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1. Introduction

Evaluation is a systematic method for assessing a design or implementation to measure
how well it achieves its goals. In natural language processing (NLP) systems, quality
is assessed using evaluation criteria and measures by comparing them to gold stan-
dard answer keys. In the context of constituent parsers, we evaluate the fitness of our
predicted parse tree against the human-labeled reference parse tree in the test set. For
constituent parsing, whether statistical or neural, we rely on the EVALB implementa-
tion.! It uses the PARSEVAL measures (Black et al. 1991) as the standard method for
evaluating parser performance. A constituent in a hypothesis parse of a sentence is
labeled as correct if it matches a constituent in the reference parse with the same non-
terminal symbol and span (starting and end indexes). Despite its success in evaluating
language technology, EVALB faces an unresolved critical issue in our discipline. EVALB
has constraints, such as requiring the same tokenization results. Its implementation
assumes equal-length gold and system files, with one tree per line. Nevertheless, we
evaluate parser accuracy using EVALB’s standard F1 metric for constituent parsing.

Furthermore, in today’s component-based NLP systems, it is common practice to
evaluate parsers individually. This approach helps improve accuracy by preventing
errors from propagating through dependent preprocessing steps. We propose a novel
method for measuring PARSEVAL in constituent parsing evaluation, which more accu-
rately simulates real-world scenarios and extends beyond controlled and task-specific
settings. Hence, we propose a new way of calculating PARSEVAL measures, which aims
to solve some limitations of EVALB for more error-free and accurate evaluation metrics.
By rectifying its restrictions, we would be able to present refined precision and recall for
the F1 measures in constituent parsing evaluation.

To emphasize the importance of our new methodology, we will first address the
task-specific inherent problems in tokenization and sentence boundary detection before
constituent parsing. We will then demonstrate the new implementation of PARSEVAL
measures by presenting solutions to each identified mismatch case and their corre-
sponding algorithms. To ensure the reliability and applicability of these algorithms, we
will also conduct additional discussion towards the end of the squib.

2. Known Problems

To illustrate how we present this new approach, consider some known problems of
EVALB that dictate why this new solution is needed. Firstly, evaluation cannot be com-
plete if the terminal nodes of the gold and system trees are different, causing a word
mismatch error. An example of this can be found when the gold and system spans differ
on the character level with tokens like This versus this. These tokens are considered
identical if we disregard the distinction made by letter case. Hence, we can resolve this
character discrepancy by converting all letters to lowercase. This adjustment allows our
evaluation system to treat This and this as a matching word pair.

Secondly, tokens represented as terminal nodes in gold parse trees can differ from
those in parser outputs due to the token and sentence segmentation of the system.
During preprocessing, even with the same sentence boundary, tokenization discrep-
ancies may arise when compared to the gold standard tree from the Penn Treebank.

1 http://nlp.cs.nyu.edu/evalb. There is also an EVALB_SPMRL implementation, specifically designed for
the SPMRL shared task (Seddah et al. 2013; Seddah, Kiibler, and Tsarfaty 2014).
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This mainly occurs when periods and contractions create ambiguity among words that
are abbreviations or acronyms. Such discrepancies can lead to the preprocessing results
diverging into several different tokenization schemes. Importantly, EVALB is unable to
evaluate constituent parsing when the system’s tokenization result differs from the gold
standard.

Example: gold  This caln’t be rightLl.
system  this canlLinot be rightl). where LI is a token delimiter.

The discrepancy is evident in such a comparison of calin’t (gold) versus canlinot (sys-
tem) for cannot. In this context, it is readily apparent to human eyes that the gold and
system tokens are actually the same. To handle such an instance that EVALB cannot
manage, we observe that calln’t and canlinot are indifferent to each other between all
tokens when we create the set of constituents. This observation plays a pivotal role in
shaping our approach to address tokenization challenges, and it is equally significant in
resolving issues related to sentence boundaries prior to constituent parsing.

The mission of a sentence boundary detection system is to recognize where each
sentence starts and ends. A major hurdle in this task is to detect sentence beginnings
and endings given some text that lacks punctuation marks. In the following example,
although there is no tokenization discrepancy, a sentence boundary discrepancy exists.
In the system, Click here To view it. is perceived as two separate sentences: Click here
and To view it. The previous method proposed by EVALB could not assign a score to
the unmatched sentences. However, it is worth noting that there are partial matches
between the gold and system trees, even though the current EVALB does not consider
them.

Example: gold  Click here To view itLl.
system  Click here 1 To view itLl. where M is a sentence delimiter.

Consequently, tokens undergoing tokenization and sentences handled through sen-
tence boundary detection share a common quality during evaluation. The gold and
system results turn out to be two identical sequences of characters. However, they
may still differ in length across tokens and lines due to the various tokenization and
sentence boundary detection results. Therefore, we suggest the next step beyond EVALB,
re-indexing system lines through sentence and word alignment. As part of our solution,
we propose an evaluation-by-alignment algorithm to avoid mismatches in sentences
and words when deriving constituents for eventual evaluation. The algorithms of the
new PARSEVAL measures allow us to reassess such edge cases of mismatch.

Finally, the question of how to evaluate constituent parsing results from these end-
to-end systems has been a longstanding challenge. Conventionally, EVALB has proven
useful in a component-based preprocessing pipeline, with each component evaluated
individually under ideal circumstances. However, conducting end-to-end evaluations
with all preprocessing in a single pipeline can offer an alternative perspective in con-
stituent parsing evaluation, and this is the approach adopted for the proposed new
PARSEVAL measures. By addressing the constraints discovered in EVALB that lead to
issues in preprocessing, we create an opportunity to compare end-to-end parser results.
Even when different preprocessing results are produced due to the use of various mod-
els in sentence boundary detection and tokenization, the extension of the evaluation
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technique with the new way of calculating PARSEVAL measures makes this compari-
son possible.

3. Implementing New PARSEVAL Measures
3.1 Algorithm

To describe the proposed algorithms, we use the following notations for conciseness
and simplicity. 7, and 7Tz introduce the entire parse trees of gold and system files,
respectively. 7, is a simplified notation representing 7., where [ is the list of tokens
in £. This notation applies in the same manner to R. Sy represents a set of constitu-
ents of a tree T, and C(7) is the total number of constituents of 7. C(tp) is the number
of true positive constituents where S7. NSz, and we count it per aligned sentence.
The presented Algorithm 1 demonstrates the pseudo-code for the new PARSEVAL
measures.

In the first stage, we extract leaves £ and R from the parse trees and align sentences
to obtain £’ and R’ using Algorithm 2. While the necessity of sentence alignment is
rooted in a common phenomenon in cross-language tasks such as machine translation,
the intralingual alignment between gold and system sentences does not share the same
necessity because £ and R are identical sentences that only differ in sentence bound-
aries and tokenization results. A notation /I is introduced to represent spaces that are
removed during sentence alignment when comparing £; and R, irrespective of their
tokenization results. If there is a mismatch due to differences in sentence boundaries,
the algorithm accumulates the sentences until the next pair of sentences represented
as CASE n (i +1,j+ 1), is matched. In the next stage of Algorithm 1, we align trees
based on £" and R’ to obtain 7, and T/. By iterating through 7, and 7%/, we conduct
word alignment and compare pairs of sets of constituents for each corresponding pair

Algorithm 1 Pseudo-code for new PARSEVAL measures

1: function PARSEVALMEASURES (7, and 7%):
2:  Extract the list of tokens £ and R from 7, and T3
L', R’ + SENTENCEALIGNMENT(L, R) where LEN(L') = LEN(R’)
Align trees based on £’ and R’ to obtain 7,/ and Tz
while 7, and 7%’ do
Extract the list of tokens [ and r from 7,y and T/
I',¥ < WORDALIGNMENT(], 7)
St GETCONSTITUENT(Tﬁ;(l/), 0) where 0 < i < LEN(L')
S, GETCONSTITUENT('E@I((V/),O) where 0 < i < LEN(R/)
10: C(Tz) < C(Tz)+ LEN(S7,)
11: C(Tr) < C(Tr)+ LEN(S7,)

12: while S7, and Sz, do

13: If (LABEL, START., ENDy, I) = (LABEL, STARTg, ENDy, 7)) then
14: C(tp) + C(tp)+1

15: end if

16: end while

17:  end while
18:  return C(7;), C(7gr), and C(tp)
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Algorithm 2 Pseudo-code for sentence alignment

1: function SENTENCEALIGNMENT (£, R):
2. while £ and R do

3: if (‘CZ(LA) = R](LA)) > CASE 1 (i)
hV (Liwy = Rijon N Livign = Rivrn V Livign = Rivi) > CASE 2 (j))
then
4: L', R+ L'+ L;,R' + Rjwhere 0 <i < LEN(L), 0 < j < LEN(R)
5: else
6: while —(CASE 1 (i+1,+1) V CASE 2 (i+1,j+1)) do
7: if LEN(L;) < LEN(R;) then
8: L'« L+ L
9: i+—i+1
10: else
11: R' <R +R;
12: jj+1
13: end if
14: end while
15: LR+ L +L,R +R

16: end if
17:  end while
18:  return L', R/

of 7, and 723]{. The word alignment in Algorithm 3 follows a logic similar to sentence

alignment, wherein words are accumulated in /I and rr if the pairs of /; and r; do not
match due to tokenization mismatches. Finally, we extract a set of constituents using
Algorithm 4, a straightforward procedure for obtaining constituents from a given tree,
which includes the label name, start index, end index, and a list of tokens. The current
proposed method utilizes simple pattern matching for sentence and word alignment,
operating under the assumption that the gold and system sentences are the same,
with minimal potential for morphological mismatches. This differs from sentence and
word alignment in machine translation. MT usually relies on recursive editing and EM
algorithms due to the inherent difference between source and target languages.

3.2 Examples of Word and Sentence Mismatches

Word mismatch. We have observed that the expression of contractions varies signifi-
cantly, resulting in inherent challenges related to word mismatches. As the number
of contractions and symbols to be converted in a language is finite, we composed an
exception list for our system to capture such cases for each language to facilitate the
word alignment process between gold and system sentences. In the following example,
we achieve perfect precision and recall of 5/5 for both because their constituent trees
are exactly matched, regardless of any mismatched words.

(gold) (system)

S(0.4) NPy DT This | %this DT NPy S(0.4)
VP(1,4) MD 0 | Mqn  MD VP 4y
' RB Uyt | Lluot  RB
VP4 VB 2be 2be VB VP4
AdjPiy T Pright | Pright  J]  AdjPga)

1185



Computational Linguistics Volume 50, Number 3

Algorithm 3 Pseudo-code for word alignment

1: function WORDALIGNMENT (I, r):
2:  whileland r do

3: if (ll = 1"]) > CASE 1 (i)
VA((li # 1)) A (i1 =7i11)) > CASE 2 ;)

then

4: U',1" 1, rjwhere 0 < i < LEN(!), 0 < j < LEN(r)

5: else

6: while—(CASE 1 (i+1,j+1) V CASE 2 (i+1,j+l)) do

7: if (LEN(I) — LEN(lp, [;)) > (LEN(r) — LEN(rq, 7;)) then

8: <1+

9: i+—i+1

10: else

11: 1Y <= 1T+ 1

12: jj+1

13: else if

14: end while

15: Vv «1Lrr

16: end if

17:  end while
18: returnl’, '

Algorithm 4 Pseudo-code for getting constituents

1: function GETCONSTITUENT (7, start):
if HEIGHT(7)>2 then
END < START + LEN(LEAVES(7))
S7 < Sy + (LABEL(T), START, END, LEAVES(T))
while T do
GETCONSTITUENT(T;, start) where 7; is a child of T
START < LEN(LEAVES(T;))
end while
end if
10:  return Sy

»

If the word mismatch example is not in the exception list, we perform the word align-
ment. We can still achieve perfect precision and recall (5/5 for both) without the word
mismatch exception list because their constituent trees can be exactly matched based on
the word-alignment of {-%a "'n’t} and {!-°can !not}.

gold OThis Oca  Mn't  2be  Sright
system  Othis  Pcan  lnot 2be Sright

The effectiveness of the word alignment approach remains intact even for morpho-

logical mismatches where “morphological segmentation is not the inverse of concatena-
tion” (Tsarfaty, Nivre, and Andersson 2012), such as in morphologically rich languages.
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For example, we trace back to the sentence in Hebrew described in Tsarfaty, Nivre, and
Andersson (2012) as a word mismatch example caused by morphological analyses:

god %8 10y  Mlcr  2pp 3HM  49H  4INEIM

‘in”  ‘the’ ’shadow’ ’of’ ‘them’ ‘the’ ‘pleasant’
system °B IcL 2FL 3HM 4HNEIM
‘in’ ’shadow’ ‘of”  ’them’  ’‘made-pleasant’

Pairs of {1°H I1CL, 1CL} (‘the shadow’) and {*°H *!NEIM, *HNEIM} (’the pleasant’)
are word-aligned using the proposed algorithm, resulting in a precision of 4/4 and recall
of 4/6.

(gold) (system)
PP(s) in’ i} B ‘in’ PP
NPu5 NPy ‘the’ 10y
‘shadow’  1CL cL ‘shadow’ NP4 NP5
PP(4) ‘of’ 2FL 2FL ‘of’ PPy
‘them’ SHM SHM “them’
AdjP(y 5 ‘the’ 0H

‘pleasant’  *INEIM | *HNEIM ‘made-pleasant’

Sentence mismatch. When there are sentence mismatches, they would be aligned and
merged as a single tree using a dummy root node: for example, @S which can be ignored
during evaluation. In the following example, we obtain precision of 5/8 and recall of
5/7.

(gold) (system, merged after alignment)
S(06) S(05) VB OClick | °Click VB VP (2 S0,2) @S5
AdvP, RB here here RB  AdvP()
Ses) VP(5) O D T TO VP53 Ss) S
VP35 VB Sview | Jview VB VP35

NPys  PRP 451'[ 4;1‘,‘ PRP  NPys)

Assumptions. To address morphological analysis discrepancies in the parse tree during
evaluation, we establish the following two assumptions: (i) The entire tree constituent
can be considered a true positive, even if the morphological segmentation or analysis
differs from the gold analysis, as long as the two sentences (gold and system) are aligned
and their root labels are the same. (ii) The subtree constituent can be considered a true
positive if lexical items align in word alignment, and their phrase labels are the same.

4. Discussion

Complexity. The proposed algorithm has a linear time complexity. Sentence and word
alignments require O(I + J), where I and | represent the lengths of the gold and system
sentences or words. The process for constituent tree matches uses tree traversal algo-
rithm which requires O(N + E) where N is a number of nodes and E is for branches.
We retain the same time complexity of the original EVALB by adding alignment-based
preprocessing for mismatches of sentences and words.

Comparison. Table 1 compares previous parsing evaluation metrics with the proposed
algorithm. tedeval (Tsarfaty, Nivre, and Andersson 2012) is based on the tree edit
distance of Bille (2005), and numbers of nonterminal nodes in system and gold trees.
A similar idea on the tree edit distance was proposed for classifying constituent parsing
errors based on subtree movement, node creation, and node deletion (Kummerfeld et al.
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Table 1
Comparison to previous parsing evaluation metrics.

evaluation approach addressing mismatches
tedeval tree-edit distance based on constituent trees words
conllu_eval dependency scoring words and sentences
sparseval dependency scoring words and sentences
aligning trees constituent tree matches words
EVALB constituent tree matches not applicable
proposed method constituent tree matches words and sentences

2012). conllu_eval for dependency parsing evaluation within Universal Dependencies
(Nivre et al. 2020) views tokens and sentences as spans. If there is a mismatch of
positions of spans between the system and the gold file on a character level, whichever
file has a smaller start value will skip to the next token until there is no start value
mismatch. Evaluating sentence boundaries also follows similar processes as tokens. The
start and end values of the sentence span are compared between the system and the gold
file. When they match, it increases the count of correctly matched sentences. sparseval
(Roark et al. 2006) uses a head percolation table (Collins 1999) to identify head-child
relations between two terminal nodes from constituent parsing trees, and calculate
the dependency score. We also add an aligning trees method (Calder 1997) in our
comparison, which performs an alignment of the tree structures from two different
treebanks for the same sentence, both of which utilize distinct POS labels.

A note on constituent parsing. Syntactic analysis in the current field of language technol-
ogy has been predominantly reliant on dependencies. Semantic parsing in its higher-
level analyses often relies heavily on dependency structures as well. Dependency
parsing and its evaluation method have their own advantages, such as a more direct
representation of grammatical relations and often simpler parsing algorithms. However,
constituent parsing maintains the hierarchical structure of a sentence, which can still
be valuable for understanding the syntactic relationships between words and phrases.
Numerous studies in formal syntax have focused on constituent structures, including
combinatory categorial grammar (CCG) parsing (Lewis, Lee, and Zettlemoyer 2016; Lee,
Lewis, and Zettlemoyer 2016; Stanojevi¢ and Steedman 2020; Yamaki, Taniguchi, and
Mochihashi 2023) or tree-adjoining grammar (TAG) parsing (Kasai et al. 2017, 2018).
Notably, CCG and TAG inherently incorporate dependency structures. In addition
to these approaches, new methods for constituent parsing, such as the linearization
parsing method (Vinyals et al. 2015; Ferndndez-Gonzélez and Gémez-Rodriguez 2020;
Wei, Wu, and Lan 2020), have been actively explored. If a method designed to achieve
the goal of creating an end-to-end system utilizes constituent structures, it necessitates
more robust evaluation methods for assessing its constituent structure.

5. Conclusion
Despite the widespread use and acceptance of the previous implementation of PARSE-
VAL measures as the standard tool for constituent parsing evaluation, it has a significant

limitation in that it requires specific task-oriented environments. Consequently, there is
still room for a more robust and reliable evaluation approach. Various metrics have
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attempted to address issues related to word and sentence mismatches by implementing
complex tree operations or adopting dependency scoring methods. In contrast, our
proposed method aligns sentences and words as a preprocessing step without altering
the original PARSEVAL measures. This approach allows us to preserve the complexity
of the previous implementation of PARSEVAL while introducing a linear time align-
ment process. Given the high compatibility of our method with existing PARSEVAL
measures, it also ensures the consistency and seamless integration of previous work
evaluated using PARSEVAL into our approach. Ultimately, this new measurement
approach offers the opportunity to evaluate constituent parsing within an end-to-end
pipeline. It addresses discrepancies that may arise during earlier steps, such as sentence
boundary detection and tokenization, thus enabling a more comprehensive evaluation

of constituent parsing.”
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