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Abstract
Biomedical queries have become increasingly prevalent in web searches, reflecting the growing interest in accessing
biomedical literature. Despite recent research on large-language models (LLMs) motivated by endeavors to attain gen-
eralized intelligence, their efficacy in replacing task and domain-specific natural language understanding approaches
remains questionable. In this paper, we address this question by conducting a comprehensive empirical evaluation
of intent detection and named entity recognition (NER) tasks from biomedical text. We show that Supervised Fine
Tuned approaches are still relevant and more effective than general-purpose LLMs. Biomedical transformer models
such as PubMedBERT can surpass ChatGPT on NER task with only 5 supervised examples.

1. Introduction

Research on large-language models has sky-
rocketed in the post-ChatGPT era. Researchers
are now aiming for generalized intelligence by in-
creasing model size (Brown et al., 2020; Chowd-
hery et al., 2022; Hoffmann et al., 2022), expand-
ing & rearranging pretraining data (Touvron et al.,
2023a,b; Sarkar and Gupta, 2021) and incorporat-
ing human feedback (Ouyang et al., 2022; Dubois
et al., 2023). It is shown that the adoption of
GPT-4 (OpenAI, 2023) can potentially affect up
to 80% of the U.S. workforce (Eloundou et al.,
2023). These generalization reasoning demon-
strations raise an important question for the re-
search community - does this mark an end to
the task and domain-specific natural language un-
derstanding approaches? While some research
places LLMs as “General Purpose Technologies"
(Eloundou et al., 2023; Zhang et al., 2023a) for
solving a range of complicated tasks, we show that
these models struggle to perform well on domain-
specific complex tasks and specialized Supervised
Fine-tuned (SFT) models are still needed to solve
language understanding use-cases.

Over the past two decades, web searches have
evolved dramatically transitioning from generic in-
terfaces to more intent-specific and entity-aware
systems capable of immediately displaying diverse
multi-modal responses. Particularly, biomedical
inquiries, spanning topics such as medical treat-
ment, medical diagnosis, disease, etc. have seen
a surge in popularity across search engines. Fig.
1 shows the increase in the percentage of Biomed-
ical queries on Bing search and Google trends1.

*Authors contributed equally
1Google trends data of last 10 years on five topics

(Health, Medical Treatment, Medical diagnosis, Disease,
Pharmaceutical drug) was gathered from Google Trends
(https://trends.google.com/trends/)

(a) Google yearly Trend (b) Bing Query yearly

Figure 1: Biomedical query search Statistics

As large volumes of biomedical data continue to
be generated every second on various online plat-
forms the role of information retrieval systems in
processing domain-specific texts becomes increas-
ingly important. However, handling biomedical text
data presents unique challenges, as the medical
queries on search engines and online medical fo-
rums are often incomplete, do not follow a specific
structure, and contain hard-to-interpret context-
specific medical terminologies, as shown in Table 1.
While recent research is centered around the devel-
opment of general-purpose LLMs, that are shown
to exhibit exceptional Common Sense Reasoning
capabilities (Touvron et al., 2023b), we show that
these models face challenges in transferring their
performance to intricate biomedical domains. To
this end, we focus on two crucial natural language
understanding tasks of intent detection and named
entity recognition from biomedical text.

For the past two decades, different directions of
intent detection and corresponding entity extraction
have been explored. (Sun et al., 2016; Wang et al.,
2020; Mu et al., 2017b,a) demonstrate intent de-
tection in the form of out-of-domain data detection.
Other research works explore methods like few
shot (Xia et al., 2021), zero-shot (Xia et al., 2018),
and clustering frameworks (Mullick et al., 2022b).
(Yani et al., 2022; Zhao et al., 2021; Fetahu et al.,
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Biomedical Text Intent
Pharmacokinetic properties of abacavir
were not altered by the addition of either
lamivudine or zidovudine or the combina-

tion of lamivudine and zidovudine .

Drug

Canavan disease, or spongy degeneration of
the brain, is a severe leukodystrophy caused
by deficiency of aspartoacylase (ASPA).

Dis-
ease

Table 1: Intent & corresponding Entity (highlighted)
examples from DDI and NCBI Disease datasets.

2022) explore entity recognition task in various set-
tings. In the medical domain, Zhou et al. (2021) fo-
cuses on smart healthcare and (Galea et al., 2018;
Giorgi and Bader, 2019; Lee et al., 2019) inspect
transformer based models for biomedical literature.
Mullick et al. (2023, 2022a); Mullick (2023b,a) aims
at intent detection and entity extraction and Zhang
et al. (2017) explore medical query intents by ap-
plying graph-based frameworks. (Mullick et al.,
2024; Guha et al., 2021) work on domain specific
entity and corresponding relation extraction. (Mul-
lick et al., 2017b, 2016, 2018a,b, 2019, 2017a) aim
at opinion-fact entity extraction.

There is no unified and exhaustive comparison of
existing approaches with the recent LLMs for intent
detection and entity extraction tasks across various
datasets in biomedical literature. Our work differs
from the prior research in two ways: we present a
thorough empirical evaluation of the intent detec-
tion on three datasets and corresponding named
entity extraction (NER) approaches on 27 unique
entities covered in 5 biomedical datasets spanning
across domains like drugs, diseases, chemicals,
genetics and, human anatomy. We evaluate var-
ious supervised approaches (transformer-based,
handcrafted features, etc.) and benchmark them
against two widely used large language models
in the biomedical domain. Our experiments re-
veal that the biomedical transformer-based Pub-
MedBERT model outperforms few-shot prompted
ChatGPT (Turbo 3.5) on 4 biomedical NER bench-
marks with just 5 supervised examples. We make
our code publicly available.2

2. Datasets

We show our comparative study on a variety of
datasets, which are widely used as benchmarks
in the biomedical domain. We use five different
Named Entity Recognition datasets: JNLPBA (Col-
lier and Kim, 2004), DDI (combining DDI-Drugbank
and DDI-Medline) (Segura-Bedmar et al., 2013),
BC5CDR (Smith et al., 2008), NCBI-Disease (Li

2https://github.com/bioNLU-coling2024/biomed-
NER-intent_detection

Dataset Entity Type # Entities #Train #Test
JNLPBA Gene & Protein 5 2000 404

DDI Drug 4 714 112
BC5CDR Chem & Diesease 2 1000 500

NCBI-Disease Disease 4 693 100
AnatEM Anatomy 12 300 200

Table 2: Statistics of the NER datasets. We use
the pre-defined train-test split as mentioned in the
papers.

et al., 2016) and AnatEM (Ohta et al., 2012).
Dataset statistics including the entity types, count,
and train-test splits are outlined in Table 2. We
use the pre-defined train-test divisions from the
respective manuscripts.

Along with the two popular intent detection
datasets - CMID (Chen et al., 2020) and KUAKE-
QIC (part of the CBLUE (Zhang et al., 2021) bench-
mark), we combine the three of the above five
NER datasets (JNLPBA, DDI, and NCBI-Disease)
with respective intent labels (DDI for drugs, NCBI-
Disease for disease and JNLPBA for Genetics)
for intent classification task - termed as “Intent-
Merged” dataset. Dataset statistics are summa-
rized in Table 3.

CMID and KUAKE-QIC datasets, which are orig-
inally in Chinese, are translated to English using
Google Translation API. For translation validation,
a random sample of 400 translated (to English) ex-
amples of each dataset are validated manually by
two Chinese experts (ALA Language Center Com-
pany) with HSK Level-3 proficiency. The human-
validation shows 91.75% and 97.0% translation
accuracy for CMID and KUAKE-QIC respectively.
Hence, we use the translated English data along
with their pre-defined intent labels for our experi-
ments. The inter-annotator agreement is 0.89.

Dataset #Train #Test Size #Intents
CMID 9558 2696 4

KUAKE-QIC 6931 1955 11
Intent-Merged 3905 909 3

Table 3: Statistics of Intent Detection datasets.

3. Experimental Settings

3.1. Intent Detection

Intent detection is a multi-class classification task
where we evaluate the accuracy of instruction-
tuned ChatGPT (gpt-3.5-turbo-instruct) against var-
ious SFT models on three English datasets: CMID,
KUAKE-QIC, and Intent-Merged.
1. Large Language Models: To ensure consis-
tency with prior works, we employ a k-shot prompt
design, wherein k examples per class from the
training set are used in the prompt. Given the

https://github.com/bioNLU-coling2024/biomed-NER-intent_detection
https://github.com/bioNLU-coling2024/biomed-NER-intent_detection
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larger text sizes of the Intent-Merged dataset and
the limited context window of LLMs, we use k = 1
for all datasets. We note no significant perfor-
mance improvement with increasing k for CMID
and KUAKE-QIC datasets. Further details on the
prompt template are included in the GitHub reposi-
tory.
2. Supervised Fined-Tuned Models: For SFT,
we finetune - BERT (bert-base-uncased) (Devlin
et al., 2018), RoBERTa (roberta-base) (Liu et al.,
2019), PubMedBERT (Gu et al., 2021), FastText
(Chen et al., 2020) and TextCNN (Kim, 2014).
The empirical evaluation is shown in Table 4.

Model CMID KUAKE-QIC Intent-Merged Mean
BERT 72.26 75.91 96.37 81.51

RoBERTa 72.88 78.16 99.11 83.38
PubMedBERT 72.70 76.88 97.90 82.49

Llama-2 51.11 42.50 39.54 44.38
ChatGPT 42.36 44.04 64.44 50.28
Fasttext 68.43 72.48 96.80 79.24
TextCNN 70.69 75.19 96.15 80.68

Table 4: Accuracy (in %) of intent classification
tasks on three datasets.

All the SFT approaches consistently outperform
the instruction-tuned ChatGPT. The poor perfor-
mance of LLMs on the Intent-Merged dataset,
which is quite easy for all the SFT approaches, re-
flects their deficiency in domain-specific knowledge
within their general-purpose pretraining datasets.
This also shows that models like FastText can out-
perform ChatGPT, given domain-specific finetun-
ing. We note that transformer architectures give
better performance on the translated corpus com-
pared to FastText and TextCNN, which are shown
to work well on Chinese data (Chen et al., 2020).
RoBERTa gives the highest accuracy across over-
all mean and individual datasets.

3.2. Named Entity Recognition

For NER, we apply a strict match between the pre-
dicted entity class and the entity word boundaries
and report strict F1-score (as in CoNLL shared
task (Tjong Kim Sang and De Meulder, 2003)). We
run all models 5 times with different random initial-
ization and report micro-average F1-score along
with standard deviations. We also report the overall
mean for each approach. For a fair comparison,
a maximum sequence length of 512 tokens was
used for all models, hence the texts larger the to-
ken length were further broken into multiple texts.

3.2.1. Supervised Fine-Tuned Models

We thoroughly examine five different settings on
the five biomedical datasets.
Setting A: Fine-tuned BERT and RoBERTa mod-
els are used (pre-trained on general English cor-
pus) without domain pretraining.

Setting B: Transformer systems with continued
pretraining on biomedical text. We fine-tune
BioBERT, PubMedBERT, BioMed RoBERTa, and
ClinicalBERT.
Setting C: LSTM and Convolutional Neural Net-
works (with/without CRF) are used to generate the
word embeddings and softmax classifiers for tag
prediction.
Setting D: Hand-crafted word level features with
ML classifier: (i) POS tag (ii) shallow parsing fea-
tures like chunk tag (iii) orthographic boolean fea-
tures like all capital, is alphanumeric, etc. (iv) n-
gram features, etc. We use the GENIA tagger3 for
POS and Chunk tag extraction. We apply XGBoost
and a multi-label logistic regression model for NER
tag prediction.
Setting E: We use state-of-the-art NER model
BINDER (Zhang et al., 2023b) along with
domain-specific (PubMedBERT and BioBERT) and
RoBERTa encoders.

3.2.2. Large Language Models

We use instruction-tuned ChatGPT (gpt-3.5-turbo-
instruct).
Setting F: We modify (Wang et al., 2023) for re-
conditioning NER as a Tag generation problem. In
addition to the prompt design proposed by (Wang
et al., 2023), following (Zhang et al., 2023b) we
also add a short description for the entity. Each
prompt infers only a single entity tag. Hence, each
text instance is passed multiple times for tagging
all the entity types. We provide two examples from
the train set in each prompt. To motivate both high
recall and prevent hallucination in Entity identifica-
tion, we specifically pick examples with the median
number of entity tags in the training dataset.

The evaluation outcomes are shown in Table 5.
We find:
a) SFTs outperform LLMs: We observe that all
SFT approaches surpass ChatGPT by a big mar-
gin. Further, from Table 6, it’s evident that PubMed-
BERT can easily outperform ChatGPT on most
benchmarks with just five supervised examples.
b) Transformer SFT Models: i) PubMedBERT
learns good embedding vectors due to the largest
pretraining corpus. BINDER combined with Pub-
MedBERT gives the best F1 score as it is able
to leverage high-quality embeddings along with
entity descriptions which pushes the similar en-
tity tokens closer in the embedding space with a
contrastive loss objective. (ii) LSTM/CNN-based
neural embedding and traditional ML-based mod-
els - XGBoost and Logistic Regression perform
poorly because they fail to capture contexts and
do not leverage domain-specific pretraining.

3http://www.nactem.ac.uk/GENIA/tagger/
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Model/Dataset DDI JNLPBA BC5CDR NCBI Disease AnatEM Mean
BERT (A) 83.94± 0.17 72.60± 0.13 87.13± 0.24 77.44± 0.75 78.66± 0.35 79.95
RoBERTa (A) 87.13± 0.44 74.91± 0.11 89.50± 0.09 81.67± 0.51 81.90± 0.60 83.06
BioBERT (B) 88.06± 0.08 74.02± 0.40 90.19± 0.13 81.91± 0.80 83.43± 0.36 83.52
PubMedBERT (B) 88.84± 0.12 75.15± 0.06 90.77± 0.08 82.34± 0.16 84.21± 0.21 84.26
BioMed RoBERTa (B) 88.76± 0.31 75.14± 0.25 90.24± 0.18 82.13± 0.92 82.70± 0.17 83.80
Clinical BERT (B) 83.79± 0.22 72.54± 0.07 87.90± 0.17 76.34± 0.64 73.47± 0.53 78.80
LSTM (C) 73.00± 0.01 67.00± 0.01 79.01± 0.01 70.00± 0.01 74.01± 0.01 72.60
LSTM + CRF (C) 74.75± 0.04 70.67± 0.01 80.47± 0.02 73.13± 0.02 77.39± 0.05 75.23
CNN (C) 73.07± 0.01 68.04± 0.01 80.00± 0.01 67.09± 0.01 72.08± 0.01 72.06
CNN + CRF (C) 73.29± 0.08 70.84± 0.11 81.27± 0.14 73.59± 0.09 75.15± 0.13 74.83
Logistic Regression (D) 78.63± 0.01 57.03± 0.01 78.20± 0.01 56.36± 0.01 65.48± 0.01 67.14
XGBoost (D) 73.55± 0.01 53.06± 0.01 67.86± 0.01 52.62± 0.01 59.91± 0.01 61.40
BINDER-BioBERT (E) 89.01± 0.01 76.63± 0.19 91.59± 0.09 85.47 ± 0.36 86.71± 0.25 85.88
BINDER-PubMedBERT (E) 89.12 ± 0.01 77.01± 0.01 91.88 ± 0.01 85.25± 0.02 86.95 ± 0.02 86.04
BINDER-RoBERTa (E) 87.98± 0.01 77.08 ± 0.01 90.48± 0.03 84.62± 0.06 83.91± 0.05 84.81
ChatGPT (F) 42.94± 3.10 24.5± 1.89 44.68± 2.78 19.65± 1.21 2.92± 0.07 26.94

Table 5: Experiment results (Macro average F1-Scores and corresponding standard deviations) on
different NER systems trained/finetuned and tested on 5 biomedical Datasets.

c) Feature-based SFT Models: (i) ML-based
model performs better than CNN/LSTM embedding
systems on the DDI dataset, implying that it might
be possible to beat the performances on other
datasets if the right feature set is selected, which
is usually an expensive process. (ii) The range of
performance (best F1 - worst F1) for NCBI-Diease
corpus is highest, showing that there is a big dif-
ference between the selected feature set and the
features captured by the neural models. (iii) The
addition of a CRF prediction layer on CNN/LSTM
improves the performance significantly.
d) Dataset Quality: In most of the cases, low F1
is observed on the entities having fewer examples
in the training set. For example, entities "Compos-
iteMention" and "Disease Class" show poor perfor-
mance due to less number of samples in training
data. We note that the tag generation problem is
difficult for instruction-tuned LLMs. We also experi-
ment with Llama-2 (7b) model4 and observe that
vanilla Llama-2-7b does not achieve good results
as it was unable to follow the specified output struc-
ture and most of times, ended up hallucinating text.
So, we omit vanilla Llama-2 results and will explore
further in future.

3.2.3. Experimental Setup

We experiment on Tesla T4 16GB GPU, 6 Gbps
clock cycle and GDDR5 memory. All experiments
(entity extraction and intent detection) took ∼60
minutes for training. We fine-tune the models for a
maximum of 20 epochs with a learning rate of 5e-5
with AdamW optimizer and 10% warm-up steps.
The batch size is 16. Additional details are included
in the GitHub Repository.

4https://ai.meta.com/llama/

(a) PubMedBERT (b) Binder-PubMedBERT

Figure 2: Ablation: Varying Training Size

4. Ablations

We study the relationship of SFT models with
domain-specific finetuning data:
Varying Training Data Size: We vary the size of
training data (10%, 25%, 50%, 75% and 100%),
while keeping the test set constant and show the
performances of PubMedBERT, Binder (PubMed-
BERT) models in Figure 2. We observe that, un-
like raw PubMedBERT, Binder (PubMedBERT) at-
tains a high performance with only 10% of training
data. Transformer-based models can learn with
very little training data and performance does not
decrease much even with 25% training data. Due
to domain pre-training, PubMedBERT learns with
much fewer samples and saturates faster. This
quick-learning behavior seems to be originating
from transfer learning. However, LSTM and CNN
models suffer from poor performances in low-data
settings due to no pretraining (details in GitHub).

# Shots DDI JNLPBA BC5CDR NCBI AnatEM
5 2.8 / 60.05 2.0 / 39.09 1.1 / 64.53 3.2 / 27.56 2.6 / 1.5

10 5.8 / 65.54 5.6 /50.56 2.1 /69.23 7.05 /34.32 6.1 / 3.5
30 45.49 /73.71 61.07 / 58.01 54.07 / 77.97 60.63 / 48.16 21.74 / 10.9
50 81.39 / 76.85 71.04 / 62.23 83.3 / 82.78 75.83 / 49.51 40.69 / 30.96
100 83.56 / 80.94 74.24 / 68.02 88.58 / 85.76 82.38 / 72.78 73.34 / 52.73

Table 6: BINDER-PubMedBERT / PubMedBERT
F1-score in K-shot setting

https://ai.meta.com/llama/
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Few Shot: In Table 6, we show the performances
(F1 Score) of the Binder (PubMedBERT) and Pub-
MedBERT models on a few shot settings with dif-
ferent numbers of training samples. PubMedBERT
embeddings perform better in very low-resource
setups (5, 10 shots). However, when training exam-
ples increase further (30 shots onwards), BINDER
(PubMedBERT) outperforms PubMedBERT be-
cause of the Bi-Encoder architecture trained on
contrastive learning objectives.

Error Type Entity Text Label Prediction
Boundary 3-[(...)ethynyl] pyridine B-D,I-D B-D,B-D
Entity type heparinase III B-D,I-D B-G,I-G
Entity Miss Hyaluronan lyase B-D,I-D O,O

Table 7: Errors by BINDER-PubMedBERT on entity
"drug_n" of DDI dataset. Following abbreviations
are used - B-D: B-DRUG_N, I-D: I-DRUG_N, B-
G:B-Group, I-G: I-GROUP

5. Error Analysis

We do a detailed analysis on errors as following:
A) Some errors are due to model failure like
RoBERTa’s failure to classify 52% of the "other"
intents from the KUAKE-QIC dataset. For example,
a query such as “I have a cyst in the corner of
my right eye and it grows bigger and bigger.” is
classified wrongly as “diagnosis” intent but it is of
“other” category.
B) Three types of errors are observed for entity ex-
traction (examples from the DDI dataset are shown
in Table 7).
C) Some models fail to identify the entity “drug_n”
which represents new or unapproved drugs so a
periodic model update is required.
D) Relaxing entity-type error by considering exact
F1-score instead of strict F1, we observe an uplift
of 4.57% in mean F1.

6. Conclusion

The biomedical sector has matured significantly in
the past few years. We show instead of relying
on general-purpose LLMs, it is important to de-
sign an intent detection and entity extraction task
for processing domain-specific texts. In this work,
we show that fine-tuned RoBERTa and BINDER
(PubMedBERT) can work efficiently to detect in-
tents and extract named entities across various
benchmark datasets in biomedical literature. In the
future, we aim to extract intent and entity jointly as
a relation tuple and inspect the performances of
various cross-domain scenarios.

7. Limitations

Our dataset needs to be scaled up in terms of dif-
ferent languages, sizes, and intent labels which we
aim to do in the near future. The approach needs
to be updated as a single model for jointly extract-
ing intents and entities for multilingual scenarios
which we aim to do as a part of future work.

8. Ethical Concerns

We propose to release the algorithmic details and
work on public datasets that neither reveal any per-
sonal sensitive information nor any toxic statement.
So there are no ethical concerns in this work.
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