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Abstract

Language Models (LMs) excel in natural lan-
guage processing tasks for English but show
reduced performance in most other languages.
This problem is commonly tackled by continu-
ally pre-training and fine-tuning these models
for said languages. A significant issue in this
process is the limited vocabulary coverage in
the original model’s tokenizer, leading to inad-
equate representation of new languages and ne-
cessitating an expansion of the tokenizer. The
initialization of the embeddings corresponding
to new vocabulary items presents a further chal-
lenge. Current strategies require cross-lingual
embeddings and lack a solid theoretical foun-
dation as well as comparisons with strong base-
lines. In this paper, we first establish theoret-
ically that initializing within the convex hull
of existing embeddings is a good initialization,
followed by a novel but simple approach, Con-
strained Word2Vec (CW2V), which does not
require cross-lingual embeddings. Our study
evaluates different initialization methods for ex-
panding RoBERTa and LLaMA 2 across four
languages and five tasks. The results show that
CW2V performs equally well or even better
than more advanced techniques. Additionally,
simpler approaches like multivariate initializa-
tion perform on par with these advanced meth-
ods indicating that efficient large-scale multi-
lingual continued pretraining can be achieved
even with simpler initialization methods. We
release our code publicly.1

1 Introduction

Language models are adept at a wide spectrum
of natural language processing (NLP) tasks (Liu
et al., 2023; Chung et al., 2024; Chowdhery et al.,
2023; Wei et al., 2024; Goyal et al., 2023; Tou-
vron et al., 2023). However, the best-performing

*Equal contribution.
†Work done while the author was at A∗STAR, Singapore.
1https://github.com/AI4Bharat/VocabAdaptation_

LLM/tree/CW2V

language models work well for English but have
inferior capabilities in other languages. A com-
mon method to improve the capabilities of other
languages is to continually pre-train and finetune
the English model for other languages (Conneau
and Lample, 2019). This approach builds upon the
capabilities acquired through large-scale English
pre-training and focuses on aligning the English
and other language spaces, making efficient re-use
of compute and data resources (Cahyawijaya et al.,
2023; Zhang et al., 2023). One of the major chal-
lenges for LLM adaptation is the lack of vocabulary
coverage in the original model’s tokenizer for the
new language. This would mean the inability to
represent the new language if the vocabulary is to-
tally different or inefficient tokenization with high
fertility in the case of inadequate vocabulary repre-
sentation.

A solution is to expand the tokenizer to incor-
porate new vocabulary and then perform contin-
ual pre-training on monolingual data from the new
language to adapt the model to the new language
(Cui et al., 2023; Nguyen et al., 2023; Minixhofer
et al., 2022). In this scenario, an important ques-
tion is: How do we initialize the embeddings of
the new vocabulary items? Various methods have
been proposed in the literature for the initializa-
tion of the new token embeddings, from simple
random initialization (Antoun et al., 2020; Mar-
tin et al., 2020) to the mean of embeddings (Gee
et al., 2022) to sophisticated methods such as OFA
among others (Minixhofer et al., 2022; Dobler and
de Melo, 2023; Tran, 2020; Liu et al., 2024) that
learn the new embeddings as a function of existing
embeddings using external resources and tools like
cross-lingual word-vectors and bilingual dictionar-
ies. However, there is no theoretical basis for what
constitutes a good initialization. Furthermore, in
existing works, comparisons with simple, naive ini-
tialization methods across different model sizes are
missing.
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In this paper, we theoretically define and ana-
lyze the properties of a good initialization. We
prove that initializing embeddings of new vocabu-
lary embeddings to be in the convex hull of original
embeddings ensures that the greedy generation of
the existing language(s) is not impacted by the
new vocabulary items on initialization. Based on
these insights, we propose a simple learnable ini-
tialization approach which we dub as Constrained
Word2Vec (CW2V) which ensures initializations
in the convex hull without needing cross-lingual
embeddings. We conducted a comparative anal-
ysis of CW2V alongside 5 existing initialization
strategies including OFA on two models containing
varying parameters, namely RoBERTa (125M) and
LLaMa2 (7B), examining their impact through 5
downstream tasks across 4 languages. Our analysis
of various initialization methods demonstrates that
CW2V achieves better if not comparable perfor-
mance with the previous best methods. Addition-
ally, we find that simpler methods like multivariate
or mean initialization, which ensure new embed-
dings remain within the convex hull, are compara-
ble with more advanced approaches such as OFA.

2 Related Work

Multilingual Models: To create a multilingual
model for specific languages, one method is to train
the model from scratch on the target languages us-
ing MLM and CLM objectives (Workshop et al.,
2023; Conneau et al., 2020). However, this requires
significant computational resources and data. A
more efficient approach is to adapt an existing pre-
trained language model (PLM) (Devlin et al., 2019;
Touvron et al., 2023; Team, 2023) to the desired tar-
get language. There are two ways to adapt a PLM
to a new language. The first is to fully adapt the
model to the new language, replacing the source
tokenizer and focusing only on the new language’s
performance (Minixhofer et al., 2022; Artetxe et al.,
2020). The second is to keep the original language
support and add the new language, ensuring the
model still performs well on the source language
(Garcia et al., 2021; Liu et al., 2024). In this work,
we focus on extending the language support of the
PLM rather than replacing it. We do this by extend-
ing the source tokenizer, which requires effectively
initializing the model’s embedding layer and LM
head for the added tokens in the vocabulary.
Embedding Initialization Strategies: Previous
work has focused on different initialization strate-

Figure 1: Setup for Vocabulary Expansion. Source
model is shown in blue blocks, and expanded vocabulary
embeddings are represented in red blocks. Source model
parameters remain unchanged.

gies. Methods like FVT (Gee et al., 2022) and
Hewitt (2021) use the mean of source PLM em-
beddings, while WECHSEL (Minixhofer et al.,
2022), RAMEN (Tran, 2020), FOCUS (Dobler and
de Melo, 2023), and OFA (Liu et al., 2024) uti-
lize external cross-lingual word vectors and source
embeddings. However, these approaches rely on
static embeddings. In contrast, we propose initial-
ization strategy that learns new embeddings from
the source PLM model and doesn’t require static
embeddings.
Continual Pre-training: A good initialization
strategy provides a solid start for adapting a PLM
to a new language by effectively initializing the
new tokens in the embedding and LM head layers.
However, to fully adapt the extended model to the
new language, continued pre-training (CPT) (Wang
et al., 2022; Alabi et al., 2022; Zhao et al., 2023) is
essential. Therefore, we performed CPT on target
languages post initialization.

3 Methodology

We describe the core methodology in this work fol-
lowed by theoretical proofs of good initializations
which motivate our own initialization approach,
namely, Constrained Word2Vec.

3.1 Vocabulary Expansion

We adapt the same vocabulary expansion problem
formulation as Hewitt (2021). Let θ be the pa-
rameters of a pre-trained neural source language
model LM s

θ , and let Vs = {vs1, vs2, . . . , vsn} be the
vocabulary of LM s

θ . We will refer to Vs as the
source vocabulary henceforth. Let esi ∈ Rd be the
sub-word embedding for word i ∈ Vs. Let Es

denote the language modeling head’s (henceforth
LM head) embedding matrix of LM s

θ and this is
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our source embedding matrix. The probability of
occurrence of the next word wi given the previous
word sequence w1:i−1, pθ (wi | w1:i−1), is given
by

pθ (wi | w1:i−1) =
exp

(
h⊤i−1e

s
wi

)
∑

j∈Vs exp
(
h⊤i−1e

s
j

) ,

where the prefix hi−1 = ϕ (w1:i−1;LM
s
θ ) ∈ Rd is

the neural representation of the input using LM s
θ .

In vocabulary expansion, we add n′ new sub-
words /∈ Vs forming the target vocabulary Vt =
{vt1, vt2, . . . , vtn′}. This implies we need a new
word embedding etj for each j ∈ Vt comprising in
Et. The new language model LM t

θ′ has parame-
ters θ′ = θ ∪ {etj ; j ∈ Vt}. The output distribution
of LM t

θ′ given by pθ′ (wi | w1:i−1) is defined simi-
larly as pθ (wi | w1:i−1) but with the normalization
factor involving Vs ∪ Vt.

Our goal is to find initializations for Et such
that the extended model not only retains its previ-
ous behavior but also can lead to good downstream
performance for the languages corresponding to
the new vocabulary with minimal continual pre-
training. Retaining performance in English is par-
ticularly beneficial, as the knowledge embedded
in English models often supports performance in
other languages (Pires et al., 2019). Figure 1 gives
an overview of our approach. Note that in our
notations so far we have only mentioned the LM
head, but just as the LM head has an expansion
(Et

lmhead), the input embedding matrix also has an
expansion (Et

input). This is trivial if both matrices
are shared but in case they are not, we also need to
find initializations for the latter. Following Hewitt
(2021), we can use the same approach to initialize
Et

input as we do for Et
lmhead.

3.2 What is a ‘good’ embedding initialization?
As we are ensuring that the model parameters θ
remain unchanged at the initialization step, we can
safely say that for the same word sequence w1:i−1,
where each word in the sequence belongs to Vs, the
prefix hi−1 at the output layer remains the same.
Thus, the output word wi strictly depends on the
embeddings of the new words added to the vocabu-
lary, as they determine the new partition function
and the output probability distribution. The main
goal of our analysis is to identify the set of initial-
izations of new words that give us the same output
before and after expansion for the prefixes formed
by the original tokens. In other words, for the same

input word sequence w1:i−1, where wk ∈ Vs ∀ k ∈
[i − 1], if wi and w′

i represent the words pre-
dicted by language models LM s

θ and LM t
θ′ respec-

tively, i.e., wi = argmaxj∈Vs pθ (j | w1:i−1) and
w′
i = argmaxj∈Vs∪Vt pθ′ (j | w1:i−1), we need

wi = w′
i. Let et1, e

t
2, . . . , e

t
n′ ∈ Rd be the embed-

ding initializations for words in Vt. Therefore, a
good initialization is an initialization

{
etj ; j ∈ Vt

}

that ensures, for any prefix hi−1 ∈ Rd, the set of
prefixes formed by word sequences from the source
vocabulary, that is ′wi = w′

i.

3.3 Theorems
Theorem 1. : A good initialization preserves the
pre-expansion behavior.

Let es1, e
s
2, e

s
3, ..., e

s
n ∈ Rd be the embeddings

of words in Vs. Let et1, e
t
2, . . . , e

t
n′ ∈ Rd be the

embedding initializations for words in Vt. If

sup
k∈Vt

(hT etk) ≤ sup
k∈Vs

(hT esk) (1)

holds for all h ∈ Rd, then
{
etj ; j ∈ Vt

}
is a ‘good’

initialization.

Proof. Let h = hi−1 ∈ Rd be a prefix formed by
a word sequence w1:i−1, where wk ∈ Vs ∀ k ∈
[i − 1] . As condition 1 holds for all h ∈ Rd, we
can say that,

sup
k∈Vt

(hT etk) ≤ sup
k∈Vs

(hT esk)

=⇒ sup
k∈Vt

exp(hT etk) ≤ sup
k∈Vs

exp(hT esk)

=⇒ sup
k∈Vt

exp(hT etk)

Z ′ ≤ sup
k∈Vs

exp(hT esk)

Z ′

where, Z ′ =
∑

j∈Vs∪Vt exp
(
h⊤etj

)

is the new partition function, which is a positive
constant as prefix and all the embeddings are given.
We know that, exp(hT etk)

Z′ represents the probability
of occurrence of word corresponding to the embed-
ding etk at time step i. Thus, the inequality just
says that probability of occurrence of any word
from target vocabulary Vt is less than or equal to
probability of occurrence of a word from source vo-
cabulary. As the decoding at output layer is greedy,
the output word is going to come from source vo-
cabulary. We can guarantee that it remains the same
as pre-expansion model’s output word because the
prefix remains the same before and after expansion
as wk ∈ source vocabulary Vs ∀ k ∈ [i − 1] .
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Hence, as wi = w′
i and the embedding initializa-

tion
{
etj ; j ∈ Vt

}
is ‘good’.

Theorem 2. : An initialization in the convex hull
of source embeddings is good.

If y ∈ S, where S is the convex hull of
the embeddings es1, e

s
2, e

s
3, . . . , e

s
n, then (hT y) ≤

supk∈Vs(hT esk) for all h ∈ Rd. Moreover, if
eti ∈ S for all i ∈ Vt, then the initialization is

‘good’.

Proof. Given y ∈ S. Thus y can be written as
y =

∑
j∈Vs αje

s
j where

∑
j∈Vs αj = 1 and 0 ≤

wj ≤ 1 ∀ j ∈ Vs. Thus, ∀ h ∈ Rd,

hT y =
∑

j∈Vs

αjh
T esj

.
As 0 ≤ αj ≤ 1 ∀ j ∈ Vs,

(hT y) ≤ sup
k∈Vs

(hT esk)

Given eti ∈ S ∀ i ∈ Vt

=⇒ (hT eti) ≤ sup
k∈Vs

(hT esk) ∀ i ∈ Vt ∀ h ∈ Rd

=⇒ sup
k∈Vt

(hT etk) ≤ sup
k∈Vs

(hT esk) ∀ h ∈ Rd

Thus, from theorem 1 we can say that if eti ∈
S ∀ i ∈ Vt, then the initialization is good.

We have showed that as long as we initialize ev-
ery target embedding vector as a weighted average
of source embeddings, the model output remains
the same for the same prefix as long as it is obtained
from a word sequence formed only by source vo-
cabulary, thereby making it good. Table 5 verifies
this empirically. In Appendix B we provide some
additional theoretical analysis where we show a
weaker converse of Theorem 2, that any strongly
good initialization lies in the convex hull of source
embeddings.

3.4 Our Approach: Constrained Word2Vec

Having established that a initializing in the con-
vex hull of existing embeddings is good, we now
propose Constrained Word2Vec (CW2V), a novel
approach to learn these initializations. Specifically,
we constrain Et as WEs where

∑
j∈Vs Wij =

1 ∀ i ∈ Vt and Wij ≥ 0 ∀ j ∈ Vs, i ∈ Vt. Here,
Es ∈ R(|Vs|,d) is the source embedding matrix,

Et ∈ R(|Vt|,d) is the target embedding matrix and
W ∈ R(|Vt|,|Vs|) is the weight matrix that trans-
forms Es to Et while ensuring the target embed-
ding vectors reside inside the convex hull of the
source embedding vectors. Our goal is to learn W .

Let E t be the post-expansion embedding
matrix of size (|Vs ∪ Vt|, d). In other words,
E t = [Es;WEs] where ; indicates concatenation
along the vocabulary axis. By using E t as the
embedding matrix with W as the only learnable
parameters, we propose a mechanism similar to
Skip-gram (Mikolov et al., 2013) to obtain E t.
In many modern PLMs, such as LLaMA, the
input and output embedding layers are not tied,
necessitating separate weight matrices for the input
embedding and the LM head defined as Es

input =
[Es

input; softmax(Winput)E
s
input], Es

LM−head =
[Es

LM−head; softmax(WLM−head)E
s
LM−head]T

with sizes (|Vs ∪ Vt|, d), (d, |Vs ∪ Vt|), respec-
tively. The softmax operation ensures that the
weights in each row add up to 1, thus assuring that
the target embedding vectors remain in the convex
hull of pre-expansion embeddings.

We set these embedding matrices E t
input and

E t
LM−head up in the traditional Skip-gram architec-

ture (Mikolov et al., 2013) as the word and context
representation matrices. Similar to OFA (Liu et al.,
2024), in order to make the learning computation-
ally more efficient, we can also factorise Winput

and WLM−head and learn the resulting parameters.
This methodology can be extended to any PLM.
If both the embedding layers are tied for a PLM
(RoBERTa), we still learn two weight matrices and
choose either for initializing Et. To align target
language embeddings with English, we trained the
CW2V model on monolingual data from all lan-
guages and bilingual English-to-target dictionaries.

4 Experimental Setting

We now describe the models we focus on, the lan-
guages, downstream tasks and datasets, and imple-
mentation details.

4.1 Models

We use RoBERTa (Liu et al., 2019), an encoder
based architecture and LLaMA2-7B (Touvron et al.,
2023), a decoder based model and employ these
models as the source models for our multilingual
vocabulary expansion experiments.
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4.2 Tokenizers

We use the RoBERTa tokenizer as the source to-
kenizer for experiments with RoBERTa and the
LLaMA2 tokenizer as the source tokenizer for ex-
periments with LLaMA2. Since we are focus-
ing on multilingual transfer, we train a Senten-
cePiece (Kudo and Richardson, 2018) tokenizer
using textual data in target languages (German,
Russian, Hindi, Tamil) and merge the obtained to-
kenizer with LLaMA2’s tokenizer. The resulting
tokenizer has 57K subwords in its vocabulary, and
this merged tokenizer serves as the unified target
tokenizer for all of our experiments, even for ex-
periments with RoBERTa. We identify common
subwords using a ‘fuzzy’ search similar to FOCUS
(Dobler and de Melo, 2023) and OFA (Liu et al.,
2024). We report the fertility score of the target
tokenizer in all four target languages in Appendix
D. Vocabulary expansion significantly reduces the
fertilities for the languages considered.

4.3 Datasets and Languages

We extended the source model (English) to four tar-
get languages: Hindi, Tamil, Russian, and German.
For all training, the Hindi and Tamil datasets were
sourced from SANGRAHA (Khan et al., 2024),
while the Russian, German, and English datasets
were sourced from OSCAR (Ortiz Su’arez et al.,
2020). To train the multilingual tokenizer, we used
a monolingual dataset of 3 million sentences per
target language, sourced from the tokenizer train-
ing data used in IndicTrans2 (Gala et al., 2023). For
the constrained word2vec model training, we used
a monolingual corpus of 2 million tokens per target
language. Additionally, we incorporated bilingual
dictionary datasets: Hindi and Tamil from (Kano-
jia et al., 2018), German from url 2 processed by
(Bojar et al., 2014), and Russian from url 3. Each
expanded and initialized model underwent further
pre-training on a multilingual dataset of 2.5 billion
tokens, combining 500 million tokens per target
language and 500 million English tokens.

4.4 Baselines

OFA The One For All (OFA) Framework (Liu et
al., 2024) (Liu et al., 2024) uses multilingual static
word vectors to inject alignment knowledge into the

2https://nlp.stanford.edu/projects/nmt/data/
wmt14.en-de/dict.en-de

3https://github.com/Badestrand/
russian-dictionary

new subword embeddings. Regardless of the fac-
torization approach, OFA initializes all new target
embeddings using a weighted average of the source
vocabulary embeddings, making OFA a ‘strongly
good’ initialization.
Univariate Each target embedding is initialised by
drawing values from 1-D Gaussian distributions
parameterized by the mean and standard deviation
of the source embeddings for each dimension. This
was the primary baseline considered by OFA (Liu
et al., 2024).
Multivariate Every target embedding is sampled
from the multivariate gaussian distribution of em-
beddings whose mean and covariance come from
the original embeddings Es.
Mean Every target embedding is the average of
pre-expansion embeddings. Mean initialization is
used to initialize target vocabulary in FVT (Gee
et al., 2022) and Hewitt (2021). This is a ‘strongly’
good initialization as mean of original embeddings
belongs to the convex hull of original embeddings.
Random Every target embedding is randomly sam-
pled from the d−dimensional guassian distribution
N (0, 0.02I) where I is a d−dimensional identity
matrix.

4.5 Constrained Word2Vec Training

We trained the constrained word2vec model using
a similar setup to skip-gram (Mikolov et al., 2013)
training. The context window size was set to 10 and
negative sampling to 5. Additionally, we factorized
the Winput and WLM−head matrices, with a fac-
torized dimension of 1024. This factorization was
done to reduce the number of trainable parameters,
similar to OFA ((Liu et al., 2024)). Factorizing the
weight matrices in the constrained word2vec model
for RoBERTa reduced the number of trainable pa-
rameters from 758M to 59M, and for LLaMA2, it
reduced from 1660M to 118M.

Model Task Category Task Metric

RoBERTa
Sentence Classification XNLI Acc.

Question Answering QA F1

Token Classification NER F1

LLaMA2
Sentence Classification XNLI Acc.

Machine Translation FLORES CHRF

Question Answering QA F1

Sentence Summarisation XLSUM BLEURT

Table 1: A summary of the tasks, datasets and metrics.
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4.6 Downstream Tasks

We evaluated RoBERTa and LLaMA on various
tasks, as shown in Table 1. For XNLI, we used
XNLI (Conneau et al., 2018) for German, Rus-
sian, Hindi, and English, and IndicXNLI (Ag-
garwal et al., 2022) for Tamil. For NER, we
used WikiANN (Pan et al., 2017). For QA, we
used SQuAD (Rajpurkar et al., 2018) for Ger-
man, Russian, Hindi, and English, and IndicQA
(Doddapaneni et al., 2023) for Tamil. For Ma-
chine Translation, we used FLORES (Team et al.,
2022). RoBERTa MLM checkpoints were fine-
tuned on English and evaluated zero-shot on target
languages. LLaMA CLM checkpoints were evalu-
ated with 4-shot prompting. The metrics for each
task are also listed in Table 1.

5 Results

We now describe the results of our investigation,
where we first evaluate different initialization meth-
ods without continual pre-training or fine-tuning
for RoBERTa and LLaMA2. We follow this up
with results for continual pre-training and fine-
tuning for RoBERTa, and continual pre-training
and few-shot prompting for LLaMA2.

5.1 Impact of Initialization Methods

For the encoder-only RoBERTa model: Ta-
ble 2 presents the performance of the expanded
RoBERTa model initialized with Constrained
Word2Vec, alongside baseline models, across three
downstream tasks: XNLI, NER, and QA. The
expanded and initialized model was not continu-
ally pre-trained but was fine-tuned till convergence
on downstream task data. Firstly, looking at the
columns labeled en, we can see that CW2V is better
than any baseline for English, even OFA, indicat-
ing that it preserves the pre-expansion behavior of
RoBERTa better than any other methods. Next, the
scores under the avg columns indicate that CW2V
is competitive with other approaches, especially
OFA but tends to be slightly inferior. This means
that CW2V mildly sacrifices the performance on
other languages while strongly preserving the En-
glish performance.
For the decoder-only LLaMA2 model: Table 2
shows the performance of the expanded LLaMA2
model initialized with Constrained Word2Vec,
alongside baselines, on the following downstream
tasks: XNLI, Machine Translation, QA and XL-
SUM (summarization). Here as well, the expanded

and initialized model was not continually pre-
trained but was evaluated using few-shot prompting.
Different from the case of RoBERTa, the CW2V
model significantly outperforms the OFA model
across all tasks and languages despite not being
continually pre-trained. CW2V achieves higher
CHRF scores, averaged over all translation direc-
tions, in MT (17.02 En-X and 27.26 X-En) com-
pared to OFA’s 11.17 and 16.17, respectively. Sim-
ilarly, for XNLI, QA and XLSUM, we observe that
the average (avg column) performance over all lan-
guages for CW2V is vastly better than any other
approach. The English-only performance (en col-
umn) however is comparable across all approaches
with CW2V being only slightly better. This proves
that in decoder-only models while CW2V is as
good as any other approach for preserving the pre-
expansion English-only performance, it is substan-
tially better than other approaches for the new lan-
guages via vocabulary expansion.

5.2 Impact of Continual Pretraining

Here we show the compounding effects of contin-
ual pre-training and various initialization strategies
to understand whether initialization matters or not
when monolingual adaptation data exists.
For the encoder-only RoBERTa model: We eval-
uate the performance of expanded RoBERTa mod-
els initialized with Constrained Word2Vec (CW2V)
and other baseline methods with CPT. We evalu-
ate 15 checkpoints from one epoch of CPT (plus
the initial checkpoint prior to CPT) on 3 down-
stream tasks. The results are depicted in Figure 2.
Here, again, CW2V demonstrates comparable or
superior performance to OFA, especially towards
the latter stages of CPT. As illustrated in Figure 2,
CW2V quickly converges with OFA (within less
than 4 checkpoints) across all three tasks. Addi-
tionally, simpler baselines such as mean and mul-
tivariate also achieve comparable performance to
OFA and CW2V shortly thereafter (in NER and
QA, Multivariate catches up to CW2V within two
checkpoints), demonstrating strong performance.
This suggests that straightforward baselines like
multivariate can be as effective as sophisticated
methods such as Constrained Word2Vec and OFA.
Furthermore, our analysis consistently shows that
Univariate and Random initialization methods un-
derperform in comparison to CW2V, OFA, Multi-
variate4, and Mean. This highlights that Univariate

4Multivariate initialization has a high probability of re-
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RoBERTa LLaMA2

XNLI NER QA MT XNLI QA XLSUM

en avg en avg en avg En-X X-En en avg en avg en avg

CW2V 86.0 36.0 82.2 21.5 90.7 9.0 17.0 27.3 60.4 38.1 77.7 35.8 0.6 0.4
OFA 85.6 37.7 81.9 21.7 90.6 12.0 11.2 16.2 60.4 37.1 76.0 26.0 0.6 0.3
Multivariate 85.7 35.7 81.8 18.3 90.4 9.5 11.1 16.1 60.4 37.2 77.5 28.7 0.5 0.2
Univariate 85.6 36.6 82.0 22.0 90.7 10.3 11.1 16.0 60.4 37.2 77.4 28.7 0.5 0.3
Mean 85.5 36.0 81.5 20.3 90.5 8.8 11.1 16.2 60.5 37.2 77.4 28.7 0.5 0.3
Random 85.8 35.9 81.6 21.0 90.3 9.6 0.0 0.0 33.3 33.3 0.0 0.0 0.0 0.0

Table 2: Performance of the expanded RoBERTa and LLaMA2 models initialized with Constrained Word2Vec and
baselines on downstream tasks across 5 languages.

Figure 2: Evaluation of different initialization methods on expanded RoBERTa models using three multilingual
tasks (XNLI, NER, QA) at 15 CPT checkpoints. The plots show average performance across five languages.

and Random methods, despite being used as pri-
mary baselines in previous work, are inadequate
for comparison.
For the decoder-only LLaMA2 model: Sim-
ilarly, we observe the performance of the ex-
panded LLaMA2 models initialized with Con-
strained Word2Vec and the baselines. We evaluate
5 checkpoints from one epoch of CPT (plus the
initial checkpoint prior to CPT) on 4 downstream
tasks. The results are depicted in Figure 3. For
MT and QA, both generative tasks, on average,
CW2V is better if not comparable with OFA while
being consistently better than all other approaches.
We see that CW2V quickly surpasses OFA in 2-3
checkpoints. In the case of XLSUM, however, OFA
tends to be better during intermediate checkpoints
(1, 2, 3), but CW2V eventually performs just as
well afterwards. Once again, CW2V (and OFA) are
significantly better than other baselines.

XNLI is the only confounding task since no clear
trends can be observed over various CPT stages.
Furthermore, all models perform almost equally
poorly, indicating that neither vocabulary expan-

siding within the convex hull of the source embeddings (Ap-
pendix F)

sion nor CPT is sufficient to improve XNLI perfor-
mance. We suppose that fine-tuning on an XNLI
dataset may shed further light on this, but due to
limited compute, we did not pursue fine-tuning for
any task and hence leave it as future work. Overall,
CW2V is a highly effective initialization strategy
for CPT, particularly benefiting languages that we
aim to support more effectively through vocabulary
expansion.

5.3 Catastrophic Forgetting in English tasks

Here we reveal something concerning about the
inevitable negative effect of CPT on the pre-
expansion language (English). During continued
pre-training on monolingual datasets in both tar-
get and source languages, even with the source
language (English) constituting 20% of the total
dataset, we observed an initial drop in English per-
formance. Figure 4 shows the performance of the
expanded RoBERTa models at various CPT check-
points on only English tasks. Initially, performance
drops, after which it begins to improve with pro-
longed training without comprising performance
on non-english tasks. This suggests that adjusting
the model to learn new target language data tem-
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Figure 3: 4-shot XNLI, MT, QA, XLSUM evaluation of different initialization methods on expanded LLaMA2
models at 5 equidistant CPT checkpoints. MT plots show average performance across 4 languages, and XNLI, QA,
XLSUM plots show average performance across 5 languages.

Figure 4: Assessment of English performance for various initialization methods on expanded RoBERTa models
across three downstream tasks (XNLI, NER, QA) at 15 CPT checkpoints.

porarily disrupts the weights previously optimized
for English but prolonged training could potentially
further restore and enhance English performance.

6 Conclusion

In this work, we establish that effective embed-
ding initialization for an expanded vocabulary in
language models can be achieved within the con-
vex hull of source vocabulary embeddings. We

introduce a data-driven initialization method, Con-
strained Word2Vec (CW2V), which learns the tar-
get embeddings by constraining them in the con-
vex hull of the source embeddings. Our compari-
son of various initialization methods reveals that
Constrained Word2Vec performs on par with other
advanced techniques. Additionally, we find that
simple methods like Multivariate and Mean, which
ensure new embeddings lie within the convex hull

91



of source embeddings, perform comparably well to
more complex approaches. This indicates that effi-
cient large-scale multilingual continued pretraining
can be possible even with simpler methods, pro-
vided they are good initialization strategies.
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A Limitations

In this work, we identify the following limitations:

• Due to limited computational resources, we
could not explore a variety of pre-trained mod-
els beyond RoBERTa and LLaMA2. However,
since most language models function simi-
larly, we expect our methods and findings to
be generally applicable.

• For LLaMA2 models, we only conduct few-
shot prompting for downstream task evalua-
tion due to resource constraints. Nonetheless,
based on our observations with RoBERTa,
fine-tuning on downstream tasks will likely
show that CW2V and OFA are only
marginally better than other approaches.

• Although we evaluated only five downstream
tasks, we cannot confirm that our observations
will apply to all types of tasks. This remains
an area for future research.

• We show experiments on four lan-
guages—Hindi, German, Russian, and
Tamil—due to limited computational re-
sources. However, as we have chosen
languages from different scripts, we expect
our methods and findings to be generally
applicable.

B Further Analysis

Theorem 3. : All strongly good initializations are
in the convex hull.

Let es1, e
s
2, e

s
3, ..., e

s
n ∈ Rd be the embeddings

of words in Vs. Let y ∈ Rd. If (hT y) ≤
supk∈Vs(hT esk) for all h ∈ Rd, then y ∈ S,
where S is the convex hull of the embeddings
es1, e

s
2, e

s
3, ..., e

s
n.

Proof. We prove this using contradiction. Say, y /∈
S and (hT y) ≤ supk∈Vs(hT esk) holds good for all
h ∈ Rd. Since, S is closed and convex and y /∈ S ,
there exists a hyperplane H that strictly separates
y from S. This hyperplane defines a half space H
containing S. Note that H contains S and y /∈ H

Let b⃗ ∈ Rd be a point on the hyperplane H. Let
n⃗ ∈ Rd denote the normal to the hyperplane H.
We choose n⃗ in such a way that any point r⃗ ∈ S
satisfies,

(r⃗ − b⃗)T n⃗ ≤ 0

Thus, any embedding es ∈ {es1, es2, ..., esn} satis-
fies,

(es − b)T n⃗ ≤ 0 (2)

and any point q⃗ /∈ H satisfies,

(q⃗ − b⃗)T n⃗ ≥ 0

As y /∈ H,

(y − b⃗)T n⃗ ≥ 0 (3)

Equations 2 and 3 imply,

n⃗T es ≤ n⃗T y ∀ es ∈ {es1, es2, ..., esn} (4)

Thus, supk∈Vs(n⃗T esk) ≤ (n⃗T y) which contra-
dicts the statement that (hT y) ≤ supk∈Vs(hT esk)
holds good for all h ∈ Rd as it fails for h = n⃗.

Thus, if (hT y) ≤ supk∈Vs(hT esk) for all h ∈
Rd, then y ∈ S, where S is the convex hull of the
embeddings es1, e

s
2, e

s
3, ..., e

s
n.

Thus, from theorem 3 we can say that any
‘strongly good’ initialization must lie in the con-
vex hull of pre-expansion embeddings. But for an
initialization to be considered ‘good’, the output
word must remain unchanged for prefixes formed
by word sequences from the source vocabulary.
This implies that the condition 1 only needs to
be satisfied for a subset of Rd, rather than for all
h ∈ Rd. Thus, it is not necessary that the converse
of Theorem 2 to be true as we can have initial-
izations which are ‘good’ but not ‘strongly good’.
However, we can say that if an initialization is
‘strongly good’, embeddings must lie in the convex
hull of pre-expansion embeddings.

C Effect on Initialisation on Model
Output

Random initialization of new embeddings can re-
sult in a pre-trained language model assigning a
probability of 1 to new words and can degrade do-
main adaptation performance (Hewitt, 2021). Fig-
ure 5 shows the outputs of expanded LLaMA2 mod-
els for an English sentence prompt. Random ini-
tialization of expanded tokens results in gibberish,
while the other three methods produce outputs iden-
tical to the base LLaMA2 model, as they ensure
embeddings lie within the convex hull of source
embeddings.
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Figure 5: Expanded LLaMA2 Model Outputs for the
Prompt : “I don’t want to eat" for various initializations.

D Fertility Score

Fertility Score English Hindi Tamil Russian German
LLaMA2 Tokenizer 2.89 7.47 12.66 4.25 3.88
RoBERTa Tokenizer 2.87 10.85 28.80 9.89 4.42
Extended Tokenizer 2.87 2.83 2.83 3.74 3.88

Table 3: Fertility scores for the source and the extended
tokenizers on all the languages

Table 3 shows the fertility scores of the target
tokenizer with respect to source tokenizer on 5
languages considered.

E Tokenizer Coverage

Target Tokenizer

Copied Tokens Initialized Tokens Coverage

RoBERTa 22K 35K 38.5 %
LLaMA2 32K 25K 56.14 %

Table 4: : The number of subwords being initialized by
copying from the original embeddings from RoBERTa’s
and LLaMA’s tokenizers.

Table 4 shows the size of source vocabulary in
experiments with RoBERTa and LLaMA2. As the
new vocabulary is extended from LLaMA2, many
subword embeddings are directly copied when us-
ing LLaMA2 as the source model. We employed
a ‘fuzzy’ search similar to FOCUS (Dobler and
de Melo, 2023) to identify the common tokens be-
tween the target tokenizer and the RoBERTa tok-
enizer. This led to a 38.5 % coverage of tokens
leading us to a source vocabulary of size 22K for
experiments with RoBERTa.

F Do Multivariate and Univariate
initializations reside in the hull?

In multivariate initialization, we sample from a
multivariate Gaussian that considers correlations

across dimensions, unlike the univariate distribu-
tion. When dealing with strongly correlated di-
mensions (positive or negative), a multivariate ap-
proach proves advantageous. By considering the
correlations across dimensions, we can sample new
embeddings that are positioned more effectively
within the latent space of original embedding dis-
tribution. However, there is no straightforward
method to determine if embedding sampled from
either distribution lies within the hull. To ensure
that multivariate initialization remains within the
convex hull with a high confidence, we also scaled
the covariance matrix by a factor of 1e-5. In con-
trast, unscaled univariate initialization was used as
a baseline, aligning with previous studies (Liu et al.,
2024). (Hewitt, 2021) recommends employing mul-
tivariate initialization to incorporate noise. Notably,
as illustrated in Figure 2, multivariate initialization
significantly outperforms univariate initialization
and closely approaches the performance of OFA
in encoder-based models. However, a comprehen-
sive theoretical analysis is required to determine
if unscaled multivariate initialization has a higher
likelihood of being within the convex hull com-
pared to univariate initialization. This aspect is left
for future research, given the empirical observa-
tion that univariate initializations typically exhibits
lower performance compared to scaled multivariate
initialization.

G Continued Pretraining Details

All the expanded and initialized RoBERTa models
are trained on the same hyperparameters used in
OFA (Liu et al., 2024). Specifically, we employ
the MLM objective with a standard mask rate of
15%. We utilize the Adam optimizer (Kingma and
Ba, 2017) with parameters (β1 = 0.9, β2 = 0.999)
and ϵ = 1× 10−6. The initial learning rate is set to
5 × 10−5. The only deviation from our approach
compared to OFA is the batch size, which is fixed
at 32. Each batch consists of training samples con-
catenated up to the maximum sequence length of
512, randomly selected from all language-scripts
described in Section 4.3. We continue to pretrain
using the scripts adapted from HuggingFace5.

For LLaMa2, we used the standard LM objective
with a context length of 2048 subwords. We used
the Adam optimizer with linear warmup and decay
where the peak learning rate was 5 × 10−5 and
warmup was done till 10% of training steps. We

5https://github.com/huggingface/
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trained for 1 epoch over our data saved checkpoints
every 20% of an epoch enabling us to study model
behavior against increasing training data.

H Complete Results for Each Task and
Language

Results for each task in all the languages across all
the checkpoints is given in figures 6, 7, 8, 9, 10, 11,
12
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Figure 6: XNLI evaluation of expanded RoBERTa models
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Figure 7: NER evaluation of expanded RoBERTa models
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Figure 8: QA evaluation of expanded RoBERTa models
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Figure 9: MT 4-shot evaluation of expanded LLaMA2 models
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Figure 10: XNLI 4-shot evaluation of expanded LLaMA2 models
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Figure 11: XLSUM 4-shot evaluation of expanded LLaMA2 models
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Figure 12: QA 4-shot evaluation of expanded LLaMA2 models
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