kolesnikov,
et al. 2020. The open images dataset v4: Unified
image classification, object detection, and visual re-
lationship detection at scale. International journal of
computer vision, 128(7):1956–1981.

Marvin Lavechin, Yaya Sy, Hadrien Titeux, María An-
drea Cruz Blandón, Okko Räsänen, Hervé Bredin,
Emmanuel Dupoux, and Alejandrina Cristia. 2023.
Babyslm: language-acquisition-friendly benchmark
of self-supervised spoken language models. In Pro-
ceedings of the Annual Conference of the Interna-
tional Speech Communication Association, INTER-
SPEECH, Interspeech, pages 4588–4592. Interna-
tional Speech Communication Association. Pub-
lisher Copyright: © 2023 International Speech Com-
munication Association. All rights reserved.; Annual
Conference of the International Speech Communica-
tion Association, INTERSPEECH ; Conference date:
20-08-2023 Through 24-08-2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer.

Pierre Lison and Jörg Tiedemann. 2016a. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 923–929, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Pierre Lison and Jörg Tiedemann. 2016b. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation, pages 923–929, Portorož, Slovenia.
European Language Resources Association (ELRA).

Brian MacWhinney. 2000. The CHILDES project: The
database, volume 2. Psychology Press.

Colleen McDonough, Lulu Song, Kathy Hirsh-Pasek,
Roberta Michnick Golinkoff, and Robert Lannon.
2011. An image is worth a thousand words: Why
nouns tend to dominate verbs in early word learning.
Developmental science, 14(2):181–189.

William Merrill and Ashish Sabharwal. 2024. The ex-
pressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning
Representations.

William Merrill, Gail Weiss, Yoav Goldberg, Roy
Schwartz, Noah A. Smith, and Eran Yahav. 2020.
A formal hierarchy of RNN architectures. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 443–459,
Online. Association for Computational Linguistics.

Kanishka Misra. 2022. minicons: Enabling flexible be-
havioral and representational analyses of transformer
language models. CoRR, abs/2203.13112.

Aaron Mueller and Tal Linzen. 2023. How to plant trees
in language models: Data and architectural effects
on the emergence of syntactic inductive biases. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 11237–11252, Toronto, Canada.
Association for Computational Linguistics.

Nikita Nangia and Samuel R. Bowman. 2019. Human
vs. muppet: A conservative estimate of human perfor-
mance on the GLUE benchmark. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4566–4575, Florence,
Italy. Association for Computational Linguistics.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Al-
balak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Leon Derczynski,
Xingjian Du, Matteo Grella, Kranthi Gv, Xuzheng
He, Haowen Hou, Przemyslaw Kazienko, Jan Ko-
con, Jiaming Kong, Bartłomiej Koptyra, Hayden
Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand
Mom, Atsushi Saito, Guangyu Song, Xiangru Tang,
Johan Wind, Stanisław Woźniak, Zhenyuan Zhang,
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A Text Only Datasets

CHILDES. The Child Language Data Exchange System (CHILDES; MacWhinney, 2000) is a mul-
tilingual database compiling transcriptions from numerous researchers of adult–child interactions in a
range of environments, from structured laboratory activities to the home. Huebner and Willits (2021)
further process CHILDES, selecting only interactions with American English-speaking children ages 0–6,
removing all child utterances, and tokenizing the data. The resulting dataset10 contains about 5M words.

British National Corpus. The BNC (Consortium, 2007) is a 100M word multi-domain corpus of British
English from the second half of the 20th century. We select only the dialogue portion of the corpus,
totaling about 10M words.

Children’s Book Test. CBT is a compilation of over a hundred children’s books from Project Gutenberg
by Hill et al. (2016). The dataset was originally released with a set of questions for testing named entity
prediction, which we do not include in the pretraining data.

Children’s Stories Text Corpus. This dataset consists of manually selected children’s stories from
Project Gutenberg. It was compiled by Bensaid et al. (2021) for the development of a story generation
system.

Project Gutenberg. The Standardized Project Gutenberg Corpus (Gerlach and Font-Clos, 2020) is a
curated and preprocessed selection of over 50k literary books in the public domain from Project Gutenberg
totaling over 3B tokens.11 This distribution comes with extensive metadata that allows us to filter texts by
language and date.

OpenSubtitles. This dataset (Lison and Tiedemann, 2016b) is a compilation of publicly available
subtitles from TV and movies on a third-party website.12 We use only the English portion.

Wikipedia. Wikipedia is a volunteer-authored encyclopedia hosted by the Wikimedia Foundation. We
use only the English portion.

Simple English Wikipedia. Simple English is classified as a separate language in Wikipedia, thus the
texts here are disjoint from those in English Wikipedia. The texts use shorter sentences and high-frequency
vocabulary and avoid idioms.

Switchboard Corpus. The Switchboard Corpus (Godfrey et al., 1992) is a collection of transcribed
telephone conversations between pairs of strangers. We accessed the text through the Switchboard Dialog
Act Corpus (Stolcke et al., 2000).

A.1 Text–Image Datasets

The corpus for the Multimodal track consisted of 50M words from the above datasets, as well as 50M
more from image-caption datasets. These include the following:

Localized Narratives. Localized Narratives (Pont-Tuset et al., 2020a) is an image-caption dataset.
Images are labeled by human annotators; the annotators were asked to describe an image with their voice
while hovering their mouse over the region being described. We use the MS-COCO and Open Images
subsets.

Conceptual Captions. Conceptual Captions (Sharma et al., 2018b) is an image-capture dataset consist-
ing of automatically scraped and filtered images and captions/annotations from billions of web pages.

10https://github.com/phueb/BabyBERTa/blob/master/data/corpora/aochildes.txt
11https://gutenberg.org/
12http://opensubtitles.org/
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B Evaluation Data Details

As described in Section 4.1, we filtered out evaluation examples containing words that did not appear at
least twice in both the Strict-Small and Multimodal pretraining corpora. Here, we present the number of
training and test examples for each evaluation task after filtering.

Note that we only control for lexical content: other factors, such as sentence length, syntactic
complexity, and overall linguistic style, remain distinct between our corpus and these tasks. In the future,
it would be helpful for researchers to focus on designing tasks on which both children and language
models can be reasonably evaluated.

Note, too, that this filtering step implies that we cannot directly compare results obtained from the
BabyLM Challenge to prior evaluations using the full datasets. We also cannot directly compare to results
from last year’s challenge, though we believe the overlap between the evaluation sets across the BabyLM
Challenges is likely high.

Task Subtask |Train| |Test|
BLiMP – – 59875

B
L

iM
P

Su
pp

le
m

en
t

Hypernym – 842
Question-Answer Congruence (easy) – 64
Question-Answer Congruence (tricky) – 165
Subject-Auxiliary Inversion – 3867
Turn-taking – 280

(S
up

er
)G

L
U

E

CoLA 8551 522
SST-2 67349 436
MRPC 3668 204
QQP 363846 20215
MNLI 392702 4908
MNLI-mismatched – 4916
QNLI 104743 2732
RTE 2490 139
BoolQ 9427 1635
MultiRC 27243 2424
WSC 554 52

E
W

oK

Agent Properties – 2210
Material Dynamics – 770
Material Properties – 170
Physical Dynamics – 120
Physical Interactions – 556
Physical Relations – 818
Quantitative Properties – 314
Social Interactions – 294
Social Properties – 328
Social Relations – 1548
Spatial Relations – 490

Task Subtask |Train| |Test|
VQA – – 25230

Winoground – – 746

D
ev

B
en

ch Visual Vocabulary – 433
Test of Receptive Grammar (TROG) – 79
THINGS – 12340

Table 4: Number of training and test examples for each BabyLM evaluation task. We present the number of
examples for the text-only tasks (left) and the multimodal tasks (right). We show the number of examples after
filtering based on the pre-training corpus vocabulary (Section 4.1). Note that only the (Super)GLUE has training
examples; the rest of the tasks are zero-shot.

C Subtask Results

Here, we present a more detailed breakdown of results by subtask. Each task has a subsection containing
a table where results are described, as well as a textual description containing and overview of the main
takeaways for each task.

C.1 BLiMP and BLiMP Supplement
GPT-BERT was the best-performing model on the BLiMP tasks in both the Strict and Strict-Small tracks.
The only subtask where it did not perform best among all models was for Hypernym, where the LTG-BERT
baseline was best. BabbleGPT and AntLM were the runners-up in the Strict track, whereas DeBaby and
BabyLlama-2 were the runners-up in the Strict-Small track. In general, submissions to the Multimodal
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track did not consistently outperform the baseline models; Wake/Sleep outperformed the best baseline
(Flamingo) on BLiMP, but no submission outperformed Flamingo on the BLiMP Supplement.

In general, the average BLiMP score across subtasks was effective in distinguishing between high-
and low-performing systems: there is high variance across submissions, and those that perform best on
BLiMP also tend to perform comparatively well on other tasks.

Similarly to last year, we observe that the HYPERNYM test suite is beyond the ability of language
models of this scale. All models (including last year’s skylines) perform very close to chance, suggesting
either that their preferences are virtually random guessing, or they show systematic biases that essentially
cancel out due to counterbalancing in the test data. However, we hesitate to conclude that these models
have no knowledge of lexical entailment relations for two reasons: First, these test sentences are somewhat
unnatural logical statements that are out-of-domain for the models; and second, there is less reason a
priori to believe that logically invalid statements have lower probabilities than valid statements.

Among the QUESTION–ANSWER CONGRUENCE test suites, we find that the “tricky” set is still highly
discriminative, probably due in part to its adversarial nature. This tells us that most models are easily
fooled by locally coherent distractor answers and pay too little attention to cross-sentential long-distance
dependency between a wh-word and a congruent answer. Only the top-performing models in the Strict
track score better than chance, and the RoBERTa skyline outperforms all models by a wide margin.

The tests for SUBJECT–AUXILIARY INVERSION are relatively easy: the best models reach near-perfect
accuracy, and all models score relatively high compared to other test suites.

Finally, TURN TAKING is highly discriminative, with some models performing at or near chance, while
the best model achieves accuracy over 90%.

BLiMP BLiMP Supplement

Model

M
ac

ro
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er
ag

e

M
ac

ro
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er
ag

e

H
yp

er
ny

m

Q
–A

co
ng

ru
en

ce
(e
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y)

Q
–A

co
ng
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en

ce
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ri
ck
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Su
bj

ec
t–

au
x

in
ve

rs
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n

Tu
rn

ta
ki

ng
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ri

ct

GPT-BERT 86.1 76.8 48.8 90.6 59.4 96.3 88.9
BabbleGPT 77.8 69.5 47.9 81.2 52.1 81.9 84.3
AntLM 74.9 66.0 49.3 79.7 43.6 78.3 79.3
Base baseline: LTG-BERT 69.2 66.5 55.0 75.0 53.3 87.5 61.4

St
ri

ct
-s

m
al

l GPT-BERT 81.2 69.4 47.1 73.4 54.5 86.3 85.7
DeBaby 74.2 63.7 53.3 79.7 49.1 84.1 52.1
BabyLlama-2 73.2 63.1 49.8 59.4 41.2 90.3 75.0
Best baseline: BabyLlama 69.8 59.5 49.6 54.7 41.2 86.0 66.1

M
ul

tim
od

al Wake/Sleep 73.6 55.6 49.5 50.0 30.9 85.3 62.1
GIT-1vd125 66.5 60.9 48.2 57.8 44.2 86.5 67.9
GITCL 64.0 51.2 48.9 50.0 20.0 83.7 53.6
Best baseline: Flamingo 70.9 65.0 48.8 75.0 43.6 86.2 71.4

Table 5: BLiMP Supplement accuracies for each subtask for the top performing systems (by overall score), best
baseline, and skylines. For each subtask, we mark the best performing system for each track, and the best performing
system overall.

C.2 GLUE/SuperGLUE

Scores on (Super)GLUE tasks (Table 6) show that GPT-BERT is the best-performing system in both
the Strict and Strict-Small tracks. Notably, its performance in the Strict-Small track is better than the
runners-up in the Strict track, suggesting that this approach is highly data-efficient and/or well-tuned for
small-scale language modeling. BabbleGPT and AntLM were again the runners-up for (Super)GLUE in
the Strict track, and DeBaby was again the runner-up for the Strict-Small track. MLSM is now second
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runner-up in the Strict-Small track. Once again, no submissions outperformed the best baseline (Flamingo)
in the Multimodal track. This largely confirms findings from the BLiMP and BLiMP Supplement tasks.

Model

M
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e

C
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M
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P

M
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L
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L
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B
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M
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GPT-BERT 81.5 62.4 94.0 94.4 89.1 85.2 85.3 90.8 69.1 78.4 73.3 75.0
Babble-GPT 71.7 37.8 89.4 83.8 84.0 75.3 76.4 82.9 66.2 63.7 65.1 63.5
AntLM 66.3 22.2 89.4 84.9 84.2 74.8 74.4 83.2 55.4 65.8 59.9 34.6
Best baseline: LTG-BERT 68.4 34.6 91.5 83.1 86.7 77.7 78.1 78.2 46.8 61.7 52.6 61.5

St
ri

ct
-s

m
al

l GPT-BERT 76.5 48.9 92.2 91.5 87.1 80.2 80.5 86.4 64.0 72.5 69.3 69.2
DeBaby 73.7 41.8 89.2 91.2 86.6 78.1 77.6 85.5 69.8 71.1 64.2 55.8
MLSM 73.3 45.2 90.6 82.2 86.6 76.4 77.4 84.7 60.4 69.4 67.6 65.4
Best baseline: BabyLlama 63.3 2.2 86.2 82.0 83.6 72.4 74.2 82.8 49.6 65.0 60.1 38.5

M
ul

tim
od

al GIT-1vd125 65.6 30.7 89.7 81.5 83.3 72.7 72.6 78.4 51.8 64.2 54.7 42.3
Wake/Sleep 64.7 12.2 79.8 78.4 80.5 69.4 70.6 79.8 52.5 63.1 65.8 59.6
FlamingoCL 64.3 31.8 88.3 82.4 81.9 70.4 71.4 69.9 46.0 66.5 56.2 42.3
Best baseline: Flamingo 69.5 36.7 90.4 84.2 85.1 75.8 76.4 83.8 60.4 69.1 60.5 42.3

Table 6: (Super)GLUE results for each subtask for the top performing systems (by overall score), best baseline, and
skylines. For each subtask, we mark the best performing system for each track, and the best performing system
overall.

C.3 Multimodal Tasks

Model
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GIT-1vd125 54.9 51.9 57.8
GITCL 49.6 44.0 55.2
Wake/Sleep 46.5 42.0 50.0
Best baseline: GIT 54.8 54.1 55.5

Table 7: Results for the public multimodal tasks for the top performing systems (by average score), and the best
baseline. For each subtask, we mark the best performing system for each track, and the best performing system
overall.
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FlamingoCC 49.0 66.4 34.2 46.5
GITCL 48.2 73.1 39.5 32.1
GIT-1vd125 48.1 84.9 35.5 23.8
Best baseline: Flamingo 59.5 80.7 38.2 32.6

Table 8: Results for the DevBench tasks for the top performing systems (by average score), and the best baseline.
For each subtask, we mark the best performing system for each track, and the best performing system overall.
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