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Abstract 

It is unclear whether large language models 
(LLMs) develop humanlike characteristics 
in language use. We subjected ChatGPT 
and Vicuna to 12 pre-registered 
psycholinguistic experiments ranging from 
sounds to dialogue. ChatGPT and Vicuna 
replicated the human pattern of language 
use in 10 and 7 out of the 12 experiments, 
respectively. The models associated 
unfamiliar words with different meanings 
depending on their forms, continued to 
access recently encountered meanings of 
ambiguous words, reused recent sentence 
structures, attributed causality as a function 
of verb semantics, and accessed different 
meanings and retrieved different words 
depending on an interlocutor’s identity. In 
addition, ChatGPT, but not Vicuna, 
nonliterally interpreted implausible 
sentences that were likely to have been 
corrupted by noise, drew reasonable 
inferences, and overlooked semantic 
fallacies in a sentence. Finally, unlike 
humans, neither model preferred using 
shorter words to convey less informative 
content, nor did they use context to resolve 
syntactic ambiguities. We discuss how 
these convergences and divergences may 
result from the transformer architecture. 
Overall, these experiments demonstrate 
that LLMs such as ChatGPT (and Vicuna to 
a lesser extent) are humanlike in many 
aspects of human language processing. 

1 Introduction 

The formal linguistic competence apparent in 
LLMs has led to debates over whether they can 
serve as cognitive models of human language use 
(see Mahowald et al., 2023). On the one hand, 
Chomsky argued that humans are endowed with 

an innate universal grammar (e.g., Chomsky, 
2000), and he and colleagues maintain that this 
“genetically installed ‘operating system’... is 
completely different from that of a machine 
learning program” (Chomsky et al., 2023, para. 6) 
such as ChatGPT, which is simply “a lumbering 
statistical engine for pattern matching” (para. 5). 
More optimistic researchers, however, argue that 
deep neural networks suffice to learn syntactic 
structure (Piantadosi, 2023), as evidenced by the 
fact that LLMs abide by complex grammatical 
rules (e.g., Goldberg, 2019; Linzen & Baroni, 
2021; McCoy et al., 2019).  

This debate emphasizes grammar, but 
regularities in language range from phonology to 
pragmatics. For example, people associate 
different sounds with different referents (e.g., 
Köhler, 1929), automatically reinterpret 
implausible sentences (e.g., Gibson et al., 2013), 
and expect demographically appropriate content 
from speakers (e.g., Van Berkum et al., 2008). Do 
LLMs share these regularities in language use? 
Piantadosi (2023) pointed out that LLMs integrate 
syntax and semantics (i.e., all aspects of usage are 
represented in a single vector space), so other 
humanlike regularities in language use might 
emerge along with grammaticality and coherence. 

We therefore subjected two LLMs—ChatGPT, 
from OpenAI (2022), and Vicuna (with 13B 
parameters), from the Large Model Systems 
Organization (Chiang et al., 2023)—to a battery of 
psycholinguistic tests, in 12 preregistered 
experiments per LLM (with default temperature). 
These experiments span a range of linguistic levels 
from sounds to discourse, with two experiments 
per level. In each experiment, each item was 
presented to each LLM 1000 times. We used mixed 
effects modelling to analyse model responses as a 
function of the experimental manipulations. The 
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preregistrations, data, and analytical codes are 
available at osf.io/vu2h3/ (ChatGPT) and 
osf.io/sygku/ (Vicuna). 

2 RESULTS 

Sounds: sound-shape association 
People tend to associate certain sounds with 
certain shapes. They assume, for instance, that a 
novel word such as takete or kiki refers to a spiky 
object, whereas a novel word such as maluma or 
bouba refers to a round object (Köhler, 1929). We 
asked ChatGPT and Vicuna to decide if a novel 
word (10 round-sounding and 10 spiky-sounding, 
according to Sidhu & Pexman, 2017) refers to a 
spiky shape or a round shape. Both LLMs 
assigned round-sounding novel words to round 
shapes more often than they assigned spiky-
sounding novel words to round shapes (ChatGPT: 
0.79 vs. 0.49, β = 2.02, SE = 0.34, z = 5.87, p < 
.001; Vicuna: 0.38 vs. 0.32, β = 0.27, SE = 0.11, z 
= 2.34, p = .019; see Fig 1 top left).  
 

Sounds: sound-gender association 
People can guess at above-chance rates whether 
an unfamiliar name refers to a man or a woman 
based on how it sounds (Cassidy et al., 1999; 
Cutler et al., 1990). In English, for example, 
women’s names end in vowels more often than 
men’s names do. We asked ChatGPT and Vicuna 
to complete 16 preambles containing a consonant-
ending or vowel-ending novel name (e.g., 
Although Pelcrad / Pelcra was sick...). Both 
LLMs were more likely to use a feminine pronoun 
(she/her/hers; e.g., Although Pelcra was sick, she 
refused to stay in bed and insisted on completing 
all her tasks for the day) to refer to vowel-ending 
names than to consonant-ending names 
(ChatGPT: 0.71 vs. 0.25, β = 4.33, SE = 1.24, z = 
3.50, p < .001; Vicuna: 0.40 vs. 0.02, β = 5.77, SE 
= 1.23, z = 4.70, p < .001; see Fig 1 top right).  
 
 

Words: word length and predictivity 
Corpus evidence suggests that words which carry 
less information tend to be shorter, making 

 

Fig 1. Results of sound-shape associations (top left), sound-gender associations (top right), word length and 
predictivity (bottom left), and word meaning priming (bottom right).  Diamonds stand for human conditional 

means in existing studies. Error bars stand for 95% confidence intervals. 
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communication more efficient (e.g., Piantadosi et 
al., 2011). In support of this hypothesis, 
Mahowald et al. (2013) showed that, when asked 
to choose between a shorter and a longer word of 
nearly identical meanings (e.g., math and 
mathematics), participants more often chose the 
shorter word when the sentence preamble was 
predictive of the meaning of the target word (i.e., 
when the word is less informative; e.g., Susan was 
very bad at algebra, so she hated...) than when it 
was neutral (e.g., Susan introduced herself to me 
as someone who loved...). We replicated 
Mahowald et al. (2013) on ChatGPT/Vicuna (with 
20 items).  Neither model was significantly more 
likely to choose shorter words following 
predictive than neutral preambles (ChatGPT: 0.26 
vs. 0.20, β = 0.35, SE = 0.21, z = 1.64, p = .101; 
Vicuna: 0.31 vs. 0.31, β = -0.15, SE = 0.20, z = -
0.77, p = .444; see Fig 1 bottom left).  
 

Words: word meaning priming 
People tend to access the more recently 
encountered meaning of an ambiguous word 
(word meaning priming: e.g., Rodd et al., 2013). 
For example, participants more often supplied an 
associate related to the job meaning (instead of the 
mail meaning) of post if they had recently read a 
sentence using that meaning (e.g., The man 
accepted the post in the accountancy firm) than if 
they had recently read a sentence using a synonym 
(e.g., The man accepted the job in the 
accountancy firm) or if they had not read such a 
sentence. We first presented ChatGPT and Vicuna 
with a set of 44 sentences (adapted from Rodd et 
al., 2013), including 13 word-meaning primes, 13 
synonym primes, and 18 filler sentences; 
afterwards, we presented them with 39 ambiguous 
cue words (e.g., post) and asked the models to 
provide an associate, with 13 words per condition, 
and we measured the proportion of associates 
related to the primed meaning (e.g., work). 
Neither LLMs produced significantly more 
associates related to the primed meaning in the 
synonym condition than the no-prime condition 
(ChatGPT: 0.38 vs. 0.33, β = 0.36, SE = 0.19, z = 
1.90, p = .057; Vicuna: 0.19 vs. 0.15, β = 0.39, SE 
= 0.28, z = 1.40, p = .162; see Fig 1 bottom right). 
Crucially, both models produced more associates 
related to the primed meaning in the word-
meaning condition than in the no-prime condition 
(ChatGPT: 0.53 vs. 0.33, β = 2.47, SE = 0.30, z = 

8.20, p < .001; Vicuna: 0.32 vs. 0.15, β = 3.33, SE 
= 0.50, z = 6.70, p < .001) and also than in the 
synonym condition (ChatGPT: 0.53 vs. 0.38, β = 
2.14, SE = 0.32, z = 6.71, p < .001; Vicuna: 0.32 
vs. 0.19, β = 2.86, SE = 0.48, z = 5.91, p < .001). 
These finding suggest that both LLMs are 
susceptible to word-meaning priming. 
 

Syntax: structural priming 
People tend to repeat a syntactic structure that 
they have recently encountered (structural 
priming; e.g., Bock, 1986). For instance, 
Pickering & Branigan (1998) had participants first 
complete a prime preamble that was designed to 
induce a completion of either a double-object 
(DO) dative structure (e.g., The racing driver 
gave/showed the helpful mechanic …) or a 
prepositional-object (PO) dative structure (e.g., 
The racing driver gave/showed the torn overall to 
…) and then complete a target preamble that could 
be continued as either a DO or a PO (e.g., The 
patient showed ...). Participants tended to 
complete a target preamble using the same 
structure that they used in completing a prime 
preamble, and the priming effect was larger when 
the target had the same than a different verb as the 
prime (e.g., when the prime preamble had the verb 
showed instead of gave). Following Pickering & 
Branigan (1998), we presented ChatGPT and 
Vicuna with 32 prime-target pairs consisting of a 
prime preamble followed by a target preamble. 
We measured whether ChatGPT completed a 
target preamble using a PO or DO structure (e.g., 
The patient showed his hand to the nurse vs. The 
patient showed the nurse his hand). We observed 
structural priming in both LLMs, with a higher 
proportion of PO completions of a target preamble 
when the corresponding prime preamble had been 
completed as a PO than when it had been 
completed as a DO (ChatGPT: 0.71 vs. 0.58, β = 
1.03, SE = 0.12, z = 8.68, p < .001; Vicuna: 0.81 
vs. 0.51, β = 2.93, SE = 0.34, z = 8.70, p < .001; 
see Fig 2 top left). Verb type (different vs. same 
verbs across prime and target) did not have an 
effect on completions for either model (ChatGPT: 
0.66 vs. 0.63, β = -0.06, SE = 0.09, z = -0.67, p = 
.504; Vicuna: 0.66 vs. 0.66, β = -0.14, SE = 0.23, 
z = -0.61, p = .545). But, importantly, verb type 
interacted with prime structure, indicating a 
lexical boost, with a stronger priming effect when 
the prime and the target had the same verb 
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(ChatGPT: β = 0.40, SE = 0.15, z = 2.73, p = .006: 
Vicuna: β = 1.20, SE = 0.45, z = 2.68, p = .007). 
These findings suggest that ChatGPT and Vicuna 
resemble humans in being susceptible to 
structural priming and the lexical boost. 
 

 Syntax: syntactic ambiguity resolution 
In what is known as the verb phrase/noun phrase 
(VP/NP) ambiguity (e.g., The ranger killed the 
dangerous poacher with the rifle), people tend to 
interpret the syntactically ambiguous 
prepositional phrase (PP, with the rifle) as 
modifying the VP (kill the dangerous poacher; 
VP attachment) rather than the noun phrase (the 
dangerous poacher; NP attachment) (e.g., Rayner 
et al., 1983). Critically, humans use contextual 
information to resolve the ambiguity and were 
more likely to have NP attachments when the 
discourse has introduced multiple possible 
referents than a single referent for the NP (e.g., 
There was a hunter and a poacher / two poachers; 
Altmann & Steedman, 1988). We tested whether 
LLMs also use context to disambiguate the 

VP/NP ambiguity. After reading a discourse 
sentence (introducing a single referent or multiple 
possible referents for the critical NP) followed by 
a sentence containing the VP/NP ambiguity, 
ChatGPT/Vicuna answered a question regarding 
the ambiguous sentence (with a total of 32 sets of 
stimuli). We manipulated whether the question 
probes the VP attachment (e.g., Did the hunter use 
a rifle?) or the NP attachment (e.g., Did the 
dangerous poacher have a rifle?). Both models 
attached the ambiguous PP more often to the VP 
than to the NP (ChatGPT: 0.94 vs. 0.06, β = -9.43, 
SE = 0.72, z = -13.04, p < .001; Vicuna: 0.63 vs. 
0.37, β = -1.37, SE = 0.16, z = -8.35, p < .001; see 
Fig 2 top right). There were similar NP 
attachments in the multiple-referent context and 
in the single-referent context (ChatGPT: 0.06 vs. 
0.06, β = -0.08, SE = 0.43, z = -0.18, p = .861; 
Vicuna: 0.37 vs. 0.36, β = 0.18, SE = 0.10, z = 
1.87, p = .061), but more NP attachments when 
answering an NP probe than when answering a 
VP probe (ChatGPT: 0.09 vs. 0.03, β = 3.27, SE = 

 

Fig 2. Results of structural priming (top left), syntactic ambiguity resolution (top right), implausible sentence 
interpretation (bottom left), and semantic illusions (bottom right). Diamonds stand for human conditional means in 

existing studies. Error bars stand for 95% confidence intervals. 
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0.97, z = 3.36, p < .001; Vicuna: 0.72 vs. 0.03, β 
= 5.63, SE = 0.48, z = 11.78, p < .001). There was 
no significant interaction between context and 
question (ChatGPT: β = 0.13, SE = 0.74, z = 0.18, 
p = .861; Vicuna: β = -0.16, SE = 0.24, z = -0.66, 
p = .511). These findings suggest, first of all, that 
neither ChatGPT nor Vicuna used contextual 
information to resolve syntactic ambiguities (at 
least the VP/NP ambiguity) as humans do and 
they might retain multiple representations of the 
ambiguous sentence (i.e., treating with the rifle as 
potentially modifying both the poacher and kill 
the poacher).  
 

Meaning: implausible sentence interpretation 
Listeners sometimes have to recover an intended 
message from noise-corrupted input (Gibson et 
al., 2013; Levy et al., 2009). For example, an error 
in production or comprehension may turn a 
plausible sentence into an implausible one when a 
word is omitted (e.g., to being omitted from a 
plausible PO such as The mother gave the candle 
to the daughter, resulting in an implausible DO 
such as The mother gave the candle the daughter) 
or when a word gets inserted (e.g., to being 
inserted into a plausible DO such as The mother 
gave the daughter the candle, resulting in an 
implausible PO such as The mother gave the 
daughter to the candle). If people believe that an 
implausible sentence results from a plausible 
sentence being noise-corrupted, then they can 
interpret the implausible sentence nonliterally to 
recover the intended message. Gibson et al. 
(2013) showed that people nonliterally interpret 
implausible DO sentences more often than 
implausible PO sentences, probably because they 
believe that omissions of to are more likely than 
insertions of to. We presented ChatGPT and 
Vicuna with 20 sentences (plausible or 
implausible, in a DO or PO structure), each 
followed by a yes/no question (e.g., Did the 
daughter receive something/someone?) probing 
whether the sentence is literally or nonliterally 
interpreted. ChatGPT made more nonliteral 
interpretations for implausible than plausible 
sentences (0.74 vs. 0.03, β = 10.85, SE = 0.73, z = 
14.80, p < .001; see Fig 2 bottom left), whereas 
the difference did not reach significance for 
Vicuna (0.50 vs. 0.37, β = 2.20, SE = 1.24, z = 
1.77, p = .076). There was an effect of structure 
on interpretation in ChatGPT, with more 

nonliteral interpretations for DO than PO 
sentences (0.47 vs. 0.29, β = 1.15, SE = 0.58, z = 
1.94, p = .047), but not in Vicuna (0.46 vs. 0.42, β 
= 0.04, SE = 0.36, z = 0.11, p = .910). The 
interaction between plausibility and structure was 
significant such that the increase in nonliteral 
interpretations for the DO structure compared to 
the PO structure was larger when a sentence was 
implausible than when it was plausible in both 
ChatGPT (β = 4.47, SE = 1.17, z = 3.81, p < .001)  
and in Vicuna (β = 1.40, SE = 0.69, z = 2.02, p = 
.043). Critically, when we examined the 
implausible sentences alone, there was humanlike 
pattern of interpretations in ChatGPT, with more 
nonliteral interpretations for implausible DO 
sentences than for implausible PO sentences (0.92 
vs. 0.56, β = 3.40, SE = 0.74, z = 4.59, p < .001) 
but not in Vicuna (0.54 vs. 0.47, β = 0.77, SE = 
0.57, z = 1.35, p = .178). These findings suggest 
that ChatGPT (but not Vicuna) was sensitive to 
syntactic structure, like humans, in the 
interpretation of implausible sentences. 
 

Meaning: semantic illusions 
People often fail to notice what seem to be 
conspicuous errors in sentences. For example, 
when asked the question Snoopy is a black and 
white cat in what famous Charles Schulz comic 
strip?, many people do not notice that Snoopy, 
from the comic strip Peanuts, is a not a cat but a 
dog. People are more likely to notice an erroneous 
word when it is semantically less similar to dog, 
such as mouse as in Snoopy is a black and white 
mouse in what famous Charles Schulz comic 
strip? (Erickson & Mattson, 1981). Such semantic 
illusions suggest that representing word meanings 
while processing sentences involves partial 
matches in semantic memory (Reder & Kusbit, 
1991). We asked ChatGPT and Vicuna trivia 
questions that contained a semantically 
appropriate keyword (baseline), a strong 
(semantically closely related) impostor, or a weak 
impostor (e.g., Snoopy is a black and white dog / 
cat / mouse in what famous Charles Schulz comic 
strip?), with a total of 54 sentences in three 
conditions, taken from Hannon and Daneman 
(2001). Following Erickson and Mattson (1981) 
and Hannon and Daneman (2001), we instructed 
the models either to answer the question or, if they 
detected a semantic error (which we illustrated 
with an example), to say wrong (i.e., to report an 
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error). For ChatGPT, compared to the baseline 
condition, there were more errors reported in the 
strong impostor condition (0.00 vs. 0,13, β = 0.87, 
SE = 0.00, z = 122035, p < .001; see Fig 2 bottom 
right) and in the weak impostor condition (0.00 
vs. 0.17, β = 2.83, SE = 0.00, z = 677303, p < 
.001); critically, more errors were reported in the 
weak than strong imposter condition (0.17 vs. 
0.13, β = 1.71, SE = 0.82, z = 2.10, p = .036). For 
Vicuna, there similar proportions of errors 
reported between the baseline and the strong 
imposter condition (0.002 vs. 0.022, β = -3.01, SE 
= 1.65, z = -1.82, p = .069) and between the 
baseline and the weak imposter condition (0.002 
vs. 0.017, β = 0.82, SE = 1.27, z = 0.65, p = .517); 
interestingly, we observed significantly more 
errors reported in the weak than strong imposter 
condition (β = 3.96, SE = 1.31, z = 3.02, p = .003), 
though numerically the mean error report rate was 
lower in the weak than strong imposter condition 
(0.017 vs. 0.022). These findings that ChatGPT, 
but not Vicuna, has the humanlike tendency to 

gloss over a conspicuous error caused by an 
expression that is semantically similar to the 
intended expression. 
 

Discourse: implicit causality 
Some verbs lead people to attribute causality to 
either the subject or the object (Brown & Fish, 
1983; Garvey & Caramazza, 1974). For example, 
a stimulus-experiencer verb such as scare often 
leads people to attribute causality to the subject 
(e.g., completing Gary scared Anna because... 
with he was violent) while an experiencer-
stimulus verb such as fear often leads people to 
attribute causality to the object (e.g., completing 
Gary feared Anna because... with she was 
violent). We asked and Vicuna to complete 
sentences adapted from Fukumura and van 
Gompel (2010), manipulated to elicit pronouns 
referring to either subject or objects, with 32 
sentences in two conditions. Both LLMs more 
often completed a sentence with a pronoun 
referring to the object (e.g., Gary scared/feared 

 

Fig 3. Results of implicit causality (top left), drawing inferences (top right), interlocutor-sensitive word meaning 
access (bottom left), and interlocutor-sensitive lexical retrieval (bottom right). Diamonds stand for human 

conditional means in existing studies. Error bars stand for 95% confidence intervals. 
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Anna because she/he was violent) following an 
experiencer-stimulus verb such as fear than 
following a stimulus-experiencer verb such as 
scare (ChatGPT: 0.95 vs. 0.00, β = 14.17, SE = 
0.94, z = 15.11, p < .001; Vicuna: .89 vs. 0.01, β 
= 14.95, SE = 1.57, z = 9.51, p < .001; see Fig 3 
top left). These findings suggest that LLMs are 
sensitive to a verb’s semantic biases. 
 

Discourse: drawing inferences  
People can make bridging inferences, which 
connect two pieces of information, more often 
than they make elaborative inferences, which 
extrapolate from a single piece of information 
(Singer & Spear, 2015). For instance, when 
asking a question like Did she cut her foot?, 
people always (almost) answer “yes” after reading 
While swimming in the shallow water near the 
rocks, Sharon cut her foot on a piece of glass. She 
had been looking for the watch that she misplaced 
while sitting on the rocks, where the message is 
explicitly stated. They often answer “yes” after 
reading While swimming in the shallow water 
near the rocks, Sharon stepped on a piece of glass. 
She called desperately for help, but there was no 
one around to hear her, as they can make a 
bridging inference. But they are less likely to 
answer “yes” after reading While swimming in the 
shallow water near the rocks, Sharon stepped on 
a piece of glass. She had been looking for the 
watch that she misplaced while sitting on the 
rocks, as an elaborative inference is required. We 
presented ChatGPT and Vicuna with a short 
passage and a yes/no question, with 24 items 
based on the design of Singer and Spear (2015) 
and using materials adapted from McKoon and 
Ratcliff (1986). A passage either contained 
explicit information, required a bridging 
inference, or required an elaborative inference. As 
all 24 target items were likely to elicit “yes” 
responses, we also presented the models with 24 
fillers designed to elicit “no” responses. Both 
LLMs produced fewer “yes” responses in the 
bridging condition than in the explicit condition 
(ChatGPT: 0.51 vs. 0.95, β = -5.06, SE = 0.10, z = 
- 50.16, p < .001; Vicuna: 0.25 vs. 0.79, β = -4.32, 
SE = 0.50, z = - 8.65, p < .001; see Fig 3 top right) 
and fewer “yes” responses in the elaborative than 
explicit condition (ChatGPT: 0.26 vs. 0.95, β = -
7.40, SE = 0.12, z = - 62.68, p < .001; Vicuna: 0.20 
vs. 0.79, β = -4.41, SE = 0.41, z = - 10.73, p < 

.001). Critically, ChatGPT gave fewer “yes” 
responses in the elaborative than bridging 
condition (0.26 vs. 0.51, β = -2.87, SE = 0.58, z = 
-4.93, p < .001), whereas Vicuna gave similar 
“yes” responses for the bridging and elaborative 
conditions (0.25 vs. 0.20, β = -0.09, SE = 0.42, z 
= -0.22, p = .830). These findings suggest that 
ChatGPT, but not Vicuna, is less likely to make 
elaborative than bridging inferences. 
 

Interlocutor sensitivity: word meaning access 
Words and other expressions may mean different 
things to different people. For example, speakers 
of British English (BE) typically interpret bonnet 
as referring to a car part, while speakers of 
American English (AE) typically interpret bonnet 
as referring to a hat, and listeners take such 
demographic attributes of speakers into account 
when comprehending language (e.g.,  Cai et al., 
2017; Van Berkum et al., 2008). For instance, Cai 
et al. (2017) showed that BE-speaking 
participants were more likely to access AE 
meanings of cross-dialectally ambiguous words 
(e.g., bonnet, gas) when the words were spoken in 
an AE than a BE accent. ChatGPT and Vicuna, at 
the time of testing, did not take spoken input, so 
we manipulated the interlocutor’s dialectal 
background by explicitly telling ChatGPT and 
Vicuna that the interlocutor was a BE/AE speaker 
(Hi, I am a British / American English speaker. I 
am from the UK / USA. I am now living in London 
/ New Year and studying for a BA degree at King's 
College London / the City University of New 
York). We then presented, one at a time, 36 cross-
dialectally ambiguous words (taken from Cai et 
al., 2017) and asked ChatGPT and Vicuna to give 
an associate to each word. We coded whether the 
models accessed the BE or AE meaning of these 
words based on the associates it gave (e.g., “hat” 
as an associate to bonnet would suggest that 
ChatGPT accessed the word’s AE meaning). 
There was more access to the AE meaning of a 
target word when the interlocutor was introduced 
as an AE speaker than a BE speaker, in both 
ChatGPT (0.46 vs. 0.36, β = 1.85, SE = 0.26, z = 
7.14, p < .001; see Fig 3 bottom left) and Vicuna 
(0.62 vs. 0.33, β = 2.80, SE = 0.54, z = 5.15, p < 
.001). These findings suggest that both models are 
sensitive to the user’s dialectal background in 
understanding word meanings. 
 

Interlocutor sensitivity: lexical retrieval 

43



 
 

People can take a listener’s dialectal background 
into account when retrieving words during 
language production (Cai et al., accepted in 
principle; Cowan et al., 2019). Using a word 
puzzle game, Cai et al. (accepted in principle) 
gave participants a definition spoken in either a 
BE or AE accent and asked them to type the 
defined word/phrase. Critically, the expected 
words differed between BE and AE for some of 
the definitions (e.g., a housing unit common in big 
cities that occupies part of a single level in a 
building block defines the word flat in BE and the 
word apartment in AE). Cai et al. found that 
participants produced more AE expressions for 
definitions spoken by an AE speaker than by a BE 
speaker. In the experiment, we told ChatGPT and 
Vicuna that the interlocutor was a BE or AE 
speaker (using the same introductions as in the 
word meaning access experiment). The 
interlocutor gave a definition of a word/phrase 
and the LLM supplied the defined word/phrase. 
There were more AE expressions supplied when 
the LLM was told that the definitions came from 
an AE speaker than from a BE speaker, for both 
ChatGPT (0.93 vs. 0.91, β = 4.39, SE = 1.56, z = 
2.81, p = .005; see Fig 2 bottom right) and Vicuna 
(0.88 vs. 0.65, β = 3.54, SE = 0.51, z = 6.91, p < 
.001). These findings suggest that both models are 
sensitive to the user’s dialectic background in 
their lexical choices. 

3 Discussion 

Our experiments showed that ChatGPT replicated 
human patterns in language comprehension and 
production in 10 out of 12 psycholinguistic tasks 
and Vicuna in 7 out of the same 12 tasks. We 
further note that the patterns of results mostly held 
when we removed example words/sentences 
presented in research papers (see Appendix C), 
suggesting that these effects are unlikely to be a 
result of LLMs explicitly learning these effects in 
training. These findings suggest that both models 
largely approximate human language processing. 

Both ChatGPT and Vicuna are built on 
transformer architectures (Vaswani et al., 2017), 
which allow them to vary how much weight they 
assign to different tokens within recent 
conversation history when predicting the 
subsequent token. This context sensitivity can 
explain LLMs’ humanlike tendency to re-use 

previously-used meaning of ambiguous words, 
understand and produce words in light of the 
interlocutor’s dialectic background, make 
inferences, and attribute causality according to 
verb semantics. In addition, the fact that LLMs 
change semantic representations of words to fit 
contexts (Ethayarajh, 2019) may help to account 
for ChatGPT’s humanlike susceptibility to 
semantic illusions and adjust its interpretation of 
implausible sentences. The tokenization method 
might help to capture form-meaning associations 
available in languages. Finally, the fact that LLMs 
are not trained on syntactic data but can be 
structurally primed suggests that they may have 
developed emergent syntax-like representations 
(Michaelov et al., 2023; Prasad et al., 2019; 
Sinclair et al., 2022). 

In two of the experiments, neither ChatGPT nor 
Vicuna replicated the patterns of human 
participants. It is possible that the tokenization 
methods lead LLMs to fail to capture the effect of 
predictivity on word length. For example, GPT-4 
segments roach into “ro” and “ach” and 
cockroach into “cock” and “roach”; thus, the 
model may fail to treat the two words as close in 
meaning as humans would do. In addition, both 
models failed to take context into account when 
resolving the VP/NP syntactic ambiguity (e.g., 
The hunter killed the dangerous poacher with a 
rifle), which is reminiscent of a similar absence of 
contextual effects in pragmatic understanding 
observed in ChatGPT (Qiu et al., 2023). This 
finding is surprising given LLM’s superb ability 
using contextual information. It is also interesting 
that ChatGPT replicated more humanlike patterns 
of language use than Vicuna did (10 versus 7 out 
of the 12 experiments). Given that increasing 
model size or training data improves performance 
(e.g., Devlin et al., 2019), we assume that this 
difference in mimicking the nuances of human 
language use should be attributed to Vicuna being 
a smaller model than GPT-3.5. 

In conclusion, our results point to the interesting 
possibility that LLMs such as ChatGPT (and 
Vicuna to a lesser extent) can be used, by 
psycholinguists and cognitive psychologists, as 
models of language users (e.g., Aher et al., 2023; 
Argyle et al., 2023; Jain et al., 2023). Perhaps 
researchers can experiment with LLMs to 
generate hypotheses, assess the replicability of 
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existing psycholinguistic effects, estimate effect 
sizes, and model language development. 

4 Limitations 

There are several limitations worth noting. First, 
the selection of the 12 psycholinguistic tasks might 
seem arbitrary and lack robust justification, raising 
concerns about the potential bias towards tasks 
where LLMs are inherently more successful. 
Second, there were inherent discrepancies in the 
experimental designs used for LLMs compared to 
those for human studies, encompassing differences 
in materials, procedures, and contexts. Third, many 
experiments do not include direct comparisons 
between LLM and human behaviours due to the 
unavailability of data in corresponding human 
studies. 
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A  Appendices – Prompts 

Sounds: sound-shape association 

Hi, I'd like to play a NON-WORD guessing game 
with you. You need to guess whether the non-
word refers to a round or spiky shape, based on its 
pronunciation. If you don't know the meaning, just 
guess the shape. Please don't ask any questions. 
For each non-word, please say only "round" or 
"spiky". Is that OK? 

Sounds: sound-gender association 

I'd like to play a sentence completion game with 
you. I will provide a fragment and I would like 
you to repeat the fragment and complete it into a 
full sentence. 

Words: word length and predictivity 

Hi, I'd like to play a sentence completion game 
with you. I will provide a sentence preamble and 
two choices of words to complete the preamble. 
Please choose a word that you think best 
completes the sentence. For instance, if you are 
given the following preamble and choices: The 
boy went to the park to fly a ... 1. plane 2. kite. 
You can choose "kite" as a completion. Just give 
me the one word that you choose. Shall we start? 

Words: word meaning priming 

(Priming part) I would like to present you with a 
list of unrelated sentences. Please just read them; 
you don't have to do anything with them for now. 
Is that OK? 

(Word association part) Next, I am going to 
present a list of unrelated words one by one; upon 
reading a word, please provide ONLY ONE 
word/phrase as an associate. For instance, if I say 
"milk", you can provide "breakfast" or "cow" as 
an associate. Is that OK? 

Syntax: structural priming 

I'd like to play a sentence completion game with 
you. I will provide a sentence preamble and I 
would like you to repeat the preamble and 
continue it into a full sentence. 

Syntax: syntactic ambiguity resolution 

I will present you a small discourse containing 
several sentences, followed by a question about 

the discourse. Please only answer "yes" or "no" to 
the question according to preceding discourse. For 
instance, if you read "There was a tiger and a fox. 
The tiger ate the fox because it was hungry. Did 
the tiger eat the fox?", you should answer "Yes" 
to the question. If you read "There was a tiger and 
a fox. The tiger ate the fox because it was hungry. 
Did the fox escape from the tiger?", you should 
answer "No" to the question. Is that OK? 

Meaning: implausible sentence interpretation 

I'd like to play a sentence comprehension game 
with you. I will give a sentence and a yes-or-no 
question regarding the sentence. Please simply 
answer "Yes" or "No" to the question. Shall we 
start? 

Meaning: semantic illusions 

I want you to answer some questions. Usually a 
one-word answer will be enough. If you don't 
know the answer, just say "don't know." You will 
occasionally encounter a question which has 
something wrong with it. For example, you might 
see the question: "When was President Gerald 
Ford forced to resign his office? " The thing that 
is wrong in this example is that Ford wasn't forced 
to resign. When you see a question like this, just 
say "'wrong." OK? 

Discourse: implicit causality 

I'd like to play a sentence completion game with 
you. I will provide a sentence preamble and I 
would like you to repeat the preamble and 
continue it into a full sentence. 

Discourse: drawing inferences 

I will present you with sentences and ask a yes or 
no question about those sentences. Please respond 
only with "yes", "no", or "don't know". Is that 
OK? 

Interlocutor sensitivity: word meaning access 

I'd like to play a word association game with you. 
I will give you a word, and you are to give ONE 
word or phrase that you think of at reading the 
word I gave. For example, if I say "milk", you can 
say "cow" or "breakfast". I will give you the first 
word. Shall we start? 

Interlocutor sensitivity: lexical retrieval 
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I'd like to play a word puzzle game with you. I will 
give you a definition and you are to supply the 
word/phrase that is defined. For example, if the 
definition is "an electronic device for storing and 
processing data, typically in binary form", you can 
say "computer". I will give you the first definition. 
Please only give me the defined word/phrase. 
Shall we start? 

B Appendices – Materials and methods 

All experiments were preregistered 
(ChatGPT: osf.io/vu2h3/registrations; Vicuna: 
osf.io/sygku/registrations), with all materials and 
analytical plans preregistered prior to data 
collection and analysis. We ran the ChatGPT 
experiments with a web interface 
(https://chat.openai.com/) and the Vicuna 
experiments with the model’s API. For ChatGPT, 
we adopted a multiple-trial-per-run design, as 
with a human participant (i.e., there were multiple 
trials in each session/run with ChatGPT); such a 
design was adopted because it reduced the number 
of runs/sessions as at the time of testing it was 
sometimes difficult to secure a session with 
ChatGPT. With Vicuna, we used a one-trial-per-
run design, where we only presented the 
experimental instructions and one target trial in 
each run/session with the model. 

Unless otherwise stated, all experiments 
shared some common procedures, as specified in 
the preregistrations. First, all ChatGPT 
experimental materials were assigned to different 
lists according to the number of within-item 
conditions (e.g., two lists if there were two within-
item conditions) such that different experimental 
versions of the same item appeared in different 
lists; all stimuli (targets and fillers) in a list were 
randomly presented; note that in Vicuna 
experiments there was only one trial per run so no 
lists or fillers were needed). Second, we used a 
Python script to simulate a human interlocutor 
having a chat with ChatGPT/Vicuna. The 
simulated interlocutor always began with 
instructions regarding how the task was to be 
done. Third, each item in an experiment was run 
1000 times with ChatGPT/Vicuna (in ChatGPT, 
the stimuli in a list); in our pilot, we found that 
ChatGPT tended to stop responding after a certain 
number of prompts, so for experiments with more 
than 70 trials, we split the stimuli into two blocks 

and ran each block 1000 times. If an experimental 
run ended prematurely, the run was replaced. The 
experimental instructions for the experiments can 
be found in Supplement Information. 
 
Sounds: sound-shape association 
There were 20 trials, 10 with a novel word deemed 
spiky-sounding by human participants (Sidhu & 
Pexman, 2017) and 10 with a round-sounding 
novel word (osf.io/6wxp3); in each trial, we 
presented a novel word (e.g., tuhkeetee) and 
ChatGPT/Vicuna decided whether it referred to a 
round or spiky shape. We used a Python script to 
automatically extract "round" and "spiky" from 
the responses. Responses where automatic text 
extraction failed to detect a "round" or "spiky" 
response or where it detected both a “round” and 
a “spiky” response were coded by a native English 
speaker (as "round" or "spiky", or, if neither or 
both apply, as "other") in a condition-blind 
manner. Sometimes ChatGPT provided a 
justification or elaboration for its answer; in this 
case, we used the shape judgement but ignore the 
elaboration. We excluded "other" responses from 
the analysis (0.5% and 2.6% of all the data 
respectively for ChatGPT and Vicuna). 
  
Sounds: sound-gender association 
There were 16 target trials and 16 filler trials 
(osf.io/7yrf8). In a target trial, we presented a 
preamble that contained a novel name as the 
subject of the preamble (e.g., Although Pelcrad 
was sick …) and ChatGPT/Vicuna completed the 
preamble into a full sentence (e.g., Although 
Pelcrad was sick, he got up and went to work). We 
determined whether ChatGPT/Vicuna referred to 
the novel name as feminine or masculine by first 
automatically extracting pronouns (she/her/hers 
or he/him/his) from ChatGPT/Vicuna 
completions. For responses where no pronoun or 
multiple pronouns of different genders were 
detected, we had a native speaker of English 
determine if the novel name was referred to as 
feminine or masculine. If a response was judged 
to refer to the novel name as neither feminine nor 
masculine, or not to refer to the novel name at all, 
then it was coded as an “other” response and was 
excluded from further analyses (24.3% and 7.8% 
of all the data respectively for ChatGPT and 
Vicuna). 
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Words: word length and predictivity 
The stimuli were the same as in Mahowald et al. 
(2013), consisting of 40 target items and 40 fillers 
(osf.io/n645c), divided into two blocks (10 targets 
and 10 fillers in each block). In a trial, we 
presented ChatGPT with a sentence preamble 
with the last word missing and ChatGPT/Vicuna 
chose between two words (e.g., Susan was very 
bad at algebra, so she hated… 1. math 2. 
mathematics.). For ChatGPT, the order of the two 
choices was counter-balanced across lists (i.e., the 
order of the long and short candidate words was 
counterbalanced: On each run, we presented 
ChatGPT with one of two lists, each containing 
one order for each item, and 20 short-first and 20 
long-first stimuli). We coded whether 
ChatGPT/Vicuna chose the short or long word in 
a target trial. 
 
Words: word meaning priming 
The experiment consisted of two parts: a priming 
part and a word association part. In the priming 
part, we presented a set of 44 sentences in one go 
to ChatGPT/Vicuna, including 13 word-meaning 
primes, 13 synonym primes and 18 filler 
sentences (osf.io/ym7hg); note that when a target 
word was in the no-prime condition, there was no 
prime sentence in the priming part. This was 
immediately followed by the word association 
part (for ChatGPT, all the 39 ambiguous words 
were presented one by one in a random order on a 
run; for Vicuna, only one ambiguous word was 
presented on a run). For each of 39 target 
ambiguous words (e.g., post), ChatGPT gave an 
associate (e.g., mail). We used the algorithm and 
database developed by Gilbert and Rodd (2022) to 
code whether an associate related to the (primed) 
subordinate meaning of a target word. There were 
516 unique target-associate pairs not available in 
the database (50.2% of all unique pairs), two 
native speakers of English independently and 
condition-blindly coded whether an associate 
related to the subordinate meaning of the target 
word. Coding disagreements between the two 
coders (9.7% of manually-coded pairs) were 
resolved by a third coder, also a native speaker, in 
a condition-blind manner failed to provide an 
associate were coded as "other" and removed 
from further analyses (0.2% and 0% of all the data 
respectively for ChatGPT and Vicuna). 
 

Syntax: structural priming 
This experiment was run concurrently with the 
implicit causality experiment for ChatGPT (but 
not for Vicuna) because they had the same task 
and their target stimuli could serve as filler stimuli 
to each other. There were 64 preambles, forming 
32 prime-target pairs, together with 64 filler 
preambles, 32 of which were experimental stimuli 
for the concurrent experiment (osf.io/k3cfv). For 
ChatGPT, these stimuli were divided into two 
blocks. In each pair, the prime (e.g., The racing 
driver showed the helpful mechanic …) was 
always presented first for ChatGPT/Vicuna to 
complete (e.g., The racing driver showed the 
helpful mechanic the problem with the car, hoping 
they would be able to fix it in time for the next 
race), followed by the target preamble. For data 
coding, we made use of a pre-trained language 
model named "en_core_web_trf" 
(https://spacy.io/models/en) to generate 
dependency labels for the arguments of a verb. 
We specified all the verbs in model responses. 
The algorithm determined whether a response had 
a particular structure depending on the labels of 
the verb's arguments. To test the accuracy of the 
automatic coding using the algorithm, we did 5 
pilot runs of the structural priming experimental 
items, with a total of 160 responses generated by 
ChatGPT (i.e., 5 runs of 1 block of 16 items). We 
first had these responses coded by a native speaker 
of English as DO, PO, or other sentences. Then 
we had the algorithm code the same set of model 
responses. There was a 100% match between the 
human and automatic coding (see osf.io/wkzr8 for 
the scripts and the coding test). We then used the 
algorithm to automatically code both prime and 
target completions as DO, PO, or "other" 
responses. Pairs in which either sentence was 
coded as “other” were removed from further 
analyses (22.8% and 20.3% of all the data 
respectively for ChatGPT and Vicuna). 
 
Syntax: syntactic ambiguity resolution 
The experiment had 32 target trials and 32 filler 
trials (osf.io/c28ur). A trial consisted of a context 
sentence and a target sentence, followed by a 
probe question (e.g., There was a hunter and a 
poacher. The hunter killed the dangerous poacher 
with a rifle not long after sunset. Did the hunter 
use a rifle?). ChatGPT/Vicuna was asked to 
answer "yes" or "no" to the probe question. We 
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used automatic text extraction of "yes" or "no" 
from ChatGPT responses. If the method failed to 
extract "yes" or "no" from a response, a native 
speaker of English coded it manually and 
condition-blindly into "yes", "no", or "other". 
Responses coded as "other" were excluded from 
the analyses (22.8% and 20.3% of all the data 
respectively for ChatGPT and Vicuna). 
 
Meaning: implausible sentence interpretation 
The stimuli were taken from Experiment 1.4 in 
Gibson et al. (2013), with 20 target trials and 40 
filler trials (osf.io/2pktf). In a target trial, we 
presented ChatGPT/Vicuna with a sentence 
(plausible or implausible, in a DO or PO structure) 
together with a yes/no comprehension question 
(e.g., The mother gave the candle the daughter. 
Did the daughter receive something/someone?). 
We used automatic text extraction of "yes" or "no" 
from model responses; in trials where no “yes” or 
“no” was extracted, responses were manually 
inspected by a native speaker of English to 
determine if the response indicates a “yes” or “no” 
response; a trial was excluded if ChatGPT/Vicuna 
gave no clear indication of "yes" or "no" in its 
response (0.7% and 0.4% respectively for 
ChatGPT and Vicuna). A "yes"/"no" response 
was further coded as a literal interpretation of a 
target sentence (e.g., a "no" response to The 
mother gave the candle the daughter. Did the 
daughter receive something/someone?) or a 
nonliteral interpretation (e.g., a "yes" response to 
the above example). 
 
Meaning: semantic illusions 
The experiment contained 72 items, with 54 
targets and 18 fillers (osf.io/r67f2); we divided 
these stimuli into two blocks (for ChatGPT). In a 
trial, we presented ChatGPT/Vicuna a question 
(e.g., Snoopy is a black and white cat in what 
famous Charles Schulz comic strip?), which it 
gave an answer or reported an error if it detected 
something wrong with the sentence. We coded 
whether a semantic illusion was detected by 
ChatGPT/Vicuna (by answering "wrong") or not 
(by giving any other answer). For Vicuna, 10 
responses (out of 20,000) seemed to not relevant 
to the target question and were removed from the 
analyses.  
 
Discourse: implicit causality 

The experiment was run concurrently with the 
structural priming experiment in ChatGPT (but 
not in Vicuna). The experiment contained 32 
target preambles (adapted from Fukumura & van 
Gompel, 2010) and 96 filler preambles, 64 of 
which were target stimuli from the structural 
priming experiment (osf.io/k3cfv); these stimuli 
were divided into two blocks in ChatGPT (but not 
in Vicuna). In a target trial, we presented 
ChatGPT/Vicuna with a sentence preamble in the 
format of subject-verb-object followed by 
because (e.g., Gary scared Anna because ...); the 
subject and object were personal names that 
differed in gender (with name gender counter-
balanced between the subject and the object 
across items). ChatGPT/Vicuna repeated and 
completed the preamble (e.g., Gary scared Anna 
because he jumped out from behind a tree and 
yelled "boo!"). As in the sound-gender 
association experiment, we used automatic text 
extraction (he/him/his/ vs she/her/hers following 
because) to code the completion as referring to the 
subject or the object. For responses where 
automatic text extraction failed to extract the 
pronouns or extracted multiple pronouns that 
differed in gender, two native English speakers 
independently and condition-blindly coded those 
items, with a third native English speaker 
resolving any discrepancies between the first two 
coders. Responses that included no pronouns, 
pronouns of different genders, or were otherwise 
ambiguous in terms of subject/object reference 
were coded as "other" (17% and 5% for ChatGPT 
and Vicuna respectively) and removed from 
further analyses. 
 
Discourse: drawing inferences 
The experiment contained 48 items (24 targets 
and 24 fillers; osf.io/e3wxc). A filler item 
comprised two sentences and a yes/no question 
(e.g., While swimming in the shallow water near 
the rocks, Sharon cut her foot on a piece of glass. 
She had been looking for the watch that she 
misplaced while sitting on the rocks. Did she cut 
her foot?). For target items, the question should 
elicit a "yes" response if inferences were made but 
a “no” response if no inference was made. We 
used automatic text extraction to extract the "yes" 
and "no" answers; a native speaker manually 
inspected a response if no “yes” or “no” response 
was detected. When a response indicated a “don’t 
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know” response (42% and 44% for ChatGPT and 
Vicuna respectively), it was excluded from further 
analyses. 
 
Interlocutor sensitivity: word meaning access 
The experiment began with a self-introduction of 
the simulated interlocutor. For the BE/AE 
interlocutor, we use the introduction “Hi, I am a 
British / American English speaker. I am from the 
UK / USA. I am now living in London / New York 
and studying for a BA degree at King's College 
London / the City University of New York”; for 
the AE interlocutor, we used the introduction “Hi, 
I am an American English speaker. I am from the 
USA. I am now living in New York and studying 
for a BA degree at the City University of New 
York”. The experiment contained 56 trials, with 
36 target words that have different meanings 
between BE and AE (e.g., bonnet, see 
osf.io/k2jgd) and 20 filler words that do not. A 
trial began with an interlocutor typing a word 
(e.g., bonnet) and ChatGPT/Vicuna gave an 
associate (e.g., “hat”). We filtered the data for 
unique responses to each target word and had two 
native speakers of English, who were provided 
with definitions of the BE and AE meanings of 
target words, to independently and condition-
blindly code these unique responses as relating the 
BE meaning of the target word (e.g., “car” as 
relating to the vehicle meaning of bonnet), the AE 
meaning (e.g., “hat” as relating to the headdress 
meaning of bonnet), or some other meaning. Any 
disagreement in coding (15.5% of all unique 
responses) was resolved by a third coder (also a 
native speaker of English). Trials where the 
associate related to "other" meanings or the 
response did not provide an associate (12% and 
40% for ChatGPT and Vicuna respectively) were 
discarded from further analyses. 
 
Interlocutor sensitivity: lexical retrieval 
The experiment began with a self-introduction of 
the simulated interlocutors (BE interlocutor vs. 
AE interlocutor), using the same wording as in the 
Interlocutor sensitivity: word meaning access 
experiment. It contained 56 definitions, half of 
which were target definitions for which BE and 
AE have different lexical expressions (e.g., 
potatoes deep-fried in thin strips defines chips in 
BE but French fries in AE; see osf.io/28vt4). A 
trial began with the interlocutor typing a 

definition (e.g., potatoes deep-fried in thin strips) 
and ChatGPT/Vicuna giving the defined 
word/phrase (e.g., French fries). We filtered the 
data for unique responses for each definition and 
had two coders (native speakers of English) code 
these responses independently and condition-
blindly as a BE expression, an AE expression, or 
an “other” expression, in reference to the BE/AE 
expressions associated with each definition. 
Variants of the reference BE/AE expressions 
(e.g., "economy class" instead of "economy", 
"chip" instead of "chips") were accepted as BE or 
AE expressions. Words/phrases that did not go 
with the reference expressions were coded as 
"other". Any disagreement in coding (5.1% of all 
unique responses) was resolved by a third coder 
(also a native speaker of English and again in a 
condition-blind manner). Trials with "other" 
expressions (5% and 21% for ChatGPT and 
Vicuna respectively) were discarded from further 
analyses. 

 

C Appendix - Additional analyses 

We provided exploratory analyses 
(preregistered or non-preregistered) here; 
preregistered exploratory analyses can also be 
viewed in the preregistrations 
(osf.io/vu2h3/registrations). 
Sounds: sound-shape association 
In a non-preregistered analysis, we tested the 
possibility that an LLM might have been trained 
on the papers (or their abstracts) on which our 
experiments were based and associated a 
psycholinguistic effect with the exemplar stimuli 
used in the paper/abstract to illustrate the 
psycholinguistic effect. If this is the case, we 
should expect the effect to disappear if we 
removed the exemplar items from the analyses. 
Thus, in this experiment, we removed 6 exemplar 
items (e.g., maluma, takete), leaving the 
remaining 14 items for analyses. We observed 
that excluding the exemplar items did not affect 
the pattern of results, with round-sounding words 
still being judged to be round in shape more often 
than spike-sounding words in both ChatGPT (0.80 
vs. 0.58, β = 1.58, SE = 0.36, z = 4.37, p < .001) 
and Vicuna (0.39 vs. 0.31, β = 0.35, SE = 0.15, z 
= 2.36, p = .018).  
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In another non-preregistered analysis, we 
conducted a post-test to see whether ChatGPT 
identified any of the novel words as English 
words. It identified maluma as an English word 
almost half the time (8 of 20 trials), so we 
conducted the same LME analyses as in the main 
text but while excluding that item. The effect was 
almost the same as when maluma was included: 
ChatGPT assigned round-sounding novel words 
to round shapes more often than it assigned spiky-
sounding novel words to round shapes (0.79 vs. 
0.49, β = 2.03, SE = 0.36, z = 5.65, p < .001); so 
did Vicuna (0.39 vs. 0.32, β = 0.28, SE = 0.12, z = 
2.36, p = .018).  

Following our preregistered exploratory 
correlation analysis, we had human means for 10 
round-sounding items but only 8 spiky-sounding 
items because Sidhu and Pexman (2017) did not 
use one spiky-sounding word (puhkeetee) in the 
corresponding experiment and because another 
item (puhtay) elicited “spiky” judgements from 
humans only 42% of the time, so we replaced it 
(with keepa). We calculated the proportion of 
“round” responses for each item and compared 
that value to the proportion of “round” responses 
per item by human participants, as reported by 
Sidhu & Pexman (2017). We found a significant 
0.85 correlation between ChatGPT responses and 
human responses (t(16) = 6.53, p < .001) and a 
nonsignificant 0.18 correlation between Vicuna 
responses and human responses (t(16) = 0.75, p  = 
.463).    

 
Sounds: sound-gender association 
We conducted a non-preregistered analysis by 
removing 1 exemplar item (i.e., Corla/Colark), 
leaving 15 items in the analysis. The pattern of 
effects still held, with more use of feminine 
pronouns to refer to a name ending with a vowel 
than to one ending with a consonant in both 
ChatGPT (0.74 vs. 0.23, β = 4.79, SE = 1.25, z = 
3.84, p < .001) and Vicuna (0.39 vs. 0.02, β = 5.40, 
SE = 1.23, z = 4.41, p < .001). 
 
Words: word length and predictivity 
We conducted a non-preregistered analysis by 
removing 1 exemplar item (i.e., 
math/mathematics), leaving 39 items in the 
analysis. The exclusion did not change the pattern 
of results, with no significant difference between 
the predictive and neutral contexts in both 

ChatGPT (0.24 vs. 0.19, β = 0.29, SE = 0.22, z = 
1.32, p = .188) and Vicuna (0.31 vs. 0.31, β = -
0.16, SE = 0.20, z = -0.77, p = .439). 

We also conducted a non-preregistered 
exploratory analysis comparing trial-level data 
between language models (ChatGPT/Vicuna) and 
human participants (from Mahowald et al., 2013), 
treating context and participant group (humans = 
-0.5, ChatGPT/Vicuna = 0.5) as interacting 
predictors. We observed a significant difference 
between ChatGPT/Vicuna and humans, with 
LLMs being less likely to choose the short word 
than human participants (ChatGPT vs. humans: β 
= -3.14, SE = 0.22, z = -13.98, p < .001; Vicuna 
vs. humans: β = -1.86, SE = 0.24, z = -7.61, p < 
.001; see also Fig 1 bottom left). There was also 
an effect of context in the ChatGPT-human 
comparison, with the short word chosen more 
often in a predictive than neutral context (β = 0.44, 
SE = 0.16, z = 2.83, p < .005) but there was no 
such an effect in the Vicuna-human comparison 
(β = 0.15, SE = 0.12, z = 1.24, p = .215). The effect 
of context was similar between ChatGPT and 
humans, as indicated by the lack of an interaction 
between group and context (β = -0.20, SE = 0.20, 
z = -0.96, p = .336), but the effect of context was 
larger in humans than in Vicuna, as indicated by 
the significant interaction between group and 
context (β = -0.60, SE = 0.22, z = -2.76, p = .006). 

 
Words: word meaning priming 
We also conducted a non-preregistered analysis 
by removing 14 exemplar items (e.g., post), 
leaving 25 items in the analysis. In both models, 
there was no significant difference in meaning 
access between a synonym prime and no prime 
(ChatGPT: 0.38 vs. 0.33, β = 0.36, SE = 0.19, z = 
1.90, p = .057; Vicuna: 0.19 vs. 0.15, β = 0.39, SE 
= 0.28, z = 1.40, p = .162); there was a significant 
word-meaning priming effect, with more access to 
the primed (subordinate) meaning following a 
word-meaning prime than following no prime 
(0.53 vs. 0.33, β = 2.47, SE = 0.30, z = 8.20, p < 
.001; Vicuna: 0.32 vs. 0.15, β = 3.33, SE = 0.50, z 
= 6.70, p < .001) and than following a synonym 
prime (ChatGPT: 0.53 vs. 0.38, β = 2.65, SE = 
0.40, z = 6.58, p < .001; Vicuna: 0.32 vs. 0.19, β 
= 2.86, SE = 0.48, z = 5.91, p < .001). 
 Rodd et al. (2013, Experiment 3) also 
performed a secondary analysis where they 
removed any associate that is a morphological 
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variant of a word in the prime sentence 
corresponding to an association trial; for example, 
if a participant gave firm or accountant as an 
associate to post following the prime sentence The 
man accepted the post in the accountancy firm, 
that trial was removed from the analysis. We 
initially preregistered this analysis but later 
changed to the main analysis in Rodd et al. (2013), 
as the removal method would lead to a lot of 
removals in the synonym prime condition, 
because the synonym could often be given as an 
associate to the target word (e.g., job as an 
associate of post). Nonetheless, we also followed 
the secondary analysis in Rodd et al. (2013) by 
excluding associates with the same lemma as any 
word in the corresponding prime sentence (e.g., 
we excluded posting, firms, or accept as 
associates of post following the word-meaning 
prime). Compared to the no-prime condition, the 
synonym prime led to less subordinate meaning 
access in ChatGPT (0.33 vs. 0.22, β = -0.79, SE = 
0.32, z = -2.47, p = .013) but led to similar access 
in Vicuna (0.09 vs. 0.11, β = 0.44, SE = 0.30, z = 
1.46, p = .146); critically, the word-meaning 
prime led to more subordinate meaning access 
than no prime (ChatGPT: 0.47 vs. 0.33, β = 1.88, 
SE = 0.37, z = 5.10, p < .001; Vicuna: 0.15 vs. 
0.09, β = 2.79, SE = 0.51, z = 5.50, p < .001) and 
than the synonym prime (ChatGPT: 0.47 vs. 0.22, 
β = 2.65, SE = 0.40, z = 6.58, p < .001; Vicuna: 
0.15 vs. 0.11, β = 2.86, SE = 0.50, z = 5.67, p < 
.001).  
 
Syntax: structural priming 
We conducted a non-preregistered analysis by 
removing 1 exemplar item, leaving 31 items in the 
analysis. The exclusion did not alter the pattern of 
results. For ChatGPT, there was a significant main 
effect of prime structure, with more PO responses 
following PO and DO primes (ChatGPT: 0.72 vs. 
0.59, β = 1.06, SE = 0.11, z = 9.67, p < .001; 
Vicuna: 0.81 vs. 0.51, β = 2.97, SE = 0.35, z = 
8.49, p < .001); there was no significant main 
effect of verb type, with similar PO responses 
when the prime and target had different verbs and 
when they had same verb (ChatGPT: 0.64 vs. 
0.67,  β = -0.06, SE = 0.09, z = -0.63, p = .528; 
Vicuna: 0.66 vs. 0.67,  β = -0.17, SE = 0.23, z = -
0.75, p = .454); there was a significant interaction, 
with a stronger structural priming effect when the 
verb was the same between the prime and target 

than when it was different (ChatGPT: 0.15 vs. 
0.10 in priming effects, β = 0.40, SE = 0.15, z = 
2.63, p = .009; Vicuna: 0.38 vs. 0.21 in priming 
effects, β = 1.16, SE = 0.47, z = 2.49, p = .013). 
 
Syntax: syntactic ambiguity resolution 
We conducted a non-preregistered analysis by 
removing 1 exemplar item (Example 5 in the main 
text), leaving 31 items in the analysis. The 
exclusion did not alter the pattern of results. There 
were more VP than NP attachments (ChatGPT: 
0.94 vs. 0.06, β = -9.35, SE = 0.74, z = -12.68, p < 
.001; Vicuna: 0.63 vs. 0.37, β = -1.33, SE = 0.16, 
z = -8.12, p < .001). There was an effect of context 
in Vicuna, with more NP attachment 
interpretations following a multiple-referent 
context than following a single-referent context 
(0.38 vs. 0.36, β = 0.20, SE = 0.10, z = 2.10, p = 
.036) but not in ChatGPT (0.06 vs. 0.06, β = -0.10, 
SE = 0.43, z = -0.23, p = .820). There was an effect 
of question, with more NP attachment 
interpretations for an NP probe than for a VP 
probe (ChatGPT: 0.09 vs. 0.03, β = 3.37, SE = 
0.99, z = 3.42, p < .001; Vicuna: 0.72 vs. 0.03, β 
= 5.64, SE = 0.48, z = 11.76, p < .001), and no 
interaction between context and probe (ChatGPT: 
β = 0.19, SE = 0.70, z = 0.27, p = .785; Vicuna: β 
= -0.18, SE = 0.25, z = -0.71, p = .480).  
 
Meaning: implausible sentence interpretation 
We conducted a non-preregistered analysis by 
removing 2 exemplar items (The mother gave the 
daughter to the candle and The girl tossed the 
apple the boy), leaving 18 items in the analysis. 
There was an effect of implausibility in ChatGPT, 
with more nonliteral interpretations for 
implausible than plausible sentences (0.75 vs. 
0.02, β = 11.59, SE = 0.69, z = 16.90, p < .001) 
but not in Vicuna (0.49 vs. 0.37, β = 1.99, SE = 
1.30, z = 1.53, p = .126). There was an effect of 
structure in ChatGPT, with more nonliteral 
interpretations for DO than PO sentences (0.48 vs. 
0.29, β = 1.59, SE = 0.45, z = 3.56, p < .001) but 
not in Vicuna (0.45 vs. 0.41, β = -0.10, SE = 0.38, 
z = -0.26, p = .794). There was a significant 
interaction between plausibility and structure in 
ChatGPT, with the effect of plausibility being 
stronger in DO sentences than in PO sentences (β 
= 2.55, SE = 0.76, z = 3.38, p < .001) but not in 
Vicuna (β = 1.24, SE = 0.66, z = 1.88, p = .060). 
Analysing implausible sentences alone revealed 
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an effect of structure, with more nonliteral 
interpretations for implausible DO than PO 
sentences in ChatGPT (0.92 vs. 0.57, β = 3.13, SE 
= 0.68, z = 4.58, p < .001) but not in Vicuna (0.52 
vs. 0.46 β = 0.51, SE = 0.54, z = 0.95, p = .342). 
In another non-preregistered analysis, we also 
compared trial-level data between 
ChatGPT/Vicuna and human participants (from 
Experiment 1.4 in Gibson et al., 2013) in the 
interpretation of implausible sentences (excluding 
plausible sentences). Compared to human 
participants, ChatGPT had more nonliteral 
interpretations of implausible sentences (0.45 vs. 
0.74, β = 2.08, SE = 0.44, z = 4.76, p < .001), but 
Vicuna did not (0.45 vs. 0.50, β = 0.45, SE = 0.54, 
z = 0.83, p = .410). There is an effect of structure, 
with more nonliteral interpretations for 
implausible DOs than implausible POs in both the 
ChatGPT/human comparison (0.90 vs. 0.55, β = 
2.15, SE = 0.43, z = 5.03, p < .001) and the 
Vicuna/human comparison (0.54 vs. 0.46, β = 
0.68, SE = 0.31, z = 2.16, p = .031). The 
interaction between group and structure was 
significant in the ChatGPT/human comparison, 
suggesting that the effect of structure was larger 
in ChatGPT than in humans (β = 2.75, SE = 0.75, 
z = 3.68, p < .001), but the interaction was not 
significant in the Vicuna/human comparison (β = 
0.18, SE = 0.55, z = 0.33, p = .739).  
 
Meaning: semantic illusions 
We conducted a non-preregistered analysis by 
removing 2 exemplar items (“What board game 
includes bishops/cardinals/monks, rooks, pawns, 
knights, kings, and queens?” and “What 
passenger liner was tragically sunk by an iceberg 
in the Atlantic/Pacific/Indian Ocean?”), leaving 
52 items in the analysis. In ChatGPT, compared 
to the baseline, there were more error reports in 
the strong imposter conditions (0.00 vs. 0.14, β = 
14.40, SE = 1.15, z = 12.55, p < .001) and in the 
weak imposter condition (0.00 vs. 0.17, β =15.24, 
SE = 1.15, z = 13.27, p < .001); there was no 
statistical difference in error reports between the 
two imposter conditions (β = 1.33, SE = 0.83, z = 
1.60, p = .109). In Vicuna, there was no statistical 
difference in error reports between the baseline 
and the strong imposter condition (0.002 vs. 
0.022, β = -2.78, SE = 1.62, z = -1.72, p = .085) or 
between the baseline and the weak imposter 
condition (0.002 vs. 0.018, β =1.00, SE = 1.30, z 

= 0.77, p = .445); the weak imposter condition led 
to more error reports than the strong imposter 
condition (β = 3.90, SE = 1.16, z = 3.36, p < .001), 
though numerically there was a lower error report 
rate in the weak than strong imposter condition 
(0.022 vs. 0.017). 
 
Discourse: implicit causality 
We conducted a non-preregistered analysis by 
removing 3 exemplar items (Gary scared Anna 
because he was wearing a mask and making 
strange noises, Toby impressed Susie because he 
got a perfect score on the math exam, and Brian 
impressed Janet because of his exceptional 
intelligence and charming personality), leaving 
29 items in the analysis. The exclusion did not 
alter the pattern of results: more completions with 
a pronoun referring to the object following an 
experiencer-stimulus verb than following a 
stimulus-experiencer verb in ChatGPT (0.95 vs. 
0.00, β = 13.82, SE = 0.94, z = 14.69, p < .001) 
and also in Vicuna (0.91 vs. 0.01, β = 14.37, SE = 
1.51, z =9.54, p < .001). 
 
Discourse: drawing inferences  
We conducted a non-preregistered analysis by 
removing 1 exemplar item (the example in (9) in 
the main text), leaving 23 items in the analysis. 
The exclusion did not change the results pattern. 
In both models, compared to the explicit 
condition, there were fewer “yes” responses in the 
bridging condition (ChatGPT: 0.49 vs. 0.95, β = -
5.05, SE = 0.10, z = -50.06, p < .001; Vicuna: 0.24 
vs. 0.79, β = -4.37, SE = 0.52, z = -8.33, p < .001) 
and in the elaborative condition (ChatGPT: 0.23 
vs. 0.95, β = -7.40, SE = 0.12, z = -62.59, p < .001; 
Vicuna: 0.20 vs. 0.79, β = -4.43, SE = 0.43, z = -
10.22, p < .001). Critically, ChatGPT made fewer 
“yes” responses in the elaborative than bridging 
condition (0.23 vs. 0.49, β = -2.94, SE = 0.60, z = 
-4.89, p < .001), whereas Vicuna made similar 
“yes” responses between the bridging and 
elaborative conditions (0.24 vs. 0.20, β = -0.06, 
SE = 0.44, z = -0.13, p = .900). 
 
Interlocutor sensitivity: word meaning access 
We conducted a non-preregistered analysis by 
removing 13 exemplar items (e.g., “bonnet”), 
leaving 23 items in the analysis. The exclusion did 
not alter the pattern of results. There was more 
access to the AE meaning with an AE interlocutor 
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than a BE interlocutor in both ChatGPT (0.46 vs. 
0.36, β = 1.84, SE = 0.25, z = 7.28, p < .001) and 
in Vicuna (0.62 vs. 0.33, β = 2.80, SE = 0.54, z = 
5.15, p < .001). 

Following the preregistered exploratory 
analysis, we also included (log) trial order (i.e., 
the log order in which a target trial was presented, 
among both targets and fillers, to ChatGPT in an 
experimental run) (Note that the Vicuna 
experiment had one trial per run so there was no 
trial order). This analysis was to see if the 
interlocutor sensitivity (if any) varies over time. 
Thus, the LME model included interlocutor and 
(log) trial order as interacting predictors. We 
observed a significant interlocutor effect (β = 
2.01, SE = 0.25, z = 7.91, p < .001), with more 
access to AE meanings for an AE than BE 
interlocutor, and a significant effect of trial order 
(β = -0.49, SE = 0.15, z = -3.20, p = .001), with 
decreasing AE meaning access over time. 
Importantly, we also observed a significant 
interaction between interlocutor and (log) trial 
order (β = -0.54, SE = 0.17, z = -3.14, p = .002), 
showing that the interlocutor effect decreased 
over time. Such a decrease of interlocutor 
sensitivity is not observed in human experiments 
(e.g., Cai et al., 2017) and might be due to the 
attenuating contextual influence (i.e., the 
interlocutor dialectal background) over time in 
ChatGPT.  

In a non-preregistered analysis, we also 
compared trial-level data between 
ChatGPT/Vicuna and human participants (pooled 
from Experiment 1 of Cai et al., 2017) and the 
blocked condition of Experiment 1 of Cai (2022). 
There was no effect of participant group 
(ChatGPT: β = 0.53, SE = 0.91, z = 0.58, p = .560; 
Vicuna: β = 0.65, SE = 0.68, z = 0.96, p = .338), 
with a similar proportion of AE meaning access 
for ChatGPT/Vicuna and human participants (see 
Fig 3 bottom left). There was an interlocutor 
effect (ChatGPT: β = 1.13, SE = 0.14, z = 8.28, p 
< .001; Vicuna: β = 1.59, SE = 0.27, z = 5.97, p < 
.001), with more access to AE meanings for words 
produced by an AE interlocutor than by a BE 
interlocutor. There was also an interaction 
between group and interlocutor (ChatGPT: β = 
1.34, SE = 0.28, z = 4.70, p < .001; Vicuna: β = 
2.26, SE = 0.58, z = 3.92, p < .001), which 
suggests that ChatGPT/Vicuna was more 
sensitive to an interlocutor’s dialectal background 

in word meaning access than human participants 
were (however, it should be noted that 
ChatGPT/Vicuna was explicitly told about an 
interlocutor’s dialectic background, whereas 
human participants inferred their dialectal 
background via their accent). 

 
Interlocutor sensitivity: lexical retrieval 
Note that that the human study on which this 
experiment was based was not published at the 
time of experiment so we did not conduct any 
analysis excluding exemplar items. 
Following the preregistered exploratory analysis, 
we also included (log) trial order (i.e., the log 
order in which a target trial was presented, among 
both targets and fillers, to ChatGPT in an 
experimental run). In an LME model with 
interlocutor and (log) trial order as interacting 
predictors, we observed an interlocutor effect (β = 
4.21, SE = 1.76, z = 2.39, p = .017; with more AE 
meaning access for words from an AE interlocutor 
than from a BE interlocutor), a trial order effect (β 
= 1.51, SE = 0.60, z = 2.54, p = .011; with 
increasing AE expressions over time), and an 
interaction between interlocutor and trial order (β 
= -0.18, SE = 0.09, z = -2.17, p = .030; with a 
decreasing interlocutor effect over time). 

In a non-preregistered analysis, we also 
compared trial-level data between ChatGPT and 
human participants (from the pilot experiment of 
Cai et al., accepted in principle) and between 
Vicuna and human participants, using participant 
group and interlocutor to predict whether a BE or 
AE expression was produced. There was a group 
effect in both comparisons, with more AE 
expressions produced by both ChatGPT and 
Vicuna than by human participants (ChatGPT: β 
= 12.88, SE = 0.00, z = 37044, p < .001; Vicuna: 
β = 5.27, SE = 0.64, z = 8.30, p < .001; see Fig. 3 
bottom right). There was also an interlocutor 
effect, with more AE expressions when a 
definition was given by an AE interlocutor than 
by a BE interlocutor in both ChatGPT and Vicuna 
compared to in humans (ChatGPT: β = 2.06, SE = 
0.00, z = 5926, p < .001; Vicuna: β = 2.10, SE = 
0.29, z = 7.24, p < .001). The interaction was 
significant in both ChatGPT-human comparison 
(β = 2.78, SE = 0.00, z = 8006, p < .001) and 
Vicuna-human comparison (β = 2.82, SE = 0.52, 
z = 5.37, p < .001), suggesting that both LLMs 
were more sensitive to an interlocutor’s dialectal 
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background than human participants when 
producing lexical expressions.  
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