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Abstract

Recent advances in computational linguistics
include simulating the emergence of human-
like languages with interacting neural network
agents, starting from sets of random symbols.
The recently introduced NeLLCom framework
(Lian et al., 2023) allows agents to first learn an
artificial language and then use it to communi-
cate, with the aim of studying the emergence of
specific linguistics properties. We extend this
framework (NeLLCom-X) by introducing more
realistic role-alternating agents and group com-
munication in order to investigate the interplay
between language learnability, communication
pressures, and group size effects. We validate
NeLLCom-X by replicating key findings from
prior research simulating the emergence of a
word-order/case-marking trade-off. Next, we
investigate how interaction affects linguistic
convergence and emergence of the trade-off.
The novel framework facilitates future simula-
tions of diverse linguistic aspects, emphasizing
the importance of interaction and group dynam-
ics in language evolution.

1 Introduction

Human language can be viewed as a complex
adaptive dynamical system (Fitch, 2007; Steels,
2000; Beckner et al., 2009), in which individual
behaviours of language users drive linguistic emer-
gence and change at the population level. Lan-
guages are shaped by the brains of individuals
who are learning them (Christiansen and Chater,
2008; Kirby et al., 2014) and novel conventions
and meanings are negotiated during interaction and
language use (Fusaroli and Tylén, 2012; Nambood-
iripad et al., 2016; Garrod et al., 2007). The effect
of these mechanisms on linguistic patterns has been
studied extensively, and it is recognized that lan-
guage systems do not spring from the mind of a
single individual, but are the result of constant rein-
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terpretation and filtering through populations of hu-
man minds. As such, language users are not mere
passive learners, but unconsciously and gradually
contribute to language change.

Recently, this interactive and dynamic property
of human language was recognized as a key fac-
tor to improve AI (Mikolov et al., 2018), lead-
ing to a large interest in simulating the emer-
gence of human-like languages with neural net-
work agents (Havrylov and Titov, 2017; Kottur
et al., 2017; Lazaridou et al., 2017; Lazaridou and
Baroni, 2020). Typically, a pair of agents is simu-
lated where a speaking agent tries to help a listener
recover an intended meaning by generating a mes-
sage the listener can interpret. Early frameworks
have been progressively expanded to display impor-
tant aspects of human language and communica-
tion, like generational transmission (Li and Bowl-
ing, 2019; Chaabouni et al., 2019; Lian et al., 2021;
Chaabouni et al., 2022), group interaction (Tiele-
man et al., 2019; Chaabouni et al., 2022; Rita et al.,
2022; Michel et al., 2023; Kim and Oh, 2021) and
other aspects (Galke and Raviv, 2024). Within this
body of work, most studies start from sets of ran-
dom symbols, with a strong focus on tracking the
emergence of human-like language properties such
as compositionality (Chaabouni et al., 2020, 2022;
Li and Bowling, 2019; Conklin and Smith, 2022)
or principles of lexical organization like Zipf’s law
of abbreviation (Rita et al., 2020).

However, neural agent emergent communication
frameworks could also be a valuable tool to simu-
late the evolution of more specific aspects of lan-
guage. Studies with human participants have ad-
dressed many other aspects such as specific syntac-
tic patterns like word order or morphology (Saldana
et al., 2021b; Culbertson et al., 2012; Christensen
et al., 2016; Motamedi et al., 2022), a tendency
to reduce dependency lengths (Fedzechkina et al.,
2018; Saldana et al., 2021a), colexification patterns
and the role of iconicity or metaphor in the emer-
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Figure 1: Overview of the NeLLCom-X framework.

gence of new meanings (Karjus et al., 2021; Ver-
hoef et al., 2015, 2016, 2022; Tamariz et al., 2018),
and combinatorial organisation of basic building
blocks (Roberts and Galantucci, 2012; Verhoef,
2012; Verhoef et al., 2014). What most of these
studies have in common is that participants are
asked to learn and/or interact with pre-defined arti-
ficial languages specifically designed by the exper-
imenters to study the linguistic property of interest.
However, the existing neural-agent communica-
tion frameworks (often based on EGG (Kharitonov
et al., 2019)), do not enable training agents on pre-
defined languages. A different body of work has
studied the learnability by neural networks of vari-
ous types of artificial languages (Lupyan and Chris-
tiansen, 2002; Wang and Eisner, 2016; Bisazza
et al., 2021; White and Cotterell, 2021; Hopkins,
2022; Kallini et al., 2024). This paradigm has led
to important insights, revealing inductive biases of
neural models, but is limited to studying learnabil-
ity in a passive supervised learning setting, unlike
the dynamic and interactive setting in which human
language has evolved.

A framework combining agent communication
with the ability to learn pre-defined artificial lan-
guages was recently introduced by Lian et al.
(2023). In NeLLCom (Neural agent Language
Learning and Communication), agents are first
trained on an initial language through Supervised
Learning, followed by a communication phase
in which a speaking and listening agent continue
learning together through Reinforcement Learning
by optimizing a shared communicative reward.

In this paper, we extend NeLLCom with group
interaction with the aim of studying the interplay
between learnability of specific pre-defined lan-
guages, communication pressures, and group size
effects under the same framework. To this end, we
first extend the vanilla NeLLCom agent to act as
both listener and speaker (i.e. role alteration, cf.
Figure 1), which was identified as an important
gap in the emergent communication literature by

Galke et al. (2022). Then, we design a procedure
to let such ‘full-fledged’ agents interact in pairs
with either similar or different initial language ex-
posure, or in groups of various sizes. With the
extended framework, NeLLCom-X, we replicate
the key findings of Lian et al. (2023) and addi-
tionally show that (i) pairs of agents trained on
different initial languages quickly adapt their utter-
ances towards a mutually understandable language,
(ii) languages used by agents in larger groups be-
come more optimized and less redundant, and (iii)
a word-order/case-marking trade-off emerges not
only in individual speakers, but also at the group
level.

We release NeLLCom-X to promote simulations
of other language aspects where interaction and
group dynamics are expected to play a key role.1

2 Related Work

Role-alternating agents Initially, most work on
emergent communication modeled agents to ful-
fill separate, complimentary roles (i.e. one agent
always speaks, the other always listens). Human
language users are, of course, able to take both
roles. When listing a set of "design features" of
human language, Hockett (1960) refered to inter-
changeability as the ability of language speakers
to reproduce any linguistic message they can un-
derstand. In experiments with humans commu-
nicating via artificial languages, participants also
usually take turns being the speaker and listener
(Kirby et al., 2015; Namboodiripad et al., 2016;
Roberts and Galantucci, 2012; Verhoef et al., 2015,
2022). Therefore, Galke et al. (2022) named role-
alternation as a missing key ingredient to close the
gap between outcomes of simulations and findings
from human language evolution data.

Exceptions to this trend include the role-
alternating architectures of Kottur et al. (2017),
Harding Graesser et al. (2019), and Taillandier et al.

1https://github.com/Yuchen-Lian/NeLLCom-X
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(2023). Recently, Michel et al. (2023) propose a
method to couple a speaker and listener among a
group of speaking and listening agents. By what
they call "partitioning", the listener-part is only
trained to adapt to its associated speaker, while the
listener parameters are frozen during communica-
tion with other speakers. Hence, the speaking and
listening parts of an agent are tied softly, i.e. no
"physical" link via shared modules. While being
workable, this partitioning seems less realistic in
terms of cognitive plausibility and communication,
as human listeners continually refine their under-
standing during all kinds of interactions (speaking
as well as listening). What all these studies have in
common is their focus on protocols emerging from
scratch, i.e. starting from random symbols, which
does not allow for simulations with pre-defined
languages. Closer to our goal, Chaabouni et al.
(2019) train agents on artificial languages and ob-
serve them drift in a simple iterated learning setup
that does not model communication success. They
use sequence-to-sequence networks that can func-
tion both as speaker and listener by representing
both utterances and meanings as sequences and
merging meaning and word embeddings into a sin-
gle weight matrix, tied between input and output.

We combine elements of the above techniques
to design agents that can learn artificial languages
and use them to interact in a realistic manner.

Group communication Natural languages typi-
cally have more than two speakers, and language
structure is shaped by properties of the population.
According to the Linguistic Niche hypothesis, for
example, languages used by larger communities
tend to be simpler than those used in smaller, more
isolated groups (Wray and Grace, 2007; Lupyan
and Dale, 2010). Similarly, experiments with hu-
man participants have shown that interactions in
larger groups can result in more systematic lan-
guages (Raviv et al., 2019). Various emergent
communication simulations have been designed
to investigate group effects, revealing the emer-
gence of natural language phenomena. Tieleman
et al. (2019), for example, found that represen-
tations emerging in groups are less idiosyncratic
and more symbolic. They model a population of
community-autoencoders and since the identities of
the encoder and decoder are not revealed within a
pair, the emerging representations develop in such
way that all decoders can use them to successfully
reconstruct the input, resulting in a more simple

language as also found in humans. Michel et al.
(2023) found that larger agent groups develop more
compositional languages. Harding Graesser et al.
(2019) investigated various language contact sce-
narios with populations of agents that have first de-
veloped distinct languages within their own groups,
and could observe the emergence of simpler ’cre-
ole’ languages, resembling findings from human
language contact. Kim and Oh (2021) vary the
connectivities between agents in groups, and find
the spontaneous emergence of linguistic dialects
in large groups with over a hundred agents hav-
ing only local interactions. Again, none of these
frameworks support training agents on pre-defined
languages, limiting the extent to which they can be
applied to specific human-like linguistic features.

In this work, we showcase how NeLLCom-X
agents can interact in groups using artificial lan-
guages that were specifically designed to study the
emergence of word-order/case-marking patterns.

3 NeLLCom-X

We summarize the original NeLLCom framework
(Lian et al., 2023) and then explain how we extend
it with role alternation and group communication.

3.1 Original Framework
NeLLCom agents exchange simple meanings using
pre-defined artificial languages. To achieve this,
the framework combines: (i) a supervised learn-
ing (SL) phase, during which agents are taught a
language with specific properties, and (ii) a rein-
forcement learning (RL) phase, during which agent
pairs interact via a meaning reconstruction game.

Meanings are triplets m = {A, a, p} represent-
ing simple scenes with an action, agent, and patient,
respectively (e.g. PRAISE, FOX, CROW). An artifi-
cial language defines a mapping between any given
meaning m and utterance u which is a variable-
length sequence of symbols from a fixed-size vo-
cabulary (e.g. ‘Fox praises crow’). According to
the language design, the same meaning may be ex-
pressed by different utterances, and vice versa, the
same utterance may signal different meanings.

The speaking function S : m 7→ u is imple-
mented by a linear-to-RNN network, whereas the
listening function L : u 7→ m is implemented by a
symmetric RNN-to-linear network.2 The sequen-

2To make the two networks fully symmetric, we slightly
modify the original listener architecture of Lian et al. (2023)
by adding a meaning embedding layer before the final softmax.
Preliminary experiments show no visible effect on the results.
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tial components are implemented as a single-layer
Gated Recurrent Unit (Chung et al., 2014). In both
directions, meanings are represented by unordered
tuples instead of sequences to avoid any ordering
bias, differently from Chaabouni et al. (2019) who
also represent meanings as sequences.

The SL phase minimizes the cross-entropy loss
of the predicted words given meaning (speaker)
or the predicted meaning tuple given utterance
(listener) with respect to a gold-standard dataset
D = (m,u). The RL phase maximizes a shared
reward r(m, û) evaluated by the listener’s predic-
tion L(û) given the speaker-generated utterance
û = S(m). More details on the SL and RL proce-
dures, the respective training objectives, and net-
work architectures are given in Appendix A.

Crucially, each agent in the original NeLL-
Com can either function as listener (utterance-to-
meaning) or as speaker (meaning-to-utterance), but
not as both, see Figure 1. While this minimal
setup was sufficient to simulate the emergence of
the word-order/case-marking trade-off (Lian et al.,
2023), it does not allow for role alternation –a miss-
ing key ingredient for realistic simulations of emer-
gent communication (Galke et al., 2022) and a nec-
essary condition to simulate group communication.

3.2 Full-fledged Agent

To realize a full-fledged agent (α) that can speak
and listen while interacting with other agents,
we pair two networks αi = (NS

i , N
L
i ) using two

strategies: parameter sharing and self-play (Fig. 1).

Parameter sharing A common practice in NLP
is tying the weights of the embedding (input)
and softmax (output) layers to maximize perfor-
mance and reduce the number of parameters in
large language models (Press and Wolf, 2017).
Chaabouni et al. (2019) applied this technique to
their sequence-to-sequence utterance↔meaning ar-
chitecture. However in our setup, listening and
speaking are implemented by two separate, sym-
metric networks. We then tie the input embedding
of the speaking network to the output embedding
of the listening network X(NS

i ) = O(NL
i ) (both

representing meanings). Likewise, we tie the input
embedding of the listener to the output embedding
of the speaker X(NL

i ) = O(NS
i ) (both represent-

ing words). Because of these shared parameters,
the speaker training process will also affect the
listener, and vice versa. To balance listener and
speaker optimization during supervised learning,

we alternate between the two after each epoch.3

Self-play Even when word and meaning repre-
sentations are shared, the rest of the speaking and
listening networks remain disjoint, potentially caus-
ing the speaking and listening abilities to drift in dif-
ferent directions. As discussed in Section 2, a real-
istic full-fledged agent should be able to understand
itself at any moment. To ensure this, we let the
agent’s speaking network send messages to its own
listening network while optimizing the shared com-
municative reward r, a procedure known as self-
play in emergent communication literature (Lowe
et al., 2020; Lazaridou et al., 2020). In Section 6.1,
we show empirically that self-play is indeed nec-
essary to preserve the agents’ self-understanding
while their language evolves in interaction.

3.3 Interactive Communication

Given the new full-fledged agent definition, com-
munication becomes possible between two or more
role-alternating agents. We introduce the notion
of turn to denote a minimal communication ses-
sion where RL weight updates take place between
an agent’s speaker and either its own listener or
another agent’s listener:

self_turn(αi) = RL(NS
i , N

L
i ) (1)

inter_turn(αi, αj) = RL(NS
i , N

L
j ) (2)

For example, in our experiments, a turn corre-
sponds to 10 batches of 32 meanings. Note that
interaction can involve agents that were trained on
the same language, or on different initial languages,
as we will show in Section 6.

3As verified in preliminary experiments, results are similar
whether the last epoch is a listening or speaking one.

Algorithm 1: Group Communication
Input: set of SL-trained agents: Agents,

edges in the connectivity graph: G,
n_rounds, σ

1 for r = 1 : n_rounds do
2 comm_turns = shuffle(G)
3 for turni ∈ comm_turns do
4 ispk, ilst = turni

5 αspk = Agents[ispk], αlst = Agents[ilst]
6 inter_turn(αspk, αlst)
7 for α = {αspk, αlst} do
8 α.activation += 1
9 if α.activation >= σ then

10 self_turn(α)
11 α.activation = 0
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Turn scheduling During group communication,
a connectivity graph G is used to define which
agents can communicate with another, and which
cannot. Within G, a node i represents an agent
and a directed edge (i, j) represents a connection
whereby αi can speak to αj , but not necessarily
vice versa. Turn scheduling then proceeds as shown
in Algorithm 1: Before each turn, an edge (i, j) is
sampled without replacement from G. Then αi and
αj perform an inter_turn of meaning reconstruc-
tion game, with αi acting as the speaker and αj as
the listener. Interactive turns are interleaved with
self-play turns at fixed intervals, i.e. every time an
agent has participated in σ×inter_turn, it performs
one self_turn. Once all edges in G have been sam-
pled, a communication round is complete. In this
work, we only consider a setup where all agents
can interact with all other agents (G is a complete
directed graph). We leave an exploration of more
complex configurations such as those studied by
Harding Graesser et al. (2019); Kim and Oh (2021);
Michel et al. (2023) to future work. We set σ = 10
in all interactive experiments, unless differently
specified. Interaction between two agents follows
the same procedure as group communication.

4 Experimental Setup

As our use case, we adopt the same artificial lan-
guages as Lian et al. (2023). These simple verb-
final languages vary in their use of word order
and/or case marking to denote subject and ob-
ject, and were originally proposed by Fedzechkina
et al. (2017) to study the existence of an effort-
informativeness trade-off in human learners.

Artificial languages The meaning space includes
10 entities and 8 actions, resulting in a total of
10×(10−1)×8=720 possible meanings. Utter-
ances can be either SOV or OSV. The order profile
of a language is defined by the proportion of SOV,
e.g. 100% fixed, 80% dominant, 50% maximally
flexible-order. Objects are optionally followed by a
special token ‘mk’ while subjects are never marked.
To simplify the vocabulary learning problem, each
meaning item correspond to exactly one word, lead-
ing to a vocabulary size of 10+8+1=19. Two ex-
ample languages are shown in Table 1.

Evaluation Following Lian et al. (2023), agents
are evaluated on a held-out set of meanings un-
seen during any training phase. The SL phase
is evaluated by listening/speaking accuracy com-

language properties possible utterances
100s+0m 100% SOV; 0% marker Tom Jerry chase

80s+100m 80/20% SOV/OSV Tom Jerry mk chase
100% marker Jerry mk Tom chase

Table 1: Two example languages with varying order
and marking proportions, and corresponding utterances
for the meaning m={A: CHASE, a: TOM, p: JERRY}.

puted against gold dataset D, while the RL phase is
evaluated by meaning reconstruction accuracy, or
communication success. In NeLLCom-X, commu-
nication success denotes two different aspects: self-
understanding when measured between the same
agent’s speaker and listener network, or interactive
communication success when measured between a
speaking agent and a different listener agent:

accself (m,αi) = acc(m,Lαi(Sαi(m)) (3)

accinter(m,αi, αj) = acc(m,Lαj (Sαi(m)) (4)

where acc(m, m̂) is 1 iff the entire meaning is
matched. Interactive success is not symmetric.

Production preferences Besides accuracy, our
main goal is to observe how the properties of a
given language evolve throughout communication.
This is done by recording the proportion of markers
and different orders in a set of utterances generated
by an agent for a held-out meaning set, after filter-
ing out utterances that are not recognized by the
initial grammar. When the focus is on the trade-off,
rather than on a specific word order, we measure
order entropy. Production preferences can be ag-
gregated over an individual agent, a group, or the
entire population.

5 Replicating the Trade-off with
Full-fledged Agents

Before moving to interactive communication, we
validate the new NeLLCom-X framework through
a replication of Lian et al. (2023)’s main findings.
The simple speaker-listener communication setup
of NeLLCom could be seen as a speaker-internal
monitoring mechanism predicting the utterance un-
derstandability (Ferreira, 2019). Here, we com-
pare NeLLCom results to those of NeLLCom-X
full-fledged agents only engaging in self-play. We
use SL to train two sets of agents on the exact
same languages as Lian et al. (2023), respectively:
100s+67m for fixed-order and 50s+67m for flexible-
order. Then, every agent performs 60 self_turn it-
erations causing its production preferences to drift.
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Communicative success
per turn

Marker use
by order entropy

50
s+

67
m

50
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Figure 2: Two populations of 50 agents engaging in self-
play (no interaction) after having learned two flexible-
order, optional-marker languages: one with 67% the
other with 50% marking. Left column: Average commu-
nication success across self-play turns. Right column:
Production preferences: solid diamonds mark the initial
language; each empty circle denotes a full-fledged agent
at the end of self-play; solid circles are the average of
all agents, with error bars showing standard deviation.

After SL, our agents have successfully learnt
both languages but no regularization happens, as
expected. By contrast, the results of self-play av-
eraged over each 50-agent set indicate that both
languages progressively lose markers. Crucially,
the fixed-order language does so faster than the
flexible one, where markers are often necessary for
agent/patient disambiguation. In sum, self-play in
NeLLCom-X results in very similar trends as the
simple NeLLCom setup, confirming the emergence
of a human-like order/marking trade-off (Fedzechk-
ina et al., 2017). Detailed replication results are
provided in Appendix B. Here, we report commu-
nication success during self-play and production
preferences at the end of self-play for the flexible
language (Figure 2, top row). Self-understanding
increases through RL leading to a much more in-
formative language, while production preferences
reveal that this spans from an overall decrease in
order entropy with marking proportion remaining
almost the same on average (solid circle). While
some agents approach the optimal points of fixed-
order/no-marking (bottom-left corner) or flexible-
order/full-marking (top-right), the large variability
in production preferences suggests many agents
settle on less optimized, redundant languages, as
also found by Lian et al. (2023).

Initial marking proportion We reconsider here
a language design choice of Lian et al. (2023)
who, in turn, inherited it from the human study

of Fedzechkina et al. (2017). It was recently found
that human learners exposed to a fixed-order lan-
guage with 75% marking tend to regularize by in-
creasing marker use even though this would make
the language less efficient (Tal et al., 2022). Sim-
ilarly, the dominant proportion (67%) of marking
utterances in our initial languages may push the
agents to prefer marking even when it may be a
redundant strategy. Hence, we propose that a more
balanced distribution of 50% markers and 50/50%
word order may be a better choice to reveal the in-
trinsic preferences of the learners, if there are any,
without biasing them to regularize markers. Results
in Figure 2 (bottom row) show that this language
has overall lower communicative success, as ex-
pected given the higher amount of ambiguous sen-
tences. However, success increases substantially
during interaction while production preferences re-
veal a larger variability in solutions including those
with more fixed order and less markers. We use this
more neutral combination as the default language
in all remaining experiments.

6 Interactive Communication Results

This section presents our main results: in Sec-
tion 6.1 we focus on pairwise interaction and show
how NeLLCom-X can be used to simulate commu-
nication between speakers of different languages,
which was not possible in the original framework;
in Section 6.2 we move to group communication
and study the effect of group dynamics on commu-
nication success and production preferences. Train-
ing details for this section are given in Appendix C.

6.1 Speakers of Different Languages

We study a simple setup with two full-fledged
agents interacting with each other in both ways
αbase↔αother. The first (αb for base) is always
trained on the neutral language 50s+50m, while
the second (αo for other) is trained on one of four
languages with different properties. If interaction
works, we expect (i) agent pairs to negotiate a mu-
tually understandable language and (ii) αb’s lan-
guage to drift in different directions according to
its interlocutor. For production preferences, we
are interested here in the specific word order of
the evolving languages so we plot proportion of
markers against proportion of SOV instead of order
entropy.

The communication success plots in Figure 3
(left column) show a faster convergence and higher
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↔
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Figure 3: Interactive communication between different
language speakers. The first agent is always trained on
50s+50m (αb). Each experiment is repeated with 50
agent pairs.

final accuracy when αo has a stronger order prefer-
ence. As for production preferences (Figure 3, right
column), in the control setting where two neutral
agents interact with each other, most agents move
towards either side of the plot, representing order
regularization. A larger portion of agents regular-
ize towards OSV rather than SOV, which was also
observed by Lian et al. (2023) and might be due
to OSV being the order where the disambiguating
marker appears earlier. Marking decreases only
slightly on average. The next two settings involve
initial languages with few markers and different
order preferences but equally low order entropy
(20s+20m and 80s+20m). As shown by the highly
symmetric trends, these pairs strongly converge
by regularizing towards the dominant order of αo

and further reducing markers. The fourth setting in-
volves a language where marking is widespread and
informative due to high order entropy (50s+80m).

w/ self-play (σ=10) w/o self-play (σ=inf)

Figure 4: Impact of self-play during interaction in pairs
of agents speaking 80s+20m and 20s+20m respectively.
Each experiment is repeated with 20 agent pairs, and
the average communication per turn is shown.

Here, αb shows on average a similar order regular-
ization as in the control setting αb↔αb, but with
a marking increase instead of decrease. Finally,
when involving a dominant-order language with
no clear marking preference (80s+50m), agents
strongly regularize the dominant order, with a ma-
jority of them reducing marker use.

Taken together, these results demonstrate that
(i) pairs of different-language agents succeed in
negotiating a mutually understandable language
in most cases, and (ii) the evolution of an agent’s
language strongly depends on whom they interact
with, thereby matching the expectations for a real-
istic simulation of interactive communication.

Impact of self-play during interactions As ex-
plained in Section 3.3, each agent performs a
turn of self-play after completing σ = 10 turns
of interactive communication, based on prelimi-
nary experiments. We compare this to a setup
where no self-play is performed during interaction
(σ = inf), in the case where two agents start from
a state of poor mutual understanding due to lim-
ited marking and strongly diverging order prefer-
ences (80s+20m vs. 20s+20m). As shown in Fig-
ure 4, disabling self-play leads to extremely low
self-understanding even though communication be-
tween the two agents is successful. To explain this
result, we inspect the production preferences of in-
dividual agent pairs and find that many regularize
their language in opposite directions (e.g. dominant
SOV vs. dominant OSV, both with no markers),
indicating a total decoupling of the speaking and
listening ability. Thus, we confirm that embedding
tying alone does not allow for a realistic interac-
tion simulation, making self-play necessary in our
framework.
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by order entropy
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Figure 5: Interactive communication in groups of same-
language speakers (50s+50m). Right column: Group-
level production preferences (each point is a group) and
Spearman’s correlation ρ between marker use and order
entropy.

6.2 Effect of Group Size

Here we move back to a setup where all agents
are trained on the same neutral and unstable initial
language (50s+50m), but this time they interact
in groups of different sizes (2, 4, 8, 20) using the
standard self-play frequency (σ = 10). To make
results comparable, we ensure the total number of
interactive turns per agent is the same (≈200) in
all setups, by setting comm_round to 100, 34, 15,
and 6 respectively. A total of 200 agents are trained
in each group size setting.4

Figure 5 (left column) shows similar learning
curves for all group sizes, demonstrating that com-
munication is successful even in larger groups.
In all cases, interactive and self-communication
test accuracy start low (25%), but agents collabo-
rate and end up between 60% and 80% success at
inter_turn = 100.

4100 runs of group of 2, 50 of 4, 25 of 8, and 10 of 20. See
all group-specific training details in Appendix C. In this paper,
we only consider fully connected communication graphs and
fix the total amount of trained agents to enable comparison.
We leave an exploration of other group communication factors,
such as density and connectivity, to future work.

For production preferences, we plot proportion
of marking by order entropy as we are again in-
terested in order flexibility rather than the specific
order chosen by the agents (Figure 5, right column).
Here, each circle denotes the average production
preferences of an entire group, as opposed to those
of a single agent. When comparing results across
different group sizes, we see that the variability ob-
served in self-playing agents (Section 5) including
less optimal and redundant strategies, gets smaller
as group size increases. The average entropy in
groups of 8 and 20 is also lower than in groups
of 4 or 2. In the group setting, an agent’s choice
to use a marker does not only depend on its own
order entropy but on that of the entire group. As
a measure of the order/marking trade-off at group
level, we therefore calculate Spearman’s correla-
tion (ρ) between order entropy and marker use,
both computed over all (categorizable) utterances
produced by all agents in a group. As shown in
Figure 5, ρ steadily increases with group size from
relatively weak (0.32) in pairs to strong (0.73) in
groups of 20. This confirms that pairs, like self-
playing agents, still often settle on redundant strate-
gies, while larger groups develop more optimized
languages in which stronger order consistency at
the group level leads to a drop in marker use, con-
firming the emergence of the trade-off also at the
group level.5

7 Discussion and conclusion

We introduced NeLLCom-X, a framework for sim-
ulating neural agent language learning and com-
munication in groups, starting from pre-defined
languages. Agents in this framework display the
cognitively plausible property of interchangeability
(Hockett, 1960), by which anything they can un-
derstand, they can say and vice versa, while also
having the ability to align to other individuals. We
replicated an earlier finding by Lian et al. (2023)
and showed that a word-order/case-marking trade-
off still appears with the adjusted full-fledged agent
architecture. Subsequently, we simulated interac-
tions between agents trained on different languages.
We found that pairs quickly adapt their utterances
towards a mutually understandable language and
that the neutral language drifts in different direc-
tions depending on the preferences of the other

5Even when trained for much longer, the results of pairs
remain similar, suggesting they indeed settle on less optimized
solutions which is not overcome simply by more interactions
(e.g. 200 rounds, ρ = 0.33). See Appendix D.
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agent. Moreover, agents converge on a shared lan-
guage faster, and reach higher accuracy in cases
where one of the two agents has a stronger word
order preference. We then assessed the effect of
performing self-play during interactive communi-
cation and found it necessary to ensure our full-
fledged agents continue to understand themselves,
while also realistically adapting to other individuals.
Lastly, we studied group dynamics and found that
NeLLCom-X agents manage to establish a success-
ful communication system even in larger groups
(up to size 20). Moreover, we generally see a larger
entropy reduction in the languages developed by
larger groups as compared to the languages used
by pairs of agents. This finding aligns with previ-
ous work on group-level emergent communication,
where it was shown that groups developed less id-
iosyncratic languages than pairs (Tieleman et al.,
2019) as well as with human experiments which
demonstrated more systematic languages to emerge
in larger groups (Raviv et al., 2019). In our simu-
lations, pairs and smaller groups sometimes settle
on less optimized and partly still redundant solu-
tions, while large groups end up with more efficient
communication systems.

In the future, NeLLCom-X can be used to study
the influence of learning and group dynamics on
many other language universals. We plan to keep
refining the framework to allow studying differ-
ent connectivities between the agents, multilin-
gual populations and generational transmission of
emerged languages to new agents.

Limitations

Although the use of miniature artificial languages
in our work allows for easily interpretable results
due to abstractions and simplifications that are hard
to achieve with natural human languages, the lan-
guages used currently are very small. This may
limit the possibility of drawing conclusions beyond
proof-of-concept demonstrations. Future work
should increase the size and complexity of the lan-
guages to see if results hold on a larger scale and
compare to patterns found in real human languages,
such as those reported by Levshina et al. (2023).

The meanings in our simulations are also
strongly abstracted away from reality. While our
design is well suited for an investigation of the
word-order/case-marking trade-off, future simula-
tions may need a less constrained meaning space,
possibly using images to represent meanings.

All experiments conducted so far with
NeLLCom-X use the same neural agent ar-
chitecture (GRU), but we know that different
architectures exhibit different inductive biases
(Kuribayashi et al., 2024) or memory constraints
and these factors may influence the findings.
Different types of neural learners, however, can be
easily plugged into NeLLCom-X.

Interaction between individuals in groups is not
the only population factor that shapes language,
but linguistic structure is shaped by both interac-
tion and learning (Kirby et al., 2015). Especially
when languages are learned and transmitted to sub-
sequent generations repeatedly, even small induc-
tive biases may have a large effect on emerging
properties (Thompson et al., 2016). We therefore
plan to augment NeLLCom-X with iterated learn-
ing so that new agents learn from the utterances of
others and become teachers to agents in the next
generation.

Finally, our agents are interacting in groups with
multiple individuals, but they currently do not have
any awareness of agent identities. A more realistic
simulation should take into account that individ-
uals know who they are interacting with, which
becomes even more important when different net-
work structures and connectivities will be explored.
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A More Details about NeLLCom

We list here additional details on the original NeLL-
Com framework (Lian et al., 2023) that also apply
to our extended NeLLCom-X framework.

Speaker and Listener Architectures Both
speaking and listening networks have a single 16-
dim GRU layer. The shared meaning embeddings
have 8-dim and the shared word embeddings have
16-dim. The maximum utterance length for the
speaking decoder is set to 10 words.

Supervised Language Learning During super-
vised learning, the speaker learns the mapping from
the meaning inputs to utterances and vice versa for
the listener. Dataset D is composed of meaning-
utterance pairs (m,u) where u is the gold-standard
generated for m by a predefined grammar. Given
training sample (m,u), speaker’s parameters θS
and listener’s parameters θL are optimized by min-
imizing the cross-entropy loss of the predicted
words and the predicted meaning tuples respec-
tively:

Losssup(S) = −
I∑

i=1

log pθS (w
i|w<i,m) (5)

Losssup(L) = −(log pθL(A|u)
+ log pθL(a|u) + log pθL(p|u)) (6)

where wi...wI are the words composing utterance
u, whereas A, a, p are respectively the action, agent
and patient of meaning m.

Communicative Reward Optimization Com-
munication is implemented by a meaning recon-
struction game following common practice in
the artificial agent communication literature (e.g.
Steels, 1997; Lazaridou et al., 2018). The speaker
generates an utterance û given a meaning m,
and the listener needs to reconstruct meaning m
given û. The policy-based algorithm REINFORCE
(Williams, 1992) is used to maximize a shared re-
ward rL(m, û), defined as the log likelihood of m
given û according to the listener’s model:

rL(m, û) =
∑

e ∈ m={A,a,p}
log pθL(e|û) (7)

Thus, the communication loss becomes:

Losscomm
(S,L) = −rL(m, û)∗

I∑

i=1

log pθS (w
i|w<i,m)

(8)

B Replicating NeLLCom Results with
NeLLCom-X Full-fledged Agents

B.1 Training details for the replication

For this replication (discussed in Section 5), we
make the training configuration as consistent as
possible with Lian et al. (2023). Specifically, we
split the data into 66.7/20% training/testing. The
testing proportion is different from the 33.3% used
in NeLLCom as we would like to match the test
set size we use for interactive communication in
this work. All entities and actions are required to
appear at least once in the training set. The default
Adam optimizer is applied with a learning rate of
0.01. Both SL and self_turn iterate 60 times.6 Each
replication setup is repeated with 50 random seeds.

B.2 Results

Fixed-order self-communication Starting from
the initial marker proportion (66.7%), fixed-order
language learners start to drop the marker (50% at
round 60) during self-communication while main-
taining high understandability (95%) (Figure 6 (a1)
and (a4)). This aligns with the results of Lian et al.
(2023).

Flexible-order self-communication The self-
communication accuracy in the flexible-order lan-
guage (Figure 6 (c1)) starts from a relatively low
success rate as expected, but increases with more
communication rounds. In particular, agents ex-
ceed the communication success they had achieved
at the end of SL on new meanings and finally reach
a much higher accuracy on new meanings at the end
of self-communication (around 75%) comparing to
the communication success they had achieved at
the end of SL.

The average ordering and marking propor-
tions also show that flexible-order language self-
communication results in a very similar pattern
as was found by Lian et al. (2023): (i) The aver-
age word order production (Figure 6 (c2)) shows a
strong preference for OSV, (ii) Although the overall
marking system ends with a similar marker propor-
tion as the initial condition (Figure 6 (c4)), i.e., the
proportion of with-marker utterances is twice the
proportion of no-marker utterances, we can see a
clear shift to conditional marking (Figure 6 (c3))
with an asymmetric use of markers: at round 60,

6As the 66.7% trainset results in 480 samples, which equals
15 batches of 32 samples per turn. This is slightly different
than 10 batches per turn during interactive communication.

255



(1) Comm. success (2) Order use (3) Cond. Marker use (4) Marker user
(a

)1
00

s+
67

m
(b

)1
00

s+
50

m
(c

)5
0s

+6
7m

(d
)5

0s
+5

0m

Figure 6: Replicating the results from Lian et al. (2023) with NeLLCom-X full-fledged self-communicating agents
with fixed-order (a) and flexible order (c) languages. Comparing the original results with a new, more neutral, initial
languages with 50% markers in (b) and (d).

the marker proportion on utterances with OSV or-
der (70%) remains similar to the initial proportion
(66.7%), while the proportion of markers use with
SOV drops to 35%. This order preference and
asymmetric marking system align with the flexible-
order language results of Lian et al. (2023).

Figure 7d shows the production preferences of
individual agents where the distributions of utter-
ance type usage diverge over time, similar to the
independent speaker and listener communication
results in Lian et al. (2023).

Uncertainty vs. Effort Lian et al. (2023) found
that agents balanced uncertainty and effort in a
similar way to human participants in an artificial
language learning task (Fedzechkina et al., 2017).
To evaluate whether a similar uncertainty-effort
trade-off is found with our full-fledged agents, we
apply the same measurement on both fixed and
flexible languages in Figure 7a. Besides the results
from our new framework, we also reproduce the
independent listener-speaker communication result
from Lian et al. (2023) (Figure 7b) and human
results from Fedzechkina et al. (2017) (Figure 7c)
for comparison.

For the fixed-order language, the obvious drop

of the averaged effort fits both Lian et al. (2023)
and Fedzechkina et al. (2017). Among 50 agents,
only one agent significantly increases the use of
markers and ends at around 3.8 words per utterance.
Others reduce the marker, and two agents even end
with 3.0 and 3.05 words per utterance which means
almost no markers are produced. For the flexible-
order language, uncertainty is reduced slightly less
strongly as in the human results, which was also
the case in (Lian et al., 2023).

50% marking in initial language As described
in Section 5, the initial proportion of marker use
of 67%, which was used in Lian et al. (2023) and
inherited from Fedzechkina et al. (2017), may cre-
ate a bias for the agents to regularize towards more
marker use, settling on more redundant languages.
We therefore switched to the more neutral value of
50% markers in the initial language. In Figure 6,
the self-communication results of this new setting
can be directly compared to the original set-up.
As expected, markers are dropped more rapidly in
the fixed-order 50% marker language than in the
67% marker language (Figure 6 (a3) versus Fig-
ure 6 (b3)). In the flexible-order languages, agents
trained on the 67% marker language mostly kept

256



(a) NeLLCom-X self-communication (b) Lian et al. (2023) communication (c) Humans (Fedzechkina et al., 2017)

(d) flex-mk67: Individual production patterns during self-communication.

Figure 7: Replicating the results of Lian et al. (2023): Supervised learning followed by Self-communication with
NeLLCom-X full-fledged agents. All results are averaged over 50 random seeds.

group size # comm_edges # comm_rounds # repeated groups
2 2 = 2 ∗ (2− 1) 100 = ⌈100/(2− 1)⌉ 100 = 200/2
4 12 = 4 ∗ (4− 1) 34 = ⌈100/(4− 1)⌉ 50 = 200/4
8 56 = 8 ∗ (8− 1) 15 = ⌈100/(8− 1)⌉ 25 = 200/8
20 380 = 20 ∗ (20− 1) 6 = ⌈100/(20− 1)⌉ 10 = 200/20

Table 2: Number of communication edges, number of rounds, and number of repeated groups for each group-size
setting. Theaw settings were selected to ensure a fair comparison (i.e. similar amount of computation) across
different group sizes.

using the marker, even though they also developed
a clear preference for one word order, resulting
in redundant strategies. With 50% markers in the
initial language, however, agents drop the marker
when they develop a word order preference despite
being trained on a flexible word order language
(Figure 6 (c3) versus Figure 6 (d3)).

C Training Details for Interactive
Communication Experiments

We explain here the detailed setup for the main ex-
periments discussed in Section 6.1 and Section 6.2.
This setup was determined based on preliminary
experiments to yield optimal results in terms of
learning accuracy (during SL) and communication
success (during RL).

Data splits We first split the data into 80/20%
training/test. The test split is used thoughout the
whole training. We resample 66.7% meanings out
of the first train set (resulting in 480 meaning-
utterance pairs) for the SL training phase. All enti-
ties and actions are required to appear at least once
in the training set.

Then, for each communication turn, 50% mean-
ings are sampled from the first train set (resulting in
320 meanings) and used as the training samples for
this RL turn. Because interactive communication is
always preceded by SL, agents have already learnt
the mapping between words and entities and ac-
tions in the meaning space. Thus we do not enforce
the all-seen-entities/actions rule in RL sampling.

Communication turns and rounds During inter-
active communication, the RL learning rate is set to

257



0.005. For each communication turn, 1 epoch is ap-
plied corresponding to 10 batches of 32 meanings.
We fix the total number of inter_turn per agent to
(approximately) 200 (both speaking and listening
are considered). The total round is then computed
as:

comm_rounds =
⌈

200 ∗ group_size
2 ∗ |commu_edges|

⌉
,

or to simplify the equation in fully connected com-
munication graphs:

comm_rounds =
⌈

100

group_size− 1

⌉
.

For a group of 2, a communication round includes
2 communication edges to be sampled: Gg2 =
{α0 → α1, α1 → α0}. For a group of 4, a commu-
nication round includes 12 = 4×(4−1) communi-
cation edges Gg4 = {A0 → A1, A0 → A2, A0 →
A3, A1 → A0, A1 → A2, A1 → A3, A2 →
A0, A2 → A1, A2 → A3, A3 → A0, A3 →
A1, A3 → A2}. Similarly, |Gg8| = 8× (8− 1) =
56 and |Gg20| = 20× (20− 1) = 380. As for self-
play, each agent performs 200/σ self-play turns in
total during interaction, that is 200/10=20 in the
standard case where σ = 10.

Number of random seeds In Section 6.1 we re-
peat each language combination experiment with
50 pairs of agents (i.e. 100 random seeds). In Sec-
tion 6.2, we set the total number of trained agents
to 200 in each setup, (i.e. number of groups =
200/group_size). The details of rounds and re-
peated groups are listed in Table 2.

Communicative success
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by order entropy

10
0

ro
un

ds
20

0
ro

un
ds

Figure 8: Interactive communication in pairs of same-
language speakers (50s+50m): Production preferences
(right column) do not change much when training for
200 rounds (bottom row) instead of 100 (top).

D Additional Group Experimennts

Figure 8 shows the effect of longer training on the
production preferences of pairs of same-language
speakers (50s+50m). Production preferences (right
column) do not change much after 100 additional
turns (bottom row), and the correlation ρ increases
only marginally from 0.32 to 0.33.
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