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Abstract

Discourse analysis plays a crucial role in Nat-
ural Language Processing, with discourse re-
lation prediction arguably being the most dif-
ficult task in discourse parsing. Previous stud-
ies have generally focused on explicit or im-
plicit discourse relation classification in mono-
logues, leaving dialogue an under-explored do-
main. Facing the data scarcity issue, we pro-
pose to leverage self-training strategies based
on a Transformer backbone. Moreover, we
design the first semi-supervised pipeline that
sequentially predicts discourse structures and
relations. Using 50 examples, our relation pre-
diction module achieves 58.4 in accuracy on
the STAC corpus, close to supervised state-of-
the-art. Full parsing results show notable im-
provements compared to the supervised mod-
els both in-domain (gaming) and cross-domain
(technical chat), with better stability.

1 Introduction

Discourse analysis aims at uncovering the inher-
ent structure of documents, where spans of text –
known as Elementary Discourse Units (EDUs) –
are linked by semantic-pragmatic relations such as
Explanation, Acknowledgment, Contrast, etc. Dis-
cursive information is useful in various downstream
applications, from sentiment analysis or fake news
detection (Bhatia et al., 2015; Karimi and Tang,
2019), to summarization or machine translation
(Chen and Yang, 2021; Chen et al., 2020). Current
data-driven methods for discourse parsing have pre-
dominantly been applied to monologues, leading
to limited availability and generalizability of dis-
course parsers for dialogues. As dialogue data
soared in all kinds of forms, the need for automatic
analysis systems has rapidly increased. Here, we
propose to tackle the crucial problem of discourse
relation identification in dialogues, and show per-
formance of a full discourse parser that could en-
hance these applications.

Discourse relation classification labels the arcs
in a discourse graph and is considered the most
difficult part in discourse parsing: it is a multi-way
classification task involving class imbalance and in-
formation at varied levels, from morpho-syntactics,
to semantics, pragmatics and world knowledge.
Discourse relations are often split into explicit –
triggered by connectives (e.g. because, while...)
thus allegedly easier to classify –, and implicit,
without such markers. However, this distinction is
not annotated in dialogue corpora. We thus cast the
task as identifying all relations, which also makes
for a more practical scenario as in DISRPT shared
task (Zeldes et al., 2021).

One of the main hurdles in developing high-
functioning parsing models is the scarcity of anno-
tated data, along with limitations of supervised ap-
proaches in cross-domain scenarios (Liu and Chen,
2021). Strategic Conversations corpus (STAC)
(Asher et al., 2016) – the most commonly used
dialogue dataset annotated using the Segmented
Discourse Representation Theory (SDRT) (Asher
et al., 2003) – contains merely 1000 short docu-
ments. The labeling effort being expensive in terms
of time and labor costs, it appears unlikely to create
new large-scale expert-annotated datasets. Semi-
supervised strategies are thus appealing. A few
studies proposed weak or distant supervision for
naked structure building (Badene et al., 2019; Li
et al., 2023) while missing the important relation
information. Remarkably, despite recent power-
ful Large Language Models (LLMs) such as Chat-
GPT excel in many NLP tasks, discourse parsing
remains a significant challenge, given their poor
performance (Chan et al., 2023a).

In this paper, we extend the bootstrapping ap-
proach to dialogues with even less annotated data,
by relying on self-training (Yarowsky, 1995) where
a model is used to produce pseudo labels and in-
crease training data, a simple method shown as
effective (Rosenberg et al., 2005). Using the BERT
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model (Devlin et al., 2019) as a base classifier and
applying self-training, we achieve competitive re-
sults on a 16-way classification on STAC using
only 50 dialogues for initial training. We also build
a pipeline upon Li et al. (2023)’s work to perform
full parsing, where we assign discourse relations
on established structures, giving important exten-
sions on semi-supervised approaches for dialogues
until now limited to naked structures. Our pipeline
yields 38.6 micro-F1 score with gold EDUs and
32.8 with predicted EDUs: representing strong
baselines for discourse parsing in dialogues with
minimal supervision. This pipeline, or structure-
then-relation approach, allows for a flexible archi-
tecture and greater generalizability. We further
conduct cross-domain experiments by testing on a
re-annotated subset of Molweni (Li et al., 2020) –
a Ubuntu dataset. Despite the domain difference,
our pipeline shows remarkable performances (link
75.6, link and relation 31.2), outperforming super-
vised SOTA models by a large margin1.

To summarize: we propose (1) a simple and ef-
fective method that requires minimal supervision
for discourse relation prediction; (2) a flexible dis-
course parsing pipeline that sequentially handles
all tasks and exhibits strong generalizability; (3)
a comprehensive comparison and in-depth explo-
ration across in-domain and cross-domain scenar-
ios; and (4) a small human-annotated discourse
dataset in the technical chat domain which we will
make public and support cross-domain evaluation.

2 Related Work

Discourse relation prediction as an individual task
receives rich attention, mostly conducted on the
Penn Discourse Treebank (PDTB) (Webber et al.,
2019). Semi-supervised models have been mostly
limited to implicit relation identification relying on
synthetic data (Xu et al., 2018) or translations (Shi
et al., 2019). These methods create pseudo-labeled
data by using expert-composed rules or convenient
linguistic resources: both in short for dialogues.
The more recent effort utilizes Pre-trained Lan-
guage Models (PLMs) (Shi and Demberg, 2019;
Arslan et al., 2021) as backbones as they show su-
perior performance for many classification tasks.
PLMs have also been used as reliable classifiers
to produce pseudo labels in self-training scenar-
ios (Meng et al., 2020; Yu et al., 2021). Through

1Our code and re-annotated dataset are available at https:
//github.com/chuyuanli/DisRel-w-selftraining

prompt adaptation, Chan et al. (2023b) reveal that
implicit relation prediction is still a tricky task,
even for ChatGPT.

In recent years, there has been an increasing in-
terest in discourse parsing in dialogues. A range
of discourse parsers has emerged, including classic
statistical models (Afantenos et al., 2015; Perret
et al., 2016) and neural architecture models (Shi
and Huang, 2019; Wang et al., 2021; Chi and Rud-
nicky, 2022), some are trained within multi-task
learning framework (Yang et al., 2021; Fan et al.,
2022). Although these supervised models achieve
good performance on STAC corpus, they face lim-
itations when applied to cross-domain scenarios
(Liu and Chen, 2021). To address the challenge
of data scarcity, researchers turn to weakly and
semi-supervised methods (Badene et al., 2019; Li
et al., 2023; Li, 2023). Nishida and Matsumoto
(2022) show that co-training can considerably in-
crease cross-domain performance on monologues,
but they benefit from a larger amount of annotated
data than we do for dialogues. Despite the revolu-
tionary achievements offered by LLMs (Ouyang
et al., 2022; Touvron et al., 2023), they remain no-
tably behind fully and semi-supervised benchmarks
in discourse parsing. Chan et al. (2023a) illustrate
that ChatGPT struggles on STAC with 50% F1 gap
from supervised models. Fan and Jiang (2023) find
that ChatGPT tends to establish discourse struc-
tures in a linear fashion. While in-context learning
methods are helpful, their enhancement is limited.

3 Discourse Parsing Pipeline

A standard full discourse parsing involves three
tasks: EDU segmentation, link attachment, and re-
lation prediction (Figure 1). Most previous work
applies a structure-then-relation approach (Afan-
tenos et al., 2015; Shi and Huang, 2019; Liu and
Chen, 2021). We follow the pipeline by providing
relations on the established discourse structures.

3.1 Preliminary: Structure Construction

Our work is founded on Li et al. (2023) which en-
tails the extraction of discourse structures from the
attention matrices in PLMs. In that work, the origi-
nal BART model (Lewis et al., 2020) is fine-tuned
with dialogue-tailored Sentence Ordering task to
better encode dialogue structures. In each atten-
tion head, the attention values among EDUs can be
seen as edge weights. Thus, by using a Maximum
Spanning Tree algorithm, they obtain discourse
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Figure 1: Semi-supervised discourse parsing pipeline proposition. s are utterances; e are EDUs; r are rhetorical
relations. DisCoDisCo model is proposed in Gessler et al. (2021). BART+SO-STAC is BART model fine-tuned on
Sentence Ordering task (Li et al., 2023). BERT-FT is BERT fine-tuned with self-training for relation prediction.

tree structures. That work proves that with just 50
examples, the optimal attention head can be consis-
tently located. The extracted structures on STAC
are found to be non-trivial, achieving 59.3 F1 score.

Although most previous work begins with gold
EDUs, we consider it crucial to evaluate in a de-
ployed scenario where the parser performs EDU
segmentation first. We thus integrate DisCoDisCo
(Gessler et al., 2021), a straightforward sequence
tagging model pre-trained on a random sample of
50 STAC dialogues, into the complete pipeline.

3.2 Relation Prediction Module

Following the setup in DISRPT shared tasks2, we
regard relation identification as multi-way classi-
fication where we classify every pair of head and
dependent EDUs individually. EDU pairs reflect
local coherence. A model trained in this setting is
easily applicable to other discourse frameworks.

Self-Training: Our relation prediction module
contains a classifier M, a small amount of labeled
data L, and a large amount of unannotated data
U . The training process is as follow: M is trained
on L to provide predictions (pseudo labels) on U ;
then, under pre-defined selection criteria, a subset
S ⊂ U is sampled and merged with L for a new
round of re-training. M can be re-trained for many
rounds until a stopping criterion is met.

Classifier M: Our classifier is an uncased
BERT base model appended with a linear projec-
tion and softmax layer to produce relation proba-
bilities. BERT has shown superior performance in
discourse-related tasks (Chen et al., 2019; Atwell
et al., 2021) and is the language backbone of cur-

2https://github.com/disrpt/sharedtask2023/.

rent SOTA model for relation on STAC (Gessler
et al., 2021). We prepare the input relation pairs by
following the Next Sentence Prediction pattern as
in Shi and Demberg (2019): a [CLS] token begins
the sequence, followed by the first EDU, [SEP],
and the second EDU. As additional feature, we
only add the speaker marker at the beginning of the
EDUs since it is the only feature we found decisive
among the ones used in Gessler et al. (2021).3

Sample Selection Criteria: At each round, M
gives pseudo labels on U . The key challenges are
how to measure the confidence of predictions and
how to select a reliable subset S . We loosely trans-
late the output probabilities in M as its predictive
confidence, enabling sorting predicted pairs. We
then define two selection criteria inspired by Steed-
man et al. (2003); Du et al. (2021), either focusing
on the confidence or combining it with class vari-
ety: (a) Top-k: select the top k pseudo-labeled data.
k starts at 800 and increments up 7800, with an in-
terval of 1000. This range corresponds to the top
N × k′ where k′ ∈ [0.0, 0.1] criterion in Nishida
and Matsumoto (2022); (b) Top-class-k: select the
most confident pseudo-labeled data in each class
and together results in k examples. The label ratio
is maintained between L and the augmented set S .
k has the same value as in Top-k.

4 Molweni Re-Annotation

To evaluate the cross-domain adaptability of our
parsing pipeline, we release a newly annotated
dataset, “Molweni-clean”, sourced from the Mol-
weni corpus (Li et al., 2020). Molweni con-
tains 10, 000 SDRT-annotated documents from the

3Our supervised model gives 64.9 versus feature-enhanced
DisCoDisCo 65.0 (Gessler et al., 2021).
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Avg branch Avg depth %leaf Arc length

Molweni 1.63 6.0 0.39 0.23
∼-clean 1.29 6.8 0.28 0.19

Table 1: Tree properties in original Molweni test set and
Molweni-clean. Arc length is normalized.

Ubuntu Chat Corpus (Lowe et al., 2015). How-
ever, it presents heavily redundant documents and
inconsistent annotations (Li et al., 2023), making
the results less reliable. Therefore, we revised the
annotation of a subset of Molweni to ensure a more
robust evaluation (test only).

4.1 Molweni-clean Construction
Molweni test set comprises 500 documents that
can be grouped into 105 clusters. Each cluster
consists of highly similar dialogues, with only one
or two differing utterances (Li et al., 2023). As the
first step of our re-annotation process, we extract
a single document from each cluster, ensuring that
the selected subset contains no duplicates.

The re-annotation is carried out by 3 Ph.D. stu-
dents who are fluent in English, specialized in se-
mantics and discourse and are familiar with SDRT.
We pre-selected 105 documents from the test set
with no duplicates as our annotation candidates. A
set of 8 documents is used for training the annota-
tors who then annotate 10 documents in common,
and 20 more separately, leading to a final subset of
50 dialogues4. The inter-annotator agreement (Co-
hen’s Kappa) is strong (80.6%) for link attachment
and moderate (57.0%) for full structure, similar
to the scores in STAC (Asher et al., 2016), with
details in Appendix B.1.

4.2 Molweni-clean Statistics
Structural Difference: More adjacent links are
presented in Molweni-clean (76% vs. 68%). Intu-
itively, these are simpler structures. The trees in
Molweni-clean are “taller” and “thinner”, namely,
with smaller branch sizes and larger tree depths. On
average, Molweni-clean trees are one step deeper
than the originally annotated ones, as shown in Ta-
ble 1. Additionally, we find 3 documents in the
original annotation that contain multiple roots, re-
sulting in forest structures instead of trees.

Relation Distribution: Although the class dis-
tribution appears to be alike in the two annotations
(details in Appendix B.2), the partition between

4These annotations are publicly available at URL.

#Doc #Turn #Tok #Spk #Rel
Dataset train dev test /doc /doc /doc type

STAC 947 105 109 11.0 48.4 3.0 16
Molweni 9000 500 500 8.8 104.7 3.5 16
∼-clean - - 50 8.5 91.1 3.2 16

Table 2: STAC, Molweni, and Molweni-clean statistics:
number of documents, averaged speech turns, tokens,
and speakers per document (turn/doc, tok/doc, spk/doc).

the same (intra-) and different (inter-) speakers dif-
fers greatly. In Molweni-clean, we observe a much
higher percentage of intra-speaker relations (14.7%
vs. 3.8%). Certain relations, like Continuation and
Elaboration — which, according to the annotation
guideline, should typically occur more frequently
within the same speaker — show a contrasting dis-
tribution in the original annotation. We present a
case study in Appendix B.3.

5 Experimental Setup

Datasets: For the in-domain scenario (gaming),
we utilize STAC, a corpus comprising of online con-
versations that occur during the Settlers of Catan
game. It contains in total 12, 679 relation pairs in
1161 documents. We follow the split in Shi and
Huang (2019). We randomly select a small part
(700 pairs from 50 documents) of the train set as
labeled data L and the remaining examples as raw
data U . A subset from the development set (664
pairs from 50 documents) is used for validation.
All 1128 pairs (109 documents) in the test set are
reserved for testing. The relation distribution is
highly unbalanced, see Appendix A. For the cross-
domain scenario (gaming to technical chat), we use
documents from STAC as the labeled training data,
and the 50 Molweni-clean documents as testing
data. Table 2 shows the statistics.

Evaluation Metrics: For the relation prediction
module, we report accuracy. For the full parsing
pipeline, we employ the traditional evaluation met-
rics, namely, the micro-averaged F1 scores for un-
labeled attachment (link), relation prediction (rel),
and labeled attachment (full).

Full Parsing Baselines: We compare against the
state-of-art parsing model Structured-Joint (SJ)
(Chi and Rudnicky, 2022). Since we work with
small-data setup, we also compare with a simpler
graph-based Arc-Factored dependency parser (Mc-
Donald et al., 2005), by following the implemen-
tation in Nishida and Matsumoto (2022). Further-
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more, to gain insights from the latest LLMs, we
show results from ChatGPT5 (gpt-3.5-turbo model)
using zero-shot and few-shot in-context learning
(Chan et al., 2023a).

Implementation Details: In the relation pre-
diction module, we use the BERT model from
Huggingface (Wolf et al., 2020) and fine-tune for
10 epochs with batch of size 2, learning rate at
2e − 5, AdamW optimizers with a weight decay
at 0.01. For self-training, we give maximum 20
epochs with early stopping at 5, based on the per-
formance on the validation set. We choose 5 groups
of labeled examples for initial training and report
average accuracy with the standard deviation. The
full pipeline is trained using 50 random documents
from STAC training set and is executed 10 times.

6 Relation Prediction Module

6.1 Self-Training Results

Results for relation prediction are presented in Ta-
ble 3. As baselines, we report scores of majority
class Question answer pair (QA pair), the original
frozen BERT base model and the fine-tuned BERT,
both trained with 700 gold pairs. Using this lat-
ter model as a starting point, we present results for
self-training (second part of Table 3) using two sam-
ple selection criteria: top-k and top-class-k. Both
selection strategies show improved performances
with self-training. When k = 5800, both strate-
gies achieve their best scores. This value echos the
selection strategy rank-above-k′ with k′ = 0.6 in
Nishida and Matsumoto (2022). For top-k selec-
tion, when k is small (k < 2800), the number and
variety of selected pseudo-labeled data are small,
resulting in lower accuracy than BERT-ft. When
k is relaxed, the coverage of different classes of
data increases, and the performance hits the highest
point at 58.1. The accuracy then decreases, proba-
bly due to the noise of inaccurate pseudo-labeled
data. In comparison, the top-class-k strategy con-
sistently brings improvement over the initial BERT-
ft model. It also exhibits an upward trend as k
increases, reaching its peak at the optimal value of
5800, followed by a slight decline.

With a significant amount of unlabelled data,
the self-training process can be repeated multiple
times. However, limited by the data size in STAC,
we can only test iterative learning with few values,
k ∈ [800, 1800, 2800]. We define a stopping cri-

5https://openai.com/blog/chatgpt.

Majority class 27.1
BERT (base 700) 40.10.8
BERT-ft (base 700) 56.61.0

Self-training Top-k Top-class-k
#Pair loop1 loop1 loop2 loop3

+ 800 54.13.0 57.71.1 55.91.1 58.11.2
+ 1800 53.63.6 57.31.6 58.41.0 57.42.1
+ 2800 55.71.9 57.60.3 57.51.5 58.12.2
+ 3800 56.62.1 57.61.6 - -
+ 4800 56.80.5 57.81.2 - -
+ 5800 58.10.8 58.00.7 - -
+ 6800 57.81.0 57.90.9 - -
+ 7800 57.80.7 57.02.3 - -

Table 3: Baselines and BERT-ft model self-training
results with Top-k and Top-class-k selection criteria.
Scores are avg accuracy over 5 runs with standard devia-
tion. Best score per row (resp. per column) is underlined
(resp. bold). - not applicable due to data limitation.

Figure 2: Accuracy of fully supervised model (solid
line) and semi-supervised model with {700, 1500, 2500,
5000, 7500} base training data (dashed lines). x-axis:
#relation pairs; y-axis: model accuracy on STAC.

terion at 3 and proceed with top-class-k selection
strategy. We observe (two rightmost columns) ad-
ditional improvements compared to the first loop,
reaching 58.4 at best. We speculate that the model
is re-trained slowly (smaller amount of data), but
steadily (more reliable examples). We anticipate a
better performance with more in-domain raw data.

6.2 Analysis: Model Calibration

One key challenge in self-training is to select error-
free and high-coverage subsets from the pseudo-
labeled data. Top-class-k selection considers the
coverage aspect and less prone to overfitting. How-
ever, good coverage does not imply reliable predic-
tion. The model could fall short in some classes and
bring in noise. In this section, we study the corre-
lation between the model’s predicted probabilities
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and the probabilities of correctness, also known as
the calibration property (Brier, 1950; Jiang et al.,
2021). We start by showing this property of base
BERT-ft model (details in Appendix C.1): frequent
relations (e.g. QA pair and Comment) present pos-
itive correlation while infrequent ones (e.g. Alter-
nation and Correction) do not and have lower con-
fidence. This shows the advantage of top-class-k
strategy by adding these less confident but reliable
examples. However, it also implies that the base
model is not well-calibrated. We investigate two
factors that may influence the model’s calibration:
enhancing the classifier’s accuracy by training on
more base data and employing iterative training.

Base Model Accuracy: We experimentally ob-
serve that with more base training data, the model
performance continuously increases (e.g.: from
700 to 2500, accuracy increases by 7%). In particu-
lar, we test different sizes of base data: {700, 1500,
2500, 5000, 7500} of relation pairs and re-train the
model using top-class-k (k = 1800) selection cri-
terion. The results are displayed in Figure 2. With
larger base volume, the gap between self-trained
model and fully supervised model keeps decreasing.
Interestingly, when the base data hits 5000, self-
trained model achieves comparable performance as
7500 fully supervised model (66.7%), indicating
that 5000 relation pairs (≈ 350 documents) is a
threshold where self-trained model surpasses its
supervised counterpart.

Iterative Training: The concept of multi-loop
self-training aims to enhance the model’s perfor-
mance by incorporating additional training exam-
ples for the infrequent classes, thereby mitigating
the under-fitting issue. We investigate the correla-
tion evolution with three loops for the less-frequent
labels (details in Appendix C.2). Tellingly, the con-
fidence scores for less and non-frequent relations
such as Alternation and Contrast increase from
[0.2, 0.3] to [0.7, 1.0], coupled with higher predic-
tion accuracy (+ 20% ∼ 40%), as displayed in the
confusion matrix in Figure 9.

7 Full Discourse Parsing

7.1 In-Domain Evaluation and Analysis

In-domain performance is evaluated on the STAC
test set, with results in Table 4 (left part).

Baselines: We replicate the SOTA supervised
model Structured-Joint (SJ) (Chi and Rudnicky,

2022) which uses RoBERTa-base model (Liu et al.,
2019) as backbone and employs 3-dimension at-
tention to encode links and relations jointly. SJ
includes a dummy root in each document for train-
ing, but the link between this node and the first
EDU is counted in the evaluation which artificially
inflates the scores. We replicate SJ with 947 and 50
training data and evaluate with and without dummy
root, the latter matching our own fairer evaluation
setting. Table 4 shows our replicated scores without
dummy root (detailed comparison in Appendix D).
We also compare with a simpler dependency parser
Arc-Factored (AF) (McDonald et al., 2005). AF
parser finds the globally optimal dependency struc-
ture using dynamic programming which can be de-
coded using Maximum Spanning Tree algorithms
such as Eisner (Eisner, 1996). Lastly, we report the
performance of unsupervised LLM ChatGPT-3.5.

Parsing Results: Our pipeline consists of an
EDU segmenter (Gessler et al., 2021), a link attach-
ment module (Li et al., 2023) which we replicate
the experiments and obtain predicted links, and a
pre-trained relation prediction module outlined in
Section 3.2. We sample 50 annotated documents
for supervision along the pipeline. As expected, the
supervised SJ model with 947 training examples
gives the best scores. However, when the training
size drops to 50, our pipeline exhibits better perfor-
mance compared to SJ and AF in both link attach-
ment (59.3% vs. 55.1%) and relation prediction
(62.0% vs. 61.1%) tasks, bringing noteworthy im-
provement of resp. 5 and 14 points in full parsing,
coupled with greater stability. As for GPT-3.5, both
zero-shot and few-shot in-context learning perform
abysmally, suggesting that ChatGPT still suffers
from poor understanding of discourse structures
and that we can not simply depend on powerful
LLMs for this task (Chan et al., 2023a). Using pre-
dicted EDUs, our full parsing score drops nearly 6
points. A similar loss is also observed for end-to-
end RST-style parsing in Nguyen et al. (2021).

Pipeline Error Analysis: We examine the re-
lation composition in each task module: correct
(orange) and wrong relation prediction (blue), and
missing relations due to lack of link attachment
(green) and false EDU segmentation (gray), as dis-
played in Figure 3. The results show that errors
in link attachment account for 40.8%. Among the
correctly attached pairs, 61% are assigned proper
relations. Notably, relations such as QA pair, Elab-
oration, and Acknowledgement are accurately pre-
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Train / Test Train STAC/STAC STAC/Molweni-clean STAC/Molweni

#Doc EDU Link Rel Full Link Rel Full Link Rel Full

SJ 947 - 70.70.5 77.31.2 54.60.7 61.53.4 59.54.3 36.63.8 49.83.6 57.52.9 28.92.8
SJ 50 - 55.13.5 61.12.1 33.62.2 51.16.4 33.69.5 17.25.3 42.95.6 35.210.1 15.35.3
AF 50 - 42.72.8 56.42.5 24.01.0 53.72.1 38.82.9 20.91.1 45.91.5 41.41.0 19.00.7
GPT3.5few shot 3 - 20.7 24.1 7.3 - - - - - -
GPT3.5zero shot - - 20.0 22.8 4.4 - - - - - -

Ours (gold EDU) 50 - 59.30.7 62.01.1 38.60.7 75.60.7 41.33.8 31.22.9 61.50.7 42.82.9 26.31.7
Ours (pred EDU) 50 94.8 52.20.4 61.21.6 32.80.9 ∼ ∼ ∼ ∼ ∼ ∼

Table 4: Left: in-domain parsing results (STAC/STAC) with supervised parsers Structured Joint (SJ) (2022) and
Arc-Factored (AF) (2022), unsupervised model ChatGPT (GPT-3.5) with few-shot (n = 3) in-context learning and
zero-shot (2023a), and our semi-supervised pipeline (with gold and predicted EDU). Right: cross-domain parsing
results on Molweni-clean (STAC/Molweni-clean) and original Molweni (STAC/Molweni). Scores are average
micro-F1 over 10 runs. In 50 train setup, best scores are in bold. “-” not applicable. “∼” same as previous row.

Figure 3: Full parsing result decomposition in relation
prediction (orange and blue), link attachment (green),
and EDU segmentation (grey). Numbers in Appendix E.

dicted, while less frequent relations such as Result,
Explanation, and Correction require further im-
provements. We notice that the missing links often
involve relation types that are accurately predicted
(QA pair and Acknowledgement). This suggests
that there is a high likelihood of accurately deter-
mining the discourse relations of connected pairs -
a potential avenue for future improvement.

7.2 Cross-Domain Evaluation and Analysis

Cross-domain parsing is evaluated on the origi-
nal Molweni test set and Molweni-clean, with SJ
model and our pipeline trained on 50 STAC docu-
ments. Results are shown in Table 4 (right part).

Parsing Results: Our pipeline exhibits excel-
lent performance on all tasks, outperforming the
SJ model in terms of link (+24%), relation (+8%),
and full parsing (+14%) on Molweni-clean dataset.
Our pipeline for link attachment is particularly

remarkable, surpassing even the fully trained SJ
model (75.6 vs. 61.5). On relation prediction,
SJ considers the tree structure and relation jointly,
while our approach focuses on individual relation
pairs. As texts across various genres demonstrate
various structures, our approach, although more lo-
calized, is less influenced by the pre-existing struc-
tures, making it more suitable for general applica-
tion. Furthermore, our model shows greater stabil-
ity, whereas the SJ model is highly influenced by
a particular domain. We notice similar behaviour
on the original Molweni test set. Curiously, both
SJ model and our pipeline exhibit improved perfor-
mances on Molweni-clean, revealing the problem
of inconsistencies in the initial annotation.

Molweni Cross-domain Annotation: We ac-
knowledge that semi-supervised learning has an
affinity for domain transfer. Taking one step further,
we investigate automatic annotation on Molweni
using STAC-trained model. The inconsistency of
annotations in the original Molweni benefits this
setup. We first de-duplicate repetitive documents
in Molweni training and validation sets by taking
one document per cluster (Sec. 4.1), which results
in resp. 1865 and 107 documents. Trained on
50 STAC examples, our pipeline produces 1972
pseudo-labeled Molweni documents. These docu-
ments are used to train SJ in a supervised manner
with the proposed hyper-parameters. In compar-
ison, we also train the SJ model with Molweni’s
original annotation. Both models are evaluated on
Molweni-clean, with results given in Table 6.

SJ model trained on pseudo-labeled Molweni
gives better results on structure attachment (+9%)
but under-performs its counterpart on relation pre-
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Train / Test Aug STAC/STAC STAC/Molweni-clean STAC/Molweni

#Doc Link Rel Full Link Rel Full Link Rel Full

SJ - 55.13.5 61.12.1 33.62.2 51.16.4 33.69.5 17.25.3 42.95.6 35.210.1 15.35.3
SJ +self-train 50 57.52.2 63.31.4 36.41.5 51.65.5 34.37.1 17.64.1 42.94.7 34.58.1 14.83.9
SJ +self-train 120 57.23.2 62.73.3 35.92.3 54.37.8 40.37.7 21.95.3 45.76.5 39.26.3 18.04.5
SJ +self-train 200 57.42.9 63.12.6 36.21.7 56.48.2 38.49.2 21.86.7 46.66.3 38.78.9 18.15.3

Ours 120 59.30.7 62.01.1 38.60.7 75.60.7 41.33.8 31.22.9 61.50.7 42.82.9 26.31.7

Table 5: Comparison between augmented SJ model (2022) (SJ +self-train) and ours in self-training setup across
in-domain and cross-domain scenarios. SJ model is re-trained with the combination of 50 gold-standard data and
{50, 120, 200} pseudo-labeled documents (Aug #doc). We show the best scores (average micro-F1) in 3 loops.

Train on #Doc Link Rel Full

Molweni-pseudo 1865 54.10.6 56.32.0 30.61.2
Molweni 1865 45.71.6 82.71.9 37.81.1

Table 6: SJ parsing results on Molweni-clean, trained on
auto-annotated and original Molweni (resp. Molweni-
pseudo, Molweni). Scores are average micro-F1.

diction (-26%). Although the overall parsing score
is inferior, the naked discourse structures in auto-
annotated Molweni (Molweni-pseudo) are of better
quality. This is encouraging, especially in the diffi-
cult cross-domain setup. As previous studies have
shown, discourse structures alone are valuable fea-
tures and can be employed in some downstream
applications (Louis et al., 2010; Jia et al., 2020).

7.3 Self-Training the SJ Model

To understand the effectiveness of our relation pre-
diction module, we conduct ablation studies by
comparing our pipeline and SJ model with similar
data volume, namely, we augment SJ model with
self-training. Results are given in Table 5.

For the data augmentation, we select the pseudo-
labeled documents with the highest average confi-
dence scores, i.e., the average of predictive prob-
abilities over all link and relation decisions in a
document. Previous analysis (Sec. 6.2) shows that
iterative training is beneficial, so we re-train SJ in
a total of 3 loops. We test different sizes of aug-
mentation data: {50, 120, 200} documents which
correspond to resp. {800, 1800, 2800} relation
pairs in our case. Over 3 loops, the largest aug-
mentation attains 600 documents (≈ 8000 relation
pairs). It is important to note that although the SJ
model jointly predicts structure and relation, our
augmentation technique only focuses on relation
prediction. Therefore, the augmentation would pro-

vide the SJ model with more structured supervision.
Furthermore, our approach operates on a narrower
scope, concentrating on relation pairs rather than
entire conversations. In contrast, the SJ model’s
data augmentation is done at the document level.
Hence, the comparison between our augmented
model and the augmented SJ model would only be
similar in terms of data volume, but not necessarily
in terms of identical examples.

Given extra training data, SJ surpasses its base
version in both in-domain (full +3%) and cross-
domain (full +4%) contexts, with similar improve-
ment in link attachment and relation prediction.
This emphasizes the advantages of our self-training
approach, apt for both basic and complex models.
However, with the same augmented data size, the
SJ model lags behind our pipeline, showcasing a 3
points difference in-domain and a sizable 10 points
gap cross-domain, further attesting to the effective-
ness of our simple approach.

8 Conclusion

In this study, we introduce a substantial extension
to semi-supervised discourse parsing in dialogues
by incorporating relation predictions into the estab-
lished naked structures. We define simple yet ef-
fective sample selection strategies in self-training,
achieving SOTA results with a minimal training
set. Importantly, the efficacy of our discourse
parsing pipeline is fully demonstrated across in-
domain and cross-domain settings. We also con-
tribute a small expert-annotated discourse dataset,
along with semi-supervised benchmarks for sub-
sequent comparisons. Future work should explore
the use of more out-of-domain raw data and investi-
gate bootstrapping methods for relation prediction,
while also improving on structure prediction, pos-
sibly with the same strategies.
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Limitations

Following DISRPT shared task, we focused on in-
dividual EDU pair relation prediction for general
application. This setting captures local coherence
in dialogues and has shown great generalizability in
cross-domain experiments. We based our work on
a semi-supervised link attachment module and pre-
dicted relations only for linked EDU pairs. Show-
ing effective, there is potential for further improve-
ment in attachment performance by considering
(high confident) predicted relations for unattached
EDU pairs. By extending the self-training strat-
egy to include link attachment, we could enhance
the overall parsing performance and achieve better
results in full parsing.

Facing the data sparsity issue, we utilized all
relation pairs in STAC for self-training. However,
we only tested small sizes of k in the iterative train-
ing due to the limited size of STAC. With more
data, we should explore the re-training outcomes
with larger values of k. It is thus intriguing to
expand the set of un-annotated relations by con-
sidering out-of-domain data, obtained for instance
from weak supervision (Sileo et al., 2019), or from
monologues such as PDTB (Prasad et al., 2008).
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We carefully selected the corpora to work with to
mitigate any potential hateful and biased language.
Before the re-annotation process, we provided in-
structions to the annotators, emphasizing the impor-
tance of being vigilant for any biased or insulting
language in the data. In the event of encountering
such language, they were instructed to immediately
cease annotation and report the issue. Throughout
the re-annotation of all 77 dialogues, no instances
of inappropriate language were found. We have
confidence that these dialogues are free from harm-
ful content that may insult the annotators.

All the annotators are PhD students. They did
not receive any specific compensation for their
work on annotation. We recorded the time taken
for the re-annotation process, which consisted of
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average of 1.5 hour for every 10 dialogues. All an-
notation work was conducted during regular work-
ing hours. The annotators are free to utilize the
annotations and any discourse-related content in
this project for their studies.
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A Class Distribution in STAC Corpus

See Table 7 for the relation distribution in train,
development, and test sets in STAC.

Labeled train Validation Test

Relation # % # % # %

QA pair 175 25.0 152 22.89 305 27.04
Comment 108 15.43 110 16.57 165 14.63
Ack 86 12.29 87 13.1 148 13.12
Continuation 65 9.29 69 10.39 113 10.02
Elaboration 64 9.14 52 7.83 101 8.95
Q-elab 36 5.14 30 4.52 72 6.38
Result 26 3.71 29 4.37 29 2.57
Contrast 32 4.57 29 4.37 44 3.9
Explanation 34 4.86 31 4.67 31 2.75
Clarif-Q 23 3.29 20 3.01 33 2.93
Parallel 10 1.43 14 2.11 15 1.33
Correction 12 1.71 11 1.66 21 1.86
Alternation 5 0.71 8 1.2 19 1.68
Narration 8 1.14 7 1.05 13 1.15
Conditional 12 1.71 10 1.51 18 1.6
Background 4 0.57 5 0.75 1 0.09

Total 700 100.0 664 100.0 1, 128 100.0

Table 7: Rhetorical relations and frequencies in train
subset, validation subset, and test sets in STAC. QA pair:
question answer pair; Ack: acknowledgement; Q-elab:
question elaboration; clarif-Q: clarification question.

B Molweni-clean Case Study

B.1 Inter-Annotator Agreement Detail
We calculate inter-annotator agreement scores on
the 10 common documents using Cohen’s Kappa
metric from Scikit-learn library (Pedregosa et al.,
2011). The results are given in Table 8. Our final
subset contains 50 documents. Annotator 1 and
3 (R1 and R3) have the highest agreement scores,
so we include their individual annotations (a total
of 39 documents). We also take the 8 training
examples where all the annotators have aligned
annotations and 3 documents from annotator 2.

Link Link&Rel

R1-R2 79.3 51.8
R1-R3 80.6 57.0
R2-R3 76.6 54.3

Table 8: Cohen’s Kappa inter-annotator agreement
scores. R1, R2, R3 represent resp. annotator 1, 2, and 3.

B.2 Relation Distribution Comparison
See Table 9 for relation distribution in original Mol-
weni subset and Molweni-clean. We show the same

50 documents for a fair comparison. More pre-
cisely, we decompose each relation into intra- and
inter- speaker categories to refer the relation within
the same and different speakers, respectively. Note
that the difference in the total number of relations
(370 vs 373) is due to the incomplete annotation in
the original annotation of documents 7048, 8018,
and 9042 where one document contains multiple
roots, i.e., some nodes miss an incoming edge.

Molweni test Molweni-clean

Relation # %intra %inter # % intra %inter

Comment 99 2.0 98.0 104 2.9 97.1
Clarif-Q 89 0 100 84 2.4 97.6
QA pair 86 0 100 91 1.1 98.9
Continuation 28 17.9 82.1 27 92.6 7.4
Q-elab 11 9.1 90.9 18 22.2 77.8
Result 11 0 100 10 20.0 80.0
Explanation 9 11.1 88.9 5 40.0 60.0
Ack 7 0 100 6 0 100
Elaboration 7 42.9 57.1 14 85.7 14.3
Narration 7 0 100 1 100 0
Conditional 5 20.0 80.0 2 0 100
Contrast 3 0 100 2 50.0 50.0
Correction 3 0 100 6 16.7 83.3
Background 3 0 100 2 0 100
Parallel 2 50.0 50.0 0 0 0
Alternation 0 0 0 1 100 0

Total 370 3.8 96.2 373 14.7 85.3

Table 9: Relations distribution in original Molweni test
subset and Molweni-clean.

B.3 Case Study

We present a comparison of the original annota-
tion and our revised version for document #1035,
as shown in Figure 4 and 5, respectively. This di-
alogue happens between two speakers: cr1mson
(short in C) and APT-GET_INSTALL_ (short in
A). C is asking A about the “apt” command. We
show the number of speech turn after the speaker
marker. Speech turns start from 0:

C0: apt-get i doubt my apt thing is bad though , i
just installed ubuntu today

A1: wait ! i found a much easier way

A2: well , i want you to read all of that

A3: before you start mucking around in system
files

C4: there was only a couple lines in it

C5: most of it was rem ’d out
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A6: you are going to learn what all of them all
from the url i just pasted

C7: i can always use more than one terminal

C8: okay , so i have to add or change a ‘reposi-
tory’

The main difference is in the annotation of
Complex Discourse Units (CDUs) – several EDUs
group together to form a common rhetorical func-
tion (Asher et al., 2016). In this example, the first
CDU consists of three speech turns (A1, A2, A3)
where A2 and A3 elaborate A1 by presenting a
“much easier way”. Between A2 and A3 it is a
continuation. We can write as Elaboration(A1,
Continuation(A2, A3)). This is a similar case with
the example (58) in STAC annotation manual6. The
original annotation, on the other hand, does not cap-
ture the accurate inner-CDU relations and roughly
attaches every EDU inside the CDU with the first
utterance C0.

Another CDU contains the speech turns C4 and
C5. C5 continues C4 and together they provide a
comment to A. Furthermore, we believe that CDU
(C4, C5) should be linked to A2 instead of A3 since
A2 and A3 are attached with a subordinating con-
junction marker “before”, which makes A3 head of
this CDU. Semantically, “only a couple lines” also
echos with “all of that”. However, the original an-
notation does not capture the relationship between
C4 and C5 and only link them individually to the
previous utterance A3.

For each training document, annotators went
through a similar discussion in order to reach con-
sensus on difficult or ambiguous cases. We believe
that this stage contributes to our improved under-
standing of dialogue content and the SDRT frame-
work, and facilitate the production of more reliable
annotations.

C Class-wise Correlation Between
Confidence and Accuracy

C.1 Correlation with Base Model

We investigate the correlation between class-wise
confidence scores and prediction accuracy. For bet-
ter readability, we divide 16 relations into 3 groups
based on their frequency in the STAC corpus, as
shown from top to bottom in the Figure 6. Recall

6https://www.irit.fr/STAC/
stac-annotation-manual.pdf.

Figure 4: Original annotation of document 1035.

Figure 5: Re-annotated structure of document 1035.
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Figure 6: Relation class-wise accuracy and confidence
score correlation in the base BERT-ft model. From top
to bottom: the 5 most frequent, 5 medium-frequent, and
6 infrequent classes. The gray line is the aggregated
score of all 16 relations.

that we translate confidence score with model’s
prediction probability.

The top plot in Figure 6 shows the first 5 rela-
tions: QAP, Comment, Acknowledgement, Continu-
ation, and Elaboration. They are the most frequent
relations. They show good positive correlation be-
tween the confidence and accuracy.

The middle plot in Figure 6 shows 5 medium-
frequent relations: Question elaboration, Result,
Contrast, Explanation, and Clarification. These
relations have a frequency less than 10% and higher
than 2% in STAC. The density of the bars moves
towards the center compared to that with frequent
relations, suggesting that the model is less confident
to give predictions for these relations.

Finally, the last group contains six infrequent
relations, as shown in bottom in Figure 6. They
are the least present and the most difficult to pre-
dict. From this plot, we see that Parallel, Narration,
Conditional, and Background are completely miss-
ing, while Alternative and Correction are correctly
predicted with rather low confidence (∈ [0.2, 0.3]).

Figure 7: Accuracy and confidence score of the five
medium-frequent relations in loop {1, 2, 3}.

C.2 Iterative Self-training Enhance
Correlation for Infrequent Classes

Figure 7 and Figure 8 shows the changes of corre-
lation during three loops. During iterative training,
we observe that medium and the least frequent la-
bels typically gain better correlation between ac-
curacy and confidence scores, demonstrating that
iterative training is good reinforcement for infre-
quent classes.

This observation is further proved in the confu-
sion matrices, as displayed in Figure 9. A clear ob-
servation is that the infrequent classes has some re-
call improvement along self-training, typically for
Correction and Alternation. For medium-frequent
classes, Result, Contrast, and Explanation also ob-
tain higher recall.

D SJ Model Reproduction Experiments

Table 10 shows the reproduction results on SJ
model. Tellingly, removing the dummy roots leads
to a noticeable drop, from around 59 to 54.6 in
full parsing, which is even larger (−8 points) in
cross-domain setting.

E Full Parsing Result Decomposition

Table 11 reports scores per class in each step of
discourse parsing.
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Train / Test STAC/STAC STAC/Molweni-clean STAC/Molweni

#Train Link Rel Link&Rel Link Rel Link&Rel Link Rel Link&Rel

(1) SJ reported scores 947 74.4 - 59.6 - - - 64.5 - 38.0
(2) SJ w dummy 947 73.40.4 80.11.1 58.80.7 66.03.0 66.83.5 44.13.3 55.23.1 66.22.7 36.92.4
(3) SJ w/o dummy 947 70.70.5 77.31.2 54.60.7 61.53.4 59.54.3 36.63.8 49.83.6 57.52.9 28.92.8
(4) SJ w dummy 50 58.62.7 66.81.8 38.91.9 56.85.6 47.67.5 27.04.7 49.35.0 50.27.1 24.94.7
(5) SJ w/o dummy 50 55.13.5 61.12.1 33.62.2 51.16.4 33.69.5 17.25.3 42.95.6 35.210.1 15.35.3

Table 10: SJ model reproduction (row 2-5) in different setups: in-domain and cross-domain, with different train
sizes, and with or without dummy root. Scores are average F1 over 10 runs. First row from the paper (2022).

Figure 8: Infrequent relation accuracy and confidence
scores, loop {1, 2, 3}.

#(%) #(%) False #(%) False #(%) False
Relation correct relation link EDU

qap 143 (46.9) 22 (7.2) 127 (41.6) 13 (4.3)
commt 42 (25.5) 45 (27.3) 63 (38.2) 15 (9.1)
ackno 60 (40.5) 13 (8.8) 71 (48.0) 4 (2.7)
conti 20 (17.7) 30 (26.5) 55 (48.7) 8 (7.1)
elab 46 (45.5) 25 (24.8) 24 (23.8) 6 (5.9)
q_ela 20 (27.8) 9 (12.5) 41 (57.0) 2 (2.8)
resul 5 (17.2) 9 (31.0) 14 (48.3) 1 (3.5)
contr 10 (22.7) 12 (27.3) 17 (38.6) 5 (11.4)
expla 4 (12.9) 11 (35.5) 16 (51.6) 0 (0)
clari 6 (18.2) 10 (30.3) 13 (39.4) 4 (12.1)
paral 1 (6.7) 4 (26.7) 8 (53.3) 2 (13.3)
corre 2 (9.5) 10 (47.6) 7 (33.3) 2 (9.5)
alter 8 (42.1) 0 (0) 7 (36.8) 4 (21.1)
narra 0 (0) 3 (23.1) 10 (76.9) 0 (0)
condi 3 (16.7) 2 (11.1) 2 (11.1) 11 (61.1)
backg 0 (0) 0 (0) 1 (100) 0 (0)

Total 370 (32.8) 205 (18.2) 476 (42.2) 77 (6.8)

Table 11: Class-wise performance on relation prediction,
link attachment, and EDU segmentation modules.

Figure 9: Confusion matrices in the base model and
self-trained model with multiple loops. Relations (top
to bottom, left to right): QA pair, comment, acknowl-
edgement, continuation, elaboration, question elabora-
tion, result, contrast, explanation, clarification question,
parallel, correction, alternation, narration, conditional,
background.
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