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Abstract
Recently, deep learning-based language mod-
els have significantly enhanced text-to-SQL
tasks, with promising applications in retriev-
ing patient records within the medical domain.
One notable challenge in such applications
is discerning unanswerable queries. Through
fine-tuning model, we demonstrate the feasi-
bility of converting medical record inquiries
into SQL queries. Additionally, we introduce
an entropy-based method to identify and fil-
ter out unanswerable results. We further en-
hance result quality by filtering low-confidence
SQL through log probability-based distribu-
tion, while grammatical and schema errors
are mitigated by executing queries on the ac-
tual database. We experimentally verified that
our method can filter unanswerable questions,
which can be widely utilized even when the
parameters of the model are not accessible, and
that it can be effectively utilized in practice1.

1 Introduction

In recent years, the field of natural language pro-
cessing (NLP) has witnessed remarkable progress
driven by transformer-based large language mod-
els (LLMs) (Brown et al., 2020; Touvron et al.,
2023; Roziere et al., 2023). A prevailing approach
involves fine-tuning pre-trained language models
with new data across various tasks, facilitating
transfer learning (Min et al., 2023). This method-
ology has proven effective in tasks like document
summarization, entity-relationship extraction, doc-
ument classification, and sentiment analysis. One
of the main tasks where these language models are
increasingly leveraged is text-to-SQL (Text2SQL),
which converts natural language queries into SQL
queries (Mellah et al., 2020).

Text2SQL presents unique challenges distinct
from conventional NLP tasks. Firstly, it demands
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1Code and datasets are available at https://github.com/

venzino-han/probgate_ehrsql
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Figure 1: Determines whether a question and the gener-
ated SQL are answerable or unanswerable based on the
log probability of the tokens generated by the Text2SQL
model. If the log probability of a token falls below a
certain threshold, we classify the question and SQL as
unanswerable.

grammatical correctness, as even minor errors can
render SQL queries unexecutable. Unlike doc-
ument summarization, where semantic correct-
ness compensates for grammatical inaccuracies,
SQL queries must adhere strictly to syntax rules
(Cao et al., 2023). Secondly, schema awareness
is crucial; understanding the database structure
is essential for generating accurate SQL queries
(Katsogiannis-Meimarakis and Koutrika, 2023). Fi-
nally, discerning unanswerable queries is vital, es-
pecially in domains like healthcare where incorrect
or incomplete information can have severe conse-
quences (Lee et al., 2022). If users do not inspect
the SQL queries themselves, but only receive the
results of the execution, the results of an incorrect
SQL execution can be fatally misleading.

In the domain of Text2SQL, effectively filtering
out unanswerable questions presents a significant
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challenge (Lee et al., 2024a), particularly within
the medical field where accuracy is paramount. Ex-
isting methodologies for identifying unanswered
queries have primarily targeted cases where such
queries exhibit discernible patterns (Wang et al.,
2023). However, these methods are often tailored
to specific model architectures and learning meth-
ods, thereby constraining their direct applicability
to LLM services accessible via APIs, such as Chat-
GPT. Given the recent widespread adoption of such
managed LLMs across various industries, the need
for a more versatile and adaptable approach to fil-
tering unanswered questions becomes increasingly
pronounced. This underscores the necessity for
innovative solutions that can seamlessly integrate
into existing LLM services, ensuring robust perfor-
mance in diverse application scenarios, including
medical contexts.

We address solutions that effectively solve the
challenges of Text2SQL tasks through a subset fo-
cusing on Electronic Health Records(EHR), uti-
lizing medical questions and corresponding SQL
queries relevant to medical systems used in real hos-
pitals (Lee et al., 2022). Specifically, we participate
in the EHRSQL Shared Task on Reliable Text-to-
SQL Modeling On Electronic Health Records (Lee
et al., 2024b). A distinctive feature of this shared
task is that under the basic premise of generating
appropriate SQL statements for given natural lan-
guage queries, not all questions are answerable;
some are unanswerable. Moreover, beyond merely
generating suitable SQL statements for questions,
this task is complex as it requires distinguishing
between answerable and unanswerable questions
and considering the high penalties for incorrectly
identifying the questions are answerable or not,
thus necessitating both reliability and accuracy in
execution.

In this paper, we introduce Probability Gate
(ProbGate), a novel probability-based filtering ap-
proach designed for seamless integration with di-
verse generative language models, without requir-
ing direct access to the model’s parameters. Fig-
ure 1 illustrates the concept of ProbGate, which
leverages the logarithmic probability of individual
tokens to assess the uncertainty associated with
generated SQL queries. We consider the log prob-
ability of specific target tokens as an indicator of
how confident the model is and how well it can per-
form the task without hallucinations. We found that
utilizing logarithmic probability-based confidence
to identify answerable and unanswerable questions

was very effective, which is a key aspect of this
task.

We evaluate the efficacy of ProbGate through
experimentation with Electronic Health Record
(EHR) SQL dataset (Lee et al., 2022). Specifi-
cally, we apply ProbGate to both T5-based (Raffel
et al., 2020) Text2SQL models and gpt-3.5-turbo
finetuned models, comparing their performance
against conventional binary classifiers. Addition-
ally, we train binary classifiers based on T5 and
gpt-3.5-turbo model to filter out unaswerable ques-
tions. Our experimental findings reveal that Prob-
Gate outperforms binary classifiers in terms of both
performance and resilience to shifts in data distri-
bution. These results underscore the potential of
ProbGate as a versatile and robust filtering solution
for a wide range of applications.

Our contributions and methods can be summa-
rized as follows:

• Through our experiments, we found that the
fine-tuned gpt-3.5-turbo performed well at
generating SQL queries for questions, but was
less able to distinguish and filter out unanswer-
able questions.

• We present the Probabilistic Threshold Fil-
tering method(ProbGate) to effectively distin-
guish between answerable and unanswerable
questions in datasets containing a mix of both.

• We demonstrate an effective method by creat-
ing a single pipeline from training to testing,
incorporating SQL execution error handling,
showing that it can be applied to similar cases.

2 Backgrounds

Text2SQL Databases serve as powerful tools for
efficiently querying extensive datasets. However,
accessing this data often requires users to possess
knowledge of query languages like SQL. To democ-
ratize this process and render it accessible across
proficiency levels, significant research efforts have
focused on techniques for interpreting natural
language questions and autonomously translating
them into SQL queries. Recent strides in deep
learning methodologies, particularly transformer-
based language models, have spurred the develop-
ment of text-to-SQL techniques. These approaches
aim to bridge the gap between natural language
queries and SQL commands, thereby enhancing ac-
cessibility and usability in database querying tasks
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(Mellah et al., 2020; Katsogiannis-Meimarakis and
Koutrika, 2023).

Early Text2SQL research relied on rule-based
and template-based methods, but more recently,
deep learning-based methodologies have become
mainstream (Deng et al., 2022). Deep learning
methodologies exhibit robustness on the data they
are trained on but often struggle to generalize to un-
seen database schemas. To mitigate this challenge,
researchers have explored approaches to encode
database relationships and leverage column rela-
tionships using self-attention mechanisms (Wang
et al., 2020). In Text2SQL, ensuring the accuracy
of generated SQL statements is crucial as even mi-
nor errors can lead to failures in query execution.
Recent studies have demonstrated the effectiveness
of utilizing LLMs like gpt-3.5-turbo to rectify SQL
statements derived from natural language queries,
addressing the challenge of proofreading SQL out-
put (Pourreza and Rafiei, 2024).

One of the main applications of Text2SQL is its
utilization in the healthcare domain, specifically
to handle complex tasks within electronic health
records (EHRs). Recent research has shown that
decomposing these tasks into manageable pieces
can improve the performance of multi-table rea-
soning within EHRs. The authors proposed to it-
eratively improve SQL queries by incorporating
interactive coding and execution feedback mecha-
nisms to learn from the error messages encountered.
This iterative improvement process proved to be
effective and resulted in noticeable improvements
in SQL performance in the healthcare domain (Shi
et al., 2024). In a closely related investigation, re-
searchers observed that EHR data is commonly
stored in relational databases, which can be repre-
sented as directed acyclic graphs. Leveraging this
insight, they employed a graph-based methodology
to capture the intricate relationships between ta-
bles, entities, and values within relational databases
(Park et al., 2021).

Confidence of Generated Tokens The outputs
of LLMs are typically based on a next token pre-
diction method, where the probability of previous
tokens is used to predict the next one. During this
process, a phenomenon often referred to as ‘hallu-
cination’ can occur, which results in incorrect in-
ferences about the task(Wang and Sennrich, 2020;
Xiao and Wang, 2021; Li et al., 2022). Additionaly,
previous research has shown that low probability
and confidence levels can indicate a lack of knowl-

edge in the model(Kadavath et al., 2022). To over-
come this, Jiang et al. (2023) introduced a struc-
ture named FLARE, which includes a mechanism
where if the probability of a token generated by
the model falls below a certain threshold, the token
is used as a query to retrieve relevant documents
from a retriever. This approach aims to address
the lack of knowledge and increase confidence. In
our work, we also propose a filtering model using
log probability to determine if log probability can
effectively distinguish the uncertainty in generated
content.

3 Methods

From this section, we cover the contents related to
the methods. In §3.1, there is a detailed descrip-
tion of the shared task dataset; in §3.2, the main
metrics used in the shared task are discussed; and
from §3.3 to §3.5, detailed information on the main
methods is provided. The entire architecture can
be referenced in Figure 2.

3.1 Datasets

The dataset employed in this study is sourced from
the EHRSQL Shared Task on Reliable Text-to-SQL
Modeling On Electronic Health Records(EHRSQL-
2024) (Lee et al., 2024b), with the purpose of sim-
plifying access to EHR data by automatically trans-
lating natural language questions into correspond-
ing SQL queries. This dataset is referred to as The
MIMIC-IV demo version of EHRSQL with addi-
tional unanswerable questions. It consists of vari-
ous questions related to medical records and their
corresponding SQL queries, serving as a crucial
resource for natural language processing and SQL
query generation research. The specific attributes
and composition follow the study by EHRSQL
(Lee et al., 2022). The EHRSQL dataset is based
on questions frequently asked in the medical field,
gathered from 222 hospital personnel, including
physicians, nurses, insurance assessors, and health
records teams. These questions have been recon-
structed to reflect various scenarios that can occur
in real-world medical contexts and are presented as
a dataset annotated with SQL queries aligned with
the hierarchical structure of EHR databases.

The primary characteristics of this dataset are
as follows: it encapsulates the diverse demands of
hospital settings, encompassing tasks from straight-
forward information retrieval to the more intricate
operations such as identifying the top N prescribed
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Figure 2: Our method’s overall architecture is as follows: During training, we fine-tune the gpt-3.5-turbo model
using a dataset from which unanswerable cases have been removed. Subsequently, we identify unanswerable cases
using filtering based on log probability and filtering through SQL execution, ultimately deriving the answers.

drugs following a disease diagnosis. Additionally,
it incorporates a range of temporal expressions
within the questions. Lastly, it includes not only
answerable questions but also unanswerable ones
that are incompatible with the database schema or
require external domain knowledge.

The EHRSQL-2024 task provides a training
dataset consisting of questions about medical
records, SQL queries corresponding to the MIMIC-
IV demo version, and instances annotated as ‘null’
for unanswerable questions. The test dataset com-
prises only questions, including types of unanswer-
able questions that are not included in the training
data. The training and test datasets comprise 5124
and 1167 examples, respectively.

3.2 Metric

In the medical and healthcare domains, reliability
is particularly emphasized. Therefore, the model’s
responses must be accurate, and it’s better to ab-
stain from answering than to risk errors. From this
perspective, we employ the RS (Reliability Score)
introduced in TrustSQL(Lee et al., 2024a) to assess
the model’s performance. The RS assigns scores
for accurate predictions, providing an evaluation of
the model’s performance, while also penalizing in-
correct predictions and instances where the model
attempts to respond to unanswerable questions.

ϕc(x) =





1 if x ∈ Qans; g(x) = 1;Acc(x) = 1,

0 if x ∈ Qans; g(x) = 0,

−c if x ∈ Qans; g(x) = 1;Acc(x) = 0,

−c if x ∈ Quna; g(x) = 1,

1 if x ∈ Quna; g(x) = 0.

(1)

In EQ(1), Acc(x) represents the execution accu-
racy, where for any x belonging to the set of answer-
able questions (Qans), if f(x) matches the correct
answer, it returns 1, and otherwise, it returns 0. The
function g(x) indicates whether the model gener-
ates an SQL query, where 1 signifies generation and
0 indicates no generation. The parameter c serves
as the penalty parameter. A penalty of −c is im-
posed in two scenarios: when x is in Qans and the
generated query is incorrect, and when x is in the
set of unanswerable questions (Quna) but a query
is generated regardless. The model earns a score of
1 when it correctly answers a question. The final
Reward Score (RS) is obtained by calculating the
average of ϕc(x) scores across all samples. The
penalty factor c can be adjusted to evaluate the
model’s reliability, particularly in scenarios requir-
ing high confidence. In our experiments, we con-
sider four options for the penalty, c = 0, 5, 10, N ,
where N represents the total number of samples
being evaluated. This metric proves valuable in
assessing the model’s ability to reliably generate
SQL queries and to respond only to questions that
are answerable.
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3.3 Fine-Tuning and Prompt Design

Fine-tuning As the first step in solving the
task, we fine-tune the OpenAI gpt-3.5-turbo-0125
model2. This is used for Text2SQL conversion,
serving as an easy-to-use baseline and also provid-
ing a convenient API for subsequent log probability
calculations. To minimize noise in the dataset, we
exclude unanswerable data from training, focusing
solely on SQL transformation without consider-
ing whether the given questions are answerable
or not. Out of the 5124 samples in the training
set, 450 unanswerable data points were excluded,
leaving 4674 question-query pairs that are answer-
able. These data consist of natural language ques-
tions paired with their corresponding correct SQL
queries. The example of the input-output format for
the training dataset can be found in the Appendix
B.

Prompt During the training and inference phase,
we experiment with various prompt formats to fa-
cilitate the model’s ability to receive a question and
generate the corresponding SQL query accurately.
As an illustration, the following structure is utilized
for prompts:

Optimized Prompt

"You are ‘SQLgpt’, an AI designed to con-
vert natural language questions into their
corresponding SQL queries. It is imper-
ative that the generated SQL queries con-
form to the standard SQL format and are
not enclosed within quotes (neither single ’
nor double "). Your primary objective is to
precisely generate the exact SQL query for
each presented question."

Such prompts aim to guide the model towards
generating the most appropriate SQL query in re-
sponse to a question while also preventing the oc-
casional generation of SQL queries encased within
’ or " symbols, which can potentially lead to errors
within the database.

3.4 Probabilistic Threshold Filtering
(ProbGate)

In the test set of the given task, we can see that
answering all questions as unanswerable results in

2Details of fine-tuning gpt-3.5-turbo model are de-
scribed at https://platform.openai.com/docs/guides/
fine-tuning

Algorithm 1 ProbGate

1: reserved← [“SELECT”, . . . ]
2: procedure CALCLOGBOTTOMK(log, t)
3: LogProb← []
4: for x in log do
5: if x.token not in reserved then
6: LogProb.append(x.logprob)
7: end if
8: end for
9: Keep bottom t values of sorted(LogProb)

10: return average(LogProb)
11: end procedure

a score of 19.97 across all RS metrics. By assum-
ing all questions to be answerable and submitting
answers accordingly, we were able to achieve a
score of 73.52 on the RS(0) metric, in an effort
to understand the performance of the model fine-
tuned in the previous step on answerable questions.
Interpreting this from a ratio perspective, since we
already know that 19.97% of the test set is unan-
swerable, it implies that 80.03% of it consists of
answerable questions. Therefore, we can deduce
that the percent accuracy of the model on answer-
able questions is approximately 91.87%. This im-
plies a percent accuracy of 91.87%, which suggests
that to avoid losing points, the threshold for ideally
identifying unanswerable questions should be set
higher than the scale used to find this threshold,
as inferred from the results. Given that the total
number of items in the test set for the given task is
1167, we can deduce that to minimize the penalty
−c and maximize the score, we find the threshold
k in test dataset value should be approximately 425
according to the empirical findings.

To distinguish unanswerable SQL statements,
we assume that tokens of each generated SQL with
low log probability are likely candidates for unan-
swerability, considering the log probabilities of
the tokens as confidence scores. Since we pre-
viously determined the number of unanswerable
candidates, or the threshold, we calculate the log
probabilities of each SQL token in the test set items,
sort them by ascending order of average value of its
log probability, and consider all items with indices
from the first up to the threshold as unanswerable.
We incorporate some additional tricks, taking into
account the characteristics of the SQL statement.
The given text2SQL task is considered a highly
structured sequence-to-sequence task due to the
nature of SQL query syntax, which is very struc-
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Model RS(0) RS(5) RS(10) Rs(N)
T5-small FT + Filtering 47.81 45.66 43.51 -452.19

T5-Large-text2sql-spider FT + Filtering 74.63 59.59 44.54 -3425.37
T5-Large-text2sql-spider FT + Classifier(T5) 63.80 18.23 -27.34 -10536.20

T5-Large-text2sql-spider FT + Filtering + Classifier(T5) 72.74 58.56 44.37 -3227.26
gpt-3.5-turbo FT + Classifier(T5) 90.28 51.59 12.89 -8109.02

gpt-3.5-turbo FT + Classifier(gpt-3.5-turbo) 88.05 57.95 27.86 -6911.95

gpt-3.5-turbo FT + ProbGate(t=387) 85.30 80.57 75.84 -1014.70

Table 1: Model Selection and Ablation Study in Dev Phase dataset. In the case of the T5-Large model, it is a model
that was first fine-tuned using the Spider dataset, which is one of the Text2SQL datasets, and then subsequently
trained on the EHRSQL dataset. In abbreviation, "FT" stands for Fine-Tuning. ‘Filtering’ and ‘Classifier’ are
described in section §4.1.

Model RS(0) RS(5) RS(10) Rs(N)
gpt-3.5-turbo FT 73.52 -58.87 -191.25 -30826.47

gpt-3.5-turbo FT + ProbGate(t=450) 79.43 73.01 66.58 -1420.57
gpt-3.5-turbo FT + ProbGate(t=450) + GEF 79.78 75.92 72.06 -820.22

gpt-3.5-turbo FT + ProbGate(t=425) + GEF 81.92 78.06 74.21 -818.08

Table 2: The results from applying our methodology during the Test Phase are as follows. The results of ablation at
each filtering stage are provided, and it can be observed that there is an improvement in performance at every stage.
In abbreviation, "FT" stands for Fine-Tuning, and "GEF" refers to Grammatical Errors Filtering, as introduced in
section §3.5.

tured compared to the form of the input. The SQL
statement inferred from the model can be broadly
divided into two parts: reserved words of SQL
syntax such as SELECT, AS, BETWEEN; and en-
tities and attributes. We consider that the model
is more likely to hallucinate when generating enti-
ties and attributes than when generating reserved
words. Hence, when calculating the log proba-
bility for each test set item, we exclude reserved
words(tokens) and compute it for the remaining
tokens. The excluded reserved words can be found
in Appendix A. Moreover, to make the distinction
between answerable and unanswerable even clearer
based on log probability, we also impose a limita-
tion on the value of lowest t tokens(t = 10 in this
case), guiding the calculation towards the average
value of these lowest log probability tokens. The
algorithm for calculate log probability with one
individual data can be found in Algorithm 1.

3.5 Grammatical Errors Filtering
In the last stage, we execute generated answerable
SQL queries filtered by ProbGate through given
database, if there is an error when executing SQL
queries, we consider them unanswerable. The ne-
cessity of this stage arises because grammatical

errors that are not fully caught by the previous
ProbGate stage can only be detected by actual exe-
cution Although the query might actually have an
answer and could be an answerable example, we
consider it unanswerable to avoid penalties. This
is because we can convert the penalty for incor-
rect answers, the −c score, into 0. Reflecting on
real-world scenarios, generating a response from
the model indicating it does not know the answer
could be more beneficial for the model’s robustness
and safety than returning incorrect results.

4 Results and Analysis

4.1 Model Selection and Ablation Study

As our final methodology, the base model gpt-3.5-
turbo is relatively difficult to access the weights
or perform additional analysis compared to other
open-source models, so we use one of the Seq2Seq
models, the T5 model, as a comparison model. Ad-
ditionally, we compare using filtering based on
maximum entropy, as utilized in (Lee et al., 2022),
as our filtering model. Lastly, we also train a bi-
nary classifier with both T5 and gpt-3.5-turbo to
distinguish between answerable and unanswerable
questions to see its impact on performance. The re-
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Figure 3: Left - Log Probability Distribution of the Fine-Tuned Model, Right - Log Probability Distribution of the
Unfine-Tuned Model

sults are shown in Table 1, and conclusively, none
of the methodologies surpasses the performance
of the methodology applying gpt-3.5-turbo FT +
ProbGate. The reason for this is observed in the
accuracy of Text2SQL, where the gpt-3.5-turbo
model, with its larger parameters and more ad-
vanced tuning methods, outperforms models from
the T5 series. Additionally, it is interpreted that the
Classifier does not show significant effectiveness
due to the too different distribution between the
training and the remaining dataset, and the task’s
high penalty for errors.

4.2 ProbGate and Grammatical Errors
Filtering

The best results for the test set are achieved us-
ing our pipeline architecture, as shown in Table 2.
The process involves fine-tuning the gpt-3.5-turbo
model with data excluding unanswerable data, then
prioritizing the filtering of unanswerable data with
ProbGate set to a threshold of 425, and finally
applying Grammatical Errors Filtering. This se-
quence shows progressively better metric values.
Additionally, we can interpret that the smaller the
gap between the scores of RS{0, 5, 10, N}, the
fewer penalties our model receives. Our final archi-
tecture can be seen as achieving the narrowest gap
among these scores.

4.3 Log Probability Distribution between
Answerable and Unanswerable.

In this section, we analyze the log probability dis-
tribution of SQL queries generated by the gpt-3.5-
turbo model and compare the differences in distri-
bution based on whether the model is finetuned or
not. For the experiments with the finetuned model,
we first divide the training dataset into a 7:3 ra-

tio, using 70% of dataset to finetune gpt-3.5-turbo
with only answerable data. The remaining 30%
includes both answerable and unanswerable data,
enabling the extraction of log probabilities during
the model’s SQL inference process. In left graph
of Figure 3, red represents null data, while blue in-
dicates answerable data. The X-axis represents the
log probability, and the Y-axis represents the num-
ber of data points with that log probability. As a
result, it is observed that answerable data exhibited
higher log probabilities, whereas null data show
relatively lower probabilities, revealing the uncer-
tainty in the generated SQL. The right graph of
Figure 3 displays the log probability distribution
of SQL generated by an unfine-tuned gpt-3.5-turbo
model under the same conditions. The difference in
log probability distributions based on answerability
is not significant, making it difficult to distinguish
labels in the distribution. These results underscore
the effectiveness of fine-tuning on answerable data,
indicating that fine-tuning significantly increases
the log probability of the model for answerable
data while also creating a discernible distribution
difference with unanswerable data. By leveraging
this distributional difference, ProbGate suggests
that by setting an optimal threshold to treat all data
that is either unanswerable or has uncertain gen-
eration outcomes as unanswerable, it can enhance
response stability and reliability.

5 Conclusion

We participate in the EHRSQL Shared Task on Re-
liable Text-to-SQL Modeling On Electronic Health
Records, as detailed in (Lee et al., 2024b), aim-
ing to develop a reliable and high-performance
Text2SQL method. This encompasses the chal-
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lenge of generating appropriate SQL for answer-
able questions while also distinguishing unanswer-
able questions within datasets that include them.
To solve this, we fine-tune LLMs on the training
dataset and then employ a filtering pipeline called
ProbGate, which consists of a combination of prob-
abilistic threshold filtering and grammatical errors
filtering, effectively executing the task. Addition-
ally, through an ablation study and detailed anal-
ysis, we demonstrate that our method can be ef-
fectively used for tasks with a high sensitivity to
errors. Ultimately, using this method, we conclude
the shared task with a team ranking of 3rd place.

Limitations

The methodology discussed here is central to solv-
ing competitive, contest-style shared tasks, with
discussions taking place at a time when labels
for the development and test sets, excluding train-
ing data, have not been disclosed. Therefore, our
methodology greedily constructs the architecture to
maximize the score on the main evaluation metric
of the shared task, RS(10). Consequently, the pri-
mary parameters used in the model (e.g., threshold
value, t value of ProbGate, etc.) can be specifi-
cally adjusted for the data and are sensitive to new
datasets, meaning parameter values have a signifi-
cant impact on the overall performance of the archi-
tecture. The performance of the basic model, which
depends on the performance of the Fine-tuning
model, is tied to a specific model (gpt-3.5-turbo)
that is not open-sourced. Therefore, additional ex-
periments with Text2SQL specialized open-source
LLMs(Li et al., 2023) are needed. These limita-
tions increase in severity when the distribution of
unanswered questions differs between training and
test datasets. Therefore, further research on unan-
swered question filtering approaches from an out-
of-distribution detection perspective is warranted.

Ethics Statement

Throughout this research, we are using the gpt-
3.5-turbo model as a baseline. It’s acknowledged
that depending on the inputs provided by users,
the model’s outputs may include harmful content
or exhibit unintended biases. Recognizing and
addressing these potential issues is essential for
deploying this technology in real-world produc-
tion environments. This entails a necessity for ad-
ditional engineering tuning aimed at minimizing
such side effects, highlighting a commitment to

responsible AI use and the importance of continual
improvement to ensure ethical deployment. Fur-
thermore, the gpt-3.5-turbo model, which is used
as our primary method, has not publicly disclosed
its weights or training processes. There is also a
risk that private data may be exposed during fine-
tuning. Therefore, when handling sensitive data, it
is advisable to switch to an open-source model or
exercise caution.
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A Reserved Words List

This refers to a list of reserved words in SQL that we used in our experiment.

["SELECT", "AS", "IN", "COUNT", "FROM", "WHERE", "AND", "OR", "INSERT", "UPDATE", "DELETE", "CRE-
ATE", "DROP", "ALTER", "JOIN", "ON", "GROUP BY", "ORDER BY", "HAVING", "LIMIT", "UNION", "DIS-
TINCT", "INDEX", "TABLE", "VIEW", "TRIGGER", "PRIMARY KEY", "FOREIGN KEY", "NULL", "NOT NULL",
"UNIQUE", "CHECK", "DEFAULT", "INDEX", "SEQUENCE", "EXEC", "LIKE", "BETWEEN", "EXISTS", "CASE",
"WHEN", "THEN", "ELSE", "END", "CAST", "CHAR", "VARCHAR", "BOOLEAN", "INTEGER", "DATE", "IN-
TERVAL", "TIME", "TIMESTAMP", "YEAR", "MONTH", "DAY", "HOUR", "MINUTE", "SECOND", "ZONE",
"CURRENT_DATE", "CURRENT_TIME", "CURRENT_TIMESTAMP", "TRUE", "FALSE"]

B Input and Output Format

This is the input and output format according to the training specifications of gpt-3.5 turbo.

{
‘messages ’: [

{‘role ’: ‘system ’, ‘content ’: ‘You are ‘SQLgpt ’, an AI
designed to convert natural language questions into their
corresponding SQL queries. Your primary goal is to
accurately generate the exact SQL query for each question
presented to you.’},

{‘role ’: ‘user ’, ‘content ’: <Answerable Question >},

{‘role ’: ‘assistant ’, ‘content ’: <Correct SQL >}
]

}
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