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Abstract

Humans have clear cross-modal preferences
when matching certain novel words to visual
shapes. Evidence suggests that these prefer-
ences play a prominent role in our linguistic
processing, language learning, and the origins
of signal-meaning mappings. With the rise
of multimodal models in Al, such as vision-
and-language (VLM) models, it becomes in-
creasingly important to uncover the kinds of
visio-linguistic associations these models en-
code and whether they align with human rep-
resentations. Informed by experiments with
humans, we probe and compare four VLMs for
a well-known human cross-modal preference,
the bouba-kiki effect. We do not find conclu-
sive evidence for this effect but suggest that
results may depend on features of the models,
such as architecture design, model size, and
training details. Our findings inform discus-
sions on the origins of the bouba-kiki effect in
human cognition and future developments of
VLMs that align well with human cross-modal
associations.

1 Introduction

The development of machine understanding and
generation of natural language has benefited im-
mensely from the introduction of transformer-
based architectures (Vaswani et al., 2017). These
architectures have since then been adapted and ex-
tended to handle multimodal data, leading to the
creation of various types of multimodal models,
including vision-and-language models. These mod-
els can potentially revolutionize how Al systems
understand the world and interact with humans.
However, we lack direct access to the exact rep-
resentations and associations they encode. How
VLMs integrate representations in the two modali-
ties and whether associations between modalities
are made in a human-like way is still being ac-
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Figure 1: Which of these two shapes is Kiki? Images
from Kohler (1929, 1947)

tively investigated (Alper et al., 2023; Kamath et al.,
2023; Zhang et al., 2024b; Karamcheti et al., 2024).

Here, we use a well-known paradigm from the
field of cognitive science to probe into a specific
cross-modal association between speech sounds
and visual shapes: the bouba-kiki effect. When
humans see two figures, one with jagged and one
with smooth edges, and are told one is a Kiki and
the other a Bouba, 95% will name the jagged figure
Kiki (Ramachandran and Hubbard, 2001). This
effect was initially discovered and described anec-
dotally by Wolfgang Kohler (Kohler, 1929, 1947),
using the two images shown in Figure 1 with the
labels maluma and takete. Since then it has been
widely studied (as reviewed in Section 2), and ex-
panded with many other cross-modal preferences
in human processing of (speech) sounds and visual
imagery. Moreover, a wealth of evidence suggests
that such preferences widely influence patterns we
see in human languages (e.g., Ramachandran and
Hubbard, 2001; Cuskley and Kirby, 2013; Imai
and Kita, 2014; Verhoef et al., 2015, 2016; Tama-
riz et al., 2018). Even though non-arbitrariness in
language is often still regarded as an exception in
some disciplines, in fields such as language evolu-
tion, and sign language linguistics, iconic form-
meaning mappings are considered omnipresent
(Perniss et al., 2010). Given the central role cross-
modal preferences play in human visio-linguistic
representations and their effects on language, it is
pertinent to investigate whether VLMs associate
non-words and visual stimuli in a human-like way.
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Examining universal human cross-modal prefer-
ences in VLMs can help us gain key insights across
disciplines. First, it may reveal whether VLMs pro-
cess multimodal information in a human-like way
and whether similar biases drive their understand-
ing of visual-auditory form-meaning mappings.
Overlap in cognitive biases can potentially increase
mutual understanding and improve interactions be-
tween humans and machines (Kouwenhoven et al.,
2022). Second, it may help pinpoint what is miss-
ing to make VLMs more suitable for realistic simu-
lations of human language emergence. Increas-
ingly, VLMs are used in emergent communica-
tion settings, where agents communicate with each
other and develop a novel language (Bouchacourt
and Baroni, 2018; Mahaut et al., 2023; Kouwen-
hoven et al., 2024). These models are used to im-
prove machine understanding of human language
(Lazaridou and Baroni, 2020; Lowe et al., 2020;
Steinert-Threlkeld et al., 2022; Zheng et al., 2024),
but also to simulate and study human language evo-
lution processes (Galke et al., 2022; Lian et al.,
2023). While the influence of cross-modal associa-
tions on the emergence of language has been stud-
ied extensively in language evolution experiments
with humans (Verhoef et al., 2015, 2016; Tamariz
et al., 2018; Little et al., 2017), the phenomenon is
still absent from current emergent communication
paradigms. Evidently, cognitively plausible VLMs
are more suitable for simulating aspects of the evo-
lution of meaning in language. Finally, the actual
origin of the bouba-kiki effect is still being debated
within cognitive science and linguistics, with pro-
posed explanations ranging from attributing it to
similarities between shape features and features of
either orthography (Cuskley et al., 2017), acous-
tics and articulation (Ramachandran and Hubbard,
2001; Maurer et al., 2006; Westbury, 2005), affec-
tive—semantic properties of human and non-human
vocal communication (Nielsen and Rendall, 2011),
or physical properties relating to audiovisual reg-
ularities in the environment (Fort and Schwartz,
2022). If the bouba-kiki effect can be reproduced
in a VLM, it can help reveal the crucial ingredients
for this effect, potentially leading to models better
aligned with human representations.

To the best of our knowledge, only one previous
paper discussed the bouba-kiki effect in VLMs.
Alper and Averbuch-Elor (2023) tested two models,
CLIP (Radford et al., 2021) and Stable Diffusion
(Rombach et al., 2022), and reported to find strong
evidence for the effect in these models. This is

somewhat surprising given the way these models
are trained and the absence of relevant data sources
such as auditory information and experience with
physical object properties. Therefore, we introduce
nuance in this discussion and show, contrary to this
previous finding, that the bouba-kiki effect does not
occur consistently in VLMs, and the presence of
this cross-modal preference may depend on the way
it is tested and properties like model architecture,
attention mechanism, and training details.

2 Background

2.1 Sound-symbolism and cross-modal
associations in language and cognition

When Hockett (1960) listed a set of design features
deemed essential to natural human language, "ar-
bitrariness" was included. This feature refers to
the arbitrary/unmotivated mapping between words
and their meanings. However, when exploring
beyond Indo-European languages, non-arbitrary
form-meaning mappings appear to play a signif-
icant role in many languages (Imai et al., 2008;
Perniss et al., 2010; Dingemanse, 2012). Most
obviously, perhaps, sign languages are rich in non-
arbitrary "iconic" mappings, with articulators that
lend themselves particularly well to representing
meanings by mimicking, for example, shapes or
actions. However, some spoken languages also
have specific classes of words where characteristics
of the meaning are mimicked or iconically repre-
sented in the word. Examples have been identified
as "ideophones," "mimetics", or "expressives," and
this phenomenon is often called sound-symbolism
(Imai et al., 2008; Imai and Kita, 2014; Dinge-
manse, 2012). Even in languages not typically con-
sidered rich in sound symbolism, such as English
and Spanish, vocabulary items from specific lexical
categories, like adjectives, are rated high in iconic-
ity as well (Perry et al., 2015). Perhaps the most
overwhelming evidence for the widespread impor-
tance of sound-symbolism in human languages
comes from a study by Blasi et al. (2016), who
analyzed vocabularies of two-thirds of the world’s
languages and found evidence for strong associa-
tions between speech sounds and particular mean-
ings across geographical locations and linguistic
lineages. Consequently, non-arbitrariness is an im-
portant property of all languages.

In addition, human language learning, process-
ing, and evolution are affected by cross-modal as-
sociations. Sound-symbolic mappings help young
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children acquire new words (Imai et al., 2008), and
iconic words are learned earlier in child language
development (Perry et al., 2015). Furthermore,
parents use sound-symbolic words in their infant-
directed speech more often than in adult-to-adult
conversations (Imai et al., 2008). In a novel word
learning task, participants trained on a mapping
congruent with a known cross-modal association
performed better than participants in an incongru-
ent condition (Nielsen and Rendall, 2012). Sound-
symbolic mappings in language have been con-
nected to cross-modal mappings in the human brain
(Simner et al., 2010; Ramachandran and Hubbard,
2001; Lockwood and Dingemanse, 2015) and pro-
cessing of sound-symbolic words is less affected
by aphasia (language-affecting brain damage af-
ter left-hemisphere stroke), than arbitrary words
(Meteyard et al., 2015). It is also argued that uni-
versally shared cross-modal biases play an essential
role in the evolution of language by bridging the
gap between sensory input and meaning by provid-
ing a basis for linguistic conventions (Ramachan-
dran and Hubbard, 2001; Cuskley and Kirby, 2013;
Imai and Kita, 2014). Shared biases can help to
create mutual understanding because communica-
tive partners will automatically understand what is
meant when a word like "kiki" is used for the first
time in a context like the one shown in Figure 1.

While the bouba-kiki effect may be the most
famous example of a universal cross-modal associ-
ation, many other cognitive biases in cross-modal
perception have been reported. For example, non-
arbitrary associations exist in human processing
between high pitch sounds and light shades (Marks,
1974; Melara, 1989; Ward et al., 2006), light shades
with rising intonation (Hubbard, 1996), graphemes
and colours (Cuskley et al., 2019), vowel height
and lightness (Cuskley et al., 2019), small size and
high pitch (Evans and Treisman, 2010; Parise and
Spence, 2009) and vowel openness and visual size
(Schmidtke et al., 2014). Therefore, the findings
presented in this paper only scratch the surface of
what is possible in this domain.

2.2 Testing the bouba-kiki effect in humans

After its initial discovery, the bouba-kiki effect has
been studied increasingly rigorously, extending the
initial pair of two images with more possible pairs
(Maurer et al., 2006; Westbury, 2005), and even ran-
domly generated ones to control for biases related
to deliberate selection by the researchers (Nielsen
and Rendall, 2011, 2013). In addition, various sets

of labels and pseudowords have been contrasted
and compared to study the relative importance of
vowels versus consonants in the labels (Westbury,
2005; Nielsen and Rendall, 2011, 2013). The role
of orthography, in addition to auditory properties
of speech sounds, has also been studied (Cuskley
et al., 2017; Bottini et al., 2019). Across set-ups,
non-arbitrary preferences are found robustly across
varying cultures and writing systems (Cwiek et al.,
2022). Remarkably, to some extent this can even
be found in blind individuals who undergo a haptic
version of the bouba-kiki task (Bottini et al., 2019).

Most experiments in this domain are conducted
using a two-alternative forced choice design, where
two contrasting images are shown side by side (one
jagged and the other curved), and two possible la-
bels are offered, asking participants to make the
"correct" mapping. However, it has been argued
that this is an anti-conservative method in the sense
that the concurrent presentation of two images that
differ along one dimension and two labels that also
differ along one dimension strongly primes partici-
pants to match the two, noticing their similarities.
Nielsen and Rendall (2013) therefore introduced
a different method, in which images are presented
independently, and participants are asked to gener-
ate novel pseudowords to match the images. Here,
we adopt their approach as a stringent method for
probing VLMs for the bouba-kiki effect.

2.3 Vision-and-language models

Despite recent advances in multi-modal models
(Zhang et al., 2024a) using transformer archi-
tectures, they remain poorly understood and of-
ten show unwanted behaviors such as poor visio-
compositional reasoning (Thrush et al., 2022; Di-
wan et al., 2022) or spatial reasoning skills (Kamath
et al., 2023). In addition, in the visual question-
answering domain it is a well-known problem that
models often lack visual grounding and have trou-
ble integrating textual and visual data (Goyal et al.,
2017; Jabri et al., 2016; Agrawal et al., 2018). This
makes it perhaps even more puzzling that Alper
and Averbuch-Elor (2023) found strong evidence
for a bouba-kiki effect in CLIP and Stable Diffu-
sion: even if these models are able to extract sound-
symbolic information in the absence of auditory
data, they will likely struggle to actually associate
that information with visual properties.

Their approach involved generating two large
sets of pseudowords, where one set was more likely
associated with round shapes (examples: bodubo,
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Model Train objective Architecture Attention #Params #imgs,caps (M)
CLIP CON Dual-Stream  Modality-specific 151.3M 400, 400

ViILT ITM&MLM single-stream  Merged 87.4M 4.10, 9.85
BLIP2 CON&IGTG&ITM  Dual-stream  Q-Former ~3.8B 129, 258
GPT-40 Unknown Unknown Unknown Unknown Unknown

Table 1: Overview of the models. Objectives are Image Text Matching(ITM), Masked Language Modelling(MLM),
Image-grounded Text Generation(IGTG), or Contrastive Learning(CON). Numbers are millions(M) or billions(B).

gunogu, momomo) and the other set would evoke
associations with jagged shapes (examples: kitaki,
hipehi, texete). The CLIP embedding vector space
was used to define a visual semantic dimension that
best separates two sets of pre-selected adjectives
(various synonyms of round and jagged). Within
this space, pseudoword properties could reliably
predict adjective type (round or jagged), and geo-
metric properties associated with those adjectives
could predict the category of pseudowords. With
Stable Diffusion, novel images were generated
based on pseudowords and analyzed by embedding
them using CLIP and through human evaluation.
Both methods revealed evidence for the presence of
sound symbolic mappings in these models (Alper
and Averbuch-Elor, 2023).

While their methods mainly involved text-to-
image generation (with Stable Diffusion) or text-to-
text mapping (with CLIP embeddings), we focus
on image-to-text classification. We use images
previously used in experiments with humans, as
well as novel images generated following a proce-
dure previously used to generate items for human
experimentation. This approach provides an addi-
tional way of testing for cross-modal associations
in VLMs and yields data that can be more directly
compared to human data from studies into the
bouba-kiki effect. Moreover, Alper and Averbuch-
Elor (2023) did not explicitly compare different
VLMs (Stable Diffusion also uses CLIP). However,
it would not be surprising if properties relating to
the architecture, for example, affect the presence
of this effect since these properties directly deter-
mine how the modality gap is bridged. Previous
findings suggest that dataset diversity and scale
are the primary drivers of alignment to human rep-
resentations (Conwell et al., 2023; Muttenthaler
et al., 2023). We compare four models here, with
different architectures, attention mechanisms, and
training objectives.

While many different architectures exist, they
typically use single or dual-stream architectures.
Either combining the inputs from two modalities

and encoding them jointly (single-stream) or en-
coding them by two separate modality-specific
encoders (dual-stream). Single-stream architec-
tures typically use merged attention, where the
language and visual input attend to both them-
selves and the other modality. Dual-stream ar-
chitectures often use some form of cross-model
attention, like co-attention and modality-specific
attention, in addition to merged attention. Recently,
Li et al. (2023) introduced a lightweight Query-
ing Transformer (Q-Former) to bridge the modality
gap between any arbitrary pre-trained frozen vision
model and a language model, resulting in BLIP2.
Frequently, image text matching and masked lan-
guage modeling are used as learning objectives
(e.g., ViLT; Kim et al., 2021), but some methods
use a contrastive learning objective (e.g., CLIP)
or use image-grounded text generation loss (e.g.,
BLIP, BLIP2). The models used in this paper are
shown in Table 1. They are different in the above
aspects, allowing investigation into the effect of
their designs and input data on the bouba-kiki ef-
fect. In addition, we include GPT-40; even though
no information is available for this model, its gen-
erative performance is unprecedented.

3 Methods

To test for the presence of a bouba-kiki effect in
VLMs we employ previously used as well as newly
generated images (§3.1) and use a method for con-
structing pseudowords (3.2) that is directly bor-
rowed from Nielsen and Rendall (2013). Probing
(§3.3) was used to obtain image-text scores and
responses were analyzed in two ways (§3.4).

3.1 Image selection and generation

The original set of images used by Kohler (1929,
1947), as shown in figure 1, has been expanded in
subsequent experiments. Maurer et al. (2006) for
example introduced additional line drawings and
Westbury (2005) used images with white shapes
on a black background. Here we use the original
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pair and the two sets of four image pairs by Maurer
et al. (2006); Westbury (2005). In addition, we
generated new random curved and jagged images
using a method inspired by Nielsen and Rendall
(2013). We generated 10 uniformly distributed
points within a circle with a radius of 1. These
points were connected with either smooth curves
or straight lines. For curved images, we generated
curves that pass through the given points such that
they form a closed path. Jagged images were gener-
ated by connecting the ordered points with straight
lines, also forming a closed path. All images are
displayed in Appendix A.

3.2 Pseudoword generation

Following the experiment conducted by Nielsen
and Rendall (2013) with human participants, we
present the VLMs with a constrained set of syl-
lables that can be used to construct novel pseu-
dowords. Based on previously established cross-
modal association patterns, Nielsen and Rendall
(2013) selected sets of vowels and consonants that
were expected to evoke a sense of correspondence
with either jagged or curved visual shapes. We
adopt exactly their set here, consisting of sono-
rant consonants M, N and L and rounded vowels
OO, OH and AH, expected to match to curved
shapes, and plosive consonants T, K and P and
non-rounded vowels EE, AY and UH, expected to
match to jagged shapes. Syllables were created by
making consonant-vowel combinations. In total
36 different syllables (e.g., loo, nah, kee, puh) can
be constructed in this way, with nine different ver-
sions of each syllable type: sonorant-rounded (S-
R), plosive-rounded (P-R), sonorant-non-rounded
(S-NR) and plosive-non-rounded (P-NR).

In addition to single syllables, we generated
pseudowords by concatenating two syllables, as
this was exactly the task human participants were
asked to complete in the experiment (Nielsen and
Rendall, 2013). However, since we are not primar-
ily interested here in distinguishing the separate
roles played by consonants versus vowels in the
bouba-kiki effect, and Nielsen and Rendall (2013)
demonstrated that both have an effect, we limit the
set of possible syllables in two-syllable probing to
combinations of S-R syllables and P-NR syllables.

An important difference between the human set-
up and our work, is that their participants also
listened to a spoken version of the pseudowords,
while our models are only exposed to the written
form. Since the bouba-kiki effect is most often

assumed to integrate vision and sound, this may
influence the result. However, the relation between
orthographic shapes and the sounds they represent
is not arbitrary either and has presumably been
shaped by human iconic strategies in their devel-
opment and evolution (Turoman and Styles, 2017).
This perhaps also explains why a role for English
orthography has been demonstrated in the bouba-
kiki effect for humans (Cuskley et al., 2017), while
at the same time it is robust across different writing
systems (Cwiek etal., 2022).

3.3 VLM probing

To assess the preferences of BLIP2, CLIP, and
ViLT, in each trial, we extract probabilities for all
possible labels (i.e., syllables and pseudowords)
conditioned on an image. Instead of only embed-
ding the label, each label is fed in a sentence (‘The
label for this image is {label}’) such that embed-
ding the textual input is closer to the models’ nat-
ural objective!. Importantly, only the labels differ
between inferences such that variance in the prob-
ability given an image is caused by the label only.
Where Alper and Averbuch-Elor (2023) use an indi-
rect metric by embedding the inputs in CLIP space,
our method uses the model probabilities as a more
direct measure of how well a given syllable or pseu-
doword matches a novel image. For GPT-40, we
prompt the model to generate a label and use its
probability directly (Appendix B).

3.4 Analysis

All findings were analyzed for statistical signifi-
cance using Bayesian models with the brms pack-
age (Birkner, 2021) in R (R Core Team, 2023).
To analyze VLM probability scores, we fitted
Bayesian multilevel linear models (4 chains of
4000 iterations and a warmup of 2000, family =
gaussian) to predict probability with image shape
(Jagged versus Curved), consonant (plosive or
sonorant) and vowel (rounded or non-rounded) cat-
egories (Probability ~ shape * (consonant +
vowel)). For all models of this type, the random
effects structure consists of varying intercepts for
image and label with by-label random slopes for
shape. When comparing proportions of vowels,
consonants, or selected pseudoword types, we fit-
ted Bayesian logistic models (4 chains of 1000 iter-
ations and a warmup of 500, family = binomial) to

!Additional analysis revealed that the overall results re-
main consistent even when only the label is provided.
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Figure 2: Percentages of trials in which selected syllables contain sonorant consonants or rounded vowels, separated

by image shape (Jagged or Curved) for all four VLMs

test whether shape predicts the occurrence of par-
ticular vowels, consonants or pseudoword types
(Occurrenceltrials(SampleSize) ~ Shape).
Effects are considered significant when the com-
puted 95% Credible Interval does not include O, i.e.
the lower and the upper bounds of the CI have to
be either both positive or both negative. All plots
were created in ggplot2 (Wickham, 2016).

4 Results

The findings are analyzed in two ways. First, we
compare the results of VLM probing to the perfor-
mance of human participants (Nielsen and Rendall,
2013). For BLIP2, CLIP and ViLT this means
we first only consider the syllable or pseudoword
with the highest probability for each image. These
are then analyzed similarly to those selected by
humans or generated by GPT-40. Second, we ex-
amine the probabilities for each possible syllable or
pseudoword from BLIP2, CLIP and ViLT, to obtain
a more comprehensive measure of cross-modal as-
sociations. For the GPT-40 results reported below,
one image in the Jagged shape condition is consis-
tently missing since it (top right image in Figure 7
in Appendix A) was flagged as ‘content that is not
allowed by our safety system’.

4.1 Single syllable selection

VLMs were first probed using single syllables, here
we are interested to see if the models predominantly
pair Jagged images with P-NR and Curved images
with S-R syllables, as was found with humans. Fig-
ure 2 shows these results as the percentage of trials
(where each individual image of the set of 17 pairs
forms a trial) in which model probabilities where
highest for sonorant consonants or rounded vowels

with either Curved or Jagged shapes. A result that
fits the expected human pattern would show higher
bars for the Curved than for the Jagged shapes in
both sets. The only models where this seems to go
in the right direction are CLIP and GPT-40. BLIP2
mostly displays a general preference for P-R sylla-
bles, without considering the shape and ViLT does
not display any clear preference. To test whether
the differences in percentages for CLIP and GPT-40
are significant, we use Bayesian logistic models (as
described in 3.4). For both models, Jagged images
are paired with sonorant consonants significantly
less often than Curved images (CLIP: b = -1.79,
Bayesian 95 % Credible Interval [—3.86, —0.05],
GPT-40: b=-3.51,95 % CI [—6.69, —1.37]) and
Jagged images are paired with rounded vowels sig-
nificantly less often than Curved images (CLIP: b=
-1.62,95 % CI [-3.06, —0.19], GPT-40: b =-1.97,
95 % CI [—3.66, —0.36)).

4.2 Probability scores for novel syllables

While GPT-40 only selects the best fitting syl-
lable out of all options for each image, CLIP,
BLIP2 and ViLT provide probability scores for
each possible syllable, yielding more comprehen-
sive data. Here we therefore also analyze the prob-
ability scores for these three models, to investigate
whether higher scores occur when pairing S-R syl-
lables with Curved images than with Jagged im-
ages and vice versa for P-NR syllables. Figure 3
shows the probabilities for the pseudoword pairs
that were used in the classic experiments with hu-
mans (bouba & kiki, takete & maluma) and the four
different syllable types (S-R, S-NR, P-R, P-NR).
Looking at the original pseudowords, none of
the models display a clear bouba-kiki or takete-
maluma effect. Probabilities for the different words
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Figure 3: Probability scores for the original pseudowords (bouba, kiki, takete and maluma), as well as for the four
different generated syllable types: Sonorant-Rounded (S-R), Sonorant-Non-Rounded (S-NR), Plosive-Rounded
(P-R) and Plosive-Non-Rounded (P-NR), paired with two types of shapes (Jagged or Curved) for three VLMs

differ overall (with a curiously high probability for
"bouba" in CLIP), but this does not seem modu-
lated by the visual shape. For the syllables, BLIP2
shows no shape-modulated variation at all, and
ViLT displays contradictory patterns (e.g. higher
probability scores for S-NR than S-R syllables with
Curved shapes and higher scores for S-NR with
Jagged than with both P-R and P-NR). Only CLIP
gets close to the expected pattern, with equal scores
for the ambiguous syllable types (S-NR and P-R)
but slightly higher scores for P-NR with Jagged
and S-R with Curved. Yet, no significant effects are
found when testing whether CLIP shows a pattern
of preferring the expected consonants and vowels
with their associated shapes using a Bayesian mul-
tilevel linear model (as described in 3.4). For ViLT,
we find one (tiny) interaction between shape and
consonants in the opposite direction of what is ex-
pected, where scores for Jagged shapes are signifi-
cantly higher when paired with sonorant versus plo-
sive consonants (b =.0056, 95 % CI[.0001,.0112]).
For BLIP2, we find a significant overall prefer-
ence for rounded vowels (b = 0.0055, 95 % CI
[.0019,.0091]), but no other effects.

4.3 Two-syllable pseudoword selection

Although the results in Nielsen and Rendall (2013)
were analyzed by looking at single syllables, the
actual task human participants performed involved
creating novel pseudowords consisting of two syl-
lables. We therefore also used our VLMs to gener-
ate (GPT-40) or provide probability scores (CLIP,
BLIP2 and ViLT) for two-syllable pseudowords
that were created by concatenating two of the pos-

sible syllables from the set of S-R (most Curved)
and P-NR (most Jagged) syllables resulting in 324
words. For CLIP, BLIP2 and ViLT we first look at
the "preferred" pseudowords, by only considering
the option with the highest probability score for
each image. Figure 4 shows the percentages of tri-
als in which S-R syllables were matched to either
Curved or Jagged images, counting each one of the
two syllables in a word separately. BLIP2 never
used S-R syllables and only selected pseudowords
that contained two P-NR syllables, independently
from which image was shown. Both CLIP and GPT-
40 show a higher percentage of Curved matched
to S-R compared to Jagged, but GPT-40 seems to
mostly just prefer S-R syllables overall. A manual
inspection of GPT-40’s generated pseudowords re-
vealed that in 25 out of 33 trials the word "nohmoh"
was used, 12 times for Jagged and 13 times for
Curved images. For ViLT, if a preference is present,
it is in the wrong direction. In the case of CLIP,
we find that Jagged images are indeed paired with
S-R syllables significantly less often than Curved
images (b =-1.00, 95 % CI [—2.04, —0.04]).

4.4 Probability scores for novel two-syllable
pseudowords

We obtained probability scores for all possible two-
syllable pseudowords when paired with each image
for CLIP, BLIP2 and ViLT. Figure 5 shows these
results by plotting probabilities for four different
pseudoword types. The pseudoword on the left
combines two P-NR syllables and is therefore ex-
pected to result in higher probabilities for Jagged
shapes. Conversely, the most right pseudoword
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dowords for all VLMs. Here 0% for S-R syllables im-
plies a 100% preference for P-NR syllables.

combines two S-R syllables and should evoke
higher probabilities for Curved shapes. A pattern in
which pink (Curved) bars rise while green (Jagged)
bars fall would therefore reflect evidence for the
bouba-kiki effect. None of the tested VLMs fit
this pattern. Since GPT-40 generated "nohmoh"
(and similar variants like "moomoh") almost ex-
clusively when given the freedom to select two
syllables from the full set of Jagged-associated and
Curved-associated syllables, we also independently
obtained probabilities for both syllable types. For
this, we asked GPT-40 to generate a pseudoword
for each image twice, once when given only the
set of Jagged-associated syllable options, and once
with only the Curved-associated syllables as op-
tions. Yet, again no significant effect of shape on
probability scores for different syllable types was
found. Figure 9 in Appendix C shows this result.

4.5 Summary

In summary, the bouba-kiki effect appeared absent
for BLIP2 and ViLT, while for CLIP and GPT-4o0,
the results varied depending on how the effect was
tested, and results were analyzed. When asking
the model to select one best-fitting syllable, CLIP
and GPT-4o both display the effect in the expected
direction. However, this pattern disappears when
looking at a richer dataset of probability scores
(from CLIP, BLIP2, and ViLT) for each possible
syllable. In the case of two-syllable words, GPT-40
results no longer display significant evidence for a
bouba-kiki effect.

5 Discussion

Our findings partly contradict previous work,
which found that sound-symbolic associations are
present in CLIP and Stable Diffusion (Alper and
Averbuch-Elor, 2023). We use a different method,
focusing on image-to-text probabilities, which is
more similar to how the effect has been tested with
humans. We show that it is too early to conclude
that VLMs understand sound-symbolism or map
visio-linguistic representations in a human-like way
since the results depend heavily on which specific
model is tested and how the task is formulated.
This is unsurprising given that CNN-based models
often classify based on superficial textural rather
than shape features (Baker et al., 2018; Geirhos
et al., 2019; Hermann et al., 2020) and, albeit less
s0, this texture bias is also present in vision trans-
formers (Geirhos et al., 2021). Moreover, Darcet
et al. (2024) identified that, during inference, ViT
networks create artifacts at low-informative back-
ground areas of images that are used for compu-
tations rather than describing visual information.
Both findings are in stark contrast with what, at its
core, is required for sound symbolism. However,
the fact that some evidence for a bouba-kiki effect
could be found in two of the four models tentatively
suggests that real-world physical experience with
different object properties may not be needed to de-
velop this cross-modal preference but that it can, to
some extent, be learned from statistical regularities
in data containing text and images.

Human language on its own already contains
many non-arbitrary regularities between speech
sounds and meaning (Blasi et al., 2016), and these
regularities, like phonesthemes (Bergen, 2004), can
be detected and interpreted by models such as word
embeddings (Abramova and Ferndndez, 2016) and
LSTM based language models (Pimentel et al.,
2019). No visual input is needed for this, and
perhaps this is also what caused the appearance
of the bouba-kiki effect in the work by Alper and
Averbuch-Elor (2023). In our work, we gave more
prominence to the visual input and found much less
convincing evidence for the effect.

Regarding the design features of the models we
tested, we see that the model with the best bouba-
kiki alignment to human preferences, CLIP, is also
trained on the largest amount of data (comparing
the three models we have information on, not in-
cluding GPT-40). This finding aligns with previ-
ous work showing that dataset properties affect
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Rounded (P-NR) syllables, paired with two types of shapes (Jagged or Curved) for three VLMs

alignment with human representations (Conwell
et al., 2023; Muttenthaler et al., 2023). However,
despite having much more parameters than CLIP,
BLIP2 does not show the effect. In addition, while
both BLIP2 and CLIP use dual-stream architec-
tures, only CLIP, which uses modality-specific at-
tention mechanisms, displays some evidence of a
bouba-kiki effect. Despite impressive performance
on vision-language tasks, the Q-Former in BLIP2
apparently does not promote sound-symbolic asso-
ciations. This is important knowledge for develop-
ing models with vision-language representations
that align with those of humans. More aligned
models show more robust few-shot learning (Su-
cholutsky and Griffiths, 2023) and promote more
natural interactions between humans and machines
(Kouwenhoven et al., 2022). Although we find
modest evidence for a bouba-kiki effect in GPT-4o,
we cannot know the origin of this effect as model
details are unknown.

6 Conclusion

Given the pervasive role cross-modal associations
play in human linguistic processing, learning and
evolution, we tested for the presence of a bouba-
kiki effect in four VLMs that differ along various
dimensions such as architecture design, training
objective, number of parameters, and input data.
Evidence for this effect is limited, but not entirely
absent, in the tested VLMs and these findings in-
form discussions on the origins of the bouba-kiki
effect in human cognition and future developments
of VLMs that align well with human cross-modal
associations.

7 Limitations

Our work has a few notable limitations. First, we
used synthetic images that were previously used
in experiments with humans. Even though this
makes our results easily comparable to those of
human studies, there is a potential risk that these
images are out-of-domain for models that are pre-
dominantly trained on realistic images. In future
extensions of this work we therefore plan to include
more naturalistic images.

A second limitation manifests itself in the tok-
enization of the textual input. While humans in
the experiment evaluate pseudowords as a whole,
the tokenization process in language models may
split our syllables or pseudowords into tokens that
would not necessarily evoke the expected cross-
modal associations in humans either (e.g., a sep-
arate evaluation of H in OH may invite a jagged
association instead of curved). Despite being a fun-
damental difference, the primary goal of this work
was to assess the preferences of VLMs in their
most basic form. Further work should investigate
whether tokenization affects results and identify
whether there may be model-specific cross-modal
associations on a token instead of word level.

Third, the pseudowords we used were based on
an experiment with humans but were different from
those used by Alper and Averbuch-Elor (2023),
who did find a strong bouba-kiki effect in CLIP
embeddings. To allow for a better comparison
with their findings, future work should also test
our image-to-text approach with their set of pseu-
dowords.

Finally, our experiments included a relatively
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small number of trials, limited by available experi-
mental stimuli from human studies. By combining
images from several previous studies and augment-
ing this set with additional newly generated images,
we used more trials than most studies conducted
with humans, though. The set of generated images
can easily be expanded in future work. However,
given the current pattern of results, this is not ex-
pected to lead to a more robust bouba-kiki effect in
most models.
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A Full set of images

This appendix presents the full set of images with
visual shapes that were used in the experiments.
Besides the original image pair from Kohler (1929,
1947) which was shown in Figure 1, we used four
image pairs from Maurer et al. (2006), displayed
in figure 6, four from Westbury (2005), displayed
in figure 7, and 8 additional pairs we newly gener-
ated using a method inspired by the one described
by Nielsen and Rendall (2013), displayed in Fig-
ure 8. For each image pair, the Curved version is
displayed on the left and the Jagged version on the
right.
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Figure 6: Images from (Maurer et al., 2006)

B GPT-40 prompting

Image-label matching is not directly possible for
GPT-40 since the probabilities of the input tokens
cannot be accessed. We therefore prompt (B.1) this
model, with the temperature being 0.0, to gener-
ate a syllable or pseudoword given an image and
use the log probabilities of the generated tokens to
calculate the probability for a label conditioned on
an image. Just like in the sentence setup used in
the other models, our interest lies not primarily in
the variability that may arise from using different
prompts but rather focuses on the influence of the
image on the predictions by using a simple and
effective prompt that is identical for each image.
Doing so allows us to use the resulting probabilities
as a gauge for the models’ preference of a label for
a given image.



Figure 7: Images from (Westbury, 2005)

You are given an image for which you
need to assign a label. Use {one/two} of
the following labels: {possible_labels
}. Only respond with the label.

Prompt B.1: The exact prompt used to obtain GPT-
40 probabilities. possible_labels corresponds to the
syllables of interest.

C GPT-40 pseudoword probabilities

In section 4.4 we describe results for an experi-
ment in which we asked GPT-40 to generate a pseu-
doword for each image twice, once when given
only the set of Jagged-associated syllable options,
and once with only the Curved-associated sylla-
bles as options. Figure 9 shows the probabilities
associated with these generated pseudowords. As
concluded in the main text, no evidence for a pref-
erence to match P-NR syllables with Jagged shapes
and S-R syllables with Curved shapes was found.
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Figure 9: Probability scores for GPT-40 when forced to
generate a pseudoword for each image twice, once by
combining two Jagged-associated syllables, and once
with only the Curved-associated syllables as options.
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