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Abstract

The data-driven investigation of the extent
to which lexicons of different languages
align has mostly fallen into one of two cate-
gories: colexification-based and distributional.
The two approaches are grounded in distinct
methodologies, operate on different assump-
tions, and are used in diverse ways. This raises
two important questions: (a) are there settings
in which the predictions of the two approaches
can be directly compared? and if so, (b) what
is the extent of the similarity and what are its
determinants? We offer novel operationaliza-
tions for the two approaches in a manner that
allows for their direct comparison, and conduct
a comprehensive analysis on a diverse set of 16
languages.

Our analysis is carried out at different levels of
granularity. At the word-level, the two meth-
ods present different results across the board.
However, intriguingly, at the level of semantic
domains (e.g., kinship, quantity), the two meth-
ods show considerable convergence in their pre-
dictions. Our findings also indicate that the
distributional methods likely capture a more
fine-grained alignment than their counterpart
colexification-based methods, and may thus be
more suited for settings where fewer languages
are evaluated.'

1 Introduction

To what degree do translation equivalents in dif-
ferent languages — for example, English red and
French rouge — encode the same meaning? This
question, in various forms, has long been a
topic of interest in the cognitive sciences (Whorf,
1956; Fodor, 1975; Frawley, 1998; Burns, 1994;
Snedeker and Gleitman, 2004; Majid et al., 2008;
Croft, 2010). Indeed, lexicons are often viewed
as reflecting the structure of human cognition; un-
derstanding how meaning is expressed across lan-

'Our code and data is available at https: //github.com/
tai314159/Aligning_Alignments.
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Figure 1: Colexification graph for the target concept
“steigen:: V"’ (which corresponds to the word rise in En-
glish, and nousta in Finnish. Each vertex corresponds
to a concept that is colexified with the target concept
either in English or Finnish. The English lexicalizations
of the target concept are in black and the Finnish lexi-
calizations are in Blue. The concepts themeselves are
in Green. Each edge (marked by an arrow) denotes that
a colexification exists in English/Finnish (as labeled).

guages helps understand how humans categorize
and represent the world.

A building block in answering such a question is
the ability to evaluate the similarity between words
that seemingly express a similar meaning (hence-
forth, translation pairs) across different languages.

Traditionally, in linguistic and cognitive re-
search, comparing the meaning of words across lan-
guages involves methodologies and approaches that
are less data-driven in nature, prioritizing in-depth,
relatively small-scale exploration of meaning, such
as descriptive comparisons (Karidi et al., 2024;
Wierzbicka, 1972), elicitation studies (Barnett,
1977; Tokowicz et al., 2002; Moldovan et al., 2012;
Allen and Conklin, 2013; Purves et al., 2023) and
semantic maps (Haspelmath, 2003; Croft, 2022).
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The difficulty in defining lexical similarity be-
tween concepts, let alone translation equivalents,
has motivated a transition from theoretical frame-
works to data-driven approaches. Indeed, a signifi-
cant amount of recent works has focused on using
data-driven methods to measure the equivalence of
word pairs across different languages (Majid et al.,
2014; Youn et al., 2016; Thompson et al., 2018;
Jackson et al., 2019; Thompson et al., 2020; Rabi-
novich et al., 2020; Beinborn and Choenni, 2020;
Georgakopoulos et al., 2022). All work on this
question inherits an even more fundamental set of
questions: how is meaning defined and how is the
meaning of words captured? Within this rich body
of work, we can identify two main methodological
approaches.

The first approach is based on colexification
patterns, which aims to compare the association
between lexical form and senses across languages.
Colexification is the case where two or more con-
cepts are lexicalized with a single form in a given
language (Frangois, 2008; Rzymski et al., 2020)
(see Table 2). For example, both English right and
German recht colexify (i) a sense related to the cor-
rectness of a fact and (ii) a sense related to location
or direction in space, while the Arabic yamin is
associated with the spatial sense, but not the cor-
rectness sense. According to this approach, the
degree to which words or sets of words in a certain
domain in different languages align, can be defined
as the degree to which the words colexify the same
concepts. For example, the English right may be
said to be more similar to the German recht than
the Arabic yamin (cf. Haspelmath, 2003). Recently,
a large-scale cross-lingual database of colexifica-
tions has been compiled (CLICS; Rzymski et al.,
2020)?. This database provides a valuable resource
for exploring the relationships between words and
concepts across a wide range of languages, and en-
ables the quantitative comparison of colexification
patterns in different languages (Youn et al., 2016;
Jackson et al., 2019; Xu et al., 2020; Georgakopou-
los et al., 2022; Karjus et al., 2021a; Bao et al.,
2021).

The second approach is based on distributional
word embeddings (here, DISTA). This approach

2Another valuable resource for lexical semantics is Babel-
net (Navigli and Ponzetto, 2012). In this work we choose
CLICS over BabelNet because BabelNet’s fine-grained sense
distinctions, such as separating “apple” as a fruit from “apple”
as a tree, introduce excessive noise, whereas CLICS provides
more manageable colexifications for our purposes.

was recently proposed as a viable data-driven
method for cross-lingual lexical semantic inves-
tigations (Thompson et al., 2018, 2020; Beinborn
and Choenni, 2020; Rabinovich et al., 2020; Karidi
et al., 2024), for improving cross-lingual transfer
(Sun et al., 2021) and for investigating multicul-
tural knowledge in LLMs (Havaldar et al., 2023).
While all distributional methods use the word em-
beddings of translation pairs for computing sim-
ilarity, many different operationalizations of this
general approach are possible. See §2.1.

Both approaches have had a substantial impact
on the computational cognitive science literature
(Youn et al., 2016; Jackson et al., 2019; Thompson
et al., 2020). These approaches seek to reveal an ab-
stract structure that underlies the relation between
words and their meanings (e.g, languages from
different language families might have the same
structure of kinship terms). However, while both
are data-driven and aim to capture similar phenom-
ena, they rely on different data and methodologies,
and in fact likely capture different aspects of lin-
guistic meaning. Colexification-based approaches
set out to quantify similarity in lexicographical re-
sources, while distributional embeddings use any
signal that can be reliably extracted from the data.
For example, DISTA may not represent rare senses,
while colexification does not take frequency into
account at all. They are also applied differently:
colexification-based approaches often constructs
intricate cross-lingual networks to explore mean-
ing universality (Youn et al., 2016; Jackson et al.,
2019), while distributional alignment methods op-
erate at the word level and can then be extended to
larger word sets (Thompson et al., 2020).

In this work we seek to empirically compare
the predictions of these two approaches. How-
ever, given the divergence in methodologies and
underlying assumptions adopted by these various
approaches, it is not clear if it is sound, or even
possible, to compare them. Moreover, obtaining
a meaningful signal from colexification data typi-
cally requires aggregating information across thou-
sands of languages (Youn et al., 2016; Jackson
et al., 2019) and is rarely used for analysis at the
word-pair level; instead, its strength lies in the anal-
ysis of intricate networks. Therefore, working with
a substantially smaller set of languages or even
comparing a single language pair at a time, as is of-
ten the case in multilingual NLP research, requires
adapting the approaches so they will yield compa-
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rable predictions. We ask whether these distinct
approaches converge at interface settings — settings
in which the two approaches offer coherent simi-
larity measures that can be compared. We show
that such cases of convergence exist (§5) and, in
these cases, ask whether — and when — the different
approaches yield similar predictions. This is, to
the best of our knowledge, the first time that these
questions have been tackled within NLP.3

Analysis at various levels of granularity reveals
that at the word-level, the two methodologies yield
different results across the board. However, at
the domain-level*, the trends presented by the two
methods show substantially higher correlation. In
general, there is an overall greater similarity across
different distributional methods than between the
two families of approaches, in terms of their pre-
dictions and the factors that influence them (§5).
Moreover, while distributional methods are cor-
related in their alignment predictions with exter-
nal similarity measures (§5.4), the colexification
approach is not. This suggests that the distribu-
tional approach captures more fine-grained aspects
of meaning and is better suited for either delicate
analysis of the results or when using a smaller set
of languages. Also, the domain-level might be
a more robust level to report alignment than the
word-level. Additonally, we find that rate of lexical
change is a significant predictor for cross-lingual
alignment, across all methodologies. We discuss
the implications of these results in §7.

To recap, we (i) operationalize distribution-
based and colexification-based approaches so as
to enable a direct empirical comparison between
them, (ii) perform in-depth comparison of differ-
ent operationalizations of the two approaches, (iii)
study the ramifications of different design choices
that they incorporate.

2 cross-lingual Lexicon Alignment

Much research on cross-lingual alignment between
lexicons has sought to uncover whether certain
concepts, notably in domains perceived as basic
to the human experience, such as space, time,
color, quantity, and family relations, are univer-

2’Recently, (Liu et al., 2023a) used co-occurrences to dis-
cover colexification patterns . However, their focus was pri-
marily on reconstructing the colexifications from textual data,
rather than analyzing colexification as a measure of cross-
lingual semantic similarity and comparing it against method-
ologies that are based on word embeddings.

*A semantic domain is a way of grouping words together
based on common aspects of meaning or function.

Concept Languages

CLAW, FINGERNAIL

SNOW, ICE
DUST, ASH

Japanese, Finnish, Estonian
Hindi

German, French, Dutch
Polish, Finnish

Japanese, Korean

Estonian, Turkish

MONTH, MOON

DREAM, SLEEP (STATE) Spanish, Polish, Finnish

Italian

BABY, CHILD French, Dutch, Hindi
Polish

NEPHEW, NIECE Italian

Figure 2: Colexifications. Examples of concepts from
the CLICS dataset and their colexifications. Each colex-
ification indicates the languages in which these concepts
colexify, drawn from 16 languages used in this paper.

sal, on the one hand, or culturally- or historically-
contingent, on the other hand (Fodor, 1975; Brown
and Witkowski, 1983; Burns, 1994; Frawley, 1998;
Evans and Levinson, 2009; Wierzbicka, 2010; Ake
Viberg, 1983; Majid et al., 2014). Alignment can
either be defined with respect to individual words
(i.e, word-level alignment) or with respect to do-
mains (i.e, domain-level alignment). For example,
we might expect the word Sunday in English not to
align well with the Hebrew multiword expression
denoting the same day of the week yom rishon, as
the latter does not bear any of the religious conno-
tations of Sunday in English. The degree of their
alignment is a word-level alignment. One can also
compare the extent to which the concepts of time
align more generally, in which case we might ex-
pect Hebrew and English to be relatively similar,
given that Hebrew, spoken in Israel, prima facie
has a Western conception of time, with, for exam-
ple, a division of the year into twelve months, a
division of the week into seven days, and so on.
This is termed domain-level alignment.

2.1 Distribution-based Alignment

Distribution-based alignment measures leverage
NLP tools to evaluate cross-lingual similarity
(Artetxe et al., 2018; Conneau et al., 2017; Vulié
et al., 2021; Rabinovich et al., 2020; Thompson
et al., 2020; Karidi et al., 2024). Traditionally, these
assessments have been performed using global
methods, which align whole language spaces si-
multaneously and then assess their similarity using
downstream tasks, such as Bilingual Lexicon In-
duction (Artetxe et al., 2018; Conneau et al., 2017).
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This approach typically includes techniques like lin-
ear transformations or joint model training across
multiple languages (Pires et al., 2019; Gonen et al.,
2020). 3 However, for identifying patterns of di-
vergence and convergence in the usage of specific
words and domains, this approach is suboptimal, as
globally optimal alignment (one that minimizes the
distance between the image of one language in the
space of another language) may completely distort
the alignment of specific words or subsets, in the
interest of improving the alignment of other, larger
word sets (Karidi et al., 2024).

On the other hand, local methods take a more
granular approach, comparing the similarity of in-
dividual word meanings one at a time.

Intuitively, a naive approach to comparing the
meaning of a concept across languages is to com-
pare the number of overlapping nearest neighbors
of a word and its direct translation across languages
(Thompson et al., 2018). This approach is intu-
itive and stems from the distributional definition
of meaning as the semantic neighborhood of the
concept. However, the current method falls short in
considering the intricate semantic relations within
the groups of neighbors. To address this drawback,
metrics for historical semantic change (Hamilton
et al., 2016) have been adopted (Thompson et al.,
2020; Beinborn and Choenni, 2020; Karidi et al.,
2024). This is done by comparing the vectors of
distances between a word and its neighbors across
languages. Our computational approach is fully
adapted from (Karidi et al., 2024).

2.2 Colexification-based Methods

The most extensive resource on colexification is the
CLICS database (Rzymski et al., 2020). It provides
information on colexification patterns for a wide
range of concepts (a notion of a word sense; see
§4), such as individual terms in domains like basic
colors, body parts, and kinship, as well as more
complex conceptual domains like emotion, time,
and space, across 3156 languages. Each concept is
linked to a set of words in different languages that
are used to express that concept.

Colexification patterns are frequently used by
cognitive scientists to estimate word similarity,
working under the assumption that colexification

SWe are aware of one study of cross-lingual lexical com-
parison that used global alignment to project languages to a
shared space, and defined the degree of alignment between a
translation pair to be the distance of the image of one word to
the embedding of the other (Rabinovich et al., 2020).

| English
I French
I Italian
M German
M Dutch
I Spanish
M Polish
M Hindi
[ Finnish

Afro-Asiatic

Japonic

Koreanic
Indo-European

Sino-Tibetan [ Estonian
M Turkish
I Chinese
[ Korean
I Japanese
[ Hebrew
[ Arabic

Turkic

Uralic

Figure 3: Distribution of languages by family. The 16
languages used in our analysis, color-coded by their lan-
guage family. Each segment represents the proportion
of languages within their respective families.

of two concepts reflects similarity between them
(Francgois, 2008; Xu et al., 2020; Harvill et al.,
2022). For example, the word ka-um in Tagalog
can be linked to the concepts FATHER and ELDER
BROTHER. This colexification is taken to reflect the
cultural concept of the importance and authority
of older male relatives in Tagalog society. Youn
et al. (2016) analyzed a subset of 22 basic concepts
from the Swadesh list, and showed that they exhibit
patterns of meaning universality across languages.
Jackson et al. (2019) conducted the first large-scale
analysis using colexification patterns to assess cul-
tural variability in people’s conceptualization of
emotions. However, the hypothesis that colexifi-
cation and semantic similarity are tightly related
is still missing direct empirical validation at scale
(Natale et al., 2021).

Recently, colexification has also been utilized
in NLP to study cross-lingual transfer (Liu et al.,
2023a,b; Chen et al., 2023).

3 Experimental Setup

We briefly describe our experimental setup, with
full details in Appendix §A.

Data & Languages. We perform our analysis on
a diverse set of 16 languages, spanning 7 different
language families from many geographical areas
across Eurasia (see Figure 3): English, French,
Italian, German, Dutch, Spanish, Polish , Finnish,
Estonian, Turkish, Chinese, Korean, Japanese , He-
brew, Hindi and Arabic.

The lexicon used in our analysis consists of
1,016 concepts sourced from NorthEuralLex (NEL)
(Dellert et al., 2020), a comprehensive linguistic
resource containing these concepts with their word
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forms in 107 different languages.

We map the concepts in NEL to domains, using
Concepticon.® There are 20 domains (e.g, animals,
kinship; full list is in Appendix §A), each contain-
ing 22 — 136 concepts.

Models & Settings. For static word embeddings
we use fastText” 300-dimension word embeddings,
trained on Wikipedia using the skip-gram model
(Bojanowski et al., 2017). For contextualised word
embeddings (CWE) we use mBERT? (bert-base-
multilingual-uncased model) 768-dimension vec-
tors for the 16 languages. To extract sentences to
use with contextualised models, we use the Leipzig
corpus.” We replicate our experiments with other
architectures and datasets (see Appendix D).

4 Alignment Metrics

We now turn to presenting the metrics we use in the
paper. Each metric either follows the distribution-
based Alignment (DISTA) or the Colexification-
based Alignment (COLEXA) approach. For DISTA
we follow the metrics and notations outlined in
(Karidi et al., 2024).

Notation. Let C be the set of concepts in the NEL
dataset (Dellert et al., 2019, see §3). We adopt
the notion of a concept from the lexical typology
literature (e.g., Dellert et al., 2019; Rzymski et al.,
2020), and take it to mean a word sense defined
independently of any specific language. Let €2 be a
set of languages. A language L € () may or may
not lexicalize a concept ¢ € C, and may lexicalize
several concepts with one word (colexification).
We denote the lexicon corresponding to C in a given
language L with £, and note that |£|< |C| for
every language. We assume that C is partitioned
into domains, and denote the (non-overlapping)
domains with Dy, ..., D,,.

Given a concept ¢ € C, we denote its lexical-
ization (the word expressing that concept) in lan-
guage L with r;(c) € L. A translation pair be-
tween languages L; and Ls is a pair of words
(wy,wy) € L1 X Lo, such that there exists ¢ € C
such that 71, (¢) = wy and rr,(c) = ws. For ex-
ample, the concept SONG gives rise to the English-

®https://concepticon.clld.org/

7https://fasttext.cc/docs/en/
unsupervised-tutorial.html

8https://huggingface.co/
bert-base-multilingual-uncased

9https://corpora.uni—leipzig.de/en?corpusId=
deu_news_2021
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French translation pair (song,chanson). In prin-
ciple, several translation pairs may correspond to
a concept and language pair, but in the data we
experiment with, this does not occur.

For a given word w in a given language L, we
denote its embedding with emb(w, L). We denote
the embedding space corresponding to L with ¢.

4.1 Colexification-based Alignment

We operationalize the notion of colexification-
based alignment (COLEXA) to establish a common
ground that facilitates a valid empirical comparison
between DISTA and COLEXA. We experiment with
a lexical alignment method that is based on colexi-
fication data (Rzymski et al., 2020). This method
measures the alignment of a single concept across
multiple languages. We furthermore extend it to
measure the alignment of an entire domain across
multiple languages. We note that different works
that used COLEXA have used different methodolo-
gies, since there is no standard methodology for
them. We therefore define measure that in our view
captures the core statistics used by these papers.

Concept-Level Colexification-based Alignment.
For every concept ¢ € C and language L; (i = 1, 2),
let Z() the inverse image of 7, (c):

Zéi) = {Cl € C‘TLi(C) =TL; (C/)}
We define:

Intuitively, this is a measure of the joint colex-
ifications of the concept. For example, in Figure
1,the concept steigen::V is colexified with aufge-
hen(sonne)::V in English, and lexicalized as the
word form rise, while in Finnish, an additional two
concepts (aufstehen::V and sich erheben::V) are
colexified (Iexicalized as the word form nousta).

1
2

\Zc(l) N ZC(Q)\
1Z.M)|

|ZC(2) N ZC(1)|
1Z.3)|

19(C)L17L2 =

Domain-Level Colexification Based Alignment.
Given the scarcity of colexifications that occur at
the level of individual concepts (as many concepts
are not colexified with any other concept), it is
reasonable to extend the concept-level measure to
quantify the alignment of a semantic domain across
languages. For this we aggregate the concept-level
alignment.This is done by aggregating ¥ over the
concepts in D.!0

'%We note that both concept-level and domain-level mea-
sures obtain values in [0, 1], where a value of 1 is obtained in

the case of identity in the colexifications in the domain and 0
is obtained where there are no joint colexifications.


https://concepticon.clld.org/
https://fasttext.cc/docs/en/unsupervised-tutorial.html
https://fasttext.cc/docs/en/unsupervised-tutorial.html
https://huggingface.co/bert-base-multilingual-uncased
https://huggingface.co/bert-base-multilingual-uncased
https://corpora.uni-leipzig.de/en?corpusId=deu_news_2021
https://corpora.uni-leipzig.de/en?corpusId=deu_news_2021

4.2 Distribution-based Alignment

In this section, we first present the computational
framework we adopt in this paper, namely Se-
mantic Neighborhood Comparison; a standard ap-
proach for comparing embeddings in different
spaces, used for both computational historical
linguistics and lexical similarity tasks (Hamilton
et al., 2016; Thompson et al., 2020; Beinborn and
Choenni, 2020), that has recently been facilitated
as an NLP task and extended to architectures be-
yond static representations (Karidi et al., 2024). We
present several variants of this approach, including
one based on contextualized word embeddings.'!

Semantic Neighborhood Comparison (SNC).
Let ¢ € C be a concept and wy = r1,(c) € Ly,
wy = rr,(c) € Lo its lexicalizations, and v; =
emb(wy, L1) € {1, v = emb(wa, La) € {o their
respective embeddings. We compute its k nearest
neighbors in ¢; with {ngl), ...,ngj)} (k = 100 in
our experimentslz; see §3). We then translate the
nearest neighbors to Lo (§3 for translation retrieval
method), by taking their translation pairs, and de-
note the resulting vectors with {n?), o n,(f)} € ls.
We define the unidirectional metric as

ar,—r,(c) =
W\ * @4\"
p (COS(’Ul,TLi )) 7(005(1}27ni ))
=1 1=1

p is the Pearson correlation coefficient '3. The
bidirectional metric as the arithmetic mean over the
two directions:

AL1—Ly (C) +ar,—1, (C)
2

QL1 Ly (C) =

We refer to this alignment strategy as DISTA-
STATIC.

Contextualised Word Embeddings. We now
turn to detailing metrics that are analogous to
DISTA-STATIC, but instead use CEs 4.

""In a subsequent paper (Karidi et al., 2024), we present
the variants of the standard approach, for contextualised word
embeddings, and perform extensive evaluation on them. Here,
we choose two variants (DISTA-AVE and DISTA-CLOUD) to
use in our analysis.

12We experimented with other values of k and selected the
one that overall correlated the most with human-judgment
based evaluations (see §5.4).

3We conducted experiments with Spearman correlation, as
well as Kendall 7. They present similar trends and are omitted
due to space considerations.

14We denote contextualised word embeddings by CEs.

Arm

Hand
Nose
Body

Figure 4: Tllustration of nearest neighbors in the contex-
tualized space. t-SNE plot in 2D of point clouds for the
words: arm, hand, nose, and body. The nearest neigh-
bor of hand is arm, as they have the minimal distance
among all pairs of points from distinct clouds.

DISTA-AVE. For word w € L, we extract its rep-
resentation from all layers (if w is tokenized to
multiple subwords, we average over the subword
representations). We average the outputs from lay-
ers 1-12 to define the final vector for w.'> We then
proceed with the SNC process, as described with
DISTA-STATIC.

DISTA-CLOUD. For word w € L, we extract
all sentences (with a threshold of 1000) that w ap-
pears in, from an auxiliary corpus (see §3). We
extract the CEs (from layer 12, if it is tokenized
to subwords, we average over them) for w from
each of the sentences. Denote these vectors with
Vi = {v1,, -, Uk, } € R7%8. In this setting, each
word w is represented by a point cloud of vectors
V.. Hence, the distance between two words is the
distance between their corresponding point clouds
(see Figure 4). We define point-cloud distance as
follows:

d(w,w) = min, j cos(vi, , V)

We follow the SNC procedure (defined above)
under this definition of distance '°.

SWe follow the approach of averaging over layers as de-
scribed in (Karidi et al., 2024), consistent with the method
used in (Vuli¢ et al., 2020).

!*We experiment with various pooling strategies and com-
putational methods for building the contextualised spaces. For
example, we experiment with pooling from different layers or
combination of layers, similarly to DISTA-AVE. We also ex-
periment with several definitions for the point-cloud distance,
and several processing steps for generating the point-cloud
itself, such as averaging the vectors within the point-cloud
or clustering the set into clusters using a Gaussian Mixture
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Figure 5: Correlation between DISTA and COLEXA. Correlation (Pearson) is computed for various aggregation
methods: (a) concept-level, (b) domain-level and (c) language-level. All correlation values are significant with

p < 0.05.

COLEXA DIST-STATIC DIST-CLOUD

« fingernail March thirty
& sweep August fifty
B cover January twelve
‘g recognize rise corner
&  endure groan soft
g wool set round

Table 1: Most and least aligned words. Word-level
alignment, averaged across languages.

5 Comparing COLEXA and DISTA

The main goal of this paper is to asses the fea-
sibility of applying two key types of alignment
metrics, colexification-based (COLEXA §4.1) and
distribution-based (DISTA §4.2) , within an inter-
face setting, allowing for a direct empirical com-
parison of their outcomes. To this end, we initially
establish the metrics in a manner that allows for a
technically viable comparison (§2). We examine
the convergence of their empirical findings as well
as compare different metrics within the same cate-
gory, that represent different operationalizations of
a similar approach and data to account for.

5.1 Word-level Comparison

We start with the most straightforward level of com-
parison between metrics, which is their word-level
correlation.!”. Table 1 shows examples of the most
and least aligned words.

Figure 5 shows that: (1) COLEXA is in low
correlation with all of the DISTA methods (high-
est correlation is achieved between COLEXA and

Model. They all yield similar trends, and are not reported due
to space limitations.

17 A metric and a language pair give rise to a vector of align-
ment scores. Full details on how we compute the correlations
at the word, domain, and language levels can be found in
Appendix §B.

DISTA-STATIC, r = 0.34); and (2) DISTA meth-
ods are moderately correlated among themselves
(r = 0.5).

Another natural question to ask is whether
COLEXA and DISTA make similar predictions in
terms of what concepts are more or less aligned
across languages on average. That is, we investi-
gate the correlation between COLEXA and DISTA
over the set of concepts C, where we average the
score over all language pairs.

To conclude, by directly examining the statistical
relation between the scores, we find that although
there are similarities in the trends presented by
the two methodologies, they yield different results
across the board.

5.2 Domain-level Comparison

Alignment metrics between languages are often
used to compare the degree of alignment across
different domains. For example, Thompson et al.
(2020) argue, based on findings with a DISTA-
STATIC metric, that more structured domains tend
to be better aligned across languages. To exam-
ine the alignment at the domain level, we aggre-
gate the word-level alignment over each domain
(without aggregating over languages; see Figure
5). Strikingly, as opposed to the concept-level com-
parison, here the similarity between the DISTA
methods is very high, reaching » = 0.93 (between
DISTA-CLOUD and DISTA-STATIC). In addition,
the correlaton between COLEXA and DISTA highly
increases (reaching » = 0.65 with DISTA-STATIC).
The differentiation both amongst the DISTA meth-
ods themselves and between DISTA and COLEXA
has become less distinct. This finding encourages
the formulation of conclusions at the domain level,
as it presents to be more stable.
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COLEXA DISTA-STATIC DISTA-CLOUD
o Quantity Quantity Quantity
o The House Time Kinship
& Social Politics Kinship Time
E Basic actions Basic actions Agriculture
& Sense perception Motion Spatial relations
g Motion The house The house

Table 2: Most and least aligned domains for various
metrics. Alignment computed by aggregating over lan-
guages and over domains. “Basic actions.” refers to
“Basic actions and technology” and “Agriculture” refers
to “Agriculture and vegetation”.

Most and Least Aligned Domains. For DISTA,
the most aligned domains are Quantity, Time and
Kinship (Figure 6, for DISTA-CLOUD)'®, whereas
the least aligned domains are Motion, Basic Ac-
tions, and Technology and Possession. Similar
trends are reported by Thompson et al. (2020), who
argue that the high degree of alignment of these
domains is related to their structure and organi-
zation along explicit dimensions (e.g., generation:
grandmother/mother/daughter, in the Kinship do-
main). This robust effect exhibited in DISTA is par-
tially preserved with COLEXA; Quantity the most
aligned domain, whereas Time is the 4th aligned.
However, Kinship is the 7th most aligned (out of
the 20 domains). Table 2 presents a few examples
of the differences.

5.3 Factors Influencing Alignment

We turn to analyse whether similar factors influence
the alignment results for DISTA and COLEXA (full
analysis is available in Appendix §C). Examining
both lexical features, such as frequency, concrete-
ness, and rate of change, alongside environmen-
tal features, such as cultural and geographical dis-
tance, we find that at the word level, the correlation
between alignment measures and these features
ranges from none to weak. However, at the domain
level, an interesting finding emerges: the rate of
lexical change is a strong predictor for both DISTA
and COLEXA. Specifically, we observe a correla-
tion of approximately » ~ —0.6 for DISTA and
r = —0.81 for COLEXA. This interesting result
means that words that undergo faster lexical change
are less aligned across languages. This aligns with
findings that polysemy plays a significant role in
the rate of lexical change (Brown and Witkowski,

'8This trend persists for all DISTA methods and various k
values.

1983; Thompson et al., 2020), and corresponds
with observations that the rate of change is nega-
tively correlated with prototypicality (how repre-
sentative a word is of its category) (Dubossarsky
etal., 2017).

5.4 Comparing Against A Reference Point

Unlike many NLP tasks, when comparing the
meanings of translation equivalents across lan-
guages, there is no ground truth to reference against.
Instead, datasets and tasks from cognitive science
literature, such as similarity in picture naming or
translation norms, can serve as converging evi-
dence for validating different measures.

This comparison has several caveats: first, it
applies to a limited set of languages and stimuli;
second, it is not clear that this measure captures
the same notion of similarity we aim to quantify
using metrics for cross-lingual lexical similarity.
We hereby detail these measures and use them as a
reference point for comparison.

Multipic. MultiPic is a standardized set of 750
drawings of concrete objects with name agreement
norms for six European languages (English, Span-
ish, Netherlands Dutch, German, French and Ital-
ian). For each picture and language, the norm is
an information statistic that reflects the level of
agreement across participants.

We filter the pictures in the Multipic dataset
to only include pictures with concepts from NEL,
which results in a total of 194 pictures. We compute
the correlation between the agreement scores (aver-
age agreement score over all languages) for these
pictures and the different DISTA and COLEXA
metrics for the corresponding concepts. Results
show that while DISTA-AVE and DISTA-STATIC
are moderately correlated with Multipic (r ~ 0.3,
p < 0.05), the other methods are weakly to not
correlated with the dataset.

TransSim. TransSim is a dataset of 562 Dutch-
English translation pairs together with a human
similarity rating between each pair. We again fil-
ter the dataset to include word pairs that are cov-
ered by NEL, resulting in 187 Dutch—English trans-
lation similarity judgment scores. We compute
the correlation between English-Dutch translation
similarity judgements and the alignment metrics
for English-Dutch, aggregated by domain (domain-
level). A relatively high correlation is presented,
where DISTA-STATIC (r = 0.59, p < 0.05) and
DISTA-AVE (r = 0.51, p < 0.05) rank highest.
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However, COLEXA is only weakly correlated with
TransSim (r ~ 0.1, p < 0.05).

To conclude, when comparing both DISTA and
COLEXA to norm-based measures, we find that
DISTA shows a moderate correlation with some
measures, whereas COLEXA does not. This dis-
tinction suggests that DISTA may be more suitable
for detailed analysis of cross-lingual similarity as
it is better aligned with human judgements, while
COLEXA might be better suited for coarse-grained
analysis. However, since these external measures
apply only to a subset of languages and concepts,
this limitation should be considered. Therefore,
we defer a more comprehensive multi-approach
comparison to future work.

6 Qualitative Analysis

To further understand the nature of alignment and
convergence of the various approaches, we man-
ually examine data from four randomly-selected
languages pairs (English-German, German-Arabic,
Arabic-Hebrew and Spanish-Hindi); specifically,
for each method and language pair we take the
top/bottom aligned 100 words, together with
their 10 nearest neighbors in each language (for
COLEXA we consider colexifications instead of
neighbors). Even within the most aligned domains,
there is variability in the order of aligned words
(e.g., in DISTA-CLOUD numbers such as seven
and fifty are the most aligned, whereas in DISTA -
STATIC it is months, such as March). However,
words in highly aligned domains tend to greatly
overlap in their neighbors, and somewhat preserve
their order of distances.

It is difficult to draw conclusions at the word-
level just by looking at the raw data (this is also re-
flected in our empirical analysis in disagreement be-
tween the methodologies, §5.1). This is especially
true for COLEXA or for the least aligned words. We
do find, however, that certain words exhibit highly
consistent colexification patterns across languages.
For instance, the word fingernail frequently colexi-
fies with the word nail. Based on this analysis, we
hypothesize that words that colexify conceptualy
similar senses (e.g., fingernail and nail/hand and
clawl/etc.) tend to have more universal colexifica-
tion patterns and in turn more aligned (this echoes
the finding that conceptual similarity shape colexi-
fication (Karjus et al., 2021b)), and that this is also
reflected by high alignment in DISTA as this type
of polysemy is less prone to affect the dissimilarity

of neighbors across languages. Conversely, when
two distinct senses are colexified (e.g., bank in En-
glish colexifies a sense of financial institution and
a sense of terrain), the neighbors are likely a mix
of words relating to each sense, leading to lower
distributional alignment.

7 Discussion

Distribution-based and colexification-based ap-
proaches both capture a data-driven notion of simi-
larity between the lexicons of different languages.
However, they rely on different methodologies
and assumptions about the data that should be ac-
counted for, and are commonly applied in distinct
ways. This raises the question of whether they are
comparable, and if so — whether their predictions
converge.

We find that despite the inherent differences be-
tween the methods, when viewed at the level of
domains, the two appraoches show similar trends.
We also find that the rate of lexical change is a
strong predictor for alignment, words that change
less have more stable meaning across languages.
In contrast to COLEXA, DISTA is significantly cor-
related with extrinsic measures for meaning align-
ment across languages. A possible explanation is
that COLEXA captures coarser aspects of meaning
or that it is more suitable for scenarios which re-
quire aggregation across a more extensive range of
languages. We still find this resource highly valu-
able, especially for investigations of high-level pat-
terns of lexical similarity (e.g., variation in emotion
concepts over the worlds languages (Jackson et al.,
2019)), since it is less prone to noise stemming
from the training data than DISTA. However, for a
more fine-grained analysis or when less languages
are available, we encourage the use of DISTA.

In this paper we lay the ground for a direct com-
parison of DISTA and COLEXA. Our findings call
for a more nuanced discussion of lexical alignment,
and also underscore the importance of taking into
account multiple approaches for similarity when
drawing empirical conclusions about lexical simi-
larity. Different approaches and settings may well
lead to different conclusions, which highlights the
importance of justifying the technical approach
taken in each paper.

335



References

David Allen and Kathy Conklin. 2013. Cross-linguistic
similarity norms for japanese-english translation
equivalents. Behavior research methods, 46.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.
A robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 789—798, Melbourne, Australia. As-
sociation for Computational Linguistics.

Hongchang Bao, Bradley Hauer, and Grzegorz Kondrak.
2021. On universal colexifications. In Proceedings
of the 11th Global Wordnet Conference, pages 1-7,
University of South Africa (UNISA). Global Wordnet
Association.

George Barnett. 1977. Bilingual semantic organizationa
multidimensional analysis. Journal of Cross-cultural
Psychology, 8:315-330.

Lisa Beinborn and Rochelle Choenni. 2020. Semantic
drift in multilingual representations. Computational
Linguistics, 46:1-34.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Cecil Brown and Stanley Witkowski. 1983. Polysemy,
lexical change and cultural importance. Man, 18:72.

Allan Burns. 1994. Review of John A. Lucy, grammat-
ical categories and cognition: A case study of the
linguistic relativity hypothesis. Language in Society -
LANG SOC, 23:445-448.

Yiyi Chen, Russa Biswas, and Johannes Bjerva. 2023.
Colex2Lang: Language embeddings from semantic
typology. In Proceedings of the 24th Nordic Con-
ference on Computational Linguistics (NoDaLiDa),
pages 673684, Térshavn, Faroe Islands. University
of Tartu Library.

Alexis Conneau, Guillaume Lample, Marc’ Aurelio Ran-
zato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word translation without parallel data. The Inter-
national Conference on Learning Representations
(ICLR).

William Croft. 2010. Relativity, linguistic variation and
language universals. CogniTextes, 4.

William Croft. 2022. On two mathematical representa-
tions for “semantic maps”. Zeitschrift fiir Sprachwis-
senschaft, 41.

Johannes Dellert, Thora Daneyko, Alla Miinch, Alina
Ladygina, Armin Buch, Natalie Clarius, Ilja Grigor-
jew, Mohamed Balabel, Hizniye Isabella Boga, Za-
lina Baysarova, et al. 2020. Northeuralex: A wide-
coverage lexical database of northern eurasia. Lan-
guage resources and evaluation, 54:273-301.

Johannes Dellert, Thora Daneyko, Alla Miinch, Alina
Ladygina, Armin Buch, Natalie Clarius, Ilja Grig-
orjew, Mohamed Balabel, Hizniye Boga, Zalina
Baysarova, Roland Miihlenbernd, Johannes Wahle,
and Gerhard Jager. 2019. NorthEuralex: a wide-
coverage lexical database of Northern Eurasia. Lan-
guage Resources and Evaluation, 54:1-29.

Haim Dubossarsky, Daphna Weinshall, and Eitan Gross-
man. 2017. Outta control: Laws of semantic change
and inherent biases in word representation models.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1136-1145, Copenhagen, Denmark. Association for
Computational Linguistics.

Nicholas Evans and Stephen Levinson. 2009. The myth
of language universals: Language diversity and its
importance for cognitive science. The Behavioral
and Brain Sciences, 32:429-48; discussion 448.

Jerry Fodor. 1975. The Language of Thought. Harvard
University Press.

Alexandre Francois. 2008. Semantic maps and the ty-
pology of colexification. In Martine Vanhove, ed-
itor, From Polysemy to Semantic change: Towards
a Typology of Lexical Semantic Associations, pages
163-215.

William Frawley. 1998. Review of Anna Wierzbicka,
Semantics: primes and universals. Journal of Lin-
guistics, 34:227-297.

Thanasis Georgakopoulos, Eitan Grossman, Dmitry
Nikolaev, and Stéphane Polis. 2022. Universal and
macro-areal patterns in the lexicon: A case-study in
the perception-cognition domain. Linguistic Typol-
0gy, 26:439-487.

Hila Gonen, Shauli Ravfogel, Yanai Elazar, and Yoav
Goldberg. 2020. It’s not greek to mbert: inducing
word-level translations from multilingual bert. arXiv
preprint arXiv:2010.08275.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016. Diachronic word embeddings reveal statisti-
cal laws of semantic change. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1489-1501, Berlin, Germany. Association for Com-
putational Linguistics.

John Harvill, Roxana Girju, and Mark Hasegawa-
Johnson. 2022. Syn2Vec: Synset colexification
graphs for lexical semantic similarity. In Proceed-
ings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5259-5270, Seattle, United States. Association for
Computational Linguistics.

Martin Haspelmath. 2003. The geometry of grammat-
ical meaning: Semantic maps and cross-linguistic
comparison. In Michael Tomasello, editor, The new
psychology of language, pages 217-248. Erlbaum.

336


https://doi.org/10.3758/s13428-013-0389-z
https://doi.org/10.3758/s13428-013-0389-z
https://doi.org/10.3758/s13428-013-0389-z
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/P18-1073
https://aclanthology.org/2021.gwc-1.1
https://doi.org/10.1177/002202217783005
https://doi.org/10.1177/002202217783005
https://doi.org/10.1162/coli_a_00382
https://doi.org/10.1162/coli_a_00382
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.2307/2801765
https://doi.org/10.2307/2801765
https://doi.org/10.1017/S0047404500018078
https://doi.org/10.1017/S0047404500018078
https://doi.org/10.1017/S0047404500018078
https://aclanthology.org/2023.nodalida-1.67
https://aclanthology.org/2023.nodalida-1.67
https://doi.org/10.4000/cognitextes.303
https://doi.org/10.4000/cognitextes.303
https://doi.org/10.1515/zfs-2021-2040
https://doi.org/10.1515/zfs-2021-2040
https://doi.org/10.1007/s10579-019-09480-6
https://doi.org/10.1007/s10579-019-09480-6
https://doi.org/10.18653/v1/D17-1118
https://doi.org/10.18653/v1/D17-1118
https://doi.org/10.1017/S0140525X0999094X
https://doi.org/10.1017/S0140525X0999094X
https://doi.org/10.1017/S0140525X0999094X
https://doi.org/10.1017/S0022226797326899
https://doi.org/10.1017/S0022226797326899
https://doi.org/10.1515/lingty-2021-2088
https://doi.org/10.1515/lingty-2021-2088
https://doi.org/10.1515/lingty-2021-2088
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/2022.naacl-main.386
https://doi.org/10.18653/v1/2022.naacl-main.386

Shreya Havaldar, Sunny Rai, Bhumika Singhal,
Langchen Liu Sharath Chandra Guntuku, and Lyle
Ungar. 2023. Multilingual language models are
not multicultural: A case study in emotion. arXiv
preprint arXiv:2307.01370.

Joshua Jackson, Joseph Watts, Teague Henry, Johann-
Mattis List, Robert Forkel, Peter Mucha, Simon
Greenhill, Russell Gray, and Kristen Lindquist. 2019.
Emotion semantics show both cultural variation and
universal structure. Science, 366.

Mathilde Josserand, Emma Meeussen, Asifa Majid, and
Dan Dediu. 2021. Environment and culture shape
both the colour lexicon and the genetics of colour
perception. Scientific Reports, 11:19095.

Taelin Karidi, Eitan Grossman, and Omri Abend. 2024.
Locally measuring cross-lingual lexical alignment:
A domain and word level perspective. In Empirical

Methods in Natural Language Processing Findings
(EMNLP 2024).

Andres Karjus, Richard Blythe, Simon Kirby, Tianyu
Wang, and Kenny Smith. 2021a. Conceptual similar-
ity and communicative need shape colexification: An
experimental study. Cognitive Science, 45.

Andres Karjus, Richard A Blythe, Simon Kirby, Tianyu
Wang, and Kenny Smith. 2021b. Conceptual sim-
ilarity and communicative need shape colexifica-
tion: An experimental study. Cognitive Science,
45(9):e13035.

Yihong Liu, Haotian Ye, Leonie Weissweiler, and Hin-
rich Schuetze. 2023a. Transfer learning for low-
resource languages based on multilingual colexifi-
cation graphs. arxiv.

Yihong Liu, Haotian Ye, Leonie Weissweiler, Philipp
Wicke, Renhao Pei, Robert Zangenfeind, and Hin-
rich Schuetze. 2023b. A crosslingual investigation of
conceptualization in 1335 languages. In Proceedings
of the 61th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
Toronto, Canada. Association for Computational Lin-
guistics.

Asifa Majid, James Boster, and Melissa Bowerman.
2008. The cross-linguistic categorization of everyday
events: A study of cutting and breaking. Cognition,
109:235-250.

Asifa Majid, Fiona Jordan, and Michael Dunn. 2014.
Semantic systems in closely related languages. Lan-
guage Sciences, 49.

Cornelia Moldovan, Rosa Sanchez-Casas, Josep
Demestre, and Pilar Ferré. 2012. Interference effects
as a function of semantic similarity in the translation
recognition task in bilinguals of catalan and spanish.
PSICOLOGICA, 33:77-110.

Anna Natale, Max Pellert, and David Garcia. 2021.
Colexification networks encode affective meaning.
Affective Science, 2.

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-
belnet: The automatic construction, evaluation and
application of a wide-coverage multilingual semantic
network. Artificial intelligence, 193:217-250.

Mark Pagel, Quentin Atkinson, and Andrew Meade.
2007. Frequency of word-use predicts rates of lexical
evolution throughout indo-european history. Nature,
449:717-20.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996-5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ross Purves, Philipp Striedl, Inhye Kong, and Asifa
Majid. 2023. Conceptualizing landscapes through
language: The role of native language and exper-
tise in the representation of waterbody related terms.
Topics in cognitive science, 15.

Ella Rabinovich, Yang Xu, and Suzanne Stevenson.
2020. The typology of polysemy: A multilingual
distributional framework. (Annual Meeting of the
Cognitive Science Society (CogSci).

Christoph Rzymski, Tiago Tresoldi, Simon Green-
hill, Mei-Shin Wu, Nathanael Schweikhard, Maria
Koptjevskaja-Tamm, Volker Gast, Timotheus Bodt,
Abbie Hantgan, Gereon Kaiping, Sophie Chang, Yun-
fan Lai, Natalia Morozova, Heini Arjava, Nataliia
Hiibler, Ezequiel Koile, Steve Pepper, Mariann Proos,
Briana Epps, and Johann-Mattis List. 2020. The
database of cross-linguistic colexifications, repro-
ducible analysis of cross-linguistic polysemies. Sci-
entific Data, 7.

Jesse Snedeker and Lila Gleitman. 2004. Weaving a
Lexicon. MIT Press.

Jimin Sun, Hwijeen Ahn, Chan Young Park, Yulia
Tsvetkov, and David R. Mortensen. 2021. Cross-
cultural similarity features for cross-lingual transfer
learning of pragmatically motivated tasks. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2403-2414, Online.
Association for Computational Linguistics.

B. Thompson, S. G. Roberts, and G Lupyan. 2018.
Quantifying semantic similarity across languages.
(Annual Meeting of the Cognitive Science Society
(CogSci).

Bill Thompson, Sedn Roberts, and Gary Lupyan. 2020.
Cultural influences on word meanings revealed
through large-scale semantic alignment. Nature Hu-
man Behaviour, 4:1-10.

Natasha Tokowicz, Judith Kroll, Annette Groot, and
Janet van Hell. 2002. Number-of-translation norms
for dutch—english translation pairs: A new tool for
examining language production. Behavior research
methods, instruments, & computers : a journal of the
Psychonomic Society, Inc, 34:435-51.

337


https://doi.org/10.1126/science.aaw8160
https://doi.org/10.1126/science.aaw8160
https://doi.org/10.1038/s41598-021-98550-3
https://doi.org/10.1038/s41598-021-98550-3
https://doi.org/10.1038/s41598-021-98550-3
https://arxiv.org/abs/2410.07239
https://arxiv.org/abs/2410.07239
https://doi.org/10.1111/cogs.13035
https://doi.org/10.1111/cogs.13035
https://doi.org/10.1111/cogs.13035
https://arxiv.org/abs/2305.12818
https://arxiv.org/abs/2305.12818
https://arxiv.org/abs/2305.12818
https://arxiv.org/abs/2305.08475
https://arxiv.org/abs/2305.08475
https://doi.org/10.1016/j.cognition.2008.08.009.
https://doi.org/10.1016/j.cognition.2008.08.009.
https://doi.org/10.1016/j.langsci.2014.11.002
https://doi.org/10.1007/s42761-021-00033-1
https://doi.org/10.1038/nature06176
https://doi.org/10.1038/nature06176
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.1111/tops.12652
https://doi.org/10.1111/tops.12652
https://doi.org/10.1111/tops.12652
https://doi.org/10.1038/s41597-019-0341-x
https://doi.org/10.1038/s41597-019-0341-x
https://doi.org/10.1038/s41597-019-0341-x
https://doi.org/10.18653/v1/2021.eacl-main.204
https://doi.org/10.18653/v1/2021.eacl-main.204
https://doi.org/10.18653/v1/2021.eacl-main.204
https://doi.org/10.1038/s41562-020-0924-8
https://doi.org/10.1038/s41562-020-0924-8
https://doi.org/10.3758/BF03195472
https://doi.org/10.3758/BF03195472
https://doi.org/10.3758/BF03195472

Ake Viberg. 1983. The verbs of perception: a typologi-
cal study. 21(1):123-162.

Ivan Vuli¢, Edoardo Maria Ponti, Anna Korhonen, and
Goran Glavas. 2021. LexFit: Lexical fine-tuning of
pretrained language models. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 5269-5283, Online. As-
sociation for Computational Linguistics.

Ivan Vuli¢, Edoardo Ponti, Robert Litschko, Goran
Glavas, and Anna Korhonen. 2020. Probing pre-
trained language models for lexical semantics.

Benjamin Lee Whorf. 1956. Thought and Reality: Se-
lected Writing, first edition. MIT Press.

Anna Wierzbicka. 1972. Semantic primitives. Frank-
furter anthropologische Bldtter, 11:1-16.

Anna Wierzbicka. 2010. Lexical universals of kinship
and social cognition. Behavioral and Brain Sciences,
33:403 — 404.

Yang Xu, Khang Duong, Barbara Malt, Serena Jiang,
and Mahesh Srinivasan. 2020. Conceptual relations
predict colexification across languages. Cognition,
201.

Hyejin Youn, Logan Sutton, Eric Smith, Cristopher
Moore, Jon Wilkins, Ian Maddieson, William Croft,
and Tanmoy Bhattacharya. 2016. On the universal
structure of human lexical semantics. Proceedings of
the National Academy of Sciences, 113.

A Experimental Setup

Languages. We perform our analysis on a di-
verse set of 16 languages, spanning 7 different top-
level language families from many geographical ar-
eas across Eurasia: English (eng), French (fra), Ital-
ian (ita), German (deu), Dutch (nld), Spanish (spa),
Polish (pol), Finnish (fin), Estonian (est), Turkish
(tur), Chinese (chn), Korean (kor), Japanese (jap),
Hebrew (heb), Hindi (hin) and Arabic (arb).

NorthEuralLex (NEL) is a lexical resource com-
piled from dictionaries and other linguistic re-
sources available for individual languages in North-
ern Eurasia. NEL comprises a list of 1016 distinct
concepts together with their word forms in 107
languages (Table 5). Rare cases where a concept
does not have a realization in a given language are
excluded for that language.

Semantic Domains. We map the concepts in
NEL to domains, using Concepticon.'® There are
20 domains, each containing 22 — 136 concepts:

19https ://concepticon.clld.org/

animals, Agriculture and vegetation, time, quantity,
kinship, basic actions and technology, clothing and
grooming, cognition, emotions and values, food
and drink, modern world, motion, posession, sense
perception, social and political relations, spatial
relations, speech and language, the body, the house
and the physical world.

Lexical and Language Features. We report re-
sults while controlling for a variety of lexical fea-
tures and features of the languages compared. Ge-
ographic distance between languages is computed
as the geodesic distance (distance in an ellipsoid)
between their latitude and longitude coordinates
(taken from Glottologzo). Cultural distance is com-
puted as the proportion of common cultural traits
from a set of 92 non-linguistic cultural traits for 16
societies representing the languages in our analysis,
taken from D-PLACE?! (Thompson et al., 2020).
We use the wordfreq library?? for word frequencies.
We then compute the log-transformed frequency (to
reduce the impact of outliers and extreme values).
Realizations of some concepts, such as tail, evolve
rapidly, while others, such as two evolve at a much
slower rate. This phenomenon is referred to as the
rate of (lexical) change. We use lexical change
rates derived from (Pagel et al., 2007), available for
Russian, Greek, English and Spanish.

Word Embeddings. For static word embed-
dings we use fastText?>? 300-dimension word em-
beddings, trained on Wikipedia using the skip-
gram model (Bojanowski et al., 2017). For
contextualised word embeddings (CWE) we use
mBERT?* (bert-base-multilingual-uncased model)
768-dimension vectors for the 16 languages. To
extract sentences for DISTA-CLOUD, we use the
Leipzig corpus.”” We additionally conduct our
experiments using XLM-RoBERTa-base % for
Di1STA-CLOUD and DISTA-AVE and on 300-dim
word2vec multilingual embeddings %’ for DISTA-
STATIC. Moreover, we run all of the computations
for DISTA-CLOUD and DISTA-AVE with a differ-

20https://glottolog.org/
21https://d—place.org/
22https://pypi.org/project/wordfreq
Bhttps://fasttext.cc/docs/en/
unsupervised-tutorial.html
24https://huggingface.co/
bert-base-multilingual-uncased
25https://corpora.uni—leipzig.de/en?corpusId=
deu_news_2021
26https://huggingface.co/xlm—roberta—base
27https://github.com/Kyubyong/wordvectors
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ent dataset; the Wikipedia section in the Leipzig
Corpus, for the latest year available in each lan-
guage 28. The trends closely match those described
in the paper.?’.

Hyperparameters. For our distributional based
alignments (§4.2), we set £ = 100. We exper-
imented with other values of k£ and selected the
one that overall correlated the most with human-
judgment based evaluations (see §5.4).

B Word, Domain and Language Level
Alignment

We describe here our method for computing cor-
relations at three levels of granularity: word-level,
domain-level, and language-level.

Let M be the set of alignment metrics. We de-
note the raw data as follows:

p(m, Ly, Lj) ¥Ym e M, L, x L; € Q?

For a pair of languages L, L; and a metric m,
p(m, Ly, L;) € RICl is a vector whose i-th coor-
dinate is the alignment value of concept ¢; under
metric m between L, and L;.

We use Pearson’s r (with a two-tailed test for sig-
nificance) for computing correlation, unless stated
otherwise.

Word-level Correlation. The most direct level
of comparison between metrics is their word-level
correlation. Let (g) be the set of all language
pairs (without repetitions), and denote its size with
l=(‘¥|). For m € M, define ji(m) € R!C! the con-
catenation of pi(m, Ly, L;) for all language pairs.
Word-level correlation is the Pearson correlation
between /i(m), for m € M (See Figure 5).

Domain-level Correlation. Alignment metrics
between languages are often used to compare the
degree of alignment across different domains. For
example, Thompson et al. (2020) argue, based on
findings with DISTA-STATIC , that more structured
domains, such as Quantity and Time, tend to be
better aligned across languages. To examine the
alignment at the domain level, for every measure
m € M, we aggregate the word-level alignment
over each domain (without aggregating over lan-
guages). We get /i(m) € R'™ (m is the number of
semantic domains).

28https ://wortschatz.uni-leipzig.de/en
»See Appendix §D for experiments on other architectures
than the ones presented in the main paper.

070

Figure 6: Alignment of domains under DISTA-AVE.
The domains are ranked according to the mean value
of the alignment. Each box represents the distribution
of alignment values (per language pair), for a specific
domain (concepts-level alignment is aggregated within
each domain). The centre line is the median, the box lim-
its are the upper and lower quartiles, and the whiskers
represents the 1.5 interquartile range.

Language-level Correlation. Another natural
question to ask is whether COLEXA and DISTA
make similar predictions in terms of what concepts
are more or less aligned across languages on aver-
age. That is, we investigate the correlation between
COLEXA and DISTA over the set of concepts C,
where we average the score over all language pairs.
Formally, for each alignment measure m; € M:
(A(ma)); = + S, 1yep 1(mi, Ly, Ly) (we av-
erage over languages, not over concepts). Results
are similar in this setting (Figure 5).

C Factors Influencing the Alignment

We examine factors influencing alignment and con-
trol for various features — lexical features like
frequency, concreteness, and rate of lexical change,
as well as environmental features such as geograph-
ical and cultural distance — and compare their
effects on different alignment methodologies (see
Section 5.3)*°. Full results are presented in Table
3.

Correlation With Lexical Features. At the
word-level (u(m;) € RICIY), there is no correlation

We follow the analysis done in (Karidi et al., 2024) and
extend it to other methodologies.
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between both DISTA and COLEXA with respect
to frequency and concreteness. There is a weak-
moderate negative correlation with rate of lexical
change (strongest for DISTA-STATIC, r = —0.32).
When aggregating over domains (p(m;) € R™)
concreteness is still not correlated with any of the
alignment methods; however, the correlation goes
up for frequency (albeit still weakly) and jumps
for rate of change (r ~ —0.6 for DISTA and
r = —0.81 for COLEXA). This interesting result
means that words that undergo faster lexical change
are less aligned across languages.

Correlation With Environmental Features.
The question of how geographical and cultural
factors influence the alignment of words across lan-
guages is a matter of ongoing discussion among
scholars (Youn et al., 2016; Josserand et al., 2021,
e.g.,). Table 3 shows a significant correlation with
geographic and cultural distance for DISTA, with
cultural distance playing a more prominent role.
However, COLEXA metrics only present a weak
correlation with environmental methods. These
results indicate yet another point of divergence be-
tween COLEXA and DISTA.

Controlling for Lexical and Enviromental Fea-
tures. To further examine the influence of lexical
and environmental features on the alignment meth-
ods, we perform partial correlation tests to control
for the various features, and multiple regression
analysis to account for the overall variance that is
explained by them. We compute the partial cor-
relation’! between DISTA and COLEXA, while
controlling for the lexical and environmental fea-
tures.

We find that at the concept-level the two mea-
sures are still moderately correlated with r ~ 0.4.
At the domain-level, DISTA methods are still
highly correlated with one another (r = 0.9),
with a moderate correlation between DISTA and
COLEXA (r =~ 0.5). We use multiple linear regres-
sion to compute the adjusted R-squared value, with
the environmental and lexical features as response
variables. While the features explain ~ 20% of the
variance for DISTA, they only explain a negligi-
ble amount of the variance for COLEXA. However,
when aggregating over domains, the features ex-
plain up to 44% of the variance for DISTA, and

3For the partial correlation computations we use the
pingouin package https://pingouin-stats.org/build/
html/generated/pingouin.partial_corr.html

DISTA DISTA DISTA CA
CLOUD AVE STATIC

C 0.14*  0.1* 025" -0.04
CLT D 0.2 049" 0.13* 0.13*
C 0.03*  0.09* 0.22* -0.02

GEO 0.16* 041* 005  0.05
frequency  © 0.04* 0.06 006 0.01

quency  p 0.33*  0.18* 0 0
concreteness C 0.03 0 0 0.02
D 0.18 0.06 0.1*  0.15%
cate-change  C 20.32°  -0.22* -0.25* -0.14*
g p 0.57° -0.62°  -0.62* -0.81*

Table 3: Correlation with lexical and enviromental fea-
tures. Columns represent the features (CA represents
ColexA, CLT denotes cultural distance and GEO de-
notes geographical distance) and subcolumns represents
concept-level aggregation (C) vs. domain-level aggre-
gation (D). significant correlation with p < 0.05 are
marked by *.

DIiSsTA DISTA DiSsTA CA
CLOUD AVE STATIC
C 0.1*  0.08 027 0
CLT D 0.23* 0.31* 0.11* 0.11*
C 0.1 0.08* 0.15* 0
GEO b 020 039" 01" 003
freauency  C 0 —0.04 0.01 0
quency 0.35*  0.15* 0 0.01
concreteness C 0 0 0 0
D 0.15*  0.1*  0.15* 0.1
rate-change  C 0.25% -0.27* -0.3*  -0.1*
g bp 20.55* -0.48* -0.65* -0.73*

Table 4: Correlation with lexical and enviromental fea-
tures (other architectures). Columns represent the fea-
tures (CA represents ColexA, CLT denotes cultural dis-
tance and GEO denotes geographical distance) and sub-
columns represents concept-level aggregation (C) vs.
domain-level aggregation (D). NO represents Neighbors
Overlap metric. significant correlation with p < 0.05
are marked by *.

69% for ColexA. This suggests that the analysis is
more suitable at the domain-level.

D Other Architectures

In the main paper, we conduct our analysis using
the following models and data: for static word
embeddings, we use fastText’2 300-dimension
word embeddings, trained on Wikipedia using the
skip-gram model (Bojanowski et al., 2017). For

Zhttps://fasttext.cc/docs/en/
unsupervised-tutorial.html
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Figure 7: Correlation between DISTA and COLEXA
(other architectures). Pearson correlation is computed
for different aggregation methods. The upper matrix
represents concept-level correlations, while the bottom
matrix represents domain-level correlations. All corre-
lation values are significant with p < 0.05.

contextualised word embeddings (CWE) we use
mBERT?? (bert-base-multilingual-uncased model)
768-dimension vectors for the 16 languages.To
extract sentences for DISTA-CLOUD, we use the
Leipzig corpus.>*

We additionally conduct our experiments using
XLM-RoBERTa-base *° for DISTA-CLOUD and
DISTA-AVE and on 300-dim word2vec multilin-
gual embeddings 3¢ for DISTA-STATIC.

Moreover, we run all of the computations for
Di1STA-CLOUD and DISTA-AVE with a different
dataset; the Wikipedia section in the Leipzig Cor-
pus, for the latest year available in each language
37 The trends closely match those described in the
paper (see Figure 7 and Table 4).33.

3https://huggingface.co/
bert-base-multilingual-uncased

34https ://corpora.uni-leipzig.de/en?corpusld=
deu_news_2021

35https ://huggingface.co/x1m-roberta-base

36https ://github.com/Kyubyong/wordvectors

37https ://wortschatz.uni-leipzig.de/en

38See Appendix §D for experiments on other architectures
than the ones presented in the main paper.
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ENGLISH FORM CONCEPT DOMAIN
mother mutter:N  Kinship
mind verstand::N  Cognition
go gehen::V Motion

Table 5: Concepts and their domains. Examples of con-
cepts, labled according to the NEL dataset (§3). Each
concept belongs to a semantic domain (“Domain” col-
umn). The “English Form” column contains the lexical-
ization of each concept in English.
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