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Abstract

We study some Large Language Models to ex-
plore their deficiencies in resolving sense am-
biguities. In this connection, we evaluate their
performance on well-known word sense disam-
biguation datasets. Word Sense Disambigua-
tion (WSD) has been a long-standing NLP prob-
lem, which has given rise to many evaluation
datasets and models over the decades. Re-
cently the emergence of Large Language Mod-
els (LLM) raises much hope in improving accu-
racy. In this work, we evaluate word sense dis-
ambiguation capabilities of four LLMs: Ope-
nAI’s ChatGPT-3.5, Mistral’s 7b parameter
model, Meta’s Llama 70b, and Google’s Gem-
ini Pro. We evaluate many well-established
datasets containing a variety of texts and senses
on these. After observing the performances
of some datasets, we selectively study some
failure cases and identify the reasons for fail-
ures. We explore human judgments that would
correct these failures. Our findings suggest
that many failure cases are related to a lack of
world knowledge and the reasoning to amal-
gamate this knowledge rather than the lack of
linguistic knowledge. We categorize the judg-
ments so that the next generation of LLMs can
improve by incorporating deeper world knowl-
edge and reasoning. We conclude that word
sense disambiguation could serve as a guide for
probing the reasoning power of LLMs to mea-
sure their functional competency. We also list
the accuracy of these datasets. We find that on
many occasions, accuracy drops to below 70%,
which is much less than that of well-performing
existing models.

1 Introduction

Large Language Models have been shown to
achieve human-like linguistic competence. In vari-
ous linguistic tasks, their abilities have been doc-
umented (Kauf et al., 2023), (Akter et al., 2023).
However, conflating linguistic competence with
common-sense reasoning abilities has also been de-

cried among researchers. In one experiment (Zhang
et al., 2023), researchers report that language mod-
els still do not show evidence of cognitive abilities
on par with humans. Some studies (Mahowald
et al., 2024) make the competencies of language
models distinct: formal and functional linguistic
competence. Whereas formal linguistics compe-
tence manifests in forming coherent, fluent, and
syntactically correct texts, functional competence
is evidenced in identifying motives and formulat-
ing a strategy with world knowledge to decipher
the true intention of the writer. Though language
models excel in formal competence, they are not
known to perform at the human level on functional
competence.

Why is functional competence important in NLP
tasks? One answer could be functional competence
could enhance machine translation performance. In
transferring meaning from one language to another,
the senses must be interpreted. Many words have
more than one sense. Divining the sense of a word
requires formal as well as functional competence.
For example, consider the following sentence:

At first blush it seemed that what was
striking about him rested on the fact that
his dress was exotic, his person foreign.

We will consider two definitions of the word
person:

• Human being

• The physical body of a being seen as distinct
from the mind, character

The word person could be interpreted as a “hu-
man being” considering the surrounding collocat-
ing words. An alternative interpretation could be
“The physical body of a being seen as distinct
from the mind, character”, which is the correct
one. While the former interpretation is derived
by applying formal competence, which involves
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Figure 1: LLM is prompted with sense choices

analyzing the syntactic relations among a text’s
constituents, the latter definition can only be deter-
mined after considering the historical use of person.
Arriving at the latter meaning requires greater cog-
nitive deliberation and a broader understanding of
world knowledge. The inability to settle on the
proper meaning would result in suboptimal trans-
lations. That word sense disambiguation (WSD)
helps in machine translation has been documented
in much research (Nguyen et al., 2018), (Neale
et al., 2016), (Jin et al., 2023), (Rios Gonzales
et al., 2017), (Koehn, 2020).

Most well-performing WSD methods rely on su-
pervised machine learning. Using Artificial Neural
Networks have been shown to improve WSD per-
formance (Berend, 2020; Wang and Wang, 2020;
Yap et al., 2020; Kohli, 2021; Zhang et al., 2021;
Wang et al., 2021; Barba et al., 2021a; Mizuki
and Okazaki, 2023; Sainz et al., 2023). Exist-
ing datasets for evaluating WSD performance have
been a by-product of decades-long research, which
have been time-tested, some containing infrequent
use of senses. We intend to use these datasets for
our experiments.

In this study, Large Language Models (LLM)
are prompted with the examples of the datasets
described in Subsection 7.1 1. The responses are
matched and tallied to summarize overall perfor-
mance (Figure 1).

In summary, our contribution is as follows:
we share some insights into why, in some WSD
cases, LLMs fail by highlighting certain functional
deficiencies, and we present findings that WSD
datasets could be repurposed to gauge the reason-
ing power of LLMs.

The remaining sections are organized as follows:
Sections 2, 3, and 4 discuss the similarities and
differences between LLMs and humans. Sections
5, 6, 7, and 8 provide detailed descriptions of our
experiments.

1The experiment could be reproduced with the code avail-
able at Functional Competence of LLMs

2 Linguistic Regularities and Formal
Linguistic Competence

Formal linguistic competence manifests in speak-
ers’ ability to use regularities in a language.
Whether or not a verb precedes an object as in
“Hurricane Milton lashed at the Florida west coast”
is an example of such regularities. These regular-
ities are syntactical. Some relate to subject-verb
agreement: “Millions of citizens, some on their
vacations, are expected to cast their ballots.” Here
are is the proper auxiliary verb instead of is.

Some regularities are morphological, based on
the mechanism of word formation: in "unbreak
my heart, uncry these tears", the verbs have been
formed by adding “un” (Aronoff and Fudeman,
2022). "Mongolian" is formed by transforming
"Mongol" by adding "ian" (Kiparsky, 1982).

It has been shown that LLMs capture these lin-
guistic patterns rivaling humans (Linzen and Ba-
roni, 2021).

3 Divergence between LLMs and Humans

Whereas LLM’s human-like processing of lan-
guage has been documented, some research papers
highlight certain deficiencies compared to humans
in reasoning tasks. Take for example a theory of
mind task and its alteration (Ullman, 2023):

Original task: Here is a bag filled with
popcorn. There is no chocolate in the bag.
Yet, the label on the bag says “chocolate”
and not “popcorn.” Sam finds the bag.
She had never seen the bag before. She
cannot see what is inside the bag. She
reads the label.

Altered task: Here is a bag filled with
popcorn. There is no chocolate in the bag.
The bag is made of transparent plastic,
so you can see what is inside. Yet, the
label on the bag says ’chocolate’ and not
’popcorn.’ Sam finds the bag. She had
never seen the bag before. Sam reads the
label.

GPT3.5 was prompted with predicting the fol-
lowing:

She believes that the bag is full of __,

The machine got the answer right in the original
task (chocolate), but not in the altered version.
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Given LLM’s excellent linguistic ability and yet-
unproven performance on reasoning at the human
level, researchers are apt to classify the LLM capa-
bilities into two: formal and functional competen-
cies. This motivation comes from observing brain
activities. The language network in the human
brain is quite distinct from the day-to-day reason-
ing center as revealed in fMRI scans (Mahowald
et al., 2024). In other words, linguistic abilities
should be separately considered from the world
knowledge.

4 Word Sense Disambiguation and
Functional Competence

In evaluating the WSD performance of the LLMs
we find that some difficult disambiguation tasks
that machines fail to perform, rely on having world
knowledge in addition to linguistic knowledge. We
categorize these with examples. To the best of our
knowledge, these categories have not been previ-
ously documented. Some are related to historical,
old English, cultural, geographical, trade relational,
religious, satiric/figurative use of languages, and
spatial knowledge.

As an example consider the following sentence:

The discovery of the mines of America
... does not seem to have had any very
sensible effect upon the prices of things
in England.

There are eight different senses for the target
word sensible, of which we are listing just two:

• Sense#1: Perceptible by the senses.

• Sense#2: Easily perceived; appreciable.

Sense#1 is a false choice. To detect the correct
choice Sense#2, one must reason with knowledge
involving history, trade relations, and possibly ge-
ography. Here is our analysis of why Sense#2 is
the correct choice:

Historically America and England have been
closely related in terms of commerce. Close rela-
tion implies some effect of events in one country
on another. It is common knowledge that any effect
should be perceivable/appreciable. The writer is
informing of no effect, which is counter-intuitive;
but that is what writers do – provide surprising in-
formation. To disambiguate, knowledge of trade
relations, and possibly geography is needed. And,
of course, good reasoning.
We provide a taxonomy of failure cases in tables 1.
More can be found in the Appendix.

Figure 2: Determining a sense of pine based on a collo-
cating word

5 Background on Word Sense
Disambiguation Evaluation

Many words in the English language are ambigu-
ous, having more than one sense. In WordNet
(Miller et al., 1990), a popular word-sense inven-
tory, plant has four senses as noun and six senses
as verb Table 2.

One simple way to disambiguate a word is to
use a lexicon, such as a dictionary, which provides
definitions of senses. These definitions are com-
pared with the definitions of context words (the
words surrounding the target word). The definition
containing the maximum match would, hopefully,
point to the correct sense of the word (Lesk, 1986).
For example, in Figure 2, sense#1 of both the
words point to a match.

However, definitions in dictionaries tend to be
succinct. Thus, although this context-matching
method is straightforward, it does not address in-
stances where the context words share no com-
mon terms with the definitions. As a result, re-
searchers considered relations between words and
their affinity with each other so that even though
dictionary definitions of context do not overlap,
the relation between them could be used to infer
their co-occurrence. With this in mind, gathering
statistics from the corpus gained traction. Some
statistics were related to the Verb-Object relational
preference (Resnik, 1997), whereas some statistics
concern parts of speech, positions of words, mor-
phology, the dependency structure of the sentence,
and the like. Figure 3 depicts the workings of one
such model.

These models have made use of various ma-
chine learning methods. Evaluating these models
requires a common test set, which, over the years,
has brought to fruition several. In this section, we
will describe some of the evaluation procedures.

145



Table 1: Failure cases - Part I

WKR Example text Remarks
Category Sub Category
1. Old English At first blush it seemed that what was

striking about him rested on the fact
that his dress was exotic, his person
foreign.

“person” refers to a use in 14th-
century English. The correct choice:
The physical body of a being seen as
distinct from the mind, character

2. Cultural
2.1 Current cul-
tural

Any wrestler who will piledrive
Lawler and injure him like he did me
gets five thousand dollars from me!

“piledrive” refers to a maneuver
used in professional wrestling.
The correct choice: To use the
piledriver move.

2.2 Social norm/ hi-
erarchy

Still, the folio Ben looks to publish
will be well beyond the purse of most
scholars, let alone a groundling

“groundling” refers to relatively unini-
tiated compared with the profession-
als. The correct choice: A person of
uncultivated or uncultured taste.

3. Metaphor Egg crates are a much less satisfactory
model for schools.

“Egg crates” is being used to
refer to a closed environment.
The correct choice: A self-contained
class that has no collaboration or
interaction with any other class, and
which is the sole responsibility of a
single teacher.

4. Grammati-
cal/ Linguistic

4.1 Verb-object,
Syntactical

Whosoever will read the story of this
war will find himself much staggered.

“staggered” is being used as a pas-
sive form. Knowledge of verb-object
affinity containing the notion that a
person can be staggered could help.
The correct choice: To cause to doubt
and waver; to make to hesitate;

4.2 Subject-verb;
selectional prefer-
ence

He is a young fellow, not long out of
adolescence, who faunches to set the
world on fire but isn’t sure how to go
about it.

“faunches” can be disambiguated
using the selectional preference
((Resnik, 1996))/subject-verb affinity.
The correct choice: To desire; to
yearn; to covet.

4.3 Adjective-noun
relation knowledge

The beautiful Akee ("Blighia sapida"),
originally brought from the West Coast
of Africa by slave ships, is now a com-
mon tree in the West Indies, and I no-
ticed several fine specimens in Belize.

“Akee” is a tree implied by the com-
mon use of the adjective ‘beautiful’
to modify a noun (tree), also by the
accompanying scientific name for the
species. The correct choice: A tropi-
cal evergreen tree, (noshow=1), re-
lated to the lychee and longan.

WKR Column: Type of World Knowledge Required. The target word is bolded. The correct choice (last column) is the

definition corresponding to the gold key.
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Table 2: Partial enumeration of senses for plant in Word-
Net

Sense ID Definition
sense#1 buildings in an industry
sense#2 a living organism
sense#3 an actor .. in the audience..
sense#4 something planted secretly..

(a) Senses for Plant/Noun in WordNet.

Sense ID Definition
sense#1 put seeds .. into the ground
sense#2 ..set securely
sense#3 ..lay the groundwork for..
sense#4 place into a river

(b) Senses for Plant/Verb in WordNet.

Figure 3: Creating a model for inference

5.1 WSD Evaluation
Researchers have traditionally used datasets that
contain some text and a target word that needs to be
disambiguated. The datasets also include senses for
the ambiguous words. A gold sense key is provided.
The evaluation task consists of presenting a model
with some context and inquiring about the model
to output the sense key that it deems appropriate to
capture the correct sense given the context (Figure
4).

Figure 4: Gold key is provided and matched with the
model’s prediction

Some popular datasets, such as (Fellbaum and
Miller, 1998), have been around for decades. Table
3 provides a list of the datasets.

Since the 1980s, various training methods have
been proposed. Most methods train a model us-
ing statistical (Zhong and Ng, 2010) and/or neural
methods (Wang and Wang, 2020) exploiting the dis-
tribution of words and relationships. The datasets

Table 3: Some popular datasets used for WSD evalua-
tion

Dataset Year Number of
Name Since Annotations
Senseval-2 2001 2,282
Senseval-3 2004 1,850
SemEval-07 2007 455
SemEval-13 2013 1,664
SemEval-15 2015 1,022
SemCor 1994 226,040
OMSTI 2015 1,000,000
Coarse-20 2020 80,000
NUS WSD Corpus 2009 3,854
WiC (Word-in-Context) 2019 5,000
Eurosense Multilingual 2017 15,441,667
FEWS 2021 90,000

Table 4: Performance comparison of notable models.
1: (Blevins and Zettlemoyer, 2020), 2: (Loureiro and
Jorge, 2019), 3: (Zhong and Ng, 2010)

Model Method Accuracy
1 Transformer fine-tuning 80%
2 Transformer with WordNet Graph 75.4%
3 Support Vector Machines 72%

typically provide some training data. In addition,
some knowledge about words and their definitions
is often gleaned from external lexicons such as
WordNet (Miller et al., 1990).

The accuracy of the best-performing models hov-
ers around 80% (Blevins and Zettlemoyer, 2020).
Table 4 shows the performance of some notable
models evaluated on Semeval and Senseval datasets
(Raganato et al., 2017).

5.2 Large Language Models

With the emergence of Transformer models such as
(Devlin et al., 2018; Liu et al., 2019), and the rise in
computation power to process massive amounts of
text, Large Language Models (LLMs) have gained
human-like capabilities. Researchers report these
models, such as (Team et al., 2023; Jiang et al.,
2023; OpenAI, 2022; Achiam et al., 2023; Touvron
et al., 2023), perform well on a vast array of natu-
ral language processing tasks (Akter et al., 2023),
for example, on Knowledge-based QA, Reasoning
and Machine Translation, even though the models
have not been purposely trained to perform these
tasks. This raises hopes for the linguistic commu-
nity that the long-standing problem of WSD would
benefit from the LLM’s superlative language and
reasoning power (Senel et al., 2022). Some re-
search shed light on the inherent notion of sense in
LLMs (Wiedemann et al., 2019).

Several studies report that a closely associated
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task, machine translation, has benefited from these
models. For example, (Lee et al., 2023) reports that
LLMs display some capabilities that go beyond the
literal translation of words, which is much needed
when handling idiomatic expressions.

LLMs are also being explored for tasks that re-
quire reasoning and planning (Zhao et al., 2024),
(Savarimuthu et al., 2024), and augur some emerg-
ing abilities (Wei et al., 2022). However, many
researchers report that much is still lacking in the
reasoning power of LLMs (Li et al., 2024), (Kass-
ner et al., 2023), (Liu et al., 2023), (Hao et al.,
2023), (Sap et al., 2022), (Ji et al., 2023).

With these deficiencies in mind, researchers have
proposed many methods for improving the reason-
ing power of LLMs. (Wu et al., 2024) proposes an
evaluation framework for measuring LLM’s reason-
ing capabilities. (Hao et al., 2023) proposes a rea-
soning framework by priming LLMs with prompt-
ing. (Mialon et al., 2023) and (Ye et al., 2022)
highlight augmentation techniques with external
knowledge to enhance LLMs to reason. (Wu et al.,
2023) emphasizes the interpretability of LLMs in-
tending to improve their inference capabilities.

Some research, such as that conducted by (Sap
et al., 2022), questions the basic formulation of
LLMs by examining their learning processes and
contrasting them with human learning, all within
the framework of Theory of Mind (Premack and
Woodruff, 1978). Additionally, researchers like
(Kim et al., 2022) highlight the issue of LLMs be-
ing overexposed to their training corpora, which
appears to hinder their ability to generalize effec-
tively.

As for WSD, Senel et al. (2022) reports that
LLMs could benefit from learning complex infer-
ence and deep understanding that is often required
for disambiguating words.

6 Methodology

We test the Word Sense Disambiguation capability
of some LLMs. Our choice of methodology for
WSD research is influenced by established knowl-
edge about the pitfalls of existing corpus and sense
definitions.

6.1 Common Issues in WSD Evaluation

1. Same Domain Bias
2. MFS vs LFS
3. Context As a Clue
4. One Sense per Discourse

5. Coarse vs Fine-grained Senses
6. Homonyms vs Polysemous words

1. Same Domain Bias: Same domain bias is
observed when a WSD model is trained and tested
on the same domain or similar domains of text
(Escudero et al., 2000). Oftentimes, the accuracy
drops when an out-of-domain text’s disambiguation
is performed.

Also, LLMs are commonly trained on a masked
word prediction objective, which is to reduce the
following loss function, where w is the withheld
word and context is the surrounding words (Devlin
et al., 2018), (Levine et al., 2019) –

LLM = − log p(w|context) (1)

In both cases, what is learned by the machine de-
pends much on the corpus content.

2. MFS vs LFS: Researchers distinguish between
the Most Frequent Sense (MFS) vs Lesser Frequent
Senses (LFS) of words. Table 5 lists two senses of
appreciate/VERB available in WordNet.

Table 5: Two senses of appreciate. Sense#1 is the MFS,
whereas Sense#2 is the LFS.

Sense#1: recognize with gratitude
Example usage: We must appreciate the
kindness she showed towards us
Sense#2: increase the value of
Example usage: The Germans want to
appreciate the Deutsche Mark

In addition, natural language words follow a Zip-
fian distribution: most words are often used and
re-used, whereas, some words are rarely used (Flo-
rence, 1950). Similarly, the most frequent senses
of a word number are as much as 80%. In fact,
defaulting to the MFS of a word gives a good base-
line performance, which has been difficult to beat
in the pre-neural era. Our work places a substan-
tial focus on the LFS usages and in particular on
rare senses by incorporating datasets meant for rare
sense disambiguation.

3. Context As a Clue: WSD evaluations are
based on treating the context words as the domi-
nant clue. Although not explicitly mentioned in the
literature, it is assumed that the linguistic features
that the context provides act as the primary deter-
minant of a sense. We investigate how much this
assumption holds.

4. One Sense per Discourse: In naturally occur-
ring texts, repeated uses of a word tend to employ
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the same sense (Gale et al., 1992). The word viral
in medical journals would repeatedly use the sense
“relating to or caused by a virus”; medical texts
would scarcely use if at all, the sense “circulated
rapidly and widely from one internet user to an-
other”. This necessitates testing a WSD model on
diverse texts, meaning diverse datasets.

5. Coarse vs Fine-grained Senses: Some sense
inventories such as WordNet contain senses that
are so fine that it is difficult to tell two senses apart.
In fact, various studies have found that annotators
often disagreed on a sense (Table 6). WordNet was
created as a psychometric aid (Miller, 1990), which
requires fine distinctions of senses. In ordinary con-
versations, humans do not employ such distinctions.
Therefore, a proper evaluation of WSD must factor
in other sense inventories that are less fine-grained
(Ide and Wilks, 2006).

Table 6: Two senses of rush. It is hard to tell the differ-
ence between the two.

Sense#1: move fast
Example usage: He rushed down the hall to
receive his guests
Sense#2: act or move at high speed
Example usage: We have to rush!; hurry–it’s
late!

6. Homonyms vs Polysemous words: Homonyms
are words that sound alike but stand for different
or unrelated things. The senses of the word bank
in the “a river bank”, and “withdraw money from
the bank” are not related. Polysemous words, on
the other hand, are related. For example, the word
grasp in the following sentences has related but
slightly different meanings: “to grasp a pencil”,
“to grasp the summary”. It has been observed that
homonyms generally score higher than polysemous
words in terms of disambiguation accuracy. There-
fore, the datasets must contain a fair distribution of
the two kinds of ambiguous words.

6.2 Choice of Datasets
We test four LLMs, which serve as representatives
of LLMs, on some test data available on the pop-
ular datasets mentioned in Table 3. The choice of
datasets chosen has been based on a few criteria:

The data set –

a) must be well cited
b) must contain context and target
c) must provide gold keys
d) must provide variation

e) must be validated by humans
f) must contain a mixture of homonyms
and polysemous words

6.3 Procedure for Collecting Results
We prompt the model with context and choices
culled from the datasets, and record the response to
compare with gold keys (Figure 1). We then tally
the results.

6.4 Baselines
Having gone through the existing literature, we
select the best-performing models for WSD tasks
for comparison in Table 7. In some cases, the au-
thors of a dataset have provided their benchmarks,
which we include. To our knowledge, (Barba
et al., 2021b) is the best-performing model on
WSD. However, Blevins and Zettlemoyer (2020) is
a well-performing model known for its strong per-
formance in few-shot and zero-shot settings. This
we mention in Table 4.

6.5 Setting up LLMs
We prepare the LLMs for generating appropriate
responses by setting some parameters such as "ex-
pert" mode, "non-verbose" mode, and "safe" mode.
The responses sometimes were found to contain
some spurious content. We sanitized the output to
collect the response. It took several iterations to ar-
rive at a proper mechanism to capture the response.

6.6 Four LLMs
We experiment on four recent models. These
models are recognized for their good performance
across various NLP tasks such as Commonsense
Reasoning, World Knowledge, and Reading Com-
prehension (Akter et al., 2023). We opt to choose a
mix of open-source and proprietary models. Each
model is subtly different in how they were trained.

Here are brief descriptions of these models:

6.6.1 ChatGPT-3.5
OpenAI’s ChatGPT-3.5 is demonstrated to per-
form effectively on NLP tasks (Brown et al., 2020).
Since it is a close-sourced model, the model pa-
rameters could not be ascertained. However, we
experiment with it because of its popularity.

6.6.2 Mistral
We experimented on Mistral 7B, which has 7 bil-
lion parameters and is open-source. This model
outperforms other open-source models. The Mis-
tral model uses a Sliding Window Attention, which

149



is particularly suited for long text (Beltagy et al.,
2020), a feature must desired in disambiguation.

6.6.3 Llama

We experiment with the Llama 70 billion param-
eter model, which is open-sourced. We conduct
experiments on it because it has been developed
using open and accessible data. It also possesses
comparable performance with the state-of-the-art
(Touvron et al., 2023).

6.6.4 Gemini Pro

Gemini Pro is Google’s latest language model. On
various benchmark tests, it shows state-of-the-art
performance (Team et al., 2023). Since it is a close-
sourced model, the model parameters could not be
ascertained.

7 Experimentation

The datasets we use in our experiments contain a
variety of sense keys: some use their self-conceived
sense keys extracted from popular text sources such
as Wikipedia and Wiktionary. Some use WordNet
sense keys. Still, others could be found using some
other lexicon’s keys, for example, BabelNet (Nav-
igli and Ponzetto, 2012). Not all datasets present
WSD as a classification task. For example, Word
in Context (WIC) dataset (Pilehvar and Camacho-
Collados, 2018) presents each evaluation sample
as a simple true or false by giving two sentences,
probing the LLM to verify whether the two sen-
tences carry the same meaning of the target word
(Figure 5a and Figure 5b).

(a) WSD posed as confirming whether the two sentences
carry the same meaning for a target word (WIC dataset)

(b) Most datasets pose WSD as a classification task where
a sense key is given as the class

Figure 5: WSD is posed differently in datasets

Data sets are in different formats: some in XML
format while others in simple texts. Some datasets
contain the sense keys, whereas others refer to
senses from external sense inventories. After ex-
tracting the sentences and collecting definitions of
senses suitable for prompting, we prepare prompts
similar to Figure 1.

7.1 Datasets Considered
a. Eurosense Multilingual WSD Dataset (Bovi
et al., 2017)
This dataset is the largest. It also contains multi-
lingual content. However, the dataset lacks proper
human evaluation – random samples reveal that it
has 67.7% inter-annotator agreement. We do not
include this dataset in our experiments.

b. NUS WSD Corpus (Dahlmeier et al., 2009)
This dataset only contains prepositions as the target
of disambiguation. Since it does not provide other
parts of speeches, we do not include this in our
experiments.

c. Unified framework (Raganato et al., 2017)
This dataset contains a collection of datasets that
researchers have been using since the 1990s. Since
some of the most prominent research cites this
dataset as a benchmark, we include this.

d. WiC (Word-in-Context) Dataset (Pilehvar and
Camacho-Collados, 2018)
This dataset poses a WSD task in a novel way – that
of contrasting two sentences to decide on the same-
ness of senses in the target word usage. We surmise
that this test would be a good test on LLM to eval-
uate reasoning. Moreover, this dataset has been
carefully created using VerbNet (Schuler, 2005),
producing verb words as targets of disambiguation.
Since Wiktionary has been used to collect data,
human evaluation was factored in. Therefore, we
include this in our experiments.

e. CoarseWSD-20 (Loureiro et al., 2021)
This dataset has been collected from Wikipedia.
Authors report that random samples prove over
90% of the tags are accurate by validating with
human annotators. We include this dataset in our
experiments.

f. FEWS dataset (Blevins et al., 2021)
This dataset has been created based on the notion
of WSD’s poor performance on rare senses. In fact,
it has been reported that humans outperform the
best baseline models on this dataset. The dataset
has been created from examples and definitions in
Wiktionary, which is human-created. We include
this in our experiments.
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Table 7: Accuracy (%) found in our experiments. The COMPARISON column gives the accuracies obtained by
some well-performing models: Sl. 1-5: (Barba et al., 2021b), Sl. 6: (Pilehvar and Camacho-Collados, 2018), Sl. 7:
(Loureiro et al., 2021), Sl. 8: (Blevins et al., 2021). IAA Column: Inter-Annotator Agreement. *: for Verbs and
Nouns, respectively.

Sl. Dataset OpenAI Mistral Llama Gemini COMPARISON IAA
1 Senseval-2 65.7 65.0 61.0 71.1 82.3 -
2 Senseval-3 61.5 58.8 54.5 70.0 79.9 72.5
3 Semeval-2007 58.4 55.7 49.1 65.4 77.4 72,86*

4 Semeval-2013 70.1 65.9 66.5 74.1 83.2 -
5 Semeval-2015 67.3 64.1 63.0 72.9 85.2 68
6 WiC (Word-in-Context) 59.4 61.6 55.1 65.8 58.0 80
7 CoarseWSD-20 84.1 61.6 33.8 93.9 95.0 -
8 FEWS few-shots 63.0 63.7 60.7 71.0 66.4 80.2

zero-shot 59.0 58.7 56.7 65.0 -

Table 8: Pricing per a million tokens. * Llama was
accessed through replicate.com.

Language Model Input Output
ChatGPT $0.5 $1.5
Mistral $4.0 $12.0
Llama* $0.65 $2.75
Gemini Pro $0.35 $1.05

7.2 Results

We test nine datasets on each of the four LLMs.
Each language model is prompted with a sentence
and told to disambiguate a target word. The re-
sponse of the language model is observed and
recorded. Table 7 shows the accuracy found by
comparing it with the gold sense key.

8 Discussion

Given that the LLMs have not been fine-tuned, it is
understandable from the test results that accuracy is
comparable to the state-of-the-art models on WSD.
Sometimes a language model fails to accurately
identify a sense due to its lack of spatial knowledge;
other times it fails because it seems not to be able
to put the text in historical context; still other times
the lack of application of humans’ social relation
is to be the reason for failure.

Many disambiguation cases require knowledge
from different avenues: political, spatial, cultural,
historical, and the like. Many researchers would
sometimes club these missing pieces as common-
sense knowledge. While investigating the failure
cases, we prompted the LLMs to test their world
knowledge. We discovered that by using differ-
ent prompts, it can be confirmed that the LLMs
appear to possess much of this knowledge. How-
ever, the failure arises when these models do not
leverage knowledge across multiple dimensions to
integrate it effectively. Much research in the av-

enue of reasoning is needed to further advancement
of Artificial General Intelligence, which concurs
with some research findings (Chen et al., 2023).

We stop short of calling our results a benchmark
since not all LLMs we considered are open-source
and the technology is continuously evolving as a
result of which it will be difficult to compare across
generations of LLMs.

9 Conclusion

In this research, we demonstrate that WSD involves
not just the knowledge of language but world
knowledge and the capability of piecing together
facts from multiple sources — in other words, func-
tional competence. Our findings also suggest that
WSD could be used to verify the reasoning power
of LLMs. WSD datasets are aplenty, and some
have been human-validated. We conclude that it
is worth paying heed to improving the WSD ca-
pabilities of LLMs and using these datasets in a
novel way to probe. We also release a taxonomy of
failure cases requiring world knowledge for WSD,
which could further research in this direction.
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A Appendix: A Taxonomy of the Failure
Cases

Table 1 and 9 show a categorization of primary
world knowledge required to decide on a sense.
Reference sentences are given as examples.

B Appendix: Details of the Prompts

In Table 10, 11, 12, and 13 we list the prompts used
to query the language models.
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Table 9: Failure cases - Part II

WKR Example text Remarks
Category Sub Category
5. Common-
sense

5.1. Knowledge of
Geography, Trade
relations, Reason-
ing

The discovery of the mines of Amer-
ica ... does not seem to have had any
very sensible effect upon the prices of
things in England.

“sensible” is being used to provide
counter-intuitive information against
the expectation that America’s affairs
could have a perceivable impact on
that of England. The correct choice:
Easily perceived; appreciable

5.2. Sub-
ject/Domain
knowledge

The iron content of these growth habits
varies as follows: plates and rosettes
honeycomb cabbagehead.

“cabbagehead” is being used to re-
fer to a composition of minerals.
The correct choice: A roughly spher-
ical aggregation of a mineral

6. Satire his lordship was out of humor. That
was the way Chollacombe described
as knaggy an old gager as ever Charles
had had the ill-fortune to serve.

“fortune” carries a sense of inevitabil-
ity. The correct choice: Destiny, espe-
cially favorable

7. Figurative One ambassador sent word to the
duke’s son that his visit should be re-
taliated.

“retaliated” is being used to mean a
reciprocal action. The correct choice:
To repay or requite by an act of the
same kind.

8. Religious
writing

How impertinent that grief was which
served no end!

“impertinent” is found in a reli-
gious text where the word car-
ries the meaning of lack of pa-
tience. The correct choice: insolent,
ill-mannered

9. World
knowledge

Dr. Bertrand tells us that the first pa-
tient he ever magnetized, being at-
tacked by a disease of a hysterical char-
acter, became subject to convulsions
of so long duration and so violent in
character, that he had never, in all his
practice, seen the like ...

“magnetized” is being used to allevi-
ate hysteria. The correct choice: To
hypnotize using mesmerism

WKR Column: Type of World Knowledge Required. The target word is bolded. The correct choice (last column) is the

definition corresponding to the gold key.
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Table 10: Prompts for GPT-3.5-Turbo-0125. We use the same prompt template for both 0-shot and few-shot test
splits for the FEWS dataset. Also, we explicitly instruct the model not to provide any explanations to prevent it
from generating verbose texts.

Dataset Name Prompt
Unified Framework Which of the following senses is correct for the word [TGT] in the following

text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Do not provide explanations. Just output the choice.
CoarseWSD-20 Which of the following sense choices is correct for the word [TGT] in the

following text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Do not provide explanations.
WiC Is the sense of [TGT] same in the following two sentences, say Yes or No:

sentence1: [SEN 1]
sentence2: [SEN 2]
Please do not provide explanations.

FEWS Which of the following senses is correct for the word [TGT] in the following
text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Print a choice. Do not provide explanations. Just output the choice.
Acronyms:
SENSEDEFN: Sense definition;
SEN: Sentence;
TGT: Target word to be disambiguated;
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Table 11: Prompts for Mistral 7B. We use the same prompt template for both 0-shot and few-shot test splits for the
FEWS dataset. Also, we explicitly instruct the model not to provide any explanations to prevent it from generating
verbose texts.

Dataset Name Prompt
Unified Framework Which of the following senses is correct for the word [TGT] in the following

text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Do not provide explanations.
CoarseWSD-20 Which of the following sense choices is correct for the word [TGT] in the

following text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Do not provide explanations.
WiC Is the sense of [TGT] same in the following two sentences, say Yes or No:

sentence1: [SEN 1]
sentence2: [SEN 2]
Please do not provide explanations.

FEWS Which of the following senses is correct for the word [TGT] in the following
text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Print a choice. Do not provide explanations.
Acronyms:
SENSEDEFN: Sense definition;
SEN: Sentence;
TGT: Target word to be disambiguated;
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Table 12: Prompts for Llama-2-70b-chat. We use the same prompt template for both 0-shot and few-shot test splits
for the FEWS dataset. Also, we explicitly instruct the model not to provide any explanations to prevent it from
generating verbose texts.

Dataset Name Prompt
Unified Framework Which of the following senses is correct for the word [TGT] in the following

text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Do not provide explanations. Just output the choice.
CoarseWSD-20 Which of the following sense choices is correct for the word [TGT] in the

following text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Do not provide explanations.
WiC Is the sense of [TGT] same in the following two sentences, say Yes or No:

sentence1: [SEN 1]
sentence2: [SEN 2]
Please do not provide explanations.

FEWS Which of the following senses is correct for the word [TGT] in the following
text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Print a choice. Do not provide explanations. Just output the choice.
Acronyms:
SENSEDEFN: Sense definition;
SEN: Sentence;
TGT: Target word to be disambiguated;
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Table 13: Prompts for Gemini Pro. We use the same prompt template for both 0-shot and few-shot test splits for the
FEWS dataset.

Dataset Name Prompt
Unified Framework Which of the following senses is correct for the word [TGT] in the following

text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

CoarseWSD-20 Which of the following sense choices is correct for the word [TGT] in the
following text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

WiC Is the sense of [TGT] same in the following two sentences, say Yes or No:
sentence1: [SEN 1]
sentence2: [SEN 2]

FEWS Which of the following senses is correct for the word [TGT] in the following
text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Acronyms:
SENSEDEFN: Sense definition;
SEN: Sentence;
TGT: Target word to be disambiguated;
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