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Abstract
Creating a certified conversational agent poses several issues. The need to manage fine-grained information delivery
and the necessity to provide reliable medical information requires a notable effort, especially in dataset preparation.
In this paper, we investigate the challenges of building a certified medical chatbot in Italian that provides information
about pregnancy and early childhood. We show some negative initial results regarding the possibility of creating a
certified conversational agent within the RASA framework starting from unstructured data. Finally, we propose a
modular RAG model to implement a Large Language Model in a certified context, overcoming data limitations and
enabling data collection on actual conversations.
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1. Introduction

In recent research, the demonstrated effectiveness
of conversational agents and Large Language Mod-
els (LLMs) has expanded to include tasks that were
once thought unlikely, marking a notable advance-
ment in their capabilities. For instance, within the
digital health area, it has been shown that conver-
sational agents can provide emotional support to
patients, possibly more efficiently than a standard
interaction between a physician and a patient (Sup-
padungsuk et al., 2023; Ayers et al., 2023; Fadhil
and Gabrielli, 2017).

In this paper, we present the work-in-progress of
a project to create a conversational agent capable
of providing certified medical information regarding
pregnancy and the first thousand days of a child’s
life. With the expression “certified information” we
mean textual content generated or validated by
healthcare professionals, ensuring its verifiability
and alignment with the current scientific knowledge
in the respective domain.In addition, an essential
attribute of “certified information” is its predictabil-
ity, indicating that, given a specific question the
response would always be the same. The agent
will be implemented initially in Italian only.

To the best of our knowledge, there are no exam-
ples in the literature where conversational agents
have been employed to aid patients in this partic-
ular field. Likewise, there are no examples of an
Italian medical conversational solution capable of
delivering certified medical advice. Current applica-
tions of conversational agents within the healthcare
industry suffer problems of data certification and
accuracy (Srivastava and Singh, 2020; Jungmann
et al., 2019; Swick, 2021); consequently, there is

a lack of evidence of their efficacy in clinical con-
texts (Bibault et al., 2019). Therefore, medical con-
versational agents are often limited to assisting
medical staff rather than patients (Minutolo et al.,
2022), or used as a tool to help diagnostics (Ni et al.,
2017; Verma et al., 2022) and integrate the search
for medical assistance (Soprano et al., 2023; Polig-
nano et al., 2020). Also, the trust towards deploying
this kind of technology is an aspect that needs to
be addressed, as it directly impacts the potential
efficacy (Seitz et al., 2022; Martens et al., 2024;
Laumer et al., 2019). Creating a certified medical
conversational agent would address some of these
significant issues, especially when deploying these
agents in the public sector.

In the following sections, we outline the main
issues we have found in our workflow so far, sum-
marize some text insights, and explore the possible
solutions for the upcoming steps.

2. Dataset and Conversational Design

Our current corpus contains approximately 1300
texts sourced from verified medical channels 1,
focusing predominantly on informational cards.
These cards offer brief yet detailed medical informa-
tion on various topics, providing verified advice on
conditions, treatments, and procedures. They are
commonly used in FAQ sections, offering patients
reliable information without direct interaction with
healthcare professionals.

However, working with certified information

1The content is sourced from texts curated by the Ob-
stetrician Department of the Hospital of Trento and from
UPPA, a reputable child care website https://www.uppa.it/



125

poses challenges, particularly when adapting it for
conversational use. Indeed, our dataset is not de-
signed for integration into a conversational frame-
work. One of the main challenges is that that editing
options are severely limited when dealing with cer-
tified medical information. The optimal approach
would be to use the texts in their original form to
preserve their certification. Yet, they often tend to
be excessively lengthy and informationally dense
for effective conversation use.

Moreover, we must consider that extracting in-
formation from these texts is complicated due to
their highly discursive nature. Automatic segmen-
tation often results in imprecise responses, occa-
sionally leading to grammatical inaccuracies since
segments are extracted from an existing discursive
context. There is also a notable risk of encoun-
tering information gaps, despite the fact they are
densely packed with information. In fact, in a cer-
tified context, all the deliverable information must
be present explicitly in the text; even the simplest
inferences are impossible since they would require
certification, ensuring that they correspond to cor-
rect medical knowledge.

Lastly, our informational cards come from spe-
cialized sites and are meant to be instructive, so
they often use medical vocabulary. This character-
istic complicates the process of generating addi-
tional data, especially when generating questions
for training a conversational agent. Medical jargon
is indeed quite influential in affecting question gen-
eration, often leading to the creation of improbable
examples.

While using an LLM could compensate for the
lack of conversational data, our requirement to pro-
vide reliable information without any changes pre-
vents us from directly using an LLM for user inter-
action. LLMs’ erratic nature doesn’t align with the
need for stable and predictable output in certified
information contexts.

3. Workflow: Creating a RASA
Chatbot

We began with an existing COVID-19 FAQ chat-
bot (Lucianer et al., 2022) named Covibot. Since
this agent was realized within the RASA frame-
work2, we used RASA to create our first test conver-
sational agent, focusing our efforts on the Natural
Language Understanding (NLU) module, as its per-
formance significantly impacts the overall conver-
sation flow. This first experiment was therefore only
focused on a simple classification pipeline, with the
goal of associating each intent with a specific reply.

Using our data, we automated the generation
of example questions with GPT-4 via the OpenAI

2https://github.com/RasaHQ/rasa

ChatGPT API. We segmented the texts into shorter
paragraphs using GPT-4 to generate the briefest
meaningful paragraphs while considering the tex-
tual excerpt’s topic. We then prompted the model
to generate three simple questions for each text.
These questions were then associated with specific
intents linked to their corresponding answers.

Since RASA intent classifier3 also supports cus-
tom word embeddings, we created a model (Le
and Mikolov, 2014) from our data. While RASA
supports various embedding techniques, support
for highly specific domains, like ours, is limited 4.

Our custom embedding model showed promising
results in improving the conversational agent’s per-
formance in an initial sample of around 50 intents
and 1500 total examples. Performance assess-
ment was conducted by partitioning the dataset
into 80% for training and 20% for testing, progres-
sively increasing the number of examples during
the training phase. In the graph shown in Figure 1,
the UPPA configuration uses the embeddings of our
dataset; the Spacy configuration uses pre-trained
Spacy embeddings 5 for Italian, whereas the Base
configuration uses no pre-trained embeddings.

Figure 1: Comparison of custom word embedding
impact on our first trained model.

Subsequently, we expanded our dataset to in-
clude 4500 intents and their corresponding an-
swers. However, this dataset extension resulted in
a noticeable decline in the RASA model’s perfor-

3https://rasa.com/blog/introducing-dual-intent-and-
entity-transformer-diet-state-of-the-art-performance-on-
a-lightweight-architecture/

4Support is limited to Gensim embeddings:
https://rasa.com/blog/custom-gensim-embeddings-
in-rasa/

5https://spacy.io/usage/models
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mance. This second evaluation assessed RASA’s
capacity for predicting the right intent class and,
consequently, giving the right answer for each of
the main topics in our dataset. Figure 2 illustrates
the model’s performance, which has been proven
to be below acceptable standards.

Our RASA chatbot could classify correctly only
an average of 28% of intents. Moreover, the model
is quite sparse, with an average confidence on cor-
rect predictions of 0.27. Also, our custom embed-
dings lost their relevance in enhancing the traning;
the model proved indeed highly sensitive to minor
rephrasing operations, where even a small alter-
ation in a training sentence could easily cause the
model to fail.

Figure 2: RASA performance across the main top-
ics with 4500 intents. In orange, the correct replies.

4. Data Limitations

Considering the outcome of the first test, some
additional considerations on data quality are nec-
essary. The data that we have is all unstructured
text. These texts have great stylistic heterogeneity,
even within the same source, combined with great
semantic homogeneity, all being part of a specific
medical domain. This dual characteristic makes
topic modeling problematic; we have currently tried
different types of approaches, ranging from the
more classic Latent Dirichlet Allocation (LDA) (Blei
et al., 2003), keywords (Bondi and Scott, 2010;
Gabrielatos and Marchi, 2011), and BERTopic 6,
which has recently been shown as one of the most
effective topic modeling techniques (Gan et al.,
2023; Egger and Yu, 2022). Regardless of the
method we used, we found that semantic areas in
our data are always rather fragmented because of
the great ramifications of sub-topics, even within
the same thematic areas. For instance, in Figure 3
we show the topics found using BERTopic. The two
main semantic macro-areas consist of one encom-
passing documents related to the newborn and an-
other containing documents regarding pregnancy.
Nevertheless, the extensive thematic fragmentation
within these areas poses a significant challenge in

6https://doi.org/10.48550/arXiv.2203.05794

training conversational agents to effectively asso-
ciate intents with their respective topics.

Figure 3: Visualization of the topics found using
BERTopic.

We would need fine-grained annotation on topics
and other relevant linguistic aspects to effectively
deliver certified information. Yet, since our seman-
tic areas frequently overlap, automatic topic ex-
traction does not produce qualitatively acceptable
document groups. This means an in-depth quali-
tative analysis of the automatic topic extraction is
required before annotation, also to highlight other el-
ements like named entities and hardly quantifiable
textual features (Hunston, 2004) such as relevant
pragmatic aspects for medical conversations.

Moreover, having only unstructured texts is a sub-
stantial problem for RASA, since its intent classifier
is designed to work with Named Entity Recogni-
tion. The existing state-of-the-art approaches such
as MedBert (Egger and Yu, 2022) are also not fo-
cused on question answering nor entity recognition
on unstructured texts like ours. Also, we have to
consider that most of the approaches regarding
medical conversational agents, especially for ques-
tion answering (Kacupaj, 2022) have a knowledge-
based approach (Dayal et al., 2023; Minutolo et al.,
2017), which also requires annotated data.

5. Future Work: Annotation and RAG

In our case, the data quality is a major issue that
might have different solutions. Looking at previous
approaches, it becomes evident that using certified
sources in a conversational context, even a basic
one, necessitates a considerable amount of contex-
tual information (Kadariya et al., 2019; Fenza et al.,
2023; Alloatti et al., 2021). Hence, developing an
annotation methodology is essential to improve the
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performance of the conversational agent, irrespec-
tive of the chosen framework. Certain information
required for building our knowledge base can only
be obtained through fine-grained annotation. How-
ever, this process proves to be time-consuming,
and its success remains uncertain.

Alternatively, an immediately implementable
strategy could involve using an LLM to address
the discursive aspects, while incorporating certi-
fied sources from our database. LLMs, especially
ChatGPT, have proven to be reasonably reliable,
at least on basic questions about medical care (Mi-
halache et al., 2024; Cheong et al., 2023; Cascella
et al., 2023). In addition to this, techniques such
as Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020; Karpukhin et al., 2020) can be used
to increase the LLM’s ability to correctly answer a
question, minimizing hallucinations (Martino et al.,
2023). Essentially, the user’s request and the ad-
ditional knowledge work together to guide the Lan-
guage Model’s response. This prevents the model
from giving inaccurate information when it does not
have it readily available. However, as we said be-
fore, in a certified context we cannot rely on an LLM
to provide the information to a patient, since it is
impossible to certify the model output because of
its stochastic nature.

Furthermore, a key issue in the standard RAG
approach is the possible mismatch between the
user’s query and the correct documents. Typically,
RAG involves the transformation of a user query
into a vector embedding representation, which is
then used to assess semantic similarity among the
repository of documents. However, the vector of
the query and documents’ vectors might be sig-
nificantly different within the semantic space; this
discrepancy introduces a consequential constraint,
as it may lead to the exclusion of relevant docu-
ments during the retrieval process.

Modular RAG with HyDE We are working within
the Hypothetical Document Embeddings (HyDE)
framework (Gao et al., 2023) to address these two
limitations. HyDE is a novel approach recently in-
troduced that operates unsupervised. In a nutshell,
HyDE uses an LLM to produce a hypothetical doc-
ument (HyDoc) based on input queries and then it
uses the HyDoc to retrieve the information from the
certified repository. Despite the hallucinations that
might be present in the HyDoc, the generated text
should lie in the semantic space in a neighborhood
of similar real documents that contain the correct
and certified answer to provide to the user.

In the pipeline that we are implementing, given
a specific question, we generate a hypothetical
document that is used to query the certified docu-
ment repository. Then, the paraphrase-multilingual-
mpnet-base-v2 Bi-Encoder model (Reimers and

Figure 4: An overview of the RAG model we are
implementing.

Gurevych, 2019) is used to retrieve the documents.
However, the Bi-Encoder performs optimally when
estimating similarity between documents of similar
sizes. Given that our HyDoc and the certified doc-
uments may differ significantly in length, we use
a cross-encoder, i.e. ms-marco-MiniLM-L-6-v2 7,
to re-rank the retrieved documents and refine the
list. Finally, the selected documents are used to
augment the initial prompt, and a Guard-Rail mod-
ule 8 ensures that the LLM reply is short enough.
As shown in Figure 4, the conversational agent’s
final answer contains the documents’ textual sum-
mary (80-120 words) and the pointers to the orig-
inal certified sources. Although our RAG model
represents a compromise, it facilitates testing in a
production environment, enabling data collection
from authentic conversations and facilitating data
augmentation.

Preliminary testing with GPT-4-turbo on 100 user-
generated questions yielded promising results, re-
trieving relevant documents in over 85% of cases.
On the same test set, the RASA model achieved
only 13% correct answers, with approximately on-
topic responses in 25% of cases and off-topic
replies in over 60% of cases. In terms of HyDoc
generation, GPT-4-turbo demonstrated the ability
to produce pertinent responses in over 95% of ex-
amples. Given that the initial module impacts the
entire model, additional investigation is required to
assess open-source LLMs 9 performance, both in
generating HyDocs and in the quality of document
summarization.
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