Further Compressing Distilled Language Models
via Frequency-aware Partial Sparse Coding of Embeddings

Kohki Tamura'
"The University of Tokyo

Abstract

Although pre-trained language models (PLMs)
are effective for natural language understand-
ing (NLU) tasks, they demand a huge computa-
tional resource, thus preventing us from deploy-
ing them on edge devices. Researchers have
therefore applied compression techniques for
neural networks, such as pruning, quantization,
and knowledge distillation, to the PLMs. Al-
though these generic techniques can reduce the
number of internal parameters of hidden layers
in the PLMs, the embedding layers tied to the
tokenizer are hard to be compressed, occupy-
ing a non-negligible portion of the compressed
model. In this study, aiming to further com-
press PLMs reduced by the generic techniques,
we exploit frequency-aware sparse coding to
compress the embedding layers of the PLMs
fine-tuned to downstream tasks. To minimize
the impact of the compression on the accuracy,
we retain the embeddings of common tokens
as they are and use them to reconstruct embed-
dings of rare tokens by locally linear mapping.
Experimental results on the GLUE and JGLUE
benchmarks for language understanding in En-
glish and Japanese confirmed that our method
can further compress the fine-tuned DistilBERT
models while maintaining accuracy.

1 Introduction

Transformer (Vaswani et al., 2017)-based language
models (LMs) have been extensively used to solve
natural language processing (NLP) tasks via pre-
train and fine-tuning (Devlin et al., 2019); the accu-
racy of the fine-tuned LMs can be improved by scal-
ing up the model and pre-training data sizes (Ka-
plan et al., 2020). Pre-trained LMs (PLMs) thereby
became larger and larger, which prevents us from
deploying them on resource-constrained environ-
ments. Thus, we cannot leverage powerful PLMs
to text with privacy concerns in end-user devices
or confidential documents in small businesses.

*Currently, he works for Mirai Translate, Inc.

Naoki Yoshianga?
Institute of Industrial Science, The University of Tokyo
f{tamura-k,neishi}@tkl.iis.u-tokyo.ac. jp

Masato Neishif*

tynaga@iis.u-tokyo.ac.jp

350000000
s others

embedding_layer

300000000 | mmm hidden_layers

250000000 +

200000000 -

150000000 q

of parameters

100000000 q

50000000

T T
distilbert-base-uncased bert-base-uncased

T
bert-large-uncased

Figure 1: The number of parameters in BERT vari-
ants; these PLMs have similar numbers of parameters
in the embedding layers, which become more dominant
(34.9%) in distilbert-base-uncased.

To make PLMs faster and smaller while main-
taining the accuracy, researchers have utilized com-
mon compression techniques for neural networks
(surveyed in Zhu et al. (2023)); the techniques in-
clude pruning, quantization, and knowledge distil-
lation, mainly focusing on compressing hidden lay-
ers which occupy the largest part in the PLMs with
deep Transformer layers (Wan et al., 2024; Zhou
et al., 2024). In the distilled PLMs, however, pa-
rameters in those other than hidden layers account
for a large proportion of the entire parameters (Fig-
ure 1), and most of them are accounted for by the
embedding layers. For instance, the parameters of
the embedding layer account for about 34.9% of
distilbert-base-uncased! (Sanh et al., 2019),
whereas they occupy about 21.4% of the origi-
nal 12-layer bert-base-uncased” (Devlin et al.,
2019). Therefore, we subject the embedding layers
to further compression.

In this study, given a PLM fine-tuned to the tar-
get downstream task, we propose to compress the

"https://huggingface.co/distilbert/
distilbert-base-uncased

2https://huggingface.co/google—bert/
bert-base-uncased

388

Proceedings of the 28th Conference on Computational Natural Language Learning, pages 388-399
November 15-16, 2024 ©2024 Association for Computational Linguistics

https://huggingface.co/distilbert/distilbert-base-uncased
https://huggingface.co/distilbert/distilbert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased

embedding layer of the PLM by using sparse cod-
ing of embeddings, which represents embeddings
with a sparse linear combination of basis embed-
dings (Faruqui et al., 2015). The issue here is that
the sparse coding introduces approximation errors,
or noises, into the fine-tuned embeddings. To re-
duce the impact of these noises on the PLM’s out-
puts, we perform a frequency-aware partial sparse
coding of embeddings; namely, we regard a small
number of common token embeddings as basis em-
beddings to reconstruct the remaining rare token
embeddings, as employed in Chen et al. (2016) for
recurrent neural network LMs.

Since the embeddings of the recent PLMs will
be contextualized through deep Transformer lay-
ers and noisy rare token embeddings will be sup-
plemented by intact embeddings of surrounding
common tokens, we adopt simple locally-linear
embeddings (Roweis and Saul, 2000; Sakuma and
Yoshinaga, 2019) to choose a few basis (common
token) embeddings for each rare token embedding,
thereby enabling sparser coding of embeddings.
Each rare token embedding is thereby represented
as a weighted linear sum of the nearest neighbor
common token embeddings. Finally, we save the
weight and the IDs of the common tokens to dynam-
ically reconstruct embeddings during inference.

We applied our method to English and Japanese
DistilBERT models fine-tuned to GLUE (Wang
et al., 2018) and JGLUE datasets (Kurihara et al.,
2022), respectively. We then compared our meth-
ods with three baselines; the two of them ap-
proximate the same rare token embeddings as our
method, by <unk> token embedding in the target
PLM and by common basis embeddings induced
by principal component analysis, respectively. The
other approximates the entire embedding layers us-
ing sparse vectors to select vectors to sum up from
shared chunks of vectors (additive quantization).

The contributions of this paper are as follows:

* We present a simple, frequency-aware partial
sparse coding to compress embedding layers
in the PLMs fine-tuned to downstream tasks.

* We confirmed an advantage of our method on
distilled LMs in two languages, fine-tuned to
various natural language understanding tasks.

* We confirmed the robustness of our frequency-
aware sparse coding of embeddings in that the
PLM retains the original accuracy even when
the reconstruction introduces noises.

2 Proposed Method

The major difficulty in compressing the embed-
dings of a fine-tuned Transformer-based PLM is
that if the compression introduces some approxima-
tion (noises) in the embeddings, they will severely
affect the latter processing in the deep Transformer
layers. Fukuda et al. (2020) confirmed on senti-
ment classification that the accuracy of BERT de-
creased greatly (>10%) when one or more words
take perturbations mimicking typos.

Motivated by this observation, we adopt partial
sparse coding, which reconstructs only a subset
of PLM’s embeddings whose approximation errors
(noises) will not severely affect the PLM’s behavior.
To reduce the memory footprint, we divert common
token embeddings to the candidate of basis embed-
dings that represent the rare token embeddings.

Our partial sparse coding consists of the follow-
ing two steps:

Step 1: Splitting vocabularies. We first split the
vocabulary of the PLM, V, into two portions,
V¢ (source vocabularies) and Vg =V — V¢
(target vocabularies), in which the embed-
dings of the source vocabularies (source em-
beddings are used as basis embeddings in
sparse coding to approximate the embeddings
of the target vocabularies (target embed-
dings).

Step 2: Reconstructing target embeddings. We
then compute compact representations for the

target embeddings, Y = {y; € Rd}?ﬁ‘ (dis
the number of embedding dimensions), by ap-
proximating them as a weighted linear sum of
the source embeddings, X = {x; € Rd}gcl‘.
To facilitate the compression, we choose a
small subset of size k, N;, among the source
embeddings X to approximate each target
embedding y; €). We then represent target
embedding y; by compact (sparse vector)
representations, §; = {(j, ;) |x; € Ni},
namely, k pairs of embedding ID j € N; and
the weight a;; € R for the linear summation.

We then reduce the target embeddings) by re-
placing them with their sparse vector representa-
tions and dynamically reconstruct the target embed-
ding y; during the inference by referring to y;, thus
obtaining a model with a smaller embedding layer.
The resulting embedding layer is composed of the
original parameters (embeddings) & for the source

389

. | enovel
emerging
Pemerge
new
dungeon hug
L]
maze °Cage hugged
underground :embrace
K 8 embraced
common rare
o e R o
e @ e 9
@ (%) @ @
@ (%) @ @
I — & <& &
& vee & eee (@
Ve A A

T

Vr
Original embeddings of the fine-tuned PLM

§ on ove.i"'a,_
i emerging
E Femerge’
new
dungeon hu
-cage' %017
'maze "._bugged ok) .
% und %, 020 °em racey
(ergrot< embraced

common E A rare

& &
(\q,eo . ?}@o . @('
S 2 J
Original embeddlngs V'
R

for common tokens

Compact embedding
representations for rare tokens

Figure 2: An overview of our frequency-aware partial sparse coding of embeddings. We represent embeddings of
rare tokens (e.g., “hugged”) with their nearest neighbor embeddings of common tokens.

embeddings and the compact representations for
the target embeddings). The modified model has
(d — 2k)|Vg| fewer parameters,® which greatly re-
duces the number of parameters in the embedding
layer when k < d and |V¢| < |Vg|.

2.1 Step 1: Splitting vocabularies

To retain the inference accuracy of the fine-tuned
PLMs, we need an effective criterion to split the
LM’s vocabulary into the source, basis embeddings,
and the target embeddings for reconstruction. We
thus leverage the frequency of tokens in the train-
ing data of the downstream task which are used to
fine-tune the target PLM. Specifically, we count the
frequency, f;, for each token, ¢; € V in the training
data which is tokenized with the target PLM’s to-
kenizer. We set the top-n common tokens in) as
V¢ and the others as Vig.

We should mention that a similar approach has
been explored by Chen et al. (2016) to compress
word embedding layers of recurrent neural network
(RNN) LMs. The essential difference is that our
method explicitly narrows down the candidate basis
(common token) embeddings to reconstruct each
rare token embedding, whereas Chen et al. (2016)
used ¢ -regularization in learning a weight matrix
for linear combinations to promote the sparseness
of the weights implicitly, as described in § 2.2.

30ur method requires slightly more parameters (§ 2.2).

2.2 Step 2: Reconstructing target embeddings

To obtain the compact representations of the target
embeddings, we want to use only a small subset
of size k of the source embeddings to approximate
the target embeddings. Because we want to explic-
itly control the required memory footprint and the
PLM has a strong contextualization ability based
on the surrounding intact embeddings for common
tokens, we adopt a simple method of locally lin-
ear mapping (Roweis and Saul, 2000; Sakuma and
Yoshinaga, 2019), which selects for each target em-
bedding k& nearest neighbor source embeddings for
approximation.

In the original locally linear mapping for task-
specific multilingual models (Sakuma and Yoshi-
naga, 2019), the authors first represent target em-
beddings (e.g., Japanese word embeddings) with
a weighted linear sum of top-k nearest neighbor
source embeddings (e.g., English word embed-
dings) in one semantic space (e.g., the semantic
space of the PLM), and use these weights to recon-
struct target embeddings in another semantic space
(e.g., the semantic space of the fine-tuned PLM) to
realize a task-specific multilingual model. In our
setting, however, since the target semantic space
(here, the semantic space of the fine-tuned PLM)
also has the target embeddings for the target tokens,
in contrast to Sakuma and Yoshinaga (2019), we

390

do not need to consider two semantic spaces and
can compute a linear weighted sum in the semantic
space of the fine-tuned PLMs.*

In this study, we add a small fix to locally linear
mapping to use normalized embeddings instead of
raw embeddings, and force estimated embeddings
to have the same length as the original just fine-
tuned one. First, we normalize) and X to make
all embeddings e to be ||e|| = 1, and obtain the nor-
malized embeddings as X™ and J". We set ; as
tokens with the top & nearest neighbor embeddings
in A" from each embedding y;' in Vg with cosine
similarity, and compute the weights «; to estimate
each g} by > jen; Gaj;. With locally linear map-
ping, we compute &; which approximate y;' the
most by weighted linear sum of 7 represented as

2

G&; = argmin ||y — T 1
i gai Y, Z Q& 4 (1)
JEN;
using Lagrange multiplier from 7', ;' and a con-
straint of) _; c;; = 1 by compute
(/A —1
252G)i
under Cj = (y;' — }) - (y;' — @) to estimate
whole 3711 (I € N;). We finally estimate each g; by
adjusting the length of ¢}' same as y; with
: 3!
Ui = llyill 7 3)
T g
We save necessary parameters to reconstruct
y; instead of the original embedding y;. To re-
construct g;, we need ID of embeddings in N,
weights a; and the length of embedding ||y;||. We
save these 2k + 1 parameters for every token in
Vr as our compact representation, thus we reduce
(d — (2k + 1))|Vr| parameters. In the inference,
we dynamically reconstruct ¢; upon request when
the tokenizer outputs those tokens.

3 Experimental Setup

We evaluate our frequency-aware sparse coding of
embeddings on distilled PLMs fine-tuned to NLU
tasks in terms of the model size and performance.

“Because the target rare token embeddings may not be
updated for the target task and are in the semantic space of
PLM instead of the fine-tuned PLM), we may be able to obtain
better embeddings by computing weights for the summation
in the semantic space of the PLM and by using the weights
to reconstruct the target embeddings in the semantic space of
the fine-tuned PLM. However, our preliminary experiments
revealed that the fine-tuning did not change the embeddings
much, this did not contribute to the accuracy improvements.

3.1 Datasets

For evaluation, we adopt GLUE (Wang et al., 2018)
and JGLUE benchmark (Kurihara et al., 2022)
for language understanding tasks in English and
Japanese, respectively.

GLUE is a benchmark consisting of nine natural
language understanding (NLU) tasks. It contains
datasets of acceptability (CoLLA), sentiment anal-
ysis (SST-2), paraphrase (MRPC, QQP), textual
similarity (STS-B), and natural language inference
(NLI; MNLI, QNLI, RTE, and WNLI). The sizes
of the datasets range from <1k to over 500k. In
the experiments, we adopted the common metrics
used in the evaluation of BERT (Devlin et al., 2019)
and DistilBERT (Sanh et al., 2019); F; for MRPC
and QQP, Spearman Correlation for STS-B, and
accuracy for the others.

Since we experimented on the diverse settings of
k and Vg resulting in plenty of results, it was not
possible to upload all of our results to test on the
website> because of its limitation of submission.
Hence, for every task, we used the original valida-
tion set as the test set. Instead of the original vali-
dation set, we split the train set into 90% and 10%
shuffling randomly using a fixed random seed 42
and treated the latter as a validation set. We did not
evaluate our method on QQP and WNLI since these
tasks have different label distributions between the
validation set and the test set, which means that
the results of experiments on these datasets may
be misleading.® In addition, we did not conduct
experiments on MNLI due to the computational
cost of running experiments on this large dataset.

JGLUE is a benchmark consisting of seven NLU
tasks in Japanese. It contains datasets of text clas-
sification (MARC-ja and JCoLA), sentence pair
classification (JSTS and JNLI), and QA (JSQuAD
and JCommonsenseQA). Because the MARC-ja
dataset is no longer available at this time, we evalu-
ated our method on the other tasks. We used only
Spearman’s Correlation for the evaluation of JSTS
following STS-B, and accuracy on the other tasks,
following Kurihara et al. (2022).

Since the test sets of JGLUE have not been re-
leased yet, we employed the same process as we
did for GLUE, except for JCoLA (we used the
“validation_out_of_domain” subset as the test
data). We experimented on JCoLA, JSTS, and
JNLI datasets of the benchmark.

5https ://gluebenchmark. com
®https://gluebenchmark.com/faq

391

https://gluebenchmark.com
https://gluebenchmark.com/faq

3.2 PLMs for embedding compression

We applied our method to fine-tuned DistilBERT
models whose hidden layer of BERT is compressed
by knowledge distillation. Specifically, we exper-
imented on distilbert-base-uncased’ for En-
glish and line-distilbert-base-japanese?® for
Japanese. In what follows, we report the averages
and standard deviations of three fine-tuning trials.

The English PLM has 23M parameters in the
embedding layer, which consist of 30,522 token
embeddings of 768 dimensions and account for
34.9% of the parameters (67M in total). This PLM
employs WordPiece as the tokenizer. In fine-tuning,
we trained for three epochs with a learning rate of
2e-5, except for five epochs on MRPC.

The Japanese PLM has 25M parameters of the
embedding layer, which consist of 32,768 token
embeddings of 768 dimensions and account for
36.6% of the parameters (68M in total). The tok-
enization of this model is done in two stages; pre-
tokenization by MeCab’ (unidic-lite) and tokeniza-
tion by unigram LM of SentencePiece (Kudo and
Richardson, 2018). In fine-tuning, we trained for
four epochs with a learning rate of Se-5.

3.3 Embedding compression

Threshold for common tokens We initially treat
all PLM vocabularies that appear during the fine-
tuning as V¢ and the others as Vg. Then, we trans-
fer common tokens in V¢ to Vg to see the trade-off
between the compression rate and the performance.
In these settings, the top 50% to 90% of the to-
kens with the higher frequency remain as V¢, and
the others are transferred to the Vgi. In the ex-
periments, we compare our method while varying
the retention rate of V¢, r(V¢), for each task; for
example, r(V¢) = 1.0 means all the tokens that
appeared during the fine-tuning are kept in V¢ and
r(Ve) = 0.5 means the half of the tokens that ap-
peared during the fine-tuning are transferred to Vg.

The number of the source embeddings We also
compare our method while varying k, the number
of the source embeddings used to represent each
target embedding, ranging from one to five for each
task. We tune & to minimize the inference error on
the validation set and report the results of the best-

7https://huggingface.co/distilbert/
distilbert-base-uncased

8https://huggingface.co/line—corporation/
line-distilbert-base-japanese

*https://taku910.github.io/mecab/

performing k. We will later confirm that the choice
of k does not affect the PLM performance, thanks
to its strong contextualization capabilities.

3.4 Baselines

We compare our model with three baselines: i) re-
placing Vi with <unk> token learned by the PLM,
ii) Principal Component Analysis (PCA)-based ap-
proximation and iii) Additive Quantization.

‘“unknown” token (<unk>) replaces all of the tar-
get tokens in Vi with a special token <unk>
to leverage the unknown token embedding
learned by the PLM.

Principal Component Analysis (PCA) uses the
bases of the embedding space obtained by
PCA as the source embeddings, instead of
Ve, to reconstruct V. We compute the coor-
dinate in k-dimensional space with this basis
for each target token, and we treat the coordi-
nate as the weight like our method. We save
the same number of the source embedding,
k, to reconstruct Vg, and the coordinate of
k dimension for each token in Vg instead of
the original embeddings. We show the results
from a single k selected with the same criteria
as the proposed method, while ranging &k from
one to ten.

Additive Quantization (AQ) represents the orig-
inal embeddings with the sum of basis em-
beddings which are shared across the target
tokens with similar meanings (Babenko and
Lempitsky, 2014; Shu and Nakayama, 2017).
Although AQ reconstructs the original em-
beddings by a sum of a small subset of the
basis embeddings as in our method, it is de-
signed to reconstruct all embeddings using the
independently-learned basis embeddings. We
have used the official implementation of Shu’s
method (Shu and Nakayama, 2017)'° with
hyperparameters of K = 16 and M = 32.

The former two baselines approximate the same
Vc as ours to see the effectiveness of choosing
the source embeddings from the nearest neighbors,
while the last baseline compresses the entire set of
embeddings to see the impact of frequency-aware
partial sparse coding.

Ohttps://github.com/zomux/neuralcompressor

392

https://huggingface.co/distilbert/distilbert-base-uncased
https://huggingface.co/distilbert/distilbert-base-uncased
https://huggingface.co/line-corporation/line-distilbert-base-japanese
https://huggingface.co/line-corporation/line-distilbert-base-japanese
https://taku910.github.io/mecab/
https://github.com/zomux/neuralcompressor

CoLA SST-2 MRPC STS-B QNLI RTE Average
Vel 5585 11570 11561 10794 26180 13863
r(Vc)ILO
<unk> 37.16+1.12 90.18+0.23 87.95+0.39 83.67+0.15 86.96+0.10 57.76+1.42 73.95
PCA 41.79+0.48"=2 89.7240.05"=7 87.72+0.54"=! 81.08+0.41°=1 86.97+0.00"=" 53.19+2.20°=2 73.41
proposed 41.91+0.20°% 89.87+0.40"=* 87.75+0.47"=3 85.45+0.14"=1 86.99+0.00"=2 57.88+0.53"=! 74.98
r(Vc):0.5
<unk> 29.12+1.05 89.56+0.14 88.18+0.40 81.54+0.21 86.16+0.20 54.99+1.88 71.59
PCA 33.29+0.27"72 89.30+0.20°71° 86.29+0.44"=1 75.23+0.01%710 83.85+0.32F71 53.79+1.55*=10 70.29
proposed 32.33+0.62"=° 90.18+0.38"=° 87.25+0.43"=% 82.67+0.23"=> 86.19+0.05"=! 56.92+0.15*=! 72.59
original 48.74+0.38 90.02+0.35 88.75+0.12 85.77+0.12 87.06+0.12 57.40+1.84 76.29

Table 1: The results of GLUE benchmark. The numbers in brackets show the number of the source embeddings, k,

chosen by using the validation set.

JCoLA JSTS JNLI Average
Vel 3558 4576 4403
r(Vc) =1.0
<unk> 74.60+0.58 84.70+0.09 87.69+0.36 82.33
PCA 75.33+0.00"= 84.73+0.12"7% 87.83+0.28"?2 82.63
proposed 76.50+0.10"=% 84.65+0.11*=! 87.85+0.24"=2 83.00
r(Ve) = 0.5
<unk> 70.61+1.55 83.55+0.03 86.72+0.19 80.29
PCA 75.67+0.40"=! 83.46+0.13"710 86.52+0.25%! 81.88
proposed 75.67+0.47"=° 84.30+0.12"=% 87.47x00s"=! 82.48
AQ 28.81+1.48 46.95+11.21 —2.34+1.14 24.47
original 77.08+0.31 84.67+0.10 87.96+0.29 83.24

Table 2: The results of JGLUE benchmark. The numbers in brackets show the number of the source embeddings, &,

chosen by using the validation set.

4 Results

4.1 Main results

We first compared the results of the proposed
method and the three baselines. <unk> and PCA
baselines approximate the same target embeddings
as ours, under the settings of r(Vz) = 1.0 and
r(Ve) = 0.5. We also compared to AQ in JGLUE,
it approximates the entire embeddings regardless
of r(Vc).

Tables 1 and 2 show the results on the GLUE and
JGLUE benchmark datasets, respectively. From
the results, we can observe that our method outper-
forms the baselines on average and exhibits stable
performance across tasks. Our method outperforms
the PCA baseline in all tasks except for CoLA of
r(Ve) = 0.5 and JSTS of r(V¢) = 1.0, thus con-
firming the importance of target-dependent source
(basis) embeddings. Meanwhile, our method
slightly underperforms the <unk> baseline in SST-
2, MRPC, and JSTS of r(V¢) = 1.0, and MRPC of
r(Vc) = 0.5. However, the token and sentence cov-
erage by only common tokens are higher in those

datasets as we will later confirm in Tables 5 and 6;
all the three frequency-aware methods exhibit sim-
ilar performance to the original model even un-
der r(V¢) = 0.5. Overall, our method mitigates
performance degradation compared to only replac-
ing such tokens with <unk> tokens, especially for
r(V¢) = 0.5 in both languages.

The relationship between performance and |V |
Tables 3 and 4 show the results of our method while
varying r(V¢). From the tables, there is a weak ten-
dency that setting a lower value to r(V¢) results
in lower performance. Thus, rare tokens weakly
affect the PLM’s performance, and it is reason-
able to compress only rare token embeddings while
keeping the original common token embeddings.

We compare the token and sentence coverage by
V¢ in the following three GLUE datasets: CoLA,
which has the largest performance drop at small
r(Ve), MRPC, which has a small performance
drop despite being the similar training data size to
CoLA, and QNLI, which has a small performance
drop because more tokens are preserved (§ 4.2) at

393

r(Vo) CoLA SST-2 MRPC STS-B QNLI RTE

0.5 32.33+0.62"=° 90.18+0.38"=° 87.25+0.43"=* 82.67+0.23"=% 86.19+0.05"=! 56.92+0.15*="
0.6 35.27+0.32"=% 89.68+0.20°=° 87.80+0.42"=% 83.80+0.17°=2 86.27+0.12"=' 56.80+0.30"="
0.7 37.50+0.12"=* 89.60+0.25"=° 88.09+0.45"=° 84.03+0.16"=2 86.63+0.10"=' 57.04+0.26"="
0.8 39.56+0.155=° 89.99+0.26"=> 88.55+0.91°=% 84.2940.15*=2 86.86+0.21"=! 57.76+0.26"!
0.9 39.72+0.44"=% 90.0240.37"=3 88.10+0.84"=° 85.01+0.11"=! 87.02+0.00"=! 58.24+0.39"="
1.0 41.91+0.20"=% 89.87+0.40"=* 87.75+0.47"=% 85.45+0.14"=1 86.99+0.00"=2 57.88+0.53"=1
original 48.74+0.38 90.02+0.35 88.75+0.12 85.77+0.12 87.06+0.12 57.40+1.84

Table 3: The results of modified models with our method under different r(V¢) in the GLUE benchmark. The
numbers in brackets show the number of the source embeddings, k, chosen by using the validation set.

r(Ve) JCoLA JSTS JNLI

0.5 75.67+0.47 84.30+0.12 87.47+0.08
0.6 76.79+0.36 84.50+0.14 87.5540.23
0.7 76.93+0.10 84.53+0.14 87.57+0.31
0.8 76.45+0.47 84.66+0.14 87.80+0.18
0.9 77.13+0.33 84.65+0.13 87.76+0.21
1.0 76.50+0.10 84.65+0.11 87.85+0.24
original 77.08+0.31 84.67+0.10 87.9640.29

Table 4: The results of modified models with our method
under different r(V¢) in the JGLUE benchmark.

r(Vo) CoLA MRPC QNLI
0.5 99.37 96.00 9827
0.6 99.47 96.66 98.72
0.7 99.55 97.06 99.14
0.8 99.60 97.52 99.52
0.9 99.64 97.92 99.74
1.0 99.69 98.30 99.90

Table 5: Token coverage in the GLUE test data by
tokens in V¢.

r(Ve) = 0.5.

Tables 5 and 6 show the token and sentence cov-
erage by V¢ for these three characteristic datasets,
respectively. From the results, Vo of CoLA has
high token and sentence coverage even though V¢
of CoLLA is much smaller than QNLI and MRPC
(Table 7). CoLA, however, has a large performance
drop despite high coverage. We guess that the dif-
ferences in performance degradation are explained
by differences in the information required by the
tasks, rather than by the rate of affected sentences.

The overhead to recover rare token embeddings
It requires 142 ms to recover rare token embedding
(r(Vo) = 1.0, k = 5) for JCoLA “validation”
datasets using a server with Intel Xeon 2.40-GHz
CPU. This is negligible (< 5%) against the infer-
ence time (3010 ms) of the same datasets with the
original PLM, which uses an additional NVIDIA
P6000 GPU for matrix multiplication.

r(Ve) CoLA MRPC QNLI
0.5 56.66 931 22.84
0.6 6138 1544 3315
0.7 6635 18.63 47.34
0.8 68.65 2353 64.67
0.9 7200 2843 79.15
1.0 7517 3407 9110

Table 6: Sentence coverage in the GLUE test data only
by tokens in V. In covered sentences, the model per-
forms exactly the same as the original model.

GLUE JGLUE
r(Vc)
CoLA MRPC STS-B QNLI JSTS
0.5 10.15 19.05 17.71 43.13 10.17
1.0 18.85 36.76 34.16 85.88 16.65

Table 7: The rate of parameters (%) that our method
requires compared to the original embedding layer. We
also list the result of CoLA and MRPC, for the analysis
related to Tables 5 and 6.

4.2 Sensitivity to compression rate

Using our method, we can explicitly control the
compression rate of embedding by varying r(V¢).
We thus investigate the relation between the com-
pression rate of the fine-tuned PLMs by our method
and the PLM’s performance (Tables 1 and 2),
among three datasets: STS-B and QNLI in GLUE,
and JSTS in JGLUE. These datasets have different
training data sizes (5.2k examples for STS-B, 94.3k
for QNLI, and 11.2k for JSTS in our settings), as
shown in Table 7.

We can see that the compression rates of CoLA
and JSTS of r(V¢) = 1.0 and MRPC and STS-B
of r(V¢) = 0.5 are similar but their performance
drops differ greatly, as shown in Tables 1 and 2.
This will be because individual tasks require dif-
ferent degrees of information, and we thus need to
tune the compression rate depending on the target
downstream tasks.

394

GLUE JGLUE
r(Ve) STS-B QNLI JSTS
all (emb.) all (emb.) all (emb.)

0.5 477M (4.15M) 53.7M (10.11M) 46.1M (2.56M)
1.0 51.6M (8.01M) 63.7M (20.13M) 47.7M (4.19M)

orig. 67.0M (23.44M) 67.0M (23.44M) 68.7M (25.17TM)

Table 8: The number of parameters in the DistilBERT
models with vocabulary compressed by our method.

CoLA JCoLA
r([Vel|) = 1.0

<unk> 35.55 5.63
k=1 70.56 29.14
k=2 75.60 34.59
k=3 77.51 37.41
k=4 78.53 39.21
k=5 79.16 40.48
AQ VcUVg) 77.89 65.27
AQ (Vo) 70.16 54.73
AQ (Vr) 79.55 66.55

Table 9: Cosine similarity of the approximated embed-
dings to the original embedding.

4.3 Sensitivity to k

In our method and the PCA baseline, we can obtain
a better approximation by increasing the number
of the source embeddings, k. In this section, we
investigate the relation between the quality of ap-
proximation and the PLM’s performance.

Table 9 shows the cosine similarity between the
original and the reconstructed embeddings in the
PLMs fine-tuned to the CoLA and JCoLA datasets.
From the table, we can confirm that more similar
embeddings to the original can be reconstructed
when we increase the number of the source embed-
ding, k, in both CoLA and JCoLLA. However, the
higher similarity does not always lead to higher per-
formance as lower k are chosen in most datasets in
Table 1 and 2. Meanwhile, AQ achieves compara-
ble (CoLA) or much better (JCoLA) similarity for
rare tokens but performs poorly (Table 2). These
results confirm that the noises in common token
embeddings are vital and the PLMs have a strong
contextualized ability to guess the meanings of rare
tokens from their surrounding contexts, we do not
need to care much about tuning k to obtain a better
approximation of embeddings.

5 Related Work

In the development of neural network-based NLP,
how to embed a sequence of discrete symbols in

languages into the continuous space has been an
important issue, and various compact representa-
tions of embeddings have been explored. In what
follows, we first review approaches to compress-
ing word embeddings (§ 5.1). We next introduce
finer-grained tokenization than words, which re-
sults in compact embedding layers (§ 5.2). We
then discuss a method of predicting embeddings of
out-of-vocabulary words (§ 5.3).

5.1 Compressing Word Embeddings

Classical approaches to neural language mod-
eling leverage word-level embeddings such as
CBoW (Mikolov et al., 2013) and GloVe (Penning-
ton et al., 2014), which are learned via shallow
neural networks. Since out-of-vocabulary (OOV)
words cause serious issues in word-based embed-
dings, the embeddings are often trained to cover as
many words as possible, which makes embedding
layers larger. Hence, researchers have worked to
compress word embeddings during or after training
neural models.

Matrix (Tensor) factorization decomposes a large
matrix (tensor) by a product of low-rank matrices
(tensors) and has been used to compress word em-
beddings (Chen et al., 2018a; Acharya et al., 2019;
Winata et al., 2019; Lan et al., 2020; Hrinchuk et al.,
2020; Lioutas et al., 2020; Lee et al., 2021; Wang
et al., 2023). In particular, ALBERT (Lan et al.,
2020) learns to represent the embedding layer of a
PLM with a product of two small matrices during
pre-training; although the factorized vocabulary
reduces the memory footprint, it involves matrix
multiplications that slow the inference and is not
adopted in other PLMs.

Sparse coding has been thereby explored to ad-
dress the aforementioned issue in matrix factoriza-
tion (Faruqui et al., 2015; Chen et al., 2016; Shu
and Nakayama, 2017; Chen et al., 2018b; Tissier
et al., 2019; Ma et al., 2019; Kim et al., 2020).
The sparse coding represents embeddings using
a sparse linear combination of basis embeddings;
each embedding is represented by a short sparse
vector, which has pairs of IDs for basis embeddings
and weight (optional). In particular, Chen et al.
(2016) adopted frequency-aware partial sparse cod-
ing as ours and applied it to embedding layers of
RNN-LMs with word tokenization. To choose
a small subset of basis (common token) embed-
dings for each rare token embedding, they used
{1 -regularization. However, the sparsity is limited

395

since ¢ regularization does not directly minimize
the number of basis embeddings for reconstruction.
In this study, focusing on the recent subword-
based Transformer-based PLMs that have strong
contextualization abilities of embeddings, we de-
velop a lightweight method that chooses a fixed
number of basis embeddings to represent each rare
embedding from its nearest-neighbor common to-
ken embeddings and confirms that it attains high
sparsity while retaining the original accuracy.

5.2 Finer-grained Tokenization

To address the issue of OOV words, researchers
leveraged finer-grained tokenization based on sub-
words (Sennrich et al., 2016; Kudo, 2018) to back-
off embeddings of OOV words to those of sub-
words (ultimately, characters or bytes). The finer-
grained tokenization allows us to reduce the vo-
cabulary size dramatically. Furthermore, to han-
dle massive vocabularies in multilingual models,
character- (Clark et al., 2022) and byte-level tok-
enization (Xue et al., 2022) have been used. These
finer-grained tokenizations, however, incur high
computational costs, because they heavily rely on
the hidden layers of PLMs to recover (sub)word-
level representations. Meanwhile, recent large lan-
guage models (LLMs) are trained with a larger
set of subwords; Takase et al. (2024) reported that
larger vocabulary contributes to the performance
of LLMs. Meanwhile, when we adopt pretrain-and-
fine-tune paradigm, we need to stick to the original
tokenizer of the PLMs, since it is difficult to ob-
tain a different set of fine-grained vocabularies that
replace the existing subword-level vocabularies in
the PLMs. We thus need to address large subword
vocabularies of PLMs to compress PLMs.

5.3 Predicting OOV Embeddings

As stated in § 5.1, out-of-vocabulary (OOV) words
had been a problem in the word-level embeddings,
before the subword-based tokenization becomes
a de-facto standard in neural text processing via
Transformer-based PLMs. Several researchers thus
attempted to reconstruct OOV embeddings from
subword embeddings (Pinter et al., 2017; Zhao
et al., 2018; Sasaki et al., 2019; Fukuda et al., 2020;
Chen et al., 2022). Although these methods can
compute OOV embeddings from subword embed-
dings, they usually leverage a neural network to ac-
curately predict OOV embeddings, which not only
requires an additional memory footprint but also
slows down the inference. In this study, we resort

to the strong contextualization abilities of PLMs to
handle OOV words, and focus on reconstructing
rare token embeddings by abusing common token
embeddings, to minimize the space and time cost
to compute the embeddings in the inference.

6 Conclusions

We proposed a simple yet effective sparse coding
method to compress the embedding layer of a given
fine-tuned PLM. We keep common tokens that ap-
pear frequently in the fine-tuning data and only
compress the embeddings of rare tokens that do
not appear in the fine-tuning data. We select only a
small subset of the nearest neighbor source (com-
mon token) embeddings to approximate the target
(rare token) embeddings so that we represent the
target embeddings with only a small number of
parameters. Our experimental results confirmed
that our frequency-aware partial sparse coding can
greatly compress the embedding layer while pre-
venting performance degradation. Our method
works effectively without carefully choosing the
number of the source embedding for compression.

In future work, we will apply a method to se-
lect the target tokens for compression from the
vocabulary while considering the easiness of recon-
struction as well as the frequency. We also plan
to apply our method to decoder-only and encoder-
decoder LMs, although there are issues as stated in
the Limitations section.

Limitations

Since our method discards the original embed-
dings for rare tokens and dynamically reconstructs
those embeddings upon request, the application to
decoder-only and encoder-decoder PLMs has some
challenges. First, If the PLMs do not adopt the
weight tying, which shares the weights of the em-
bedding and softmax layers, then our method is
applicable to the embedding layers. If the PLMs
adopt the weight tying, a naive application of our
method to those PLMs will result in outputs with-
out rare tokens. However, we will be able to gener-
ate rare tokens, by remembering neighboring rare
tokens for each common token with embeddings;
we first choose a common token as the next token,
by greedy decoding or some decoding strategy, and
then reconstruct the neighboring rare token embed-
dings to include those rare tokens as the candidates
of the next token. We will plan to evaluate this
method on recent decoder-only large LMs.

396

Acknowledgements

This work was partially supported by the special
fund of Institute of Industrial Science, The Uni-
versity of Tokyo and by JSPS KAKENHI Grant
Number JP21H03494.

References

Anish Acharya, Rahul Goel, Angeliki Metallinou, and
Inderjit Dhillon. 2019. Online embedding com-
pression for text classification using low rank ma-
trix factorization. In Proceedings of the Thirty-
Third AAAI Conference on Artificial Intelligence and
Thirty-First Innovative Applications of Artificial In-
telligence Conference and Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence,

AAAT' 19/TAAT 19/EAAT’ 19. AAAI Press.

Artem Babenko and Victor Lempitsky. 2014. Addi-
tive quantization for extreme vector compression. In
2014 IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 931-938. IEEE.

Lihu Chen, Gael Varoquaux, and Fabian Suchanek.
2022. Imputing out-of-vocabulary embeddings with
LOVE makes LanguageModels robust with little cost.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3488-3504, Dublin, Ireland.
Association for Computational Linguistics.

Patrick Chen, Si Si, Yang Li, Ciprian Chelba, and Cho-
Jui Hsieh. 2018a. Groupreduce: Block-wise low-
rank approximation for neural language model shrink-
ing. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc.

Ting Chen, Martin Renqgiang Min, and Yizhou Sun.
2018b. Learning k-way d-dimensional discrete codes
for compact embedding representations. In Proceed-
ings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 854-863. PMLR.

Yunchuan Chen, Lili Mou, Yan Xu, Ge Li, and Zhi
Jin. 2016. Compressing neural language models by
sparse word representations. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
226-235, Berlin, Germany. Association for Compu-
tational Linguistics.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion. Transactions of the Association for Computa-
tional Linguistics, 10:73-91.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah A. Smith. 2015. Sparse overcom-
plete word vector representations. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1491-1500, Beijing,
China. Association for Computational Linguistics.

Nobukazu Fukuda, Naoki Yoshinaga, and Masaru Kit-
suregawa. 2020. Robust Backed-off Estimation of
Out-of-Vocabulary Embeddings. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 4827-4838, Online. Association for
Computational Linguistics.

Oleksii Hrinchuk, Valentin Khrulkov, Leyla Mir-
vakhabova, Elena Orlova, and Ivan Oseledets. 2020.
Tensorized embedding layers. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, pages 4847-4860, Online. Association for
Computational Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Yeachan Kim, Kang-Min Kim, and SangKeun Lee.
2020. Adaptive compression of word embeddings.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 3950—
3959, Online. Association for Computational Lin-
guistics.

Taku Kudo. 2018. Subword Regularization: Improving
Neural Network Translation Models with Multiple
Subword Candidates. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66-75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Kentaro Kurihara, Daisuke Kawahara, and Tomohide
Shibata. 2022. JGLUE: Japanese general language
understanding evaluation. In Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 2957-2966, Marseille, France. European
Language Resources Association.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning

397

https://doi.org/10.1609/aaai.v33i01.33016196
https://doi.org/10.1609/aaai.v33i01.33016196
https://doi.org/10.1609/aaai.v33i01.33016196
https://doi.org/10.18653/v1/2022.acl-long.245
https://doi.org/10.18653/v1/2022.acl-long.245
https://proceedings.neurips.cc/paper_files/paper/2018/file/a2b8a85a29b2d64ad6f47275bf1360c6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a2b8a85a29b2d64ad6f47275bf1360c6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a2b8a85a29b2d64ad6f47275bf1360c6-Paper.pdf
https://proceedings.mlr.press/v80/chen18g.html
https://proceedings.mlr.press/v80/chen18g.html
https://doi.org/10.18653/v1/P16-1022
https://doi.org/10.18653/v1/P16-1022
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/v1/P15-1144
https://doi.org/10.3115/v1/P15-1144
https://doi.org/10.18653/v1/2020.findings-emnlp.434
https://doi.org/10.18653/v1/2020.findings-emnlp.434
https://doi.org/10.18653/v1/2020.findings-emnlp.436
http://arxiv.org/abs/2001.08361
https://doi.org/10.18653/v1/2020.acl-main.364
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://aclanthology.org/2022.lrec-1.317
https://aclanthology.org/2022.lrec-1.317
https://openreview.net/forum?id=H1eA7AEtvS

of language representations. In International Confer-
ence on Learning Representations.

Jong-Ryul Lee, Yong-Ju Lee, and Yong-Hyuk Moon.
2021. Block-wise word embedding compression re-
visited: Better weighting and structuring. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 4379—4388, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Vasileios Lioutas, Ahmad Rashid, Krtin Kumar, Md. Ak-
mal Haidar, and Mehdi Rezagholizadeh. 2020. Im-
proving Word Embedding Factorization for Compres-
sion Using Distilled Nonlinear Neural Decomposi-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 2774-2784,
Online. Association for Computational Linguistics.

Yukun Ma, Patrick H. Chen, and Cho-Jui Hsieh. 2019.
MulCode: A multiplicative multi-way model for com-
pressing neural language model. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 5257-5266, Hong Kong,
China. Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013. Efficient estimation of word
representations in vector space. In International Con-
ference on Learning Representations.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532-1543, Doha, Qatar.
Association for Computational Linguistics.

Yuval Pinter, Robert Guthrie, and Jacob Eisenstein.
2017. Mimicking word embeddings using subword
RNNs. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 102-112, Copenhagen, Denmark. Association
for Computational Linguistics.

Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear
dimensionality reduction by locally linear embedding.
Science, 290(5500):2323-2326.

Jin Sakuma and Naoki Yoshinaga. 2019. Multilingual
Model Using Cross-Task Embedding Projection. In
Proceedings of the 23rd Conference on Computa-
tional Natural Language Learning (CoNLL), pages
22-32, Hong Kong, China. Association for Computa-
tional Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. In Pro-
ceedings Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing.

Shota Sasaki, Jun Suzuki, and Kentaro Inui. 2019.
Subword-based Compact Reconstruction of Word

Embeddings. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3498-3508, Minneapolis, Minnesota. Association for
Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715-1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Raphael Shu and Hideki Nakayama. 2017. Compress-
ing word embeddings via deep compositional code
learning. In Proceedings of the sixth International
Conference on Learning Representations.

Sho Takase, Ryokan Ri, Shun Kiyono, and Takuya Kato.
2024. Large vocabulary size improves large language
models. arXiv, abs/2406.16508.

Julien Tissier, Christophe Gravier, and Amaury Habrard.
2019. Near-lossless binarization of word embed-
dings. In Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence and Thirty-
First Innovative Applications of Artificial Intel-
ligence Conference and Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence,
AAAT 19/TAAT'19/EAAT’ 19. AAAI Press.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam,
Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and
Mi Zhang. 2024. Efficient large language models: A
survey. Transactions on Machine Learning Research.
Survey Certification.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355, Brussels, Belgium. Association for Com-
putational Linguistics.

Haoyu Wang, Ruirui Li, Haoming Jiang, Zhengyang
Wang, Xianfeng Tang, Bin Bi, Monica Cheng, Bing
Yin, Yaqing Wang, Tuo Zhao, and Jing Gao. 2023.
Lighttoken: A task and model-agnostic lightweight
token embedding framework for pre-trained language
models. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, KDD ’23, page 2302-2313, New York, NY, USA.
Association for Computing Machinery.

398

https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2021.findings-emnlp.372
https://doi.org/10.18653/v1/2021.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.250
https://doi.org/10.18653/v1/2020.findings-emnlp.250
https://doi.org/10.18653/v1/2020.findings-emnlp.250
https://doi.org/10.18653/v1/2020.findings-emnlp.250
https://doi.org/10.18653/v1/D19-1529
https://doi.org/10.18653/v1/D19-1529
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/D17-1010
https://doi.org/10.18653/v1/D17-1010
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.18653/v1/K19-1003
https://doi.org/10.18653/v1/K19-1003
https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-33.pdf
https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-33.pdf
https://doi.org/10.18653/v1/N19-1353
https://doi.org/10.18653/v1/N19-1353
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://arxiv.org/abs/1711.01068
https://arxiv.org/abs/1711.01068
https://arxiv.org/abs/1711.01068
https://arxiv.org/abs/2406.16508
https://arxiv.org/abs/2406.16508
https://doi.org/10.1609/aaai.v33i01.33017104
https://doi.org/10.1609/aaai.v33i01.33017104
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=bsCCJHbO8A
https://openreview.net/forum?id=bsCCJHbO8A
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.1145/3580305.3599416
https://doi.org/10.1145/3580305.3599416
https://doi.org/10.1145/3580305.3599416

Genta Indra Winata, Andrea Madotto, Jamin Shin, El-
ham J Barezi, and Pascale Fung. 2019. On the effec-
tiveness of low-rank matrix factorization for LSTM
model compression. In Proceedings of the 33rd Pa-
cific Asia Conference on Language, Information and
Computation, Hakodate, Japan.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. ByT5: Towards a Token-
Free Future with Pre-trained Byte-to-Byte Models.
Transactions of the Association for Computational

Linguistics, 10:291-306.

Jinman Zhao, Sidharth Mudgal, and Yingyu Liang.
2018. Generalizing word embeddings using bag of
subwords. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 601-606, Brussels, Belgium. Association for
Computational Linguistics.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Ji-
aming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao
Dai, Xiao-Ping Zhang, Yuhan Dong, and Yu Wang.
2024. A survey on efficient inference for large lan-
guage models. arXiv, abs/2404.14294.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping

Wang. 2023. A survey on model compression for
large language models. arXiv, abs/2308.07633.

399

https://waseda.repo.nii.ac.jp/records/48088
https://waseda.repo.nii.ac.jp/records/48088
https://waseda.repo.nii.ac.jp/records/48088
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.18653/v1/D18-1059
https://doi.org/10.18653/v1/D18-1059
https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2308.07633
https://arxiv.org/abs/2308.07633

