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Abstract

Environment, Social, and Governance (ESG)
KPIs assess an organization’s performance on
issues such as climate change, greenhouse gas
emissions, water consumption, waste manage-
ment, human rights, diversity, and policies.
ESG reports convey this valuable quantitative
information through tables.Unfortunately, ex-
tracting this information is difficult due to high
variability in the table structure as well as con-
tent. We propose Statements, a novel domain
agnostic data-structure for extracting quanti-
tative facts and related information. We pro-
pose translating tables to statements as a new
supervised deep-learning universal informa-
tion extraction task. We introduce SemTab-
Net – a dataset of over 100K annotated ta-
bles. Investigating a family of T5-based State-
ment Extraction Models, our best model gener-
ates statements which are 82% similar to the
ground-truth (compared to baseline of 21%).
We demonstrate the advantages of statements
by applying our model to over 2700 tables
from ESG reports. The homogeneous nature
of statements permits exploratory data anal-
ysis on expansive information found in large
collections of ESG reports.

1 Introduction

It is invaluable to assess mankind’s impact on cli-
mate. Climate change related information is often
published in so-called “Environment, Social, and
Governance (ESG)” reports. Corporations report
valuable quantitative data regarding their efforts to
improve their impact on environment, working con-
ditions, and company culture in these ESG reports
(Bingler et al., 2022; Schimanski et al., 2024).

Like most technical documents, ESG reports
present their key information in tables, making ta-
ble understanding and information extraction (IE)
an important problem (Mishra et al., 2024). This
problem becomes further complicated due to the
large variety and diversity of tabular representa-

Figure 1: The knowledge model of Statements repre-
sented as a tree. From the root node, individual state-
ments emerge as branches. Associated with each indi-
vidual statement node are the leaf predicate nodes.

tions used in these reports. Despite efforts to stan-
dardize these reports, this diversity makes the task
of extracting information from these documents
extremely challenging (see Appendix Fig. 5 for an
example table).

Large Language Models (LLMs) have turned
out to be excellent tools for IE, due to their ability
to parse, understand, and reason over textual data
(OpenAI et al., 2023; Touvron et al., 2023). This, in
combination with their in-context learning ability,
makes them excellent for IE from text (Brown et al.,
2020). This approach breaks down when applying
the same techniques on tables (Zhu et al., 2021).

In this paper, we present a general approach for
universal IE from tables. Universal IE involves
named entity recognition and relationship extrac-
tion among other tasks. To this end, we propose
a new tree-like data structure, called ‘Statement’,
which can combine multiple (named) entities and
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Figure 2: A diagram explaining the framework introduced in this paper. We fine-tune LLMs on the task of ‘Statement
Extraction’ leading to a family of “Statement Extraction Models” (SEM). Quantitative facts are extracted from
heterogenous unstructured data (only tables in this paper) and stored as Statements.

(n-ary) relations (Fig. 1). It allows us to represent
information in a homogeneous domain agnostic
fashion. A statement tree can contain content
from different subjects, allowing for universal IE
approach to tables across multiple domains. With
the introduction of statements, the IE problem
from tables becomes a translation problem which
we call ‘statement extraction’ – translating the orig-
inal table into a set of statements. ESG reports,
to this day, are manually analyzed by consultancy
firms and professional organisations (Henisz et al.,
2019). With our proposed statement extraction, this
process can now be fully automated.

To evaluate our model generated statements, we
propose a novel application of the well-established
Tree Edit Distance (Pawlik and Augsten, 2016). We
propose Tree Similarity Score (ts) for measuring
the similarity between two trees. As baseline, we
experiment with in-context learning using state-
of-the-art LLMs like Mistral (Jiang et al., 2023),
Mixtral (Jiang et al., 2024), Llama2 (Touvron et al.,
2023), and Falcon (Almazrouei et al., 2023). These
models show an average ts varying from 0% to
21%. On the other hand, our best-performing fine-
tuned T5 based model shows a ts of 82%.Our main
contributions are:

• We introduce a new knowledge model called
Statement for mapping complex, irregular,
and heterogeneous information to a uniform
domain agnositc structure.

• We present a new supervised deep learning
universal IE task called ‘statement extraction’.
The fine-tuned models show significant im-

provement over baseline experiments provid-
ing competitive benchmarks for the commu-
nity.

• We contribute to the field of table understand-
ing, by providing “SemTabNet” a dataset con-
taining over 100K annotated ESG tables. All
cells in these tables are annotated to reflect
their semantic relationship with other cells.

• We propose Tree Similarity Score, which in a
single number quantifies the quality of entities
and relationships extraction in the statement.

We begin, in Sect. 2 discussing related works.
In Sect. 3 we explain the concept of ‘Statements’
and present the SemTabNet dataset in Sect. 4. In
sect. 5, we discuss the various experiments we
performed and their results. We end the paper with
an application of our model on ESG reports.

2 Related works

Fang et al. (2024) group the applications of deep
learning methods to tables or tabular data into four
broad categories. (1) Tree based methods such
as gradient-boosted decision trees (Borisov et al.,
2022) for predictions on tabular data. (2) Attention-
based methods which includes developing models
that learn tabular representations such as TAPAS
(Herzig et al., 2020), TABERT (Yin et al., 2020),
and/or fine-tuning models for downstream tasks on
tabular data like fact-checking (Wenhu Chen and
Wang, 2020, TABFACt), question-answering (Liu
et al., 2021; Mishra et al., 2024), semantic parsing
(Yu et al., 2020). (3) Regularization methods which
attempts to modify model sensitivity to tabular fea-
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tures (Kadra et al., 2021). (4) Data transformation
methods which aim at converting heterogeneous
tabular inputs to homogeneous data, like an image
(Sun et al., 2019) or feature engineering (Liu et al.,
2020).

Another class of problem which is similar to
the data transformation approach is (generative)
information extraction (IE) which involves adopt-
ing LLMs to generate structural information from
an information source. Recent studies have found
that LLMs can also perform universal IE (Kardas
et al., 2020; Paolini et al., 2020; Wang et al., 2022a,
2023).

In a universal IE task, a model is trained to
generate desirable structured information y, given
a pre-defined schema s, and information source
x (Lu et al., 2022). Using pre-trained language
models, Wang et al. (2022b) perform IE in two
steps: argument extraction and predicate extrac-
tion. Based on this, they introduced a text-based
open IE benchmark. Wang et al. (2021) presented
DeepEx for extracting structured triplets from text
based data. Wang et al. (2022a) demonstrate that
pre-training models on task-agnostic corpus lead to
performance improvement on tasks like IE, entity
recognition, etc. However, these approaches are
limited to textual data.

Bai et al. (2024) have shown that LLMs can
perform IE on tabular data when prompted with a
table and a relevant extraction schema. Their ap-
proach is based on a human-in-the-loop in-context
learning. A domain-expert is necessary for pro-
ducing robust extraction schema, which instructs
the model to generate structured records from a
table. This strongly limits the adaptability of their
approach to different domains. Although limited to
text, (Lu et al., 2022) also propose a schema-driven
universal IE system. They use a structure extrac-
tion language which generates structural schema
prompt which guides the model in its IE tasks.

As we show, the statements data structure re-
moves several limitations of previous universal IE
approaches and is applicable to ‘wild’ heteroge-
nous information sources.

3 Definition of Statements

The statements data structure aims to homoge-
nize data coming from complex, irregular, hetero-
geneous information source (text or tables). At
its core, the statements data structure is a tree
structure (fig. 1). From the root of the tree, we

have ‘subject’-nodes, which contain information
regarding the ‘subject’ and the ‘subject-value’ keys.
From each subject-node, there are one or more pred-
icate nodes, which define the ‘property’, ‘property-
value’, and ‘unit’ keys. Each predicate node carries
an atomic piece of quantitative information.

The statement knowledge model can be ap-
plied to both text and tables. In Fig. 2, we show
the same statements structure which could be ob-
tained from a text or a corresponding table. As
such, the statements structure is not bound only
to tables, however, it shows its usefulness partic-
ularly when normalising information from hetero-
geneous tables. The details of how we create trees
are presented with examples in appendix C.

The tree structure of statements allows us to
quantify, with a single number, the transformation
of information from a table. This is accomplished
by computing the Tree Similarity Score (based
on the Tree Editing Distance (TED) Pawlik and
Augsten (2016); Schwarz et al. (2017)) between
predicted and ground-truth statements. TED is
defined as the minimum-cost sequence of node
operations that transform one tree into another.
Like the Levenshtein distances on strings (Leven-
shtein, 1966), TED involves three kinds of oper-
ations: node insertions, deletions, and renaming.
The cost of each operation can be freely defined,
which makes this metric both flexible and power-
ful. Two trees are exactly same when their tree
similarity score is 100%. To ensure high quality
statement extraction, we setup robust TED costs
such that minor differences can lead to poor tree
similarity scores. In appendix C.2, we demonstrate
tree similarity score with some examples.

It is also instructive to look at the edit types
which converted the predicted statements into
ground-truth statements. For this, we measure the
ratio of edit type to the total number of edits. We
find that the ratio of insertions and ratio of dele-
tions carries the information about the structural
similarity of two trees. If the model predicted too
few nodes, the ratio of insertions will be high. Cor-
respondingly, if the statements from the model’s
prediction has too many nodes, the deletion ratio
dominates. If two trees are structurally similar, then
the ratio of both insertion and deletions is low. In
this case, the edits are dominated by renaming.

While tree-based metrics are sensitive to both
entity and relationship extraction, we also would
like to understand the ability of a Statement Extrac-
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tion Model (SEM) to extract entities alone 1. For
this, we concatenate all the predicate nodes in a
statement. We create sets of values corresponding
to: subject, subject value, property, property value,
unit. We count true positives when an entity is
found in both the sets from model prediction and
ground truth. True negatives are counted when an
entity is present only in the ground truth set and
false positives when the entity is present only in
the predicted set. Based on these, we measure the
standard accuracy, recall and F1 measures.

4 SemTabNet: Statements Data

There are many large data sets of annotated tables
which suffer from two major limitations: (1) they
focus on understanding table structure only i.e. de-
marcating table headers from table content, and (2)
contain little diversity in shape, size, and complex-
ity of the table. Tables found in ESG reports are
of high complexity with little common underlying
pattern. In this work, we advance deep learning on
table understanding by annotating the content of
the table and annotating complex tables.

We used the Deep Search toolkit 2 to collect
over 10K ESG reports from over 2000 corporations.
Deep Search crawled these PDF reports, converted
them into machine readable format, and provided
this data along with the metadata of each report in
json format.

We compiled a list of important keywords which
capture many important concepts in ESG reports
(see appendix A). Next, we select only those tables
which have some relevance with the keywords. For
this we used the following conditions: the ROUGE-
L precision (longest common sub-sequence) score
between raw data and keywords must be greater
than 0.75 and there must be quantitative informa-
tion in the table.

We need a strategy for understanding the con-
tent of a table and extracting statements from it.
After manually observing hundreds of table, we
decided a two step approach to prepare our ground-
truth data. First, we classify all the cells in a ta-
ble based on the semantic meaning of their con-
tent into 16 categories which helps us in construct-
ing statements. For each table, this step creates a
‘labels-table’ with the same shape and structure as
the original, but the cells of this labels-table only

1Here, ‘entity’ refers to the values of attributes in a state-
ment. For example, ‘scope 1 emissions’ is an entity from the
statement shown in fig. 2.

2Available via: https://ds4sd.github.io.

contain category labels (see fig. 3). Secondly, we
create a program which reads both the labels-table
and the original table and extracts statements in a
rule-based approach. The algorithm is described in
appendix E. The 16 labels are:

• Property, Property Value
• Sub-property
• Subject, Subject Value
• Unit, Unit Value
• Time, Time Value
• Key, Key Value
• Header 1, Header 2, Header 3
• Empty, Rubbish

During annotation, all cells are mapped to one of
the above labels. For cells which contain informa-
tion pertaining to more than one label, we pick the
label which is higher in our ordered list of labels.
So “Revenue (US$)”, is labelled as property. The
‘property’ and ‘sub-property’ cells always have as-
sociated ‘property value’ cell(s). The ‘header’ cells
never have an associated value and often divide
the table into smaller sections. Empty cells are
labelled ‘empty’. When a table contain unnec-
essary parts due to faulty table recovery or non-
quantitative information. We label such cells as
‘rubbish’. When a property/property value pair
carries supplementary information, those cells are
annotated as ‘key’/‘key values’.

Additionally, we observed that most tables can
be reasonably classified into three baskets: sim-
ple, complex, and qualitative. There are simple
tables whose structure cannot be further subdivided
into any smaller table. There are complex tables
whose structure can be further divided into multiple
smaller tables. Finally, there are qualitative tables
(like table of contents) which contain little valuable
information for our endeavour.

We collected about 2,800 tables and found ∼
20% had simple layout, ∼ 20% had complex lay-
out (composed of multiple simpler tables arranged
hierarchically), and ∼ 60% were qualitative. We
discarded all qualitative tables from any further
analysis. To ensure that our data is not biased to-
wards either simple or complex tables, we manually
annotated all the cells of 569 simple tables and 538
complex tables. In total, we annotated 1,107 ta-
bles (84,890 individual cells) giving rise to 42,982
statements.

Due to the nature of our strategy, one can extract
statements from tables either directly in a zero shot
manner (direct SE) or by predicting cell labels and
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Figure 3: Input and output for the task of “Statement Extraction”. Top Left: Page from an ESG report containing
tables. Top Right: One of the table, from the same page, prepared as markdown for model input. Bottom Left: Model
output for the task of indirect statement extraction. Bottom Right: Model output for the task of direct statement
extraction.

then using the rule-based approach to construct
statements (indirect SE) (see Fig. 3. We have
experimented with both approaches.

We further augmented the annotated tables to cre-
ate a large training data. We shuffle the rows and
columns of tables corresponding to property-values
to create new augmented tables, while keeping their
contents the same. While this is straightforward for
simple tables, special care was taken for complex
tables such that only rows/columns which belonged
together within a category were shuffled. The max-
imum number of augmented tables emerging from
the shuffling operations was limited to 130, leading
to over 120K tables. To promote further research
and development, we open source this large dataset
of semantic cell annotations as SemTabNet3. Table
1 shows the data counts in SemTabNet.

3Links for code and data, respectively:
https://github.com/DS4SD/SemTabNet
https://huggingface.co/datasets/ds4sd/SemTabNet

4The counts differ slightly due to the manner in which the
final data was harmonized. The SE Indirect 1D data consists
of the 84 890 original cells annotated from 1 107 tables. The
test/train split of tables for SE Indirect 1D was prepared by
stratifying across all cell labels. This split was augmented
(as described in text) to prepare data for SE Indirect 2D. The
test/train split and augmentation for SE Direct was done inde-
pendently.

Table 1: Counts of data in SemTabNet. Tasks are ex-
plained in section 5.4.

TASK TRAIN TEST VAL
SE DIRECT 103,455 11,682 5,445
SE INDIRECT 1D 72,580 8,489 3,821
SE INDIRECT 2D 93,153 22,839 4,903

5 Experiments & Results

Fig 3 presents Statement Extraction as a supervised
deep learning task. Due to the nature of how ta-
bles are annotated (see section 4), it is possible to
train models for statement extraction statements
both directly and indirectly. We consider the fol-
lowing three seq2seq experiments: (1) SE Direct:
the model is presented with an input table as mark-
down in a prompt. The model generates the tabular
representation of the resulting statements as mark-
down. (2) SE Indirect 1D: In this experiment, the
model input is the individual table cell contents.
For a table with n cells, we predict n labels sequen-
tially (hence, 1D) and then use this information
to construct statements. Individual cell labels pre-
dicted by the model are stitched together to form
the labels table, which is then used to construct
the predicted statement by using our rule-based al-
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gorithm. (3) SE Indirect 2D: As opposed to SE
Indirect 1D, in this experiment, we predict the cell
labels of all cells in a table simultaneously. The
entire table, as markdown, is input to the model
(hence 2D) and the model generates the labels table,
as markdown. Using the rule-based algorithm, the
predicted labels table is converted into predicted
statements.

We use six special tokens, which allow us to
control and parse model output.

• Input table start token: <table>
• Input table stop token: </table>
• Output start token: <response>
• Output stop token: </response>
• Newline token: <br>
• Separate list item token: <sep>

This allows us to parse the predicted statements
from a LLM. Once successfully parsed, the output
statements can be trivially converted from one rep-
resentation to another. This is crucial because we
compare model predicted statements with ground
truth by converting statements into a tree structure.
These tokens are added to the tokenizer vocabulary
before fine-tuning any model.

Since the nature of these tasks naturally fits the
paradigm of sequence-to-sequence models, we fine-
tune T5 models (Raffel et al., 2020). T5 models are
encoder-decoder transformer architecture models
which are suitable for many sequence-to-sequence
tasks. In our experiments, we train T5 variants
(Small, Base, Large, and 3B) to create a family of
Statement Extraction Models (SEM).

In our training data for tables, the input token
count is less than 512 for 50% of the data, and it is
less than 1024 for 90% of the data. Thus, except
where mentioned, we train T5 models (small, base,
large) with context windows of 512 and 1024, and
T5-3b with context window of 512. All models are
fine-tuned in a distributed data parallel (DDP) man-
ner simultaneously across 4 GPU devices (Nvidia
A100-40GB for T5-Small, T5-Base, T5-Large and
NVIDIA A100-80GB for T5-3B). Additionally, the
largest possible batch size was used for all models.
The batch size is impacted by factors like model
size, GPU memory, and context window. In turn it
affects the number of epochs we can fine-tune in a
reasonable time.

For all tasks, we stop the fine-tuning process ei-
ther after 500,000 steps or after 7 days. We use the
AdamW optimizer with β1 = 0.9 and β2 = 0.999.
All models are trained with a maximum learning

rate of 5×10−4. There is a warm-up phase of 1000
steps in which the learning rate increases linearly
from 10−10 to 5× 10−4. After another 1000 steps,
the learning rate is exponentially decayed until it
reaches its lowest value of 10−6, where it remains
until the end of the training.

Table 2 presents the key results of our exper-
iments. For each table, we evaluate the state-
ments predicted by the model (directly or indi-
rectly) against the ground truth statements. For
each task and each model therein, we present the
averaged tree similarity score (ts) (measuring en-
tity & relationship extraction) and the averaged F1
score (measuring entity extraction). Also present
are the averaged ratios of tree edit types, which
helps us understand ts. For all reported values, as-
suming a normal distribution, the standard error of
the mean is below 5×10−5 and the 99% confidence
interval for all values is about ∼ 0.1%.

Baseline Experiments: For baseline experi-
ments, several state of the art LLMs were tested
for their in-context learning ability. In the prompt,
we show the model an example of direct statement
extraction (1-shot), followed by a test table.

The models produce statements in markdown
format, which are evaluated against ground truth
statements. The average tree similarity score across
1100 annotated tables varies from 0% for Fal-
con40b to 20% for Mixtral (8×7b models). For
entity extraction, Llama2-13b performed the best
with an average F1 score of 38. Not all outputs
generated by the model were in correct markdown
format. Minor changes in the prompt were found
to create vast differences in the quality of extracted
statements. In appendix D, we show examples of
the prompt and the model output for some cases.

Statement Extraction Indirect 1D: All mod-
els trained on this task have context window of
512. Their performance tends to scale with model
size. These models can learn to extract entities, but
relationship extraction is difficult. For SEM-T5-
small, the ratio of insertion is ≈ 98% which means
that the predicted statements does not have enough
nodes.

Statement Extraction Indirect 2D: All models
trained on this task perform well on entity extrac-
tion with average F1 scores of over 95%. The
highest performing model is the SEM-T5-3b (512)
with an average tree similarity score of 81.76%.

Statement Extraction Direct:Based on tree sim-
ilarity score, most models show poor performance
in direct SE. The best performing model is SEM-
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Table 2: Results of experiments performed for Statement Extraction (bold indicates the best in each experiment).
The comparison between the ground truth and the model-predicted statements is encapsulated by the Tree Similarity
Score (ts). ts measures if two trees are similar (100% being an exact match). For each statement, the precision,
recall and F1 score (reported) of entity extraction extraction was also measured. For all reported values, the 99%
confidence interval, assuming a Gaussian distribution, is ∼ 0.1%. The standard error of the mean in all cases is
below 0.005%.

Context Invalid Ratio Tree Edits [%] Average [%]
Task Model Length Output [%] Insert Delete Rename F1 ts

Falcon-40b 2048 12.59 45.69 28.77 25.54 17.94 0.15
Baseline Llama-2-13b 4096 17.93 79.95 5.78 14.27 37.94 5.29

In-Context Llama-2-70b 4096 24.82 89.65 2.56 7.79 3.18 6.31
1-shot Mistral-7b 8192 21.92 53.37 18.76 27.87 16.92 11.57

Mixtral-8x7b 8192 19.20 56.39 18.06 25.56 6.51 21.07
SEM-T5-small 512 00.00 98.13 00.00 1.87 62.32 00.86

Indirect 1D SEM-T5-base 512 00.00 83.95 01.68 14.37 83.46 09.21
SEM-T5-large 512 00.00 34.68 12.03 53.30 94.67 55.68
SEM-T5-3b 512 00.00 36.70 23.24 40.05 90.49 22.24
SEM-T5-small 512 64.62 17.34 13.36 69.30 97.06 75.15
SEM-T5-base 512 57.85 15.53 21.60 62.86 96.85 73.87
SEM-T5-large 512 61.81 09.58 22.80 67.62 97.55 80.83

Indirect 2D SEM-T5-3b 512 50.88 08.00 28.40 63.59 97.38 81.76
SEM-T5-small 1024 58.37 18.53 18.71 62.75 95.85 68.45
SEM-T5-base 1024 46.39 17.80 16.04 66.16 96.15 69.27
SEM-T5-large 1024 53.33 08.20 17.00 74.79 97.53 79.89
SEM-T5-small 512 00.00 98.14 00.04 01.82 60.65 00.62
SEM-T5-base 512 00.00 97.86 00.06 02.09 68.62 04.46
SEM-T5-large 512 00.00 98.18 00.02 01.80 67.41 04.23

Direct SEM-T5-3b 512 00.00 97.98 0.01 02.01 70.06 03.47
SEM-T5-small 1024 00.00 92.93 00.14 06.93 70.35 02.98
SEM-T5-base 1024 00.00 88.42 00.22 11.35 76.99 11.11
SEM-T5-large 1024 00.00 89.34 00.21 10.45 76.59 06.06

T5-base with a context window of 1024. It gets an
average F1 score of 76.99% and an average tree
similarity score of only 11%. To understand, why
these models performs so poorly on direct SE, we
look at the ratio of tree edits.

We note that the ratio of deletions for all models
in this task is close to 0. On the other hand, the
ratio of insertions for all models is high (from 88%
to 98%). This suggests that the statement trees
produced by these models is missing vast number
of nodes compared to the ground truth. In fact,
perusing the model output shows that while the
output is of high quality, it contains significantly
less nodes than ground truth statements.

Discussion: SE Indirect 1D shows good perfor-
mance on entity extraction, but performs poorly
for both entity and relationship extraction. In this
task, the model only sees the content of one cell at

a time which makes it easy to extract entities. How-
ever, this does not allow the model to develop a
strong capability to learn tabular relationships. On
the other hand, SE Direct, gives poor performance
on both entity extraction and relationship extrac-
tion. Direct SE expects the models to unravel a
dense table into statements, for which they must
produce many output tokens. For example, the
average number of output tokens in the test data
for SE direct is 5773 ± 51, which is significantly
larger than the number of tokens for SE indirect
2D (346 ± 1). Thus, direct SE is a very challeng-
ing task and might require different strategies to be
executed successfully.

SE Indirect 2D, avoids the disadvantages of both
the tasks. In this case, the model sees the entire
input table (has the chance to learn tabular relation-
ships) and is only tasked with producing a labels

199



Figure 4: Exploratory data analysis of statements from over 2700 Tables published in ESG reports in 2022. Top:
We searched about 50,000 predicates using keywords (shown on the x-axis) related to environment (left), social
(middle), and governance (right). The plot shows the distribution of predicates and the number of organizations
from this search. Bottom: Box plot for extracted Scope 1 and Scope 2 emission values grouped by business sectors
from over 300 companies across multiple years. Only sectors with more than 20 data points are included.

table (can finish generation in a reasonable number
of tokens). Our experiments clearly demonstrate
that statement extraction via the Indirect 2D ap-
proach gives better results. This is an unexpected
finding of our study, and we hope it motivates other
researchers to improve zero-shot statement extrac-
tion capability.

6 Application to ESG results

Due to their homogeneous structure, statements
enable large-scale exploratory data analysis and
data science. To demonstrate the advantage of
statements over traditional tabular data science, we
applied SEM-T5-large (512 SE Indirect 2D) over
2700 tables published in over 1000 ESG reports in
2022. This lead to 14,766 statements containing
over 100k predicates. This dataset containing ESG
related KPIs is invaluable to researchers, policy-
makers, and analysts.

We filter this large dataset to contain only those
predicates with quantitative property values. This

subset contains 47 901 predicates from 601 corpo-
rate ESG reports. We search the properties in this
dataset for some keywords representative of ESG
KPIs. Fig. 4 (top) shows the distribution of the
number of predicates and the number of distinct
organizations which matched our simple keyword
search. For example, using ‘emission’ as a key-
word, we obtain over 4000 hits with results coming
from over 300 distinct corporations.

Fig. 4 (bottoms) shows the total scope 1 emis-
sions (left) and total scope 2 emission (right). Each
box shows the distribution of emission from multi-
ple corporations across sectors (∼ 20 in Healthcare
to ∼ 100 in Technology and Industrial Goods) con-
taining data from several years. The data reported
in the original report contained emissions in differ-
ent units, which were harmonized for creating this
plot.

Since we only took a small subset of 1000 re-
ports for this analysis, our data is incomplete and
is only representative. The statements dataset al-
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lows one to study how emissions from individual
companies or across sectors have evolved over time.
This dataset can also serve as a starting point for
many other downstream applications like question-
answering, fact checking, table retrieval, etc.

7 Conclusion & Future Works

We have presented a novel approach to map com-
plex, irregular, and heterogeneous information to
a uniform structure, Statements. We presented
Statement Extraction which is a new supervised
deep-learning information extraction task. We con-
tribute the field of table understanding by open-
sourcing SemTabNet consisting of 100K ESG ta-
bles wherein all cells.

Investigating three variations of the statement
extraction task, we found that using a model
to generate table annotations and then construct
statements produces best results. This ap-
proach has the advantage, that it produces homo-
geneous structured data with reduced hallucina-
tions. Statements are an advantageous vehicle
for quantitative factual information. They enable
down-stream tasks like data science over a large
collection of documents. We extracted over 100K
facts (predicates) from only 1000 ESG reports.

This work can be easily extended to include do-
mains other than ESG. It can also be extended to-
wards multi-modality by including text data. We
leave for future exploration, the use of statements
in downstream tasks like QA or document summa-
rization.

Limitations

Although, the ideas and the techniques we describe
in this paper are domain agnostic, we limit the
scope of this paper to the domain of corporate En-
vironment, Social, and Governance (ESG) reports.
This choice is motivated by two observations. First,
corporations report valuable quantitative data re-
garding their efforts to improve their carbon emis-
sions, working conditions, and company culture
in ESG reports. These reports contain valuable in-
formation regarding the environmental impact of
businesses, and the urgency of climate change mo-
tivates us to target this domain. Secondly, there is
a large variety and diversity of tabular representa-
tions used in these reports. Despite efforts to stan-
dardize these reports, this diversity makes the task
of extracting information from these documents
extremely challenging, motivating our choice.

The scope of this work is limited to declarative,
explicit knowledge only. All other kinds of knowl-
edge such as cultural, implicit, conceptual, tacit,
procedural, conditional, etc. are ignored. We fo-
cus on information which one colloquially refers
to as ‘hard facts’. Additionally, we limit the scope
of this work to quantitative statements i.e. state-
ments whose property values are numerical quan-
tities. We implement this restriction in the notion
that we avoid qualitative statements i.e. statements
which are not quantitative.

Our model training strategy was biased against
large models. We trained all models for either 500K
steps or 7 days using the largest possible batch size.
This means smaller models learn more frequently
(more epochs) than larger models. However, we
do not believe this severely impacted the outcome
of our experiments. Our resources were enough
to recover well-known trends: improved model
performance with model size and context-length.
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A ESG Keywords

Environment
1. Scope 1 GHG Emissions

Scope 1 are all direct emissions from the ac-
tivities of an organization under their control.
This includes fuel combustion on site such as
gas boilers, fleet vehicles and air-conditioning
leaks.

2. Scope 2 GHG Emissions Market Volume
Scope 2 are indirect emissions from electricity
purchased and used by the organization. Emis-
sions are created during the production of the
energy and eventually used by the organiza-
tion. A market-based method reflects emis-
sions from electricity that companies have ac-
tively chosen to purchase or reflects their lack
of choice.

3. Scope 2 GHG Emissions Location Volume
Scope 2 emissions are indirect emissions
from the generation of purchased energy. A
location-based method reflects the average
emissions intensity of grids on which en-
ergy consumption occurs (using mostly grid-
average emission factor data)

4. Scope 2 GHG Emissions Other Volume
Scope 2 emissions are indirect emissions from
the generation of purchased energy. Overall, if
not clearly defined whether it is market-based
calculation or location-based calculation

5. Scope 3 GHG Emissions
Scope 3 emissions are all other indirect emis-
sions (excluding Scope 2) that occur in the
value chain of the reporting company, includ-
ing both upstream and downstream emissions.

6. Environmental Restoration and Investment
Initiatives Monetary Value
The fields represent the monetary value spent
on environmental initiatives.

7. Total Water Discharged
The fields represent the overall volume of wa-
ter discharged by a company.

8. Total Water Withdrawal
The fields represent the total volume of water
withdrawn by a company.

9. Total Water Recycled
The fields represent the total volume of water
recycled or reused by a company.

10. Toxic Air Emissions - NOx
The fields represent the total amount of nitrous
oxide (NOx )emissions emitted by a company.

11. Toxic Air Emissions - SOx
The fields represent the total amount of sulfur
oxide (Sox) emissions emitted by a company.

12. Toxic Air Emissions - Overall
The fields represent the total amount of air
emissions emitted by a company.

13. Toxic Air Emissions - VOC
The fields represent the total amount of
volatile organic compound (VOC) emissions
emitted by the company.

14. Hazardous Waste - Disposed to Aquatic
The fields represent the total amount of haz-
ardous waste disposed to aquatic environment.

15. Hazardous Waste - Disposed to Land
The fields represent the total amount of haz-
ardous waste disposed to non aquatic or land
environment.

16. Hazardous Waste - Total Recycled
The fields represent the total amount of haz-
ardous waste recycled.

17. Hazardous Waste - Total Amount Gener-
ated
The fields represent the total amount of haz-
ardous waste generated by a company.

18. Hazardous Waste - Total Amount Disposed
The fields represent the total amount of haz-
ardous waste disposed.

19. Non-Hazardous Waste - Disposed to
Aquatic
The fields represent the total amount of non-
hazardous waste disposed to the aquatic envi-
ronment.

20. Non-Hazardous Waste - Disposed to Land
The fields represent the total amount of non-
hazardous waste to non aquatic or land envi-
ronment

21. Non-Hazardous Waste - Total Recycled
The field represents the total amount of non-
hazardous waste recycled.

22. Non-Hazardous Waste - Total Amount Gen-
erated
The fields represent the total amount of non-
hazardous waste Generated by a company.
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23. Non-Hazardous Waste - Total Amount Dis-
posed
The fields represent the total amount of non-
hazardous waste disposed.

24. Total Waste Produced
The fields represent the total amount of waste
produced by a company.

25. Total Waste Recycled
The fields represents the total amount of waste
recycled by a company.

26. Total Waste Disposed
This fields represent the total amount of waste
disposed by a company.

27. Number of Sites in Water Stress Areas
The field represents the number of sites lo-
cated in water stress areas.

28. E-Waste Produced
The field identifies the mass volume of f E-
waste produced which are electronic products
that are unwanted, not working, and nearing or
at the end of their life. Examples of electronic
waste include, but not limited to : computers,
printers, monitors, and mobile phones

29. E-Waste Recycled
The field identifies the mass volume of E-
Waste Recycled.

30. E-Waste Disposed
The field identifies the mass volume of E-
waste disposed.

31. Number of Sites Operating in Protected
and/or High Biodiversity Areas
The field identifies the number of sites or facil-
ities owned,leased, managed in or adjacent to
protected areas and areas of high biodiversity
value outside protected areas.

32. Impacted Number of Species on Interna-
tional Union of Conservation of Nature
(IUCN) List
The field identifies the number of impacted
species on International Union of Conserva-
tion of Nature (IUCN) red list.

33. Impacted Number of Species on National
listed Species
The field identifies the number of impacted
species on National Listed Species.

34. Baseline Level
The field identifies the value at baseline or
year that target is set against.

35. Target Year
The field identifies the year in which the re-
newable energy goal is set to be completed.

36. Target Goal
The field identifies the target goal for renew-
able energy.

37. Actual Achieved
The fields identifies the actual value achieved
for the renewable energy goal.

38. Baseline Level
The field identifies the baseline emissions
value.

39. Target Year
The field identifies the year in which GHG
emission goal is set to be completed.

40. Target Goal
The field identifies the target goal for GHG
emission reduction.

41. Actual Achieved
The field identifies the value achieved of GHG
emissions reduced compare - in metric tons.

Social
1. Training Hours Per Employee

The fields identifies the numerical value of
training hours per employee.

2. Training Hours Annually
The fields identifies the numerical values of
training hours conducted within a year.

3. Lost Time Injury Overall Rate
The fields identifies the total number of in-
juries that caused the employees and contrac-
tors to lose at least a working day.

4. Lost Time Injury Rate Contractors
The fields identifies the number of injuries
that caused the contractors to lose at least a
working day.

5. Lost Time Injury Rate Employees
The fields identifies the number of injuries
that caused the employees to lose at least a
working day.

6. Employee Fatalities
The fields identifies the number of employee
fatalities during a one year period.

7. Contractor Fatalities
The fields identifies the number of contractor
fatalities during a one year period.

8. Public Fatalities
The fields identifies the number of general
public fatalities during a one year period.

9. Number of Other Fatalities
The fields identifies the number of fatalities
during a one year period not broken down by
employee, contractor, or public.

10. Total Incident Rate Overall Workers
The field identifies the number of work-related

205



injuries per 100 overall workers during a one
year period for both employees and contrac-
tors.

11. Total Incident Rate Contractors
The field identifies the number of contractor
work-related injuries per 100 overall workers
during a one year period.

12. Total Incident Rate Employees
The field identifies the number of work-related
injuries per 100 overall workers during a one
year period for employees.

13. Employee Turnover - Gender Male Rate
The field identifies the absolute number
turnover rate by males in a company .

14. Employee Turnover - Gender Female Rate
The field identifies the absolute number
turnover rate by females in a company.

15. Employee Turnover Overall Rate
The field identifies the absolute number
turnover rate for overall employees in a com-
pany.

16. Median Gender Pay Gap - Global
The field identifies the gender pay gap median
value of the company at a global level.

17. Mean Gender Pay Gap - Global
The field identifies the gender pay gap mean
or average value of the company at a global
level.

18. Median Gender Pay Gap by Location
The field represents the gender pay gap me-
dian value of the company at a location or
country level.

19. Mean Gender Pay Gap by Location
The field represents the gender pay gap
mean/average value of the company at a loca-
tion or country level.

20. Employee Turnover by Age - Lower Value
The field Identifies the minimum age in a
given range for employee turnover statistics.

21. Employee Turnover by Age - Upper Value
The field identifies the maximum age in a
given range for employee turnover statistics.

22. Employee Turnover by Age - Rate
The field identifies the employee turnover rate.

23. Employee Turnover by Location Rate
The field identifies the absolute number of
employee turnover rate by location.

24. Workforce Breakdown Rate
The field identifies the absolute number of
employees of a company based on seniority,
ethnicity or gender.

25. Workforce Breakdown Job Category Data:
Value (ABS)

The field represents the employee count abso-
lute value at a category level within a work-
force.

26. Number Of Product Recalls
The fields identifies the number of product
recalls.

27. Product Recalls Annual Recall Rate
The fields identifies the product recall rate of
a company.

Governance
1. Percentage of Negative Votes on Pay

Practices Year

2. Board of Director Term Limit
The field identifies maximum amount of years
a board member can serve.

3. Board of Director Term Duration
The field identifies number of years a board
member can serve before reelection.

4. Auditor Election Year
The field identifies when the current lead au-
ditor elected.

5. Independent Auditor Start Year
The field represents the start year the com-
pany started having the audit company as its
independent auditor.

6. Average/Mean Compensation of Company
Employees-Global
The field represents the average or mean com-
pensation for company employeesat a global
level.

7. Ratio Average Compensation of CEO to
Employee - CEO- Global
The field represents the ratio between the com-
pensation paid to the companies CEO and the
average compensations received by employ-
ees at a global level.

8. Compensation of Company Employees by
Location
The field identifies the average compensation
for company employees at a location level.

9. Number of Suppliers Complying with Code
of Conduct
The field identifies the number of suppliers
that comply with companies supplier code of
conduct.

10. Share Class Numeric
The field identifies the share class numeric
component.

11. Voting Rights
The field identifies the number of voting rights
per each share of stock within each class.
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12. Shares Outstanding
The field identifies the number of shares out-
standing within a companies common stock.

13. Chairman Effective Begin Year
The field indicates the year when the current
chairman assume his or her position. This
field is used if a full effective date is not avail-
able.

14. Chairman Effective End Year
The field indicates the year when the chairman
left the position.

15. CEO Effective Begin Year
The field identifies the year the CEO assumed
his or her position.

16. CEO Effective End Year
The field indicates the year when the CEO left
the position.

17. CEO Compensation Salary
The field identifies the current CEO salary.

18. CEO Compensation Overall
The field identifies the CEO’s overall com-
pensation including salary, bonuses and all
awards.

19. CEO Cash Bonus
The field identifies the cash bonus value for
the CEO.

20. CEO Stock Award Bonus
The CEO Stock Award Bonus value

21. CEO Option Awards
The CEO Option Awards bonus value

22. CEO Other Awards
The fields identifies other compensation out-
side of salary, cash bonus, stock award bonus
and option awards. This could include change
in pension and values categorized as "all other
compensation"

23. CEO Pension
The fields identifies the CEO pension amount.

24. Cash Severance Value
The fields identifies the amount of cash the
severance policy for each category.

25. Total Severance Value
The fields identifies the total value amount of
the severance policy.

26. CEO Share Ownership
The field identifies the number of shares the
CEO owns in the company.

27. CEO Share Class Numeric
The field identifies the share class numeric
component.

28. Board Member Age
The field identifies the age of the members of
the board.

29. Board Member Term in Years
The fields identifies how long the individual
board member has been on the board which is
determined in years.

30. Board Member Effective Year (Director
Since)
The fields identifies the year the individual
board member started serving on the board.

31. Board Profile As of Year
The field identifies the year of the board infor-
mation. An example would be the year of the
proxy statement.

32. Participation On Other Company Board
The field identifies the number of boards a
member is part of outside of the organization.

33. For Value Negative Votes on Directors
The field identifies the number of for value
votes the director received.

34. Against Value Negative Votes on Directors
The field identifies the number of against votes
the director received.

35. Abstain Value Negative Votes on Directors
The field identifies the number of votes that
were abstained for a given director.

36. Broker Non Vote Value Negative Votes on
Directors
The field identifies the number of broker non
votes for given director.

37. Number of Board Meetings Attended by
Board Member
The field identifies the number of board meet-
ings attended by a board member.

38. Number of Board Meetings Held by Com-
pany
The field identifies the number of board meet-
ings held by a company while member was on
the board.

39. Total Members on Board per Skill Set
The field identifies the number of board mem-
bers within a specific skillset type.
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B Examples of Statements

A statement is complete when it contains all the predicates needed to completely specify objective
knowledge pertaining to a subject, i.e. a statement includes all co-dependent predicates. We borrow this
notion of completeness from the fields of natural science. An important implication of these definitions is
that within a single statement, multiple predicates cannot carry information about the same ‘property’.
This implies, for example, multiple measurements of the same variable in n different conditions will lead
to n different statements. While complete statements are extremely valuable, we find that incomplete
statements are quite resourceful, especially as we apply our ideas to domains outside of natural science.

Examples of statements from other domains are shown below.
Basic Sciences: Consider the following piece of text or unstructured data. “At a pressure of one

atmosphere (atm), water freezes (solidifies) at 0 ◦C and water boils at 100 ◦C.” We note that to completely
describe the phase changes of water, we need to specify both temperature and pressure. Leaving any
one of temperature or pressure out makes the information regarding phase change incomplete. This
information is presented as statements in the Tables table 3 and table 4. This example demonstrates that
multiple statements can be extracted from even single sentences.

Table 3: Example Statement from Material Science: Phase change of water from solid to liquid.

Subject Subject Value Property Property Value Unit
Chemical Water freezing temperature 0 ◦C
Chemical Water pressure 1 atmosphere

Table 4: Example Statement from Material Science: Phase change of water from liquid to gas.

Subject Subject Value Property Property Value Unit
Chemical Water boiling temperature 100 ◦C
Chemical Water pressure 1 atmosphere

Physics:

Table 5: Example Statement from Physics: Speed of light.

Subject Subject Value Property Property Value Unit
Boson Light speed 299 792 458 ms−1

Boson Light medium vacuum

Independent properties make independent statements, as shown below.

Table 6: Example Statement from Physics: Mass of electron.

Subject Subject Value Property Property Value Unit
Fermion Electron Mass 9.1093837015× 10−31 kg

Table 7: Example Statement from Physics: Charge of electron.

Subject Subject Value Property Property Value Unit
Fermion Electron Electric Charge −1.602176634× 10−19 C
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Table 8: Example Statement from Physics: Charge of electron.

Subject Subject Value Property Property Value Unit
Fermion Electron Spin 1/2 h

C TED Similarity Score

C.1 Creating Trees
The statement data structure can be viewed in many representations: hypergraphs, tree, table, records,
and transforming the representation of this data structure in other formats is trivial.

In our setup, when represented as a tree, all nodes in a statement has four attributes: name, type, value,
and parent. We start a tree with the root node with name as ‘/root’, type as ‘root’, and no value. This
node does not have any parent node. Next, the statement nodes emerge as branches from the root. Each
statement node has a name like ‘/root/s0’ or ‘/root/s2’ (here, ‘s’ indicates that this is a statement node
and the number acts as an index), type as ‘statement’, no value and the root node as its parent. Further,
attached to each statement node are predicate node(s) with names like ‘/root/s1/p0’ or ‘/root/s0/p3’,
type as ‘predicate’, no value and a statement node as its parent. Finally, in our current implementation,
each predicate node has five children nodes attached to it. These leaf nodes can be of type: subject,
subject-value, property, property-value, unit and the value attribute is populated with the actual value. The
leaf nodes may have names like ‘/root/s2/p1/subject’ or ‘/root/s0/p3/property-value’. In this representation,
the name of a node completely determines the location of the node in a tree.

As an example, we show the tree structure for the statements shown in fig. 2:

Node('/root', type='root', value=None)
|-- Node('/root/s0', type='statement', value=None)
| |-- Node('/root/s0/p0', type='predicate', value=None)
| | |-- Node('/root/s0/p0/Subject', type='Subject', value='Organization')
| | |-- Node('/root/s0/p0/Subject Value', type='Subject Value', value='XYZ')
| | |-- Node('/root/s0/p0/Property', type='Property', value='scope 1 emissions')
| | |-- Node('/root/s0/p0/Property Value', type='Property Value', value='3.3')
| | |-- Node('/root/s0/p0/Unit', type='Unit', value='million metric tons of CO2e')
| |-- Node('/root/s0/p1', type='predicate', value=None)
| |-- Node('/root/s0/p1/Subject', type='Subject', value='Organization')
| |-- Node('/root/s0/p1/Subject Value', type='Subject Value', value='XYZ')
| |-- Node('/root/s0/p1/Property', type='Property', value='time')
| |-- Node('/root/s0/p1/Property Value', type='Property Value', value='2020')
| |-- Node('/root/s0/p1/Unit', type='Unit', value='year')
|-- Node('/root/s1', type='statement', value=None)

|-- Node('/root/s1/p0', type='predicate', value=None)
| |-- Node('/root/s1/p0/Subject', type='Subject', value='Organization')
| |-- Node('/root/s1/p0/Subject Value', type='Subject Value', value='XYZ')
| |-- Node('/root/s1/p0/Property', type='Property', value='scope 1 emissions')
| |-- Node('/root/s1/p0/Property Value', type='Property Value', value='2.5')
| |-- Node('/root/s1/p0/Unit', type='Unit', value='million metric tons of CO2e')
|-- Node('/root/s1/p1', type='predicate', value=None)

|-- Node('/root/s1/p1/Subject', type='Subject', value='Organization')
|-- Node('/root/s1/p1/Subject Value', type='Subject Value', value='XYZ')
|-- Node('/root/s1/p1/Property', type='Property', value='time')
|-- Node('/root/s1/p1/Property Value', type='Property Value', value='2021')
|-- Node('/root/s1/p1/Unit', type='Unit', value='year')

C.2 Computing Tree Similarity Score
For comparing two statement trees, we setup strict costs for each edit operation. The predictions are
maximally punished for any structural deviation from the ground truth, i.e. deletion and insertion each
have a cost of 1. For renaming of the node’s value attribute, we only allow two nodes to be renamed if
they are of the same type. If both nodes’ value attribute is of type string, then we calculate a normalized
Levenshtein edit distance between the two strings.

If both nodes’ value attribute is of numerical type, then the two values are directly compared. In this
case, the cost is 0 if the two values are the same, and 1 in all other cases. If the value attribute of both the
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ground truth and the prediction node is empty, then the cost operation is also 0. We denote TED with t.
We define normalized TED (nTED or t) as the ratio of the distance to the number of edits between two
trees. Using the normalized TED, a normalized Tree Similarity score can be computed as ts = 1− t.

Consider comparing the trees for the two statements s0 and s1, from the example above. These two trees
differ only in their numeric value but are otherwise similar to each other. Two edits are required to convert
one tree into another: one corresponding to the property-value of ‘time’ and the other corresponding to the
property-value of ‘scope 1 emissions’. If the numeric values are interpreted as floats, then our strict setup
will maximally punish for each edit giving an edit distance of 2 renaming, 0 deletions, and 0 insertions.
The normalized tree edit distance (ratio of distance to total number of edits) would be 2 / 2 = 1. Thus, the
TED similarity score would be 1 - 1 = 0.

However, our model outputs numeric values as strings, which can be compared via normalized Lev-
enshtein distance. Then, the first rename edit of year values will give a distance of 1/4 = 0.25, and the
other rename edit will give a distance of 2/3 = 0.66. In this case, the total tree edit distance is 0.9166, the
normalized tree edit distance is 0.4583. This gives a TED similarity score of 0.54. We will interpret this
by saying that “the two tree (when the numeric value are interpreted as strings) are 54% similar to each
other”. Given that the two trees are similar in their structure and only differ in their numeric values, this
shows that our setup of TED similarity score is very strict.

For illustrative purposes, let us consider another example. We consider that the s0 in the above example
is the ground truth statement:

Node('/root', type='root', value=None)
|-- Node('/root/s0', type='statement', value=None)
| |-- Node('/root/s0/p0', type='predicate', value=None)
| | |-- Node('/root/s0/p0/subject', type='subject', value='Organization')
| | |-- Node('/root/s0/p0/subject_value', type='subject_value', value='XYZ')
| | |-- Node('/root/s0/p0/property', type='property', value='scope 1 emissions')
| | |-- Node('/root/s0/p0/property_value', type='property_value', value='3.3')
| | |-- Node('/root/s0/p0/unit', type='unit', value='million metric tons of CO2e')
| |-- Node('/root/s0/p1', type='predicate', value=None)
| |-- Node('/root/s0/p1/subject', type='subject', value='Organization')
| |-- Node('/root/s0/p1/subject_value', type='subject_value', value='XYZ')
| |-- Node('/root/s0/p1/property', type='property', value='time')
| |-- Node('/root/s0/p1/property_value', type='property_value', value='2020')
| |-- Node('/root/s0/p1/unit', type='unit', value='year')

And we have a model which makes the following prediction:

Node('/root', type='root', value=None)
|-- Node('/root/s1', type='statement', value=None)

|-- Node('/root/s1/p0', type='predicate', value=None)
|-- Node('/root/s1/p0/subject', type='subject', value='Organization')
|-- Node('/root/s1/p0/subject_value', type='subject_value', value='XYZ')
|-- Node('/root/s1/p0/property', type='property', value='scope 2 emissions')
|-- Node('/root/s1/p0/property_value', type='property_value', value='3.3')
|-- Node('/root/s1/p0/unit', type='unit', value='million metric tons of CO2e')

We observe that the predicted tree is missing an entire predicate with time property. This happens
when models stop generating new tokens. Compared to the previous example, the ground truth and model
prediction have a major structural deviation. In addition, the model also made a mistake in the value
of the ‘property’ node. Instead of ‘scope 1 emissions’ as in ground truth, the model predicted ‘scope 2
emissions’.

To convert one tree into another, we need a total of 7 edits: six nodes need to be deleted (or inserted) (5
leaf nodes and 1 predicate node) and 1 renaming edit. All deletions or insertions have equal score of 1
each, and the renaming costs 1/17 ≈ 0.0588. The total tree edit distance becomes 6.0588, the normalized
tree edit distance is 0.8655. This gives us a tree similarity score of 0.1344. We interpret that the two trees
are only 13% similar to each other.

D Baseline Experiments

Example of successful statement extraction:
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Table 9: Table with simple layout from page 68 of the 2022 ESG report from Splunk Inc.

0 1 2
Emissions Scope FY21 FY22
Scope 1 Direct Emissions 24 374
Scope 2 Indirect Emissions 3,686 3,257
Scope 3 Other Indirect Emissions 11,430 7,938
Total 15,140 11,569

Consider the above table, with a simple layout, from the 2022 ESG report of Splunk Inc.
We prompt Mixtral with the above table using the following prompt. For rendering, we replace our

line-break token ‘<br>’ with actual line-breaks and remove some aspect of the example statement for
brevity.

<table>
| 0 | 1 | 2 | 3 |
|------------------------------------------------|----------|----------|----------|
| Public Metrics | 2019 | 2020 | 2021 |
| Public Fatalities Due to Electrical Contacts | 4 | 2 | 5 |
| Employee Metrics | 2019 | 2020 | 2021 |
| Employee DART Rate | 0.412 | 0.31 | 0.43 |
| Total Employee Recordable Incident Rate (TRIR) | 0.673 | 0.576 | 0.648 |
| Employee Lost Time Incident Rate (LTIR) | 0.329 | 0.245 | 0.333 |
| Employee Severity Rate | 22.719 | 15.284 | 19.113 |
| Total Employee OSHA Recordable Events | 129 | 106 | 113 |
| Employee Fatalities | 1 | 0 | 0 |
</table>
<response>
...
| property | property_value | unit | subject | subject_value |
|------------------------------------------------------------|------------------|--------|-----------|-----------------|
| Employee Metrics : Employee Lost Time Incident Rate (LTIR) | 0.329 | | | |
| time | 2019 | | | |
<sep>
| property | property_value | unit | subject | subject_value |
|------------------------------------------------------------|------------------|--------|-----------|-----------------|
| Employee Metrics : Employee Lost Time Incident Rate (LTIR) | 0.245 | | | |
| time | 2020 | | | |
<sep>
| property | property_value | unit | subject | subject_value |
|------------------------------------------------------------|------------------|--------|-----------|-----------------|
| Employee Metrics : Employee Lost Time Incident Rate (LTIR) | 0.333 | | | |
| time | 2021 | | | |
<sep>
| property | property_value | unit | subject | subject_value |
|-------------------------------------------|------------------|--------|-----------|-----------------|
| Employee Metrics : Employee Severity Rate | 22.719 | | | |
| time | 2019 | | | |
<sep>
| property | property_value | unit | subject | subject_value |
|-------------------------------------------|------------------|--------|-----------|-----------------|
| Employee Metrics : Employee Severity Rate | 15.284 | | | |
| time | 2020 | | | |
<sep>
| property | property_value | unit | subject | subject_value |
|-------------------------------------------|------------------|--------|-----------|-----------------|
| Employee Metrics : Employee Severity Rate | 19.113 | | | |
| time | 2021 | | | |
...
</response>

<table>
| 0 | 1 | 2 |
|----------------------------------|--------|--------|
| Emissions Scope | FY21 | FY22 |
| Scope 1 Direct Emissions | 24 | 374 |
| Scope 2 Indirect Emissions | 3,686 | 3,257 |
| Scope 3 Other Indirect Emissions | 11,430 | 7,938 |
| Total | 15,140 | 11,569 |
</table>
<response>
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The model output for the above prompt with greedy decoding was:
| property | property_value | unit | subject | subject_value |
|-----------------------------------------------------------|------------------|--------|-----------|-----------------|
| Emissions Scope : Scope 1 Direct Emissions | 24 | | | |
| time | FY21 | | | |
<sep>
| property | property_value | unit | subject | subject_value |
|-----------------------------------------------------------|------------------|--------|-----------|-----------------|
| Emissions Scope : Scope 1 Direct Emissions | 374 | | | |
| time | FY22 | | | |
<sep>
| property | property_value | unit | subject | subject_value |
|-----------------------------------------------------------|------------------|--------|-----------|-----------------|
| Emissions Scope : Scope 2 Indirect Emissions | 3,686 | | | |
| time | FY21 | | | |
<sep>
| property | property_value | unit | subject | subject_value |
|-----------------------------------------------------------|------------------|--------|-----------|-----------------|
| Emissions Scope : Scope 2 Indirect Emissions | 3,257 | | | |
| time | FY22 | | | |
<sep>
| property | property_value | unit | subject | subject_value |
|-----------------------------------------------------------|------------------|--------|-----------|-----------------|
| Emissions Scope : Scope 3 Other Indirect Emissions | 11,430 | | | |
| time | FY21 | | | |
<sep>
| property | property_value | unit | subject | subject_value |
|-----------------------------------------------------------|------------------|--------|-----------|-----------------|
| Emissions Scope : Scope 3 Other Indirect Emissions | 7,938 | | | |
| time | FY22 | | | |
<sep>
| property | property_value | unit | subject | subject_value |
|-----------------------------------------------------------|------------------|--------|-----------|-----------------|
| Emissions Scope : Total | 15,140 | | | |
| time | FY21 | | | |
<sep>
| property | property_value | unit | subject | subject_value |
|-----------------------------------------------------------|------------------|--------|-----------|-----------------|
| Emissions Scope : Total | 11,569 | | | |
| time | FY22 | | | |
</response>

This is an example of correct statement extraction. For the same table with a different example in the
prompt, the output of the same model was:

| property

This is an invalid output without any correct markdown structure or content. This shows that the in-context
approach is sensitive to the prompt and thus is not robust.

E Algorithm for Statement Extraction

We present the algorithm we used to extract statements. For this algorithm, the inputs are the original
table and the labels table.

Algorithm 1 Extract Statements
1: procedure EXTRACT STATEMENTS(Table, LabelsTable)
2: Input: Table, LabelsTable: Table and Table of cell annotations
3: AllStatements← empty list
4: for all row in LabelsTable do
5: for all column in LabelsTable do
6: if LabelsTable[row][column] = Property Value then
7: Search in the same row and column for (Sub)-Property
8: if Property is found then
9: Append Headers in hierarchy to Property, if any, starting from the minimum level

10: Construct Statement with Property, Row and Column
11: else if SubProperty is found then
12: Append Property to the SubProperty
13: Append Headers in hierarchy to SubProperty, if any, starting from the maximum level
14: Construct Statement with SubProperty, Row and Column
15: else
16: Property is not found, continue to the next iteration
17: end if
18: Append Statement to AllStatements
19: end if
20: end for
21: end for
22: Return AllStatements
23: end procedure
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1: procedure CONSTRUCT STATEMENT(Row, Column, Property)
2: Input: Row, Column, Property: Row and Column of the Property Value, with its related Property
3: Output: Statement: list
4: Statement← empty list
5: Predicate← empty dictionary
6: Predicate [Property Value]← Table[Row][Column]
7: Predicate [Property]← Property
8: Search in the same row and column(Unit Value)
9: Predicate[Unit]← Table[rowuv][columnuv]

10: Search for a Subject - Subject Value pair
11: Predicate[Subject]← Table[rows][columns]
12: Predicate[Subject_Value]← Table[rowsv][columnsv]
13: Add Predicate to the Statement
14: Search in the same row and column(Time Value)
15: if Time Value is found then
16: Predicate← empty dictionary
17: Predicate [Property Value]← Table[rowtv][columntv]
18: Predicate [Property]← "Time"
19: Add Predicate to the Statement
20: end if
21: Search for all Key - Key Value pairs
22: for all Key - Key Value pairs found do
23: Predicate← empty dictionary
24: Predicate[Property]← Table[rowk][columnk]
25: Predicate[Property Value]← Table[rowkv][columnkv]
26: Add Predicate to the Statement
27: end for
28: Return Statement
29: end procedure

Algorithm 2 Utility function for appending section header.
1: procedure APPEND HEADERS(Row, Column, Propery, Level)
2: Input: Row, Column, Property, Level: Row, Column, value of a Property cell and the level of the header to search for.
3: Output: Property: string
4: for all Rowa above Row do
5: for all Columnl on the left of Column do
6: if LabelsTable[Rowa][Columnl] is a header with a higher level than Level then
7: Append Table[Rowa][Columnl] on top of Property
8: if the level of LabelsTable[Rowa][Columnl] is maximum then
9: Return Property

10: else
11: Append Headers in hierarchy to Property starting from the level of LabelsTable[Rowa][Columnl]
12: Return Property
13: end if
14: end if
15: end for
16: end for
17: Return Property
18: end procedure

Algorithm 3 Utility function for appending property name to sub-property
1: procedure APPEND PROPERTY(Row, Column, SubProperty)
2: Input: Row, Column, SubProperty: Row,Column and Value of a SubProperty cell
3: Output: Subproperty: string
4: for all Rowa above Row do
5: for all Columnl on the left of Column do
6: if LabelsTable[Rowa][Columnl] is a Property then
7: Append Table[Rowa][Columnl] on top of SubProperty
8: Return SubProperty
9: end if

10: end for
11: end for
12: Return SubProperty
13: end procedure
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Algorithm 4 Utility function to search for related predicates
1: procedure SEARCH IN THE SAME ROW AND COLUMN(Row, Column, Key)
2: Input: Row, Column, Key: Row and Column where to search the specified Key
3: Output: Rowk, Columnk: Row and column of the designated Key, if found
4: for all Cell respectively on the Left, Above, and Right to the cell at LabelsTable[Row][Column] do
5: if Cell is Key then
6: Return Row, Column of Cell
7: end if
8: end for
9: Return Null

10: end procedure

Algorithm 5 Utility function for searching corresponding key-value.
1: procedure SEARCH FOR A PAIR(Row, Column, Key, Key Value)
2: Input: Row, Column, Key: Row and Column where to search the specified Key
3: Output: Rowk, Columnk: Row and column of the designated Key, if found
4: for all Cellkv respectively on the Left, Above, and Right to the cell at LabelsTable[Row][Column] do
5: if Cellkv is Key Value then
6: for all Cellk in the Orthogonal Direction with respect to Cellkv from LabelsTable[Row][Column] do
7: if Cellk is Key then
8: Return Coordinates of Cellk, Cellkv
9: end if

10: end for
11: end if
12: end for
13: Return Null
14: end procedure

Figure 5: Example table from an ESG report with a complicated layout. To extract the information content of a
single cell (highlighted in red), the content and relationships (lines drawn in red) to many other cells (highlighted in
orange) also needs to be understood.
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