
Context-aware Transliteration of Romanized
South Asian Languages

Christo Kirov
Google Research
ckirov@google.com

Cibu Johny
Google Research
cibu@google.com

Anna Katanova
Google Research
akatanova@google.com

Alexander Gutkin
Google Research
agutkin@google.com

Brian Roark
Google Research
roark@google.com

While most transliteration research is focused on single tokens such as named entities—for ex-
ample, transliteration of “ ” from the Gujarati script to the Latin script “Ahmedabad”1—
the informal romanization prevalent in South Asia and elsewhere often requires transliteration
of full sentences. The lack of large parallel text collections of full sentence (as opposed to single
word) transliterations necessitates incorporation of contextual information into transliteration
via non-parallel resources, such as via mono-script text collections. In this article, we present
a number of methods for improving transliteration in context for such a use scenario. Some of
these methods in fact improve performance without making use of sentential context, allowing
for better quantification of the degree to which contextual information in particular is responsible
for system improvements. Our final systems, which ultimately rely upon ensembles including
large pretrained language models fine-tuned on simulated parallel data, yield substantial im-
provements over the best previously reported results for full sentence transliteration from Latin

1 The most populous city in the Indian state of Gujarat.

Action Editor: Kevin Duh. Submission received: 19 April 2023; revised version received: 20 September 2023;
accepted for publication: 31 October 2023.

https://doi.org/10.1162/coli a 00510

© 2024 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:ckirov@google.com
mailto:cibu@google.com
mailto:akatanova@google.com
mailto:agutkin@google.com
mailto:roark@google.com
https://doi.org/10.1162/coli_a_00510

Computational Linguistics Volume 50, Number 2

to native script on all 12 languages in the Dakshina dataset (Roark et al. 2020), with an overall
3.3% absolute (18.6% relative) mean word-error rate reduction.

1. Introduction

Transliteration has long been a topic of interest in natural language processing (NLP),
yet the primary use case has generally been within machine translation or information
retrieval, for processing names and technical terms, which are typically transliterated
between scripts rather than translated (Knight and Graehl 1998; Moran and Lignos
2020). More recently, some use scenarios have emerged that require transliteration of
full sentences—for example, languages that are written in two different native scripts
(such as Punjabi written in both Gurmukhi, a Brahmic script, and Shahmukhi, a Perso-
Arabic script [Murphy 2018]), or that are also written informally in the Latin script,
which is known as romanization (Wellisch 1978). For example, multilingual speech
recognition systems for languages with diverse writing systems can be trained by
converting training data transcripts to a common script (typically the Latin script) to
improve cross-lingual generalization; then the recognizer output in the common script
can be transliterated back to the specific language’s native script (e.g., Datta et al. 2020).
Similarly, for many languages, mobile keyboard entry can be substantially easier in the
Latin script (e.g., via a QWERTY layout) than in their native script, yet the output of text
entry is preferred to be in the native script, thus requiring transliteration (as in Hellsten
et al. 2017). In these and related scenarios, rather than isolated words or proper names,
full sentences are transliterated from one script to another.

Unlike translations, full sentence parallel transliterated text is relatively rare, hence
direct application of large-scale full-sentence (i.e., context-aware) sequence-to-sequence
modeling is not generally an option. In this article, we present a demonstration of how
important contextual information is for this task, as well as exploring several methods
for jointly improving the accuracy of full sentence transliteration.

South Asian languages such as Hindi, Tamil, and Urdu are often written informally
in the Latin script, despite having official writing systems based on Brahmic or Perso-
Arabic scripts (Gella, Bali, and Choudhury 2014; Mhaiskar 2015; Sodhar et al. 2019).
Without a standard orthography in the Latin script, romanized text in these languages
contains an extensive degree of spelling variation, hence transliteration to their na-
tive scripts can be challenging (Irvine, Weese, and Callison-Burch 2012; Riyadh and
Kondrak 2019; Choksi 2020). For example, the Tamil word (tamarind) is sometimes
romanized as puli but also (less frequently) as pulli; puli is also an attested romanization
for (tiger). These examples were taken from the Tamil romanization lexicon in the
Dakshina dataset2 (Roark et al. 2020), a dataset that also contains, among other things,
full-sentence parallel romanized/native-script text in 12 South Asian languages. The
kind of romanization variation mentioned above is observed in this data—the average
number of distinct romanizations per word that occur more than once in each of the 12
languages’ development sets3 are shown in Table 1.

The full-sentence parallel data in the dataset is insufficient to train large-scale
sequence-to-sequence models directly, but it does permit full sentence transliteration
system development and validation. The dataset additionally includes isolated word
transliteration dictionaries, such as the Tamil one mentioned above, which can be used

2 https://github.com/google-research-datasets/dakshina.
3 Please see Section 3.1 for the details on these language codes.

476

https://github.com/google-research-datasets/dakshina

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Table 1
Number of distinct romanizations used for words that occur more than once in the Dakshina full
sentence romanized development set.
Language: bn gu hi kn ml mr pa sd si ta te ur

Romanizations 1.9 1.9 1.9 1.6 1.8 1.5 2.2 2.3 1.7 1.9 1.7 2.0per word:

to train non-contextual single word transliteration models; as well as native script text
samples for training language models. Using that data, Roark et al. (2020) provide base-
lines for a number of tasks, including full-sentence context-aware transliteration from
romanized text to native scripts. Their context-aware methods dramatically outperform
non-contextual alternatives, demonstrating context’s importance for the task.

In the interests of clarity, let us explicitly establish some terminology that we have
been using. We have been distinguishing between the tasks of full-sentence translit-
eration and single (isolated) word transliteration, where full-sentence transliteration
involves transliterating an entire given sentence versus just a single given word.4

Throughout the paper, we will use the terms “full-sentence” and “single word” translit-
eration to differentiate these distinct tasks. We will label models used for full-sentence
transliteration as either “context-aware” or “non-contextual.” “Context-aware” models
take into account the surrounding words in the sentence while transliterating, whereas
“non-contextual” models transliterate based only on word-specific characteristics, that
is, they treat each word in the sentence independently as a single word transliteration
task.

In this article, we examine the question of exactly how important context is for
full-sentence transliteration by establishing new non-contextual model baselines that
ultimately nearly match the error rates of even the context-aware results reported in
Roark et al. (2020). This is achieved through several methods, including model en-
sembling and non-contextual (i.e., word-internal) language modeling. These improved
non-contextual results suggest an efficient distributed algorithm for transliterating a
sentence for use in scenarios when efficiency is paramount. In a controlled setting, we
demonstrate a roughly three times speedup using non-contextual modeling versus our
fastest contextual modeling setup, at the cost of less than 10% relative word-error rate.

Unlike Roark et al. (2020), in this article we also additionally explicitly focus on
automatic romanization, that is, transliteration from the native script to the Latin script,
primarily as the means of simulating data to fine-tune large language models. In the
absence of an orthography for these languages in the Latin script, assessment of the
quality of the romanization is tricky, and we present new methods for assessing k-best
system outputs given a list of attested romanizations. Our best automatic romanization
systems are then used to produce simulated parallel training data, which are used to
fine-tune models that contribute to our best performing context-aware transliteration
systems.

We explore several methods for context-aware modeling in transliteration, includ-
ing (1) combining single word (non-contextual) transliteration ensembles with native
script language models during decoding; and (2) using single word (non-contextual)
romanization models to simulate full sentence parallel resources for fine-tuning large

4 Note that we use the term “sentence” to denote any multi-word string, whether or not it grammatically
corresponds to a sentence.

477

Computational Linguistics Volume 50, Number 2

Figure 1
Macro-averaged WER% (lower-is-better) for various full sentence Latin-to-native script
transliteration systems, on the development (dev) set of the Dakshina dataset. Results include
the best performing non-contextual and context-aware system results in Roark et al. (2020), and
five system configurations from this current paper, as described above.

pretrained language models. Ultimately, the best results are achieved by ensembling
these distinct approaches, yielding an additional 3.5% absolute word-error rate (WER%)
reduction versus the above-mentioned non-contextual models. We additionally explore
an online version that achieves speedups at the expense of a small accuracy reduction
by use of an offline assembled cache, and provide post-hoc analyses regarding, among
other things, the contribution of context and ensembling to transliteration accuracy.

To illustrate the main findings of our article, we foreshadow and summarize the
extensive results from Section 4 by plotting (in Figure 1) the full sentence Latin-to-native
script WER% (macro-averaged across the development sets of the 12 Dakshina lan-
guages) achieved5 for five key system configurations, alongside the best non-contextual
and context-aware results presented by Roark et al. (2020). Our best single method
non-contextual model—system (a) in the graph—yields slightly better WER% than the
best such result presented in Roark et al. (2020). This is at least partially due to the
fact that, for each method, we ensemble five model instances trained using a differ-
ent random initialization, which improves accuracy and lowers variance. Ensembling

5 Please see Section 4 for full experimental details. For plot interpretation it suffices to know that lower
WER% is better.

478

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

multiple non-contextual transliteration models together—system (b)—yields further
improvements. Large further reductions are then achieved by system (c), which com-
bines non-contextual (word-level) language models with ensembles from system (b),
resulting in performance commensurate with the best context-aware system in Roark
et al. (2020). This represents 80% of the relative error rate reduction achieved between
system (b) and system (e).

Using sentence-level instead of word-level language models—system (d), our first
context-aware system—yields further gains, as does our final ensemble of multiple
context-aware methods, system (e). This last system achieves substantial reductions
over previously reported results, and, due to our method of comparing these varied
system configurations, we are able to relatively finely allocate the credit for these
reductions to a number of different methods.

Note that the data points in Figure 1 are averaged across many languages and trials,
and the ensembling methods that provide the gains observed by systems (a), (b), and
(e) yield reductions not only in error rate but also in variance between training runs, as
will be shown in detail in the experiments presented in Section 4. These experiments
are controlled to allow for measurement of multi-run variance (even of ensembles), and
one result of this is a clear demonstration that, along with solid error-rate reductions,
ensembling provides critical variance reduction.

One key contribution of the article is demonstrating that inclusion of non-contextual
language modeling (i.e., word-level wordpiece models capturing only word-form like-
lihood) dramatically decreases word-error rates compared to using non-contextual
transliteration models alone, thus reducing how much of the cumulative final improve-
ment is attributable to context. In contrast, Roark et al. (2020) present a near-halving of
WER% due to context (34.1% to 17.7%), which would suggest that context-aware infor-
mation is absolutely indispensable for effective full sentence transliteration. Our results
suggest otherwise. Another contribution of the article worth noting is the demonstra-
tion of online cache-driven full sentence transliteration, permitting both non-contextual
(hence highly parallelizable) and context-aware inference, with modest accuracy loss for
items falling outside of cache coverage. Our fast non-contextual online transliteration
system achieved 18.4% macro-averaged WER% over the set of languages, just 0.7%
higher than the above mentioned best context-aware system from Roark et al. (2020).

The key contributions of this article additionally include new methods for prepar-
ing training data to fine-tune pre-trained models, which control for tricky out-
liers/annotation errors. We clearly demonstrate the essential role of model ensembling,
both to improve overall accuracy and reduce variance, both for non-contextual and
context-aware models, indicating that ensembling is no longer just the means to achieve
modest additional system improvements, but is indispensable for stable and accurate
systems. We also provide further evidence that contextual information can be profitably
incorporated into transliteration systems even in the absence of any given full sentence
parallel data—not as critical as Roark et al. (2020) suggest, but still yielding up to 20%
relative error-rate reduction. Along the way, we provide detailed analyses/examples of
where context-awareness and ensembling are beneficial to the systems, to supplement
the extensive experimental results across the 12 languages in the Dakshina dataset. All
processed data and code required to reproduce these results are publicly released.6

6 https://github.com/google-research/google-research/tree/master
/context aware transliteration.

479

https://github.com/google-research/google-research/tree/master/context_aware_transliteration
https://github.com/google-research/google-research/tree/master/context_aware_transliteration

Computational Linguistics Volume 50, Number 2

2. Background and Related Work

2.1 Monotonic Sequence-to-sequence Modeling

Transliteration is a monotonic sequence-to-sequence task, that is, it involves taking a
sequence as input, producing a sequence as output, and the output sequence can be
monotonically aligned to the input sequence. For example, automatic speech recogni-
tion (ASR, also known as speech-to-text, STT) involves taking an acoustic waveform as
input and producing a text transcription of the speech as output (Yu and Deng 2015).
Words in the transcription can be aligned with temporal spans in the input speech in a
way that preserves the ordering of the text, which is what makes it monotonic. In con-
trast, speech-to-speech translation is a sequence-to-sequence task that does not preserve
the ordering, since translation typically involves some reordering of information from
the input sequence in the output sequence (Jia et al. 2019). Going the other way, text-
to-speech is also generally a monotonic sequence-to-sequence task, since the generated
speech maintains the order of the input text (Taylor 2009).

Considering NLP tasks that operate on input text and produce output text, various
kinds of tagging tasks, such as part-of-speech tagging (Voutilainen 2003), are typically
modeled as monotonic sequence-to-sequence tasks. Textual transformations in service
of other monotonic tasks—such as text normalization (Zhang et al. 2019), or grapheme-
to-phoneme (g2p) conversion (Deri and Knight 2016), both of which can be useful for
text-to-speech—also have this characteristic.

Transliteration has much in common with tasks such as text normalization or g2p
in that it simply changes the textual representation of the same linguistic information.
Text normalization may convert a written representation of a numerical value, for
example, 2

3 , into how it would be spoken (“two thirds”), while g2p would convert
that Latin script representation of the words into IPA or another representation of the
pronunciation. One important characteristic of these tasks—including transliteration—
is that they are fundamentally designed to preserve the linguistic content of the input,
that is, words in the input should not be deleted nor should words that do not appear
in the input be added to the output. Segmentation of tokens may differ—for example,
single whitespace-delimited words may correspond to multiple tokens in a different
script, such as the single token “ ” in Arabic, which is transliterated in the Latin
script conventionally as “Al Jazeera.” Modulo these sorts of orthographic conventions,
however, the linguistic content of the output should be the same as the input.

Monotonic sequence-to-sequence tasks have been around for a long time, and have
been addressed using methods such as hidden Markov models (Baum and Petrie 1966;
Jelinek, Bahl, and Mercer 1975; Rabiner 1989), Markov random field approaches (e.g.,
conditional random fields [Lafferty, McCallum, and Pereira 2001]), and, of course,
through various neural architectures, such as recurrent neural networks, including
long short-term memory (LSTMs) (Hochreiter and Schmidhuber 1997), convolutional
networks (Chae et al. 2018), or transformers (Vaswani et al. 2017). In this article, we
make use of LSTM and transformer models of various sorts (including pretrained
large language models, LLMs), as well as an approach that combines a transliteration
model with a language model to obtain contextual influence. This latter approach has
similarities to so-called noisy channel models, such as hidden Markov models, though
without the same graphical model structure. Even so, we follow Roark et al. (2020) in
labeling such approaches as “noisy channel” to distinguish them from the end-to-end
neural alternatives.

480

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

2.2 Transliteration and Romanization Models and Corpora

As mentioned above, transliteration is akin to g2p conversion, in that it preserves
linguistic content and is generally monotonic. Common methods for g2p, such as the
finite-state joint multigram models (Galescu and Allen 2001; Bisani and Ney 2002;
Chen 2003; Bisani and Ney 2008), also known as pair n-gram models, are hence also
directly applicable for transliteration (Finch and Sumita 2010; Jiampojamarn, Cherry,
and Kondrak 2010; Hellsten et al. 2017),7 as are general neural sequence-to-sequence
models (Kunchukuttan et al. 2018; Merhav and Ash 2018; Kundu, Paul, and Pal 2018;
Gow-Smith et al. 2022; Wu et al. 2022). Given the many distinct modeling options for the
task, system combination or ensembling methods have naturally also been investigated
(Nicolai et al. 2015; Najafi et al. 2018).

Transliteration in NLP has generally been focused on named entities or other
specialized vocabulary in the context of machine translation or information retrieval
(Knight and Graehl 1998; Chen et al. 1998; Virga and Khudanpur 2003; Li, Zhang, and
Su 2004), and this remains a continuing predominant focus in transliteration research
(e.g., Kunchukuttan et al. 2018; Amrhein and Sennrich 2020; Khakhmovich et al. 2020;
Madhani et al. 2022). Methods for transliterating full sentences of informal romanized
text have been explored for languages using Perso-Arabic (Maleki and Ahrenberg 2008;
Al-Badrashiny et al. 2014; Eskander et al. 2014) and Brahmic (Hellsten et al. 2017)
scripts (or both as in Lehal and Saini 2012, 2014; Roark et al. 2020), either as the means
of processing existing text written in the Latin script, or within transliterating virtual
keyboards (Hellsten et al. 2017; Wolf-Sonkin et al. 2019).

In recent years there has been an increased interest in transliteration as a means
of “bridging the script gap” between related languages for constructing multilingual
LLMs in NLP (Murikinati, Anastasopoulos, and Neubig 2020; Muller et al. 2021;
Dhamecha et al. 2021; Moosa, Akhter, and Habib 2023) and multilingual ASR (Datta
et al. 2020; Khare et al. 2021). Such LLMs pretrained on large amounts of general
multilingual text data generalize well to many specific NLP scenarios when fine-tuned
using smaller amounts of task-specific data (Izacard and Grave 2021; Markewich et al.
2022; Moezzi et al. 2023).

In South Asia, romanization is very common in most languages, and due to the lack
of standardized orthography in the Latin script in those languages, as well as a general
mismatch between phonemes in the languages and conventional use of the Latin script,8

there is a high level of spelling variation, complicating accurate transliteration to the
native scripts. The previously mentioned Dakshina dataset (Roark et al. 2020) provides
text in both the Latin and native scripts of 12 South Asian languages. For each language,
in addition to (1) a corpus of mono-script (i.e., only native script) Wikipedia text, which
varies in size depending on the amount of raw Wikipedia material in the language, there
is (2) a modest-sized romanization lexicon, where around 30k words in the native script
are associated with one or more attested romanizations, as well as (3) full sentences from
the native script Wikipedia sample that have been manually romanized in context. Of
this latter collection, there are 5,000 development sentences and 5,000 test sentences, that
is, sufficient for validation but not for training large-scale sequence-to-sequence models.
Roark et al. (2020) evaluate finite-state-based pair n-gram (i.e., joint multigram), LSTM

7 See Karimi, Scholer, and Turpin (2011) for an overview of non-neural methods for transliteration.
8 For example, the Latin script letter ‘t’ does not distinguish between dental, alveolar, or retroflex voiceless

stops. Demirsahin et al. (2022) discuss various issues with Latin script representation in more depth.

481

Computational Linguistics Volume 50, Number 2

and transformer transliteration models in both single token (non-contextual) and full
sentence (context-aware) scenarios. It is this latter scenario that we mainly address in
this paper, comparing with the results from that paper as baselines, as already seen in
Figure 1. En route to these context-aware methods, however, we also investigate several
non-contextual methods, including those mentioned above, which inform and/or form
part of the later context-aware methods.

One may wonder about the rationale for focusing on full sentence transliteration
in the Latin-to-native script direction and not the native-to-Latin script direction. There
are a couple of reasons for this. First, and perhaps least satisfying, is that there is no
orthography in these languages in the Latin script, hence there are many possible ways
to effectively realize the text in the Latin script and it is difficult to decide when one
is better than another—in contrast to the native scripts of these languages, which have
orthographies, hence a meaningful notion of word-error rate. The second reason is that
we do not have access to the kinds of high-quality romanized corpora that would allow
either language modeling or parallel data simulation methods of the sort we pursue in
this article. We rely upon the various native script Wikipedia text collections that form
the basis of the Dakshina dataset, and there is no equivalent resource in the Latin script
for these languages. In the absence of such resources, such work will have to wait.

We note that single-word transliteration dictionaries, of the sort that, for exam-
ple, Kunchukuttan, Puduppully, and Bhattacharyya (2015), Kunchukuttan, Jain, and
Kejriwal (2021), and Madhani et al. (2022) manually construct and/or mine from vari-
ous resources, as well as non-contextual transliteration systems built from such data,
form an essential part of the context-aware systems that we present in this article.
The methods presented in the above and related papers are thus complementary to
what we present here. In other words, while context-aware transliteration of the sort
we ultimately pursue here is an important use scenario, our approaches make critical
use of more conventional isolated-term transliteration data and modeling. The key
questions are how best to make transliteration systems context-aware since full sentence
parallel resources are not available at the scale of those for single words; and exactly
how important is context-awareness for full sentence transliteration. In this article, we
attempt to answer these questions.

3. Methods

3.1 Data

We train and evaluate9 on data from the Dakshina dataset10 (Roark et al. 2020), which
consists of text corpora and lexicons derived from Wikipedia for 12 South Asian lan-
guages: Bengali (bn), Gujarati (gu), Hindi (hi), Kannada (kn), Malayalam (ml), Marathi
(mr), Punjabi (pa), Sindhi (sd), Sinhala (si), Tamil (ta), Telugu (te), and Urdu (ur).11

Four of these languages (kn, ml, ta, and te) are in the Dravidian family of languages;
the rest are Indo-Aryan. Sindhi and Urdu are natively written in Perso-Arabic scripts,
while the rest have native Brahmic scripts.12

9 Code, models and processed data are available at https://github.com/google-research/google
-research/tree/master/context aware transliteration.

10 https://github.com/google-research-datasets/dakshina.
11 We use ISO 639-1 two-letter language codes as representational shorthand here and below (ISO 2002).
12 Punjabi is natively written in both a Perso-Arabic script (Shahmukhi) and a Brahmic script (Gurmukhi),

but this data set only has Gurmukhi Wikipedia data.

482

https://github.com/google-research/google-research/tree/master/context_aware_transliteration
https://github.com/google-research/google-research/tree/master/context_aware_transliteration
https://github.com/google-research-datasets/dakshina

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

For each language, there are three types of data: (1) monolingual text data in the
native script of the language; (2) single word romanization dictionaries with one or
more attested romanizations for a lexicon of words in the native script; and (3) roman-
izations of full Wikipedia sentences in the native script. Each language has a varying
amount of monolingual text, depending on the size of the Wikipedia resource in that
language, ranging from over a million sentences in Hindi and Tamil, to less than 100,000
sentences in Sindhi. Eleven of the twelve languages have 30,000 native script words
in their romanization dictionaries, with 25,000 allocated to a training set and 2,500
each in development and test partitions. Sindhi has 20,000 native script words in its
dictionary, 15,000 allocated for training and the rest split between development and test
sets. For each language, 10,000 romanized Wikipedia sentences are split evenly between
development and test partitions, although Sindhi and Urdu had a small number of
sentences removed that were not in those languages. See Roark et al. (2020) for further
details.13

3.2 Evaluation

Similar to Roark et al. (2020), our approach is to evaluate on the full sentence Wikipedia
data, but not to train on any portion of that, so as to simulate the typical scenario of not
having substantial human validated full sentence parallel training data. Rather, we train
our models only on the single word romanization dictionaries and the monolingual
(native script) text resources in the dataset. This includes scenarios where full sen-
tence parallel data is simulated from the monolingual text, using native-to-Latin script
transliteration models.14 Hence, in addition to our final context-aware Latin-to-native
script evaluations, we also examine non-contextual (single isolated word) transliteration
performance in both directions.

3.2.1 Character-error Rate Percentage. For single word transliteration evaluation in the
Latin-to-native script direction, where there is generally a single canonical spelling
for the languages we are investigating, we evaluate systems with character-error rate
percentage (CER%). Let the reference word be taken as a string of Unicode code-
points R = r1 . . . r|R|, and the system output word also a string of Unicode codepoints
S = s1 . . . s|S|. Let E(S, R) be the minimum number of edits (substitutions, deletions or
insertions) required to change S to R, that is, the Levenshtein distance (Levenshtein
1966). Then, over a full corpus of (S, R) pairs, CER% is defined as

CER% = 100 ∗
∑

S,R E(S, R)∑
R |R|

(1)

For example, if the reference string R is abcd and the system output string S is aebd then
E(S, R) = 2 (deletion of e and insertion of c) and CER% is 100 ∗ 2/4 = 50.0.

13 In particular, Roark et al. (2020) detail the construction of single-word romanization dictionaries and
full-sentence romanizations in Sections 3.2 and 3.3 of their paper, and the overall corpus statistics are
provided in their Table 1.

14 This is similar to the use of back-translation for generating synthetic parallel data using the target-side
monolingual data and the reverse model in machine translation (Sennrich, Haddow, and Birch 2016;
Edunov et al. 2018).

483

Computational Linguistics Volume 50, Number 2

3.2.2 Minimum CER%. When evaluating native-to-Latin transliteration, there are often
multiple possible (attested) romanizations for the input native script term. In that
scenario, we can define the minimum CER% (minCER%) as the minimum that can be
achieved with any of the given references. For a given system output S, let {R1, . . . , Rk}
be the set of k attested reference romanizations for the input word, and let R̂(S) ∈
{R1, . . . , Rk} be the reference that yields the minimal CER% for S. Then

minCER% = 100 ∗
∑

S,{R1...Rk} E(S, R̂(S))∑
S,{R1...Rk}

∣∣R̂(S)
∣∣ (2)

3.2.3 Earth Mover’s Distance k-best Evaluation. While the minCER% evaluation provides
some basis for comparing the highest probability system outputs, it does not account
for either how frequently the various reference romanizations were attested, nor for
the quality of k-best output from the systems beyond the 1-best. This is particularly
important given our principal use scenario for automatic romanization: simulation of
full-sentence parallel transliteration data from native script Wikipedia sentences. To
produce realistic romanizations that include the kind of spelling variability that will be
encountered, we will sample from likely alternatives—see Section 3.4.2. Hence quality
of k-best lists is important to also assess. In this section, we present a new evaluation
method, based on earth mover’s distance, to address these shortcomings. First we’ll
motivate the approach via the sampling use case.

For a given input word, let {R1 . . .Rm} be m distinct attested romanizations in the
set of references, and let c(Ri) denote the number of times romanization Ri was attested,
that is, its count. Based on these counts, we define the maximum likelihood multinomial
distribution P(Ri) over possible romanizations:

P(Ri) =
c(Ri)∑m
j=1 c(Rj)

(3)

Let {S1 . . .Sk} be unique romanizations in a softmax-normalized k-best list pro-
duced by the romanization system. This also defines a multinomial distribution over
possible romanizations for the input word. If we sample with replacement N times from
the m reference romanizations, based on the distribution defined in Equation (3), this
gives us N items in a reference sample. If we also sample with replacement N times from
the k system romanizations, based on the distribution defined by the softmax scores,
then we have N items in a system sample. We can then ask the question: How well does
the system sample match the reference sample?

One natural way of assessing the match is via an error rate: the minimum number
of edits required to convert the system sample into the reference sample, divided by
the size of the reference sample. One method to determine this value is by treating
this as a special case of the assignment problem, which involves minimizing the cost
of allocating items from one set to items in another set. Each system item should be
matched to a reference item with as low a cost as possible, while maintaining a 1-1
mapping between system and reference items. This is often formally presented as an
optimization over a bipartite graph, with two disjoint sets of nodes X and Y, and edges
E(x, y) between one node in x ∈ X and one node in y ∈ Y, where each edge has a cost.
In our case, nodes in X would be items in the reference sample; nodes in Y items in
the system sample; and the cost of an edge the minimum number of edits to convert
the system sample item into the reference sample item. Since the size of the reference

484

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

sample is constant, minimizing the number of edits would give us the minimum error
rate, which in this case is defined at the character level as in CER% defined above in
Section 3.2.1.

Rather than sampling many times and calculating this assignment-based CER%
for each sample as the means for scoring, we can instead calculate the earth mover’s
distance, which also takes pairwise distances (in our case character edits) between items
in the system and reference k-best lists, and directly finds the minimum cost (distance
times probability) to convert the system k-best list to the reference k-best list.15 In
essence, the probability mass (earth) associated with particular system items is allocated
(moved) to occupy probability mass associated with particular reference items, accruing
cost based on the distance moved. The algorithm that we use to solve the earth mover’s
distance16 is based on Pele and Werman (2008, 2009).

Note that, if there is only one reference and one system output, this measure is
equivalent to the standard character error-rate.

3.2.4 Word-error Rate Percentage. When moving to full-sentence evaluation, we shift from
CER% evaluation to word-error rate percentage (WER%), which is defined similarly
but with whitespace-delimited words rather than Unicode codepoints. Let the reference
sentence be taken as a string of whitespace delimited words R = r1 . . . r|R|, and the
transliteration system output also a string of whitespace delimited words S = s1 . . . s|S|.
Let E(S, R) be the minimum number of edits (substitutions, deletions, or insertions)
required to change S to R, where these are edits on whole words (rather than the
Unicode codepoints used to calculate CER%). Then, over a full corpus of (S, R) pairs,
WER% is defined as

WER% = 100 ∗
∑

S,R E(S, R)∑
R |R|

(4)

We shift from CER% to WER% in this scenario because this is conventional, and it
allows for direct comparison with the results in the paper that introduced the Dakshina
dataset (Roark et al. 2020). We follow their “whitespace evaluation” of full-sentence
transliteration, which requires some data preprocessing. Briefly, this approach to eval-
uation treats any character that does not appear in the native script portion of the
language’s romanization dictionary as part of the whitespace for evaluation purposes.17

Some of the native script text strings from Wikipedia may contain, for example, short
Latin script parentheticals or other substrings (digits, etc.) outside of the native script
letters of the language, which annotators were instructed to include in their romanized
version unchanged. We refer readers to the dataset URL (see footnote 2) for relevant
details on corpus creation and to Roark et al. (2020) for further details on this prepro-
cessing.

3.3 Sequence-to-sequence Modeling

We use a variety of sequence-to-sequence models in this paper, both for non-contextual
and context-aware transliteration, and we describe our specific methods in this section.

15 Thanks to an anonymous reviewer for pointing this out.
16 https://pypi.org/project/pyemd/.
17 Similarly, input strings in the Latin script are lowercased, and any non-alpha characters are treated as

whitespace.

485

https://pypi.org/project/pyemd/

Computational Linguistics Volume 50, Number 2

The romanization lexicons in the Dakshina dataset pair single words in the native
script with romanizations and how often they were attested. For example, the Hindi
word (arithmetic) is represented as a three-tuple (, ankganit, 3) indicating
that annotators romanized this word as “ankganit” 3 times. From these word-level
alignments, we build several distinct kinds of non-contextual transliteration models
that take a single word in either the Latin or native script as input and provide k-best
transliterations of that word into the other script as output. For each of these modeling
methods, training data is prepared from the above lexicon format by repeating each
training example the number of times it is attested, e.g., three times for the above
example. For this task we explore the following methods:

1. Two standalone neural models: LSTM and transformer (Section 3.3.1),

2. Fine-tuned pretrained neural sequence-to-sequence models (mT518 and
ByT5, Section 3.3.2),

3. A non-neural finite-state transducer (FST) based method (Section 3.3.3).

Apart from the T5-based methods, all of these methods were also used by Roark et al.
(2020) for single word transliteration. To replicate their baseline results as our starting
point, we adopt architectures and meta-parameters from that paper for the methods that
were used there. mT5 and ByT5 were also used to build models for context-aware full-
sentence transliteration. In both cases, pretrained checkpoints were fine-tuned using
simulated full sentence parallel training data—see Section 3.4.2 for details on data
simulation.

For all neural models, k-best extraction is done using beam search (Spohrer et al.
1980; Ney et al. 1987), while for FST-based modeling shortest-path extraction algorithms
are used (Mohri 2002).

3.3.1 Standalone Neural Models. For training standalone neural models, we use the Adam
optimizer (Kingma and Ba 2014), and for each training run, we extract the best perform-
ing checkpoint on a small portion of the training set that has been held aside for this
purpose.

LSTM. We use both forward and backward LSTM layers within a single deep bidirec-
tional encoder, which is connected via Luong, Pham, and Manning (2015) attention to
a forward decoder LSTM (Bahdanau, Cho, and Bengio 2014). Again, following Roark
et al. (2020), the 2 layers of the encoder have 256 hidden units, while the 3 layers of the
decoder have 128. The character (single Unicode codepoint) embedding has dimension
512. We refer readers to that paper for further training settings, such as dropout for the
various layers, which we followed here for all languages.

Transformer. Following Roark et al. (2020), we train transformers (Vaswani et al. 2017)
for single word input with the architecture presented in Chen et al. (2018, Appendix
A.2), using meta-parameters and settings identical to Chen et al. (2018) other than:

18 We omit results using mT5 for single word transliteration, since it underperforms relative to ByT5. We
use mT5 on the full-sentence task, since its subword tokenization has benefits relative to ByT5’s byte
tokenization in cases with long-distance dependencies, such as context-aware full sentence processing.

486

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

dropout (0.36), model dimension (128), hidden dimension (1,024), attention heads (4),
and transformer layers in encoder and decoder (4). Input is tokenized into single Uni-
code codepoints.

3.3.2 mT5 and ByT5. Raffel et al. (2020) introduced the “Text-to-Text Transfer Trans-
former” (T5) framework, which proved to be successful in many downstream NLP
tasks. The idea of T5 is that the same sequence-to-sequence transformer model, ini-
tially pretrained as a large language model, can be fine-tuned to any particular task
by decorating input text with additional affixes telling the model what to do (e.g., a
translation task might add the input prefix: “Translate English to German:”). The original
T5 was pretrained on the “Colossal Clean Crawled Corpus” (C4) corpus, which is a
data set consisting of hundreds of gigabytes of clean English text scraped from the
Web. The core pretraining task was recovering corrupted spans, a form of masked
language modeling (for example, “I took a walk in the <extra id0>.” could map to
“<extra id0>park<extra id1>”). The model’s vocabulary consisted of 32k Sentence-
Piece tokens (Kudo and Richardson 2018), built from C4, as well as 100 additional
<extra id> tokens reserved for representing masked spans of text.

Xue et al. (2021) expanded the original T5 by introducing mT5, which is a multilin-
gual version of T5 pre-trained on mC4—a new Common Crawl-based dataset covering
101 languages. Similar to T5, mT5 proved to be effective in several NLP tasks (Ruder
et al. 2021; Nagoudi, Elmadany, and Abdul-Mageed 2022). mT5 is also pretrained to
perform masked language modeling, but uses a larger SentencePiece vocabulary of
250k items to accommodate all languages, along with 100 additional span tokens. ByT5
(Xue et al. 2022), otherwise pretrained on the same data and tasks as mT5, was an
attempt to both universalize this vocabulary, and drastically reduce its size for com-
putational reasons. In ByT5, all input and output text (including Unicode) is broken
down into its component byte sequence. The entire vocabulary size, including extra
control symbols and rounded to the nearest multiple of 128, consists of 384 items.
Using a byte vocabulary allows the model to generalize to any input encoding, but does
have the disadvantage that the model can generate malformed outputs (e.g., hallucinate
sequences of bytes that don’t correspond to any Unicode codepoint). In practice, this is
extremely rare, and any spans of bytes that can’t be processed with the chosen encoding
are simply removed from the output string. All 12 Dakshina languages are included in
mC4, hence supported by both mT5 and ByT5.

In this article, we fine-tune ByT5 for single word non-contextual transliteration,
starting with the publicly available pretrained “base” configuration.19 Each fine-tuning
run consisted of a mixture of 24 transliteration tasks, each defined using the SeqIO
framework (Roberts et al. 2022) on the T5X codebase,20 for each Dakshina language
in both Latin-to-native and native-to-Latin directions. To distinguish each task, each
input string was prefixed with the language being transliterated, and the source and
target scripts (e.g., “hi-Deva-Latn- ” maps to “accha”). The fine-tuning data used
for each language was the same as the individual language training data used to train
our other LSTM, transformer, and pair n-gram models. Fine-tuning on the task mixture
proceeded for 50,000 steps, with a batch size of 64, and dropout of 0.1. Checkpoints
were evaluated on a held-out portion of the training set every 500 steps using the CER%

19 https://github.com/google-research/t5x/blob/main/docs/models.md#byt5-checkpoints.
20 https://github.com/google-research/t5x.

487

https://github.com/google-research/t5x/blob/main/docs/models.md#byt5-checkpoints
https://github.com/google-research/t5x

Computational Linguistics Volume 50, Number 2

Figure 2
Schematic of pair trigram Tamil romanization model over Unicode codepoints.

metric. For any subsequent inference, for each task we selected the checkpoint with the
best performance on the held-out portion of the training set.21

For full-sentence context-aware transliteration (using the simulated parallel data
described below, organized into the same 24-task mixture used for single-word ByT5
transliteration) we apply both ByT5 and mT5.22 We experiment with both the “base”
and “large” pretrained configurations available. We fine-tune for 400k steps (more than
the 50k used for the single-word task to account for the increased complexity and longer
sequences involved in full-sentence transliteration). In all cases we use a batch size of
64 with dropout set at 0.1.

3.3.3 Pair n-gram Models. The FST-based method for single-word transliteration relies
on n-gram models over pair symbols, an approach originally taken for grapheme-to-
phoneme conversion (Bisani and Ney 2008) but also used for transliteration (Hellsten
et al. 2017). For example, the Tamil example earlier (, romanized as “puli”) would be
modeled as a sequence of paired symbols, one Unicode codepoint (or the empty string
ε) from the input and one (or ε) from the output:

Given aligned words of the sort provided by the lexicon-derived training data,
we use the expectation maximization algorithm to derive single-character alignments
between input and output strings (similar to details in Hellsten et al. 2017), which are
then used to estimate an n-gram model. Following Roark et al. (2020) we train pair 6-
gram models with Witten-Bell smoothing (Witten and Bell 1991), using the OpenGrm
library (Roark et al. 2012),23 yielding models in the OpenFst format (Allauzen et al.
2007).24 In the experiments described in Section 4 we refer to this model as “Pair 6g.”

Figure 2 presents the schematic of an FST-representation (Roark et al. 2012) of a pair
trigram model, using the /puli Tamil example. This model can be converted directly
to a finite-state transducer, by splitting pair labels to an input and an output label
corresponding to the input and output sides of the pair, respectively. An automaton

21 We did investigate separately fine-tuning each task independently from the others, but did not observe
any accuracy gains from this. Since the joint fine-tuning is significantly more efficient, we only report
results from the joint fine-tuning.

22 https://github.com/google-research/t5x/blob/main/docs/models.md#mt5-checkpoints.
23 http://www.opengrm.org.
24 http://www.openfst.org.

488

https://github.com/google-research/t5x/blob/main/docs/models.md#mt5-checkpoints
http://www.opengrm.org
http://www.openfst.org

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

representing the input string can be composed with this transducer to derive all possible
output transliterations with their probabilities according to the model. See Appendix A
for more explicit details on using these finite-state models.

3.4 Training Data Preparation

We have two important methods related to training data preparation, one to improve
fine-tuning performance of ByT5 for single-word transliteration, and another to simu-
late full-sentence parallel training data by automatically romanizing native script text.

3.4.1 Romanization Dictionary Pruning for Fine-tuning. Initial experiments using ByT5
for single-word transliteration yielded generally good performance across the 12 lan-
guages, but some unusual results for Tamil Latin-to-native script transliteration in
particular led us to a method for data preparation for fine-tuning that we describe here.
We found that fine-tuning of the pretrained model was quite sensitive to outliers/noise
in the training set, so that pruning up to 10% of the least representative data yielded
uniformly better performance and dramatically better performance in some languages,
such as Tamil. In contrast, the non-pretrained models—LSTM, Transformer, and pair
n-grams—were more robust to outliers/noise, so that no improvements were achieved
by such pruning of the training data. We thus apply this pruning only to the ByT5 fine-
tuning data and leave the training data for the other methods unchanged.25

For outlier detection in each training set, we assign scores to each training instance
by performing 20 random train/test splits of the set, where half of the examples go into
a training partition and half into a test partition. For each of these 20 random splits, we
train a pair 4-gram model (see Section 3.3.3) from the training partition to transliterate
native-script words into the Latin script, which is used to automatically romanize the
words in the test partition. We then measure a normalized distance d between each
reference romanization in the test half with the model-predicted romanization. This is
repeated 20 times, and each item’s score is the mean distance for the trials where it fell
in the test partition. The 10% of items with the highest mean distance are removed from
the fine-tuning set. See Appendix B for more specific details on this pruning method, as
well as a comparison with another investigated alternative.

As detailed in Appendix B, this has a large impact on accuracy of Latin-to-native
script single-word transliteration in Tamil, reducing mean CER% from 12.7 to 7.9 while
also greatly reducing variance (Table B.3). While that was the largest observed reduction
among the 12 languages, this method reduced CER% for most of the languages and
did not meaningfully change it for the few that were not improved. In contrast, as
noted above, the non-pretrained methods (pair n-gram, LSTM, and Transformer) did
not benefit from this training set pruning, hence were trained on the whole set. Please
see Appendix B for more analysis and further details.

3.4.2 Parallel Data Simulation for Full-sentence Transliteration. We have two broad cat-
egories of context-aware systems that we investigate: those trained on simulated

25 The higher sensitivity of neural models to noise compared to statistical approaches has been noted in the
past in the context of recurrent neural network-based NMT (Khayrallah and Koehn 2018). Our LSTM and
transformer transliteration models, however, were robust to the kind of noise present in our parallel data.
The anomalous behavior of the fine-tuned ByT5 on Tamil is in line with more recent observations on
popular LLMs (Kumar, Makhija, and Gupta 2020; Moradi and Samwald 2021; Lee et al. 2022; Schoch,
Mishra, and Ji 2023).

489

Computational Linguistics Volume 50, Number 2

parallel data, and those that incorporate language model information during decoding.
Both rely upon native script Wikipedia text in the Dakshina dataset for training. The
pages included in the training partition of that collection are disjoint from the pages
from which the manually romanized sentences were drawn, hence this provides an
independent source of text from which we can learn contextual dependencies. Here we
detail the training data simulation methods, and in the next section, language modeling.
Because we follow the “whitespace evaluation” approach of Roark et al. (2020), as
described in Section 3.2.4, the same tokenization is performed on these corpora for both
parallel data simulation and language modeling, to match the testing condition, that
is, Unicode codepoints not used in the native script part of the romanization lexicon
become whitespace.

We used the following approach to simulate parallel sentences. Using the best
system for native-to-Latin single word transliteration (see Section 4.2 for experiments
assessing this), we produce weighted k-best romanizations26 for each word in the
corpus. In order to capture the spelling variability in the Latin script, we romanize 10
copies of the corpus: In each pass, at each word, we randomly sample a romanization
from the k-best list, according to the multinomial distribution defined by the system.
For example, suppose that we had a 3-best list of romanizations for the Hindi word

(daredevil): “janbaaz” with probability 0.7; “janbaz” with probability 0.2; and
“janbaj” with probability 0.1. Every time that particular word is encountered in the
Wikipedia corpus, a romanization is sampled from this set according to the multinomial
distribution, so that, if 100 instances of the word are found in the corpus, on average 70
of them would be romanized as janbaaz, 20 as janbaz, and 10 as janbaj.

3.5 Language Modeling

One of our context-aware transliteration approaches makes use of monolingual lan-
guage models as part of the approach, and we detail those methods in this section. See
note in the previous section about tokenization of the corpora to remain consistent with
“whitespace evaluation.”

3.5.1 Sentence-level Context-aware Modeling. Our language models are made open-
vocabulary by virtue of using wordpiece tokenization (Schuster and Nakajima 2012),27

modulo character coverage in the wordpiece model. A wordpiece tokenizer segments
words into sub-word units, and is trained via agglomerative clustering, starting with
a vocabulary of single Unicode codepoint segments and adding new substrings to the
vocabulary by combining existing vocabulary items until a target vocabulary size is
reached. Given a vocabulary, segmentation is done by maximizing the unigram like-
lihood of all the wordpieces in a string (Kudo and Richardson 2018). For this article,
we targeted 32k vocabularies for each language. Each wordpiece vocabulary consists
of two disjoint sets: word-initial wordpieces and word-internal wordpieces, the former
by convention distinguished with an underscore () prefix. Conversion from words to
wordpieces (and back) is fully deterministic.

26 For this paper, we set k = 8.
27 Wordpiece tokenization was also used in Roark et al. (2020), and differs from the SentencePiece

tokenization used for the mT5 models described above.

490

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

We train FST-based n-gram language models with the same OpenGrm n-gram
library (Roark et al. 2012) as the pair n-gram transliterations models. We use n-gram
models encoded as FSTs to enable straightforward composition with lattices of possible
transliterations, followed by global shortest-path extraction to derive k-best lists—see
Appendix A for details. This provides a complementary alternative to the beam-search
methods used for the neural pretrained models, and yields very competitive results
(both alone and in ensembles)—see experiments in Section 4.3. For experimentation,
we train both context-aware models, that is, over full sentences, and non-contextual
models, just over single words. In both conditions we train models with wordpiece-
based vocabularies, and for the experiments in this paper, both types of models are
4-gram Kneser-Ney backoff models (Kneser and Ney 1995).

3.5.2 Word-level Non-contextual Modeling. A non-contextual model with a word-based
vocabulary is just a unigram model, trained standardly via relative frequency esti-
mation. For non-contextual models with wordpiece vocabularies, however, we build
word-level wordpiece 4-gram models. This is achieved by first segmenting the training
corpus so that each word occurs on a separate line, then tokenizing to wordpieces.
As stated earlier, standard 4-gram Kneser-Ney backoff language models are trained
on this segmented/tokenized corpus. However, since word-initial pieces always and
only occur word-initially and word-internal pieces cannot, there is a slight difference in
backoff structure from standard language models, which we implement as follows.

A schematic of the canonical FST format for n-gram language models was shown
in Figure 2 for the pair n-gram transliteration models, but the same format is used for
any FST-based n-gram language model regardless of the vocabulary. When modeling
at the word-level with a wordpiece vocabulary, there is an additional constraint that
changes how the automaton should represent the model, namely, that word-internal
pieces (conventionally those tokens missing the prefix) cannot occur word-initially
and all others must occur word initially. Because all word-initial pieces label transitions
leaving the start state of the FST, and no other pieces are allowed, there is no need
to back off to the unigram state from the start state, hence that backoff transition is
removed. As a result, only word-internal pieces are required at the unigram state, so (1)
all other unigrams are removed, (2) the unigram probabilities are renormalized and (3)
all backoff weights are recalculated.

3.6 Ensembling

For both single word transliteration and full-sentence transliteration, we make use
of ensembling methods, which we present in this section. Additionally, we present
methods for constructing and using a cache of ensembled single word transliterations,
which avoids the overhead and complexity of ensembling at time of full-sentence
transliteration.

3.6.1 Single Word Transliteration Ensembling. Transliterations from two or more systems
can be combined, and we take a very simple approach for this. Let S1 . . .Sm be m sets
of transliteration candidates with associated log probabilities. Assume each set’s log
probabilities have been softmax-normalized, and let pi(t) be the probability of translit-
eration t in set Si, where pi(t) = 0 if t 6∈ Si. The new set of transliterations is the union
of the transliterations from all systems being ensembled, and the ensembled probability

491

Computational Linguistics Volume 50, Number 2

of each transliteration in that set is the mean probability of that transliteration over all
systems being ensembled:

S(1,...,m) =
m⋃

i=1

Si and p(1,...,m)(t) = 1
m

m∑
i=1

pi(t) (5)

We apply this method using k-best output from individual systems.
Note that the multiple systems being ensembled could be using the same modeling

method and training data, just differing in their random initialization. We investigate
this sort of single method ensembling in the experiments, alongside ensembles of
heterogeneous modeling methods.

Also note that we do not tune mixing parameters in the experiments in this paper,
so that if m systems are ensembled, they each contribute 1

m of the probabilities in the
final ensemble. While it is likely that some additional system improvements could be
achieved by further tuning of these parameters, for the current article we find ample
benefit even without such additional optimization.

3.6.2 Single Word Transliteration Ensemble Caching. Performing inference with multiple
models and ensembling the results, as described in the prior section, can require a
relatively expensive (i.e., slow) and complex sequence of operations; hence there is a
real accuracy/efficiency tradeoff to consider when deciding to use such an approach.
One method to address this is to pre-compute a cache of transliterations offline for some
vocabulary, which can be accessed via simple lookup at time of full sentence processing,
and rely on non-ensembled transliterations for tokens not found in the cache. The key
questions in pursuing such an approach are: (1) what is the lexicon to be included in the
cache? and (2) what full sentence transliteration methods are amendable to including
such a lookup mechanism at time of inference?

Regarding the lexicon to be included in the cache, we would ideally like to pre-
compute transliterations into the native script for high frequency romanizations in
each language; however we lack a large corpus of romanized text in these languages.
Instead, we make use of the simulated full sentence parallel transliterations, construc-
tion of which is presented in Section 3.4.2. The romanizations in that collection were
automatically produced from the native-script side, hence may or may not match the
romanizations that are found in our manually romanized full sentence validation data.
However, they were derived from Wikipedia sentences, hence they do provide type
frequencies for deciding what words to include in the lookup cache. For each language,
we extract the frequency of all romanizations in the simulated parallel data and rank
them in descending frequency order. For a given maximum cache size m, we determine
the frequency f of the mth most frequent romanization in the corpus; then we include all
romanizations with frequency greater than f and a random selection of romanizations
with frequency f so that the final cache size includes the requested number of types.
In this paper, for Sindhi, there was enough text to include up to 450,000 romanizations
in the cache; for all other language, we included up to 1 million romanizations in the
cache.

For each romanization in the cache, we include the k-best transliterations of that
romanization into the native script with scores derived from the ensemble. Our end-to-
end neural full sentence transliteration methods—mT5 and ByT5—have no straight-
forward way to incorporate these cached single word transliterations. However the
“noisy channel” approach, where single word transliteration systems are combined

492

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

with language models, do permit easy inclusion of such cached transliterations. For
each input Latin script word in a sentence, the cache is queried for pre-compiled translit-
erations. If they are found, those are the returned candidate transliterations for that
word; otherwise, a single model is used to derive the set of candidate transliterations
for that word. For this article, we make use of the non-neural pair n-gram model as the
single model to use for words not present in the cache.

This approach allows transliteration inference to proceed without spending time
ensembling multiple models, but at the potential cost of accuracy for those words that
fall outside of the cache. If the constructed cache has high coverage, the results will be
close to those achieved with full ensembling. We examine performance of these systems
in Section 4.4 and show additional coverage information in Appendix E.

3.6.3 Full Sentence Transliteration Ensembling. Ensembling full sentence k-best lists dif-
fers slightly from single words, and we detail those differences here. Single word
ensembling combines probabilities from multiple systems when the words are identical,
however, when the system outputs are full sentences, the frequency of exact matches is
much lower, so that we want to combine evidence even for partial matches.

The first step in combining partial evidence across output sentences is to align the
sentences, so that the same word in the same sentence position in two different system
outputs can accrue the benefit from each. There are many heuristic algorithms for
such multiple-sequence alignment problems, some of which are more expensive than
others (Russell 2014), and here we adopt some simple heuristics that are fast and quite
effective. First, one of our full sentence transliteration approaches (the so-called noisy
channel) is guaranteed to have the same number of output words as input words.28 Our
neural methods (mT5 and ByT5) do not have such a guarantee, though in practice this is
most often the case—since they are fine-tuned on simulated data that has this property.
See Section 4.5.3 for a discussion of this. We thus make the simplifying assumption
that words in different system outputs are aligned at their absolute position in the
sentence, and for simplicity we discard system outputs that differ in length from the
input sentence. Since one system is guaranteed to have system outputs of that length,
this condition has no impact on coverage.

Let S1 . . .Sm be the outputs of m systems, which are softmax-normalized k-best lists.
Let Sij = sij1 . . . sijn be item j from k-best system output Si, which is a string of n words,29

and let P(Sij) be the probability of Sij.30 Then we define the ensembled weight Wp(w) for
word w at position 1 ≤ p ≤ n as the sum of the probability over all system outputs with
word w at position p, divided by the number of systems:

Wp(w) = 1
m
∑

ij

δwsijp P(Sij) (6)

28 This is due to the method relying on transliteration candidates for each input word, which is both a
limitation and a strength of the approach. Real human sentence transliteration is not necessarily
one-to-one in this way, though it is likely to be one-to-one most of the time. This constraint can be
leveraged during ensembling.

29 Since we required that outputs have the same number of words as the input string, this length is the same
for all items.

30 Due to softmax normalization of each list, ∀i
∑

j P(Sij) = 1.

493

Computational Linguistics Volume 50, Number 2

where δwsijp is a Kronecker delta that has value 1 if w = sijp and 0 otherwise. Then for all
strings of n words w1 . . .wn:

W(w1 . . .wn) =
n∏

p=1

Wp(wp) (7)

Note that some strings not included in the original collection of k-best lists may have
non-zero weight, as they accrue evidence from different system outputs. With these
definitions, we can extract a new ensembled k-best list, which includes those strings
with the highest weight according to Equation (7).

As with the single word ensembles, we do not tune the mixing parameters, so that
all systems contribute equally to the final weights.

4. Experiments

In the absence of full sentence parallel training data, our context-aware methods for
Latin-to-native script transliteration must rely in some fashion on single word (non-
contextual) transliteration models—either to provide candidate transliterations of each
Latin script word in the input string, or to simulate possible romanizations from native
script full sentences for fine-tuning. We thus begin with experiments investigating
single isolated word (non-contextual) informal Latin script to native script translitera-
tion, followed by experiments examining non-contextual native-to-Latin script translit-
eration. We can then turn to experiments on Latin-to-native script context-aware
transliteration.

4.1 Non-contextual Latin-to-native Transliteration

As stated in Section 3.1, for Sindhi the Dakshina dataset contains 15,000 native script
words with one or more attested romanizations in the single isolated word training set;
for the other eleven languages there are 25,000 native script words in their respective
training sets. In this section, we experiment with training Latin-to-native script translit-
eration models on these training sets and evaluating on the held-aside sets (2,500 words
for each language). We reproduce results for three models reported in the Dakshina
paper (Roark et al. 2020), with means and standard deviations over 25 training runs
rather than the 5 runs from that paper; and add one new modeling approach (ByT5). The
25 different training runs enables us to experiment with producing 5 different ensem-
bles of 5 models each, to demonstrate whether such single method ensembling yields
improved accuracy and/or variance reduction while still reporting means and standard
deviation over 5 different ensembles. We then examine ensembling with multiple dif-
ferent models, and use the results to choose the non-contextual transliteration approach
with the best performance for later experiments with full sentence transliteration.

4.1.1 Single Systems. Table 2 presents means and standard deviations of character error-
rate (CER%), comparing Roark et al. (2020) results over 5 training runs (columns
labeled “Dakshina”) with results from this current article using the same modeling
methods (and matched meta-parameters) over 25 training runs. Results with current
ByT5 models are also presented. Performance for each language, and the micro and
macro averages, are presented in the table. For each of the methods explored in Roark

494

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Table 2
Single word Latin-to-native transliteration character-error rate percentages (CER%) for each
language plus macro averages (µ) and micro averages (all). Note that the Roark et al. (2020)
macro averages (columns labeled “Dakshina”) are calculated from reported values, hence no
standard deviation is available.

Lang Pair 6g Transformer LSTM ByT5
Dakshina Current Dakshina Current Dakshina Current Current

bn 14.2 (.02) 14.3 (.12) 13.2 (.07) 13.0 (.13) 13.9 (.15) 13.7 (.11) 12.4 (.67)
gu 12.9 (.04) 13.0 (.06) 11.9 (.15) 11.9 (.16) 12.6 (.06) 12.4 (.15) 10.0 (.44)
hi 14.7 (.04) 14.8 (.05) 13.4 (.21) 13.4 (.16) 13.9 (.10) 13.8 (.17) 11.0 (.55)
kn 7.2 (.04) 7.3 (.08) 6.3 (.12) 6.6 (.18) 6.8 (.04) 6.7 (.12) 5.6 (.46)
ml 10.0 (.07) 10.0 (.03) 9.0 (.04) 8.9 (.14) 9.2 (.03) 9.1 (.10) 8.5 (.52)
mr 12.4 (.03) 12.6 (.16) 11.6 (.10) 11.6 (.17) 12.5 (.08) 12.4 (.15) 10.0 (.65)
pa 17.9 (.07) 18.0 (.06) 17.4 (.33) 17.0 (.16) 17.5 (.04) 17.5 (.17) 15.6 (.50)
sd 20.5 (.06) 20.7 (.15) 22.0 (.32) 20.0 (.22) 20.6 (.11) 20.4 (.21) 19.6 (.50)
si 9.1 (.01) 9.3 (.02) 9.2 (.10) 9.0 (.12) 9.3 (.04) 9.2 (.10) 9.2 (.44)
ta 9.3 (.08) 9.4 (.04) 9.4 (.52) 8.2 (.10) 8.4 (.12) 8.6 (.13) 7.9 (.42)
te 6.9 (.02) 7.0 (.10) 6.2 (.11) 6.2 (.12) 6.8 (.08) 6.7 (.07) 5.9 (.40)
ur 20.0 (.07) 20.0 (.02) 19.5 (.10) 19.4 (.24) 19.4 (.08) 19.6 (.12) 20.5 (.61)
µ 12.9 13.0 (.03) 12.4 12.1 (.05) 12.6 12.5 (.05) 11.4 (.40)
all 12.9 (.03) 12.0 (.05) 12.4 (.05) 11.3 (.40)

et al. (2020), we implemented and trained our own, and the results are quite similar but
not identical. Of course, these are means over many training runs, so some divergence
is expected.

Several things can be seen in the results in the table. First, the Roark et al. (2020)
results and our reproduced methods are generally very close. Our transformer results
are slightly better than what was reported in that paper, but the pattern remains that
transformer yields the best results overall, with LSTM slightly worse and the non-neural
Pair 6g method trailing the best performance by just under 1% absolute.

The ByT5 results are excellent, providing the lowest CER% in 10 out of 12 languages.
As discussed in Section 3.4.1, in order to achieve these results, we had to filter roughly
10% of the data used to fine-tune the models. Without such filtering, the model provided
the lowest CER% in just 4 of the 12 languages, and had substantially higher CER% than
the others in multiple languages, most notably Tamil (examined in detail in Appendix
B), often with extremely high variance. Of the methods presented in the table, ByT5
continues to have the highest variance, something we look to control via ensembling.

4.1.2 Single Method Ensembling. One way to improve the accuracy and reduce the vari-
ance associated with some of these methods is to simply train multiple models with
random initialization, and ensemble the result. The first two columns of Table 3 present
the macro average CER% means and standard deviations over 25 single models (None)
and 5 ensembles of 5 models (This x5) for our four modeling methods. The already very
low variance Pair 6g model achieves no reduction in mean CER% via these methods,
but the other methods do achieve improvements. Interestingly, transformer ensembling
yields less improvement through ensembling than for either LSTM or ByT5, so that the
LSTM ends up yielding the same CER% as transformer after single method ensembling.
ByT5 obtains a substantial reduction in CER% through this method, and the variance
between runs is also substantially reduced. Table D.1 in Appendix D presents per-
language results, combined with the CER% reduction obtained versus the means of the
single (non-ensembled) systems.

495

Computational Linguistics Volume 50, Number 2

Table 3
Single word Latin-to-native transliteration macro average character-error rate percentages
(CER%) with various types of ensembling.

Ensembling method
Model This This+ This+ This+ This+all All except
type None x5 Trans. LSTM ByT5 others this model
Pair 6g 13.0 (.03) 13.0 (.02) 11.5 (.01) 11.5 (.02) 10.6 (.02) 10.5 (.02) 10.61 (.03)
Trans. 12.1 (.05) 11.8 (.02) 11.4 (.03) 10.5 (.03) 10.43 (.03)
LSTM 12.5 (.05) 11.8 (.02) 10.5 (.02) 10.44 (.02)
ByT5 11.4 (.40) 10.9 (.04) 11.13 (.01)

4.1.3 Multi-model Ensembling. In addition to the single method ensembling results,
Table 3 presents results of ensembling multiple models. For each modeling method
included in the ensemble, we include models from 5 different random initializations,
hence if there are k modeling methods being ensembled, there are a total of 5k models
in the ensemble. Of the six possible 2-method combinations, those with ByT5 are the
top 3, and the combination of ByT5 with LSTM provides the lowest error rate of those
2-model combinations. Adding the non-neural pairLM to that 2-model combination
(the result in Table 3 for “all except” the transformer model) yields (just barely) the
best performing model—even better than ensembling with all of the models. Tables D.2
and D.3 in Appendix D provide per language ensembling results for all of our various
combinations. Note that the 10.4% CER is 2% absolute (15% relative) reduction versus
the best reported result from the Dakshina paper.

Our principal interest for these models is to contribute to full string context-aware
transliteration systems, so we want the methods that provide the best starting point
for such systems. For that reason, we choose to conduct our full string experiments
(see Section 4.3) using the 3-model ensembled system with ByT5, LSTM, and Pair 6g
transliterations. We also make use of single word (non-contextual) transliteration in the
other direction (native-to-Latin) for some eventual context-aware systems, and we turn
now to examining system behavior and the utility of ensembling in that case.

4.2 Non-contextual Native-to-Latin Transliteration

While Roark et al. (2020) make use of native-to-Latin script transliteration in preparation
of simulated parallel training data, they do not explicitly evaluate the performance of
their models on this task, hence we must rely on our replicated methods to establish
baselines and the best performing system configuration. The same training data can
be used for this task as for the Latin-to-native transliteration described in the previous
section, by simply swapping the input and output strings. As described in Section 3.2.2,
given the many potential attested (reference) romanizations for each input, we calculate
the error rate based on the minimum CER% (minCER%) achieved with any of the
reference romanizations.

4.2.1 Single Systems. Table 4 presents per language minCER% for our four modeling
methods, along with micro- and macro-average performance. Again, the ByT5 results
are best in 10 out of 12 languages, though unlike the Latin-to-native script direction,
the ByT5 results are generally quite low variance. The Perso-Arabic writing systems
(sd and ur) have notably higher error rates, presumably due to the fact that these
writing systems are abjads with no explicit vowel markings, yet the romanizations tend

496

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Table 4
Single word native-to-Latin transliteration minimum character-error rate percentages
(minCER%) for each language plus macro averages (µ) and micro averages (all).
Lang Pair 6g Transformer LSTM ByT5
bn 4.2 (.07) 3.1 (.26) 3.2 (.26) 2.4 (.09)
gu 2.5 (.03) 1.4 (.07) 1.3 (.07) 1.1 (.10)
hi 4.7 (.03) 3.4 (.15) 3.6 (.10) 2.9 (.16)
kn 1.4 (.02) 1.3 (.38) 0.9 (.06) 0.9 (.13)
ml 1.6 (.01) 2.7 (.83) 1.3 (.28) 1.0 (.07)
mr 2.4 (.05) 1.7 (.09) 1.8 (.09) 1.5 (.19)
pa 4.3 (.07) 3.2 (.12) 3.5 (.12) 3.0 (.09)
sd 8.7 (.06) 7.1 (.12) 7.5 (.14) 6.5 (.28)
si 1.1 (.01) 0.5 (.03) 0.6 (.04) 0.7 (.06)
ta 3.3 (.05) 3.1 (.26) 2.8 (.12) 2.5 (.09)
te 2.8 (.02) 2.5 (.27) 2.2 (.06) 2.4 (.09)
ur 7.7 (.03) 6.1 (.10) 6.6 (.12) 5.9 (.33)
µ 3.7 (.01) 3.0 (.07) 3.0 (.05) 2.6 (.08)
all 3.4 (.01) 2.8 (.09) 2.7 (.05) 2.4 (.07)

Table 5
Single word native-to-Latin transliteration macro average minimum character-error rate
percentages (minCER%) with various types of ensembling.

Ensembling method
Model This This+ This+ This+ This+all All except
type None x5 Trans. LSTM ByT5 others this model

Pair 6g 3.7 (.01) 3.7 (.01) 2.7 (.01) 2.6 (.01) 2.4 (.02) 2.2 (.01) 2.2 (.01)
Trans. 3.0 (.07) 2.7 (.04) 2.5 (.01) 2.3 (.02) 2.3 (.01)
LSTM 3.0 (.05) 2.7 (.02) 2.3 (.01) 2.3 (.02)
ByT5 2.6 (.08) 2.5 (.02) 2.4 (.01)

to include vowels, which must be recovered from the limited information available in
this non-contextual setting. We also note that the Transformer model has relatively high
variance for the four Dravidian languages in particular.

4.2.2 Ensembled Systems. As with the Latin-to-native results in the previous section, for
native-to-Latin transliteration, we also derive a benefit from ensembling systems, both
in error rate and variance reduction. Table 5 presents minCER% means and standard
deviations for variously ensembled systems. Once again, the Pair 6g approach is too low
variance to really benefit from single method ensembling. Tables D.4, D.5, and D.6 in
Appendix D present the per-language minCER% results that are summarized in Table 5.

4.2.3 Earth Mover’s Distance k-best Evaluation. Our primary use scenario for single word
native-to-Latin transliteration (automatic romanization) is for parallel training data
simulation from monolingual native script text. For that purpose, sampling from likely
romanizations is a key way to simulate data that includes the kinds of variations that
are observed due to the lack of Latin script orthography in these languages. However,
the measure that we just reported—minCER%—only evaluates the highest probability

497

Computational Linguistics Volume 50, Number 2

Table 6
Single word native-to-Latin transliteration macro average earth mover’s distance k-best
character-error rate percentages (EMDCER%) with various types of ensembling.

Ensembling method
Model This This+ This+ This+ This+all All except
type None x5 Trans. LSTM ByT5 others this model

Pair 6g 9.9 (.02) 9.8 (.02) 9.1 (.02) 8.7 (.01) 8.8 (.02) 8.4 (.01) 8.4 (.02)
Trans. 9.8 (.10) 9.4 (.03) 8.7 (.02) 8.7 (.02) 8.4 (.01)
LSTM 9.0 (.07) 8.6 (.01) 8.3 (.01) 8.7 (.02)
ByT5 8.8 (.15) 8.7 (.02) 8.6 (.01)

candidate, not alternative romanizations that we may sample. In Section 3.2.3 we pre-
sented the earth mover’s distance based k-best character-error rate percentage (EMD-
CER%), which assesses the degree to which the distribution of the output k-best list
matches the distribution over the reference romanizations. Table 6 presents the macro
average results for this measure for various ensembling configurations. Tables D.7, D.8,
and D.9 in Appendix D present the per-language EMDCER% results that are summa-
rized in Table 6.

Several interesting things can be observed from these results. First, while the min-
CER% reported in Table 5 show virtually identical performance for transformer and
LSTM models, here we find that the LSTM k-best lists provide lower EMDCER%, both
with and without ensembling, than the transformer models. We find that the four
lowest EMDCER% systems include both ByT5 and LSTM output, and the best system
includes only those two, hence for generating training data for full string context-aware
transliteration we chose the two-system ByT5 and LSTM ensemble.

4.3 Context-aware Latin-to-native Transliteration

In the absence of direct parallel training data for full sentence transliteration, we have
two broad approaches that can be taken to incorporate context into our transliteration
models. First, we can derive language models from monolingual mono-script text—
such as the Wikipedia text included in the Dakshina dataset—and combine the lan-
guage model probabilities with non-contextual transliteration model probabilities. Our
language and transliteration model combination is implemented as weighted finite-
state transducer (WFST) composition of the language model—encoded as a WFST, as
detailed in Section 3.5—with a word lattice encoding possible transliterations for each
input word.31 This is akin to so-called noisy channel approaches broadly used in speech
recognition and related tasks (Jelinek 1998), so Roark et al. (2020) used that label as
a shorthand for such approaches and we do as well. The second method is to use
automatic romanization to simulate parallel training data, which can then be used to
train (or fine-tune) standard sequence-to-sequence modeling methods.

Roark et al. (2020) pursue both methods for including context in their systems,
and compare them with systems that transliterate each word independently, that is,
non-contextually. Table 7 presents their context-aware and non-contextual systems

31 See Appendix A for further details.

498

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Table 7
Baseline full-string Latin-to-native transliteration WER% for the dev section of the Dakshina
dataset: (1) Four systems reported by Roark et al. (2020), including two non-contextual (using
either Pair 6g or Transformer single-word transliteration models) and two contextual (“noisy
channel” – or “NC” – and full sentence Transformer model); and (2) Two non-contextual systems
using our current methods: an ensemble of three single word transliteration models: ByT5,
LSTM, and Pair 6g; and that ensemble plus a word-level wordpiece language model.

Lang
Roark et al. (2020) systems Current baselines

Non-contextual Contextual Non-contextual
Pair 6g Transf. “NC” Transf. Ensemble +Word LM

bn 35.0 (.11) 32.5 (.71) 18.6 (.02) 19.7 (.12) 30.9 (.87) 20.6 (.11)
gu 34.4 (.07) 28.1 (1.37) 16.2 (.03) 21.8 (1.36) 27.3 (.23) 14.8 (.03)
hi 24.6 (.14) 25.0 (1.70) 11.0 (.01) 15.8 (.24) 23.6 (1.37) 12.2 (.03)
kn 23.4 (.21) 21.0 (.27) 17.1 (.03) 18.3 (.44) 19.3 (.11) 14.9 (.06)
ml 39.4 (.69) 37.3 (.31) 23.5 (.04) 21.4 (.27) 35.2 (.35) 21.6 (.09)
mr 29.2 (.03) 28.4 (.62) 13.8 (.03) 13.8 (.07) 25.6 (.15) 13.0 (.05)
pa 38.2 (.35) 36.1 (1.14) 16.4 (.02) 19.3 (.04) 34.8 (.52) 18.1 (.07)
sd 55.3 (.13) 63.5 (1.38) 26.1 (.07) 37.3 (1.20) 50.4 (1.29) 29.4 (.53)
si 37.0 (.03) 35.9 (.96) 20.3 (.02) 23.0 (.77) 34.0 (.17) 23.4 (.16)
ta 30.7 (.25) 31.9 (.95) 19.3 (.04) 18.9 (.08) 27.2 (.19) 17.6 (.08)
te 27.6 (.06) 26.4 (.22) 17.0 (.02) 18.9 (.10) 23.3 (.20) 15.2 (.09)
ur 33.8 (.08) 44.5 (3.25) 12.5 (.08) 19.3 (.47) 23.4 (.28) 14.5 (.05)
µ 34.1 34.2 17.7 20.6 29.6 (.09) 17.9 (.06)
all 30.3 (.13) 18.1 (.07)

word-error rates32 for all of the Dakshina languages, as well as the macro-average (µ).
We also provide the WER% from two of our own non-contextual baseline systems. The
first is simply the ensembled Latin-to-native script transliteration model, consisting
of ByT5, LSTM, and Pair 6g components.33 In addition, we show results using that
transliteration model combined with a word-level wordpiece language model, which
achieves substantial improvements over using just the transliteration model ensemble
itself, despite including no sentential context. In fact, the macro-average for that system
nearly outperforms even the best context-aware system from Roark et al. (2020)—
within 0.2% absolute—which can be attributed to improvements in the non-contextual
transliteration models and the inclusion of word-level likelihood, as calculated via the
wordpiece LM.

Note that we now have the macro-averaged WER% results from the first three
systems in the graph presented in Figure 1 in the Introduction: (a) the best single
method non-contextual transliteration model ensemble result (LSTM at 32.5); (b) the
best multiple method non-contextual transliteration model ensemble (29.6); and (c)
that transliteration model ensemble combined with the word-level (non-contextual)
language model (17.9). With these baseline non-contextual results, we can move on to

32 Recall that we are pursuing their “whitespace evaluation” method, hence the WER% results come from
that portion of Table 4 in Roark et al. (2020).

33 Table D.10 in Appendix D presents the single method ensembled CER% for each of the three modeling
approaches that make up this ensemble, the best of which is the LSTM, which yields a macro-average (µ)
CER% of 32.5.

499

Computational Linguistics Volume 50, Number 2

Table 8
Full-context Latin-to-native transliteration WER% for the dev section of the Dakshina dataset:
Our version of a “noisy channel” style model, with the single-word transliteration ensemble
(ByT5+LSTM+Pair6g) plus a contextual wordpiece LM; mT5 and ByT5 in both base and large
configurations; and a full-string ensemble of the “noisy channel” (“NC”), mT5-large, and
ByT5-base models.

Lang “Noisy mT5 ByT5 “NC” + ByT5-base +
channel” base large base large mT5-large ensemble

bn 18.4 (.11) 16.6 (.08) 16.0 (.16) 18.0 (.11) 18.8 (.22) 14.8 (.08)
gu 14.2 (.04) 14.3 (.11) 13.6 (.18) 15.9 (.15) 16.9 (.31) 11.8 (.10)
hi 10.4 (.02) 11.5 (.20) 11.1 (.20) 15.4 (.16) 15.0 (.16) 10.4 (.10)
kn 14.7 (.04) 14.0 (.05) 13.6 (.13) 16.6 (.07) 17.1 (.16) 12.8 (.05)
ml 20.2 (.05) 21.7 (.15) 20.8 (.27) 22.8 (.13) 24.0 (.13) 18.5 (.14)
mr 12.2 (.07) 11.7 (.08) 11.1 (.17) 12.1 (.08) 12.9 (.15) 10.0 (.08)
pa 15.4 (.03) 15.6 (.19) 15.2 (.19) 17.7 (.23) 18.2 (.27) 14.1 (.11)
sd 26.5 (.34) 28.4 (.60) 27.1 (.42) 29.2 (.20) 29.8 (.44) 24.2 (.10)
si 21.4 (.14) 30.9 (.06) 30.6 (.10) 18.8 (.11) 19.6 (.09) 17.1 (.07)
ta 15.9 (.04) 17.3 (.38) 16.6 (.24) 19.8 (.26) 20.9 (.38) 14.8 (.16)
te 14.4 (.03) 16.3 (.06) 15.6 (.11) 16.5 (.08) 17.1 (.23) 12.9 (.05)
ur 12.2 (.11) 13.4 (.17) 13.0 (.18) 13.8 (.12) 13.9 (.13) 11.8 (.18)
µ 16.3 (.05) 17.7 (.11) 17.0 (.10) 18.0 (.05) 18.7 (.13) 14.4 (.04)
all 16.4 (.06) 17.8 (.11) 17.2 (.10) 18.2 (.06) 18.7 (.13) 14.5 (.04)

the question of how much performance improvement can be achieved by including
contextual information.

Table 8 presents the WER% using six context-aware systems, including: our version
of a “noisy channel” approach; two configurations each for ByT5 and mT5; and an
ensembling of the the best performing configurations of mT5 and ByT5 with the noisy
channel approach (“NC”). A few things are clear from these results. First, while ByT5
models are superior for the shorter-length single-word transliteration, mT5 models,
which use sub-word tokenizations rather than bytes, generally perform better than
ByT5 on the full sentence task, with lengthier input sequences. The one exception to this
is Sinhala, which we later demonstrate in Appendix C to be due to the SentencePiece
tokens used by mT5. One danger of using pretrained models for tasks such as this is that
even relatively minor design choices of the pretraining influence the applicability of the
model to new tasks, and in the current case certain Unicode symbols (zero-width joiner
and zero-width non-joiner) were omitted from model vocabulary (see Appendix C for
more details). Such model design decisions are beyond our control, and the mT5 model
is generally very useful, hence we rely upon multiple system ensembling to ameliorate
such problems.

Additionally, we see solid improvements for mT5 with the large configuration
over the base configuration, while ByT5 does not benefit from its larger configuration.
The “noisy channel” model yields the best performance of any of these stand-alone
contextual systems. Ensembling the best mT5 and ByT5 configurations with the noisy
channel approach, however, yields the best performance of any system (including the
baselines) in every language, with an overall macro-average WER% of 14.4. This result
underlines how critical ensembling is, not only for improving the overall accuracy, but
for smoothing over outliers that may arise with particular methods, such as Sinhala

500

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

with mT5. The nature of pretrained models are such that this sort of ensembling is
indispensable for both low error rates and low variance.

The 14.4 macro-averaged WER% is a 3.5% absolute (20% relative) reduction from
our best non-contextual baseline, thus making explicit how much system improvement
is due to contextual information. Interestingly, four of the five languages that have
the least relative error rate reduction due to sentential context are the four Dravidian
languages, which are highly inflected, hence contain relatively many within-word de-
pendencies (Kumar et al. 2017; Steever 2019).

4.4 Experiments with Caching

In Section 3.6.2 we presented methods for constructing a cache of single word transliter-
ations, which can be used to avoid expensive ensembling at time of inference—instead
relying on an offline ensemble to construct the cache, and using a single model for
input words that do not have a cache entry. As stated there, we use a non-neural Pair
6g transliteration model for words outside of the cache, and present trials with (1) no
language model; (2) a word-level (non-contextual) language model; and (3) a sentence-
level (context-aware) language model. All language models used were the same as in
earlier experiments for the same conditions.

The experiments were run on a single machine using only CPUs. The machine was
an AMD EPYC 7B12 with 2x12 64-bit 2250Mhz CPU cores and 192G of RAM. The
inference engine has some multi-threading, and we allowed up to 8 cores to be used
by the process. Only one inference process was run at a time, and we ran each model 5
times, taking the minimum clock time for a model as the time to process the input. As
before, we have 5 different models for each language, so we can calculate means and
standard deviations of WER% and processing speed.

Table 9 presents WER% for our three caching conditions, and for the offline full
“noisy channel” model for comparison. On average, relying on the single Pair 6g
transliteration model for tokens that fall outside of the cache increases WER by just

Table 9
Full-context Latin-to-native transliteration WER% for the dev section of the Dakshina dataset for
online cache methods, compared to fully offline “noisy channel” result, for each language plus
macro averages (µ) and micro averages (all).

Lang Online using transliteration cache Full “noisy
no LM Word LM Sent LM “channel”

bn 31.8 (.47) 21.0 (.08) 18.7 (.15) 18.4 (.11)
gu 29.5 (.27) 15.2 (.06) 14.6 (.07) 14.2 (.04)
hi 22.9 (.90) 12.4 (.03) 10.7 (.04) 10.4 (.02)
kn 20.7 (.15) 15.5 (.08) 15.1 (.05) 14.7 (.04)
ml 36.7 (.12) 22.1 (.07) 20.7 (.03) 20.2 (.05)
mr 26.3 (.17) 13.5 (.01) 12.7 (.06) 12.2 (.07)
pa 35.5 (.42) 18.3 (.12) 15.5 (.06) 15.4 (.03)
sd 51.4 (.96) 30.7 (.40) 27.8 (.48) 26.5 (.34)
si 34.5 (.33) 23.4 (.17) 21.5 (.07) 21.4 (.14)
ta 28.2 (.13) 18.7 (.08) 17.0 (.05) 15.9 (.04)
te 24.2 (.11) 15.6 (.13) 14.8 (.02) 14.4 (.03)
ur 24.2 (.34) 14.6 (.06) 12.2 (.06) 12.2 (.11)
µ 30.5 (.10) 18.4 (.05) 16.8 (.04) 16.3 (.05)
all 31.1 (.14) 18.6 (.06) 16.8 (.05) 16.4 (.06)

501

Computational Linguistics Volume 50, Number 2

Table 10
Statistics per language for online cache methods, including coverage and characters-per-second
(x1,000) under different conditions.

Lang Cache token Characters-per-second (x1,000)
coverage (%) no LM Word LM Sent LM

bn 91.7 1.68 (.05) 1.61 (.05) 0.55 (.04)
gu 83.6 1.51 (.04) 1.44 (.05) 0.50 (.04)
hi 96.5 2.10 (.01) 2.05 (.01) 0.68 (.004)
kn 86.8 1.86 (.02) 1.49 (.02) 0.59 (.03)
ml 76.3 0.49 (.02) 0.47 (.003) 0.15 (.001)
mr 91.6 1.43 (.01) 1.36 (.02) 0.50 (.004)
pa 93.1 2.90 (.02) 2.03 (.02) 0.79 (.006)
sd 79.6 3.67 (.05) 3.26 (.04) 0.88 (.05)
si 92.2 3.14 (.02) 2.19 (.02) 1.04 (.01)
ta 79.9 0.55 (.03) 0.51 (.03) 0.17 (.01)
te 86.5 1.50 (.01) 1.23 (.12) 0.47 (.02)
ur 95.6 2.67 (.02) 2.56 (.02) 0.62 (.004)

about 0.5% absolute compared to the full noisy channel approach, which itself is
roughly 2% higher than ensembling with the neural contextual models. The non-
contextual word-based language model further increases WER% by approximately
1.5% WER. Table 10 presents total cache token coverage for each language, as well
as the characters-per-second that are processed under each condition. Languages vary
in their throughput—from relatively slow Dravidian languages (ml, ta) at about 500
characters per second with no LM, to much speedier Indo-Aryan languages using the
Perso-Arabic script (sd, ur) at between 2,500 and 3,500 characters per second. Using
the non-contextual language model slows things down just a bit relative to using no
language model at all, but remain roughly 3 times faster than using the fully contextual
language model. Cache token coverage is quite good, with only the highly inflected
Dravidian languages (and the lower-resource Sindhi) falling below 80%, while half of
the languages are well above 90%.

Appendix E contains two graphs in Figure E.1 showing type and token coverage of
the cache for each language as the size of the cache increases.

4.5 Analysis

In this section, we provide both quantitative and qualitative analyses to help under-
stand what kinds of errors are being fixed as our models improve, and under what
circumstances context and/or ensembling improves performance. We additionally ex-
amine the impact of mC4 as a corpus on system performance, and close with some still
pending issues.

4.5.1 Improvements Due to Frequent or Infrequent Types. Here we present a brief analysis
that highlights certain language differences in how the error rate reductions were
achieved for each language between the best non-contextual transliteration model
ensembles—system (b) in Figure 1 in the Introduction—and the final best performing
context-aware multi-system ensemble, namely, system (e) in Figure 1. Since the latter
system is ensembled using a method that requires the number of output words to match
the number of input words (which the non-contextual systems also do as a matter

502

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

of course), we can straightforwardly compare the output of systems (b) and (e) for a
particular language at each input word position. Let bi be the output of system (b) at
word position i in the text collection; ei the output of system (e) at that word position;
and ri the reference output transliteration at that position. If bi 6= ei, we can call this
an output word difference. If bi 6= ei and ei = ri, then this counts as a “win”, that is,
the switch from bi to ei resulted in a reduction in the number of errors. If bi 6= ei and
bi = ri, this is a “loss,” that is, an increase in the number of errors. If neither of the
different system outputs matches the reference, the difference is neutral. We can count
the total wins and losses accrued across the whole development set when output word
u in system (b) is replaced with word v in system (e), and use that to characterize the net
wins (i.e., wins minus losses) associated with that unique output word difference pair.
Formally, for a development set consisting of N words, we define the net wins of a pair
of words u 6= v as follows:

W(u, v) = | {1 ≤ i ≤ N : bi = u ∧ ei = v ∧ ri = v} |

− | {1 ≤ i ≤ N : bi = u ∧ ei = v ∧ ri = u} |
(8)

Let UV be the set of word pairs (u, v) such that system (b) output word u in some
position where system (e) output the (different) word v, namely,

UV = {(u, v) : u 6= v ∧ ∃i where bi = u ∧ ei = v} . (9)

Figure 3 plots the mean (across 5 trials) net wins per (u, v) ∈ UV for each language.
The four languages that have the lowest score for this measure are the highly inflected
Dravidian languages, indicating that the word-error rate reductions in those languages
are the result of relatively many distinct word differences between the systems. None
of those languages has a score greater than 1.25 per unique difference pair, while the
lowest scoring Indo-Aryan language (Marathi) has a score of 1.8. This is consistent with
the highly inflected nature of those languages, which would lead to a higher type/token
ratio and relatively fewer high frequency types. Indeed, if we compare the 3 highest net
win output word difference pairs in Malayalam (ml, a Dravidian language) and Marathi
(mr, an Indo-Aryan language), we can see this explicitly. Both languages have very sim-
ilar net win totals in the development set, but the top three pairs in Marathi (→ ,
→ , →) have mean net wins of 665.2, 502.0, and 394.4, respectively, in the

development set, while the top three pairs in Malayalam (→ , → ,
→) have net wins of 66.8, 61.0, and 53.8, respectively. We also note that two

of the three languages with the highest net wins per unique output word difference in
Figure 3 use a Perso-Arabic script, which, as abjads, will tend to have a lower type/token
ratio, hence typically relatively more high frequency words in the sample.

One other interesting thing can be noted from the example pairs presented in the
previous paragraph. Two of the Malayalam examples (→ , →) and
one of the Marathi examples (→) are conversions from a less frequent (but still
valid) spelling of a word to a more frequent spelling of the same word.34 Counting from
the native script Wikipedia corpus from the Dakshina dataset, is nearly 5 times
more frequent than , is over 7 times more frequent than ; and is over

34 Note that, while and mean and are read as the same things in many contexts, also has
the meaning of “stood”—as in past tense of “sit”—which the other word never has.

503

Computational Linguistics Volume 50, Number 2

Figure 3
Comparison of the best multiple method non-contextual transliteration model ensemble with the
best performing context-aware ensembled system, in terms of net wins per unique output word
differences. The means and standard deviations over five runs are shown.

20 times more frequent than . Thus at least some of the error rate reductions for these
languages involve selecting more canonical spellings for words that have more than one
valid spelling.

4.5.2 Improvements Due to Context Awareness. In this section, we will present examples of
how context awareness improves transliteration in some languages, by comparing the
output of the noisy channel system using non-contextual (word-level) language models
versus those using context-aware (sentence-level) language models. Hindi and Punjabi
were two of the languages with the largest relative decrease in WER% when including
context-aware language models, so we will look at some common ways in which the
context is helping for those languages.

The largest contributor to the improvement in Hindi is improved handling of the
confusable Hindi words and , both of which are romanized in our dev set between
95% and 99% of the time as “ki.” The former () is a postposition meaning “of”, e.g.,
“ ” (“wife of Sanjay” or “Sanjay’s wife”). The latter () is a conjunction
meaning “that”, for example, “ ” (“Vikram said that”). Without context, “ki”
is always transliterated as the more frequent , but context helps disambiguate, so
that with context-aware models this is correctly transliterated as 416 times and
incorrectly only 19 times, a large overall win. Similar contextual disambiguation of
common confusables account for much of the gain, hence the relatively high wins per
difference in Figure 3. Similarly, in Punjabi, the related postpositions and are both
romanized as “vich” around 99% of the time, and context-aware modeling yields a 5-1
win-loss ratio when disambiguating between them.

504

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Another class of context-aware wins in Hindi come from the same English-origin
word being spelled conventionally slightly differently within certain collocations such
as proper names. For example, the proper name “ ” (American Express)
is conventionally written with the “Express” part of the name (“ ”) spelled dif-
ferently than in other common uses of the term, which typically spell it (with
an extra virama symbol), such as rail-related terms “ ” (“Mumbai Express”) or
“ ” (“Mail Express”). Whether such conventions are as strictly adhered to as
they seem to be in Wikipedia is hard to say, but in any case the context-aware models
are able to capture the correct spelling for such common collocations.

4.5.3 Improvements Due to Ensembling. In this section, we will present examples of how
ensembling improves transliteration in some languages, by comparing the output of
the noisy channel system using context-aware (sentence-level) language models and the
full ensemble with mT5 and ByT5 contributions. Sinhala and Bengali were two of the
languages with the largest relative decrease in WER% when ensembling these context-
aware models, so we will look at some examples where ensembling is helping for those
languages.

We have already noted one way in which Sinhala is helped by ensembling, since the
mT5 model is using SentencePiece tokenization that does not include zero-width joiner,
which is commonly used in that writing system (see Appendix C for details). Due to this
catastrophic mismatch, the mT5 system is much worse for this language than the others,
despite otherwise often being the best of all single context-aware systems. Even so, we
find that an ensemble that includes this system provides strong reductions in WER%
from the best single system for this language, suggesting that despite its systematic
errors, useful signal is found in its output.

One way in which ensembling appears to be helpful is when the number of output
tokens differs from the number of input tokens, which can occur relatively frequently
depending on the language and system, as shown in Table 11. Other than the Sinhala
case in mT5, which we’ve already discussed, we see very frequent issues in Sindhi
in both ByT5 and mT5 systems, and Urdu and Bengali have quite high values for all

Table 11
Per-language percentage of sentences in the full string dev set for which T5-based systems
produced a different number of output tokens than the number of input tokens.

Language ByT5 systems mT5 systems
Base Large Base Large

bn 21.2 21.2 19.4 19.4
gu 12.7 12.7 7.6 7.6
hi 11.3 11.3 6.5 6.5
kn 19.1 19.1 15.6 15.7
ml 7.1 7.0 5.4 5.5
mr 4.7 4.7 4.0 4.3
pa 9.4 9.4 5.6 5.6
sd 44.1 44.1 44.1 44.0
si 18.5 18.5 62.3 62.5
ta 6.5 6.5 3.1 3.1
te 8.2 8.2 11.9 12.0
ur 26.7 26.7 26.4 26.5

505

Computational Linguistics Volume 50, Number 2

of the systems. Other languages have a relatively small percentage of such outputs.
While people do produce output that has a different number of tokens than the input,
this is a relatively rare occurrence, so that, on balance, having such a constraint is
beneficial versus not having it, particularly in the face of such frequent divergence by
the pretrained models.

While the n-gram modeling is useful for disambiguating items in collocations or
frequent constructions, as we saw in the previous section, the neural models provide
much more powerful language modeling constraints on the system which can be help-
ful. For example, in Sinhala, the word “ ” (meaning “such as” or “like”) can be
variously romanized as “weni” or (somewhat less commonly) “veni”, much like “ ”
(which is used in formation of ordinal numbers, e.g., “2nd”). Predicting when ordinal
number formation is likely versus a relatively specialized connective phrase requires
more than collocations, hence the usefulness of the neural models. For this example, 72
corrections were made with no regressions. Hence the “noisy channel” model is helpful
in controlling for issues related to writing system mismatch (i.e., lack of zero-width
joiner and zero-width non-joiner in mT5), while the neural models can provide more
subtle disambiguation than is achieved by the n-gram based system.

The reasons for improvements to Bengali are a bit harder to tease apart, but one
common class of errors that are repaired in ensembling are related to short roman-
izations ending in the letter -y, such as “dey,” “pray,” “ney,” “jay,” and “ray.” These
collectively account for over 100 wins on the dev set in the ensembled system in Bengali
relative to the noisy channel, with no regressions. These short romanizations are difficult
due to a couple of factors. First they transliterate very straightforwardly to some foreign-
origin words (e.g., the English word “pray” which is typically written in the Bengali
script) or proper names (e.g., “ ” for “Rio de la Plata”). Hence, these can be
likely competitor transliterations to the more commonly intended words. These likely
intended words, however, have the additional complication of having word-final schwa
deletion that is not explicitly marked in the orthography (Choudhury, Basu, and Sarkar
2004; Johny and Jansche 2018). For example, the Bengali word (“almost”), which
is also typically romanized as “pray,” does not explicitly mark the final vowel deletion
with virama. Without final schwa deletion, one would expect the word to be romanized
as “praya.” The system needs to learn when schwa deletion is likely, in order to make
the match between the romanization (which typically omits the vowel) and its target
spelling. The neural models unsurprisingly do a better job of capturing these kinds of
patterns than the noisy channel model, hence the ensemble benefits.

4.5.4 Impact of mC4. In this section, we investigate the use of mC4—the pretraining data
for both mT5 and ByT5 models—for this task in two ways. First, we examine whether
we can leverage the additional training data in each language to build better language
models and thus improve the noisy channel approach. Second, we ask whether there
might have been any influence of Wikipedia data having been included in mC4 on the
fine-tuned mT5 and ByT5 results.

We follow the approach outlined in Section 3.5.1 to train 4-gram Kneser-Ney word-
piece models from all the mC4 text available in each of our 12 languages, after doing
the same “whitespace normalization” on the text. New wordpiece models are created
from these corpora prior to n-gram model estimation. Given the size of the Hindi and
Bengali sub-corpora in mC4, to control for model size, we pruned 4-grams from these
models that only occurred once in the corpus; for other languages the language models
are left unpruned.

506

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Table 12
WER% of context-aware “noisy channel” model when using language model trained from either
the Dakshina Wikipedia training data (repeated from Table 8) or mC4.

Language Dakshina mC4 LM
Wikipedia LM

bn 18.4 (.10) 23.3 (.13)
gu 14.2 (.04) 15.1 (.02)
hi 10.4 (.02) 11.3 (.02)
kn 14.7 (.04) 28.6 (.05)
ml 20.2 (.06) 33.1 (.07)
mr 12.2 (.07) 18.2 (.04)
pa 15.4 (.03) 13.5 (.05)
sd 26.5 (.35) 24.1 (.40)
si 21.4 (.14) 23.3 (.18)
ta 15.9 (.05) 25.9 (.05)
te 14.4 (.03) 26.9 (.06)
ur 12.2 (.11) 11.9 (.10)
µ 16.3 (.05) 21.3 (.06)
all 16.4 (.06) 20.0 (.07)

Table 12 presents side-by-side WER% comparison between our existing “noisy
channel” system, using a language model trained on the training portion of the Dak-
shina Wikipedia text, and one using a language model trained on mC4. From this table
we can see that the mC4 trained language models are overall much less effective than
the Wikipedia trained ones. There were modest improvements for two of the languages
with the lowest amount of Wikipedia training data in Dakshina—Punjabi (pa) and
Sindhi (sd)—as well as Urdu (ur), but otherwise the results were relatively poor. In
particular, the Dravidian languages (kn, ml, ta, te) achieved quite poor performance
using this data. One might hypothesize that strong domain and or register (e.g., formal
vs. informal) mismatch between Wikipedia and what is otherwise included in mC4 is to
blame for these generally poor results.

Given that mC4 is harvested from online text, which includes Wikipedia, one
question that arises is whether the models that are pre-trained on this text (mT5, ByT5)
achieve any benefit from potentially having seen the output strings (i.e., in the native
script) of our dev set during pre-training. To examine this, we made use of the URLs
provided by both mC4 and Dakshina to determine which strings in the development
set come from documents that might have been included in mC4.

The Wikipedia URLs come in several forms shown in Table 13. For a given language,
such as bn, Wikipedia URLs are canonically of the form 1 shown in the table, however

Table 13
Examples of various Wikipedia URLs.
Type URL example

1. https://bn.wikipedia.org/wiki/TITLE

2. https://bn.m.wikipedia.org/wiki/

3. https://web.archive.org/web/INDEX/http:/ml.wikipedia.org/w/index.php?title=TITLE

4. https://hi.wikipedia.org/wiki/index.html?curid=INDEX

507

https://bn.wikipedia.org/wiki/TITLE
https://bn.m.wikipedia.org/wiki/
https://web.archive.org/web/INDEX/http:/ml.wikipedia.org/w/index.php?title=TITLE
https://hi.wikipedia.org/wiki/index.html?curid=INDEX

Computational Linguistics Volume 50, Number 2

Table 14
Percentage of dev set sentences from documents possibly included in mC4, for each language.

Language: bn gu hi kn ml mr pa sd si ta te ur

Percentage: 84.7 79.5 71.8 81.2 60.3 65.2 56.8 45.0 65.9 59.5 67.9 63.6

Table 15
Dev set macro-averaged WER% for strings from documents included in mC4 versus strings from
documents not included in mC4, as well as relative and absolute WER% differences between
these results for each system.

System All Documents Documents
sentences in mC4 not in mC4

“Noisy channel” 16.3 (.05) 16.4 (.05) 16.0 (.05)

mT5 Base 17.7 (.11) 17.6 (.10) 17.7 (.11)
Large 17.0 (.10) 17.0 (.11) 17.0 (.10)

ByT5 Base 18.0 (.05) 18.2 (.06) 17.5 (.07)
Large 18.7 (.13) 18.9 (.13) 18.1 (.13)

Full Ensemble 14.4 (.04) 14.4 (.04) 14.3 (.03)

there can be variants depending on how the page was accessed, e.g., type 2, and we
normalize these to ensure we find titles in either format. Additionally, there are aggre-
gators (type 3) that store or point to Wikipedia pages, where the numerical INDEX and
original Wikipedia TITLE are stored in ways idiosyncratic to the particular aggregator.
We exhaustively reviewed the aggregators found in the mC4 URLs to ensure that we
found all sources pointing to particular documents. Finally, Wikipedia pages can be
accessed by an index (shown as type 4 in Table 13), and we also collected these indices.

The Dakshina dataset provides all of the URLs, page IDs, and revision IDs for the
data included in the dataset, and we collected the information for the documents from
which sentences in the development set were extracted.35 We count any sentence as
possibly being included in mC4 if either the page title or page ID is found from the
set extracted from the mC4 URLs.36 Not every sentence from these documents end up
in the mC4 text collection, but we wanted to cast a wide net and exclude sentences
that may have been included. Table 14 presents the percentage of dev set sentences that
were from documents that matched the mC4 list, hence were possibly included in that
corpus.

To examine the impact of inclusion in mC4 on the results, in Table 15 we compare
the macro-averaged WER% across languages for dev set sentences possibly included in
mC4 versus those from documents not in the corpus. We include the “noisy channel”
model, which is trained only on the Dakshina Wikipedia set, hence has not been exposed
to these documents, as the means to assess how different the error rates for the two
sets of sentences are with no exposure. We use macro-averaged WER% due to the
variability in number of sentences in each set per language, which would have reduced

35 Recall that the native-script Wikipedia training data that our language models are trained from are
disjoint from the documents that were used to extract validation data, so we only need to track the
documents used to create the validation sets.

36 See https://github.com/google-research/google-research/tree/master/
context_aware_transliteration for resources and scripts used to perform this matching.

508

https://github.com/google-research/google-research/tree/master/context_aware_transliteration
https://github.com/google-research/google-research/tree/master/context_aware_transliteration

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

comparability if we had used a micro-average. The set of sentences from documents
not in mC4 seems very slightly harder, as evidenced by the noisy channel and ByT5
models, while mT5 and the ensemble show essentially the same performance on both
sets of sentences.

These results—coupled with earlier results showing that (1) the noisy channel
model provides better performance than any of the pretrained models, and (2) training
a language model on mC4 degrades noisy channel performance—suggest that, if any
system gains are attributable to having seen validation set output sentences as part of
pretraining, such gains are extremely modest.

4.5.5 Remaining Issues. We conclude this analysis section by mentioning some remaining
issues that both continue to cause errors and for which clear generalizations can be
made. One continuing source of errors are acronyms, which in these languages are
derived from Latin script acronyms and are produced in the native script as sounded-
out letter sequences. For example, the Indian political party commonly referred to as
BJP (“Bharatiya Janata Party”) is written in Hindi as , which sounds out the Latin
script letters (“beejaypee”). While such common acronyms are easy to memorize, the
task of deciding when something is an acronym and should be produced as a letter
sequence is difficult.37 For example, in Malayalam, the sentence

contains two related acronyms (GST) and (SGST).38 The final
ensembled model gets the first acronym correct, but for the second one it produces
(“cyst”), that is, a word with somewhat similar spelling. This is a complex phenomenon
that exists in all of the languages included in the Dakshina dataset.

Acronyms in isolation remain an issue, but the problem can be particularly acute
when they are inflected in the language, namely, when the acronym is the root
within the fully inflected form. For instance, the Malayalam phrase “

” (“selected to IAS”)39 from the dev set is romanized as “IASlekku
thiranjedukkappettu”, and our system incorrectly transliterates the first word as
“ ”. Most of our systems apply their transliteration on lowercase in-
put, hence losing some of that potentially useful information. For Dravidian languages
such as Malayalam, inflection of English origin words in general (and acronyms based
on Latin script phrases) is not uncommon and remain an issue for these systems.

An additional issue for English origin words is that in some cases there may be
multiple acceptable ways to spell the word, and some fraction of the errors arise from
such a mismatch. For example, the Malayalam sentence

is actually just English (“International Committee for Dyeing and Cleaning”), and the
word for “dyeing” can be acceptably spelled either or . Mapping
to a canonical version (reading normalization) would help to remove these kinds of
spurious errors.

37 For example, see Schiffman (2008) for discussion of the prevalence and borrowing peculiarities of English
acronyms in modern Tamil.

38 “State Goods and Service Tax.”
39 IAS is the Indian Administrative Service.

509

Computational Linguistics Volume 50, Number 2

Table 16
Full-string Latin-to-native transliteration WER% for the test section of the Dakshina dataset: (1)
A non-contextual system: an ensemble of three single word transliteration models: ByT5, LSTM
and Pair 6g, plus a word-level wordpiece language model; and (2) a contextual system: a
full-string ensemble of the “noisy channel,” mT5-large, and ByT5-base models.

Language
Non-contextual Contextual

ByT5, LSTM, Pair 6g Translit “Noisy channel” + ByT5-Base +
Ensemble + Word-level LM mT5-Large Ensemble

bn 20.5 (.09) 15.0 (.06)
gu 14.5 (.10) 11.5 (.16)
hi 12.4 (.02) 10.6 (.09)
kn 15.0 (.03) 12.8 (.07)
ml 21.2 (.03) 17.9 (.09)
mr 12.6 (.05) 9.7 (.06)
pa 18.3 (.11) 14.2 (.09)
sd 29.1 (.67) 24.1 (.09)
si 23.9 (.12) 17.6 (.08)
ta 17.3 (.12) 14.7 (.20)
te 15.3 (.13) 13.1 (.02)
ur 14.8 (.04) 12.1 (.17)
µ 17.9 (.07) 14.4 (.04)
all 18.1 (.08) 14.6 (.04)

4.6 Test Partition Results

As one final experiment, we report transliteration results on the test partition of the Dak-
shina dataset for each language. Roark et al. (2020) only reported on the development
set, which is what we compared to above. However, since we examined many systems
and how they performed on the development set, it is possible that we overtuned to that
particular data. As far as we know, no results have been reported in the literature on
this partition yet, so we present our best performing non-contextual system (ensemble
of transliteration models combined with a word-level wordpiece language model) and
our best performing context-aware system (ensemble of three context-aware systems),
to verify that similar behavior is observed. Table 16 presents these two systems on all of
the languages, as well as macro-averaged (µ) and micro-averaged (all) WER% results.

We find that both the context-aware and non-contextual systems follow similar
patterns on the test set as on the development set, with WER% differing from the
development set results by at most ±0.6% absolute for any language, and differences
of micro-average and macro-average less than 0.1% absolute. In addition to providing
context-aware and non-contextual baselines for this test partition, we replicate the
result discovered on the development set, that the use of context provides an average
approximately 20% relative reduction in error rate.

5. Conclusion

We have presented an extensive experimental exploration of context-aware full sentence
transliteration in the typical scenario of lacking full sentence parallel data. We find
that both “noisy-channel” approaches, relying on non-contextual transliteration models
and language models, as well as pretrained sequence-to-sequence models fine-tuned on

510

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

simulated parallel training data, contribute to the lowest error rate (and lower variance)
for this task. We also found that pruning a small fraction of outliers from the training
set improved fine-tuning of pre-trained models, sometimes dramatically so, as with
Tamil, and this contributed to the excellent noisy channel performance, which was
the best single context-aware system. We establish, through careful control, that a non-
contextual (word-level) language model provides very large error rate reductions, and
is responsible for approximately 80% of the relative error rate reduction between using
just non-contextual transliteration models and the best fully context-aware system. This
is of particular importance in use scenarios where low latency is required, as it provides
a relatively low error rate approach while processing each word independently, which
is straightforwardly parallelizable, as we demonstrated in the cache-based results.

We use ensembling for all stages of processing, which results in lower error rates
and variance across all languages in the set—not just better on average, but better across
the board. This is demonstrated to be of particular importance with pretrained models.
Finally, we demonstrate the key importance of context, the use of which ultimately
provides substantial error rate reductions across the board, though not as substantial
as the results from Roark et al. (2020) would suggest in their results.

There are many directions for future work. We would like to extend the work to
larger and more diverse collections of languages and scripts, though that requires at
least some full sentence parallel data for system development and validation. It could
be possible to mine full-sentence romanized and native data—not necessarily parallel
but still useful for (for example) building language models—from multilingual corpora
such as CC-100 (Conneau et al. 2020) and mC4 (Xue et al. 2021). Data quality in these cor-
pora can be very low, as documented recently (Kreutzer et al. 2022; Madhani, Khapra,
and Kunchukuttan 2023; Doddapaneni et al. 2023), so validating and curating the
data would be an interesting research project on its own. Romanized data coverage in
particular is also limited. Of the 12 Dakshina languages, mC4 only contains romanized
Hindi—see Nielsen, Kirov, and Roark (2023) for evidence that this is actually a mixture
of Hindi and Urdu—and CC-100 contains only five (Bengali, Hindi, Tamil, Telugu, and
Urdu).

We hope that some of the lessons drawn in this article, about highly inflected
languages or abjad writing systems, will be valuable as new languages are investigated.
We suspect that some additional system improvements may be achieved by optimizing
certain meta-parameters that we opted to leave as defaults, such as mixing weights
during ensembling. Issues around script and text normalization are also interesting,
since both Brahmic and Perso-Arabic scripts come with encoding complexities beyond
those encountered in most alphabetic scripts (Johny et al. 2021; Gutkin et al. 2022a,b).
Additionally, as we have seen, some words have multiple valid spellings in the native
scripts of these languages, which would be useful to account for in evaluation. Finally,
we have seen that pretrained large language models are an important component of our
highest quality systems, and these models are advancing quickly in size and quality,
so we intend to continue working with newer and more powerful such models. For
this article, they did not achieve stand-alone performance levels sufficient to suggest
abandoning the alternatives altogether, however, there are many ways to try to exploit
the power of such models now and in the future, and this will continue to be a focus.

Appendix A. Details of Finite-state Methods

A pair n-gram language model is an n-gram model over pair symbols, i.e., composite
symbols of the form x: y where x and y are individual symbols (Galescu and Allen

511

Computational Linguistics Volume 50, Number 2

2001; Bisani and Ney 2002; Chen 2003). Figure 2 on page 488 presents the schematic
of an FST-representation (Roark et al. 2012) of a pair trigram model, using the /puli
Tamil example from earlier in the paper. Let’s assume that the words get aligned at the
individual Unicode codepoint level as:

These colon-delimited pair symbols then become tokens for training language models,
which end up with an automaton structure such as that shown in Figure 2. States in the
automaton represent conditioning histories (shown with text representing the history in
the figure for ease of interpretation). Transitions leaving the states are labeled with the
next token, and their destination states encode the updated history. Backoff arcs (labeled
here with ε) go from higher order states to their lower-order backoff state, where the
history loses the most distant token. The unigram state (with empty history) terminates
the backoff path. Each transition is also weighted (weights omitted in the figure for
clarity), so that the correct n-gram probabilities are accrued.

This n-gram model automaton can be straightforwardly converted to a finite-state
transducer by splitting the pair symbols into an input symbol and an output symbol
and leaving ε labels (and all weights) unchanged. Note that either script can be on
the input or output side, i.e., the model can map in either direction. Assuming that
the Latin script is on the input side, the pair symbol “ ” would end up with “p”
on the input side and “ ” on the output side of the transducer transitions. Let T
represent the resulting transducer and P the original n-gram model automaton.

To find transliterations of an input string, we first encode the input string as a linear
automaton, which represents a single path labeled by individual Unicode codepoints
of the string. Thus, for our example string puli we get the automaton S shown in
Figure A.1 below. Then composing S with T (S ◦ T) would provide all paths through
T with the input string labeling the input side of the path. If we project to output
labels (i.e., throw away the input labels), remove epsilon transitions and determinize (all
general transducer operations in OpenFst), we are left with a weighted lattice of possible
transliterations for the input string. Note that the weight for each distinct transliteration
is the minimum cost (maximum probability) score for that output, which is used as
an approximation of the probability for the candidate, rather than summing over all
alignments between the input and output string.

There is an alternative method for composing with the pair n-gram model, which
allows for backoff transitions to be encoded as failure (φ) transitions rather than ε-
transitions (Allauzen, Mohri, and Roark 2003). An ε-transition can always be traversed
without consuming input, but a φ-transition can only be traversed if the input symbol
does not label another transition leaving that state. The primary benefit in this case
would be that for a given input, fewer paths would be traversed through the model,
leading to less intermediate memory usage. Further, the φ-transition backoffs provide
an exact encoding of the n-gram model, rather than the approximation of allowing
backoff even when the input symbol is present. See Allauzen, Mohri, and Roark (2003)
for discussion.

Figure A.1
String automaton over Latin script symbols corresponding to puli.

512

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Figure A.2
Schematic of input string pair lattice.

To intersect directly with the pair automaton P using φ-transitions to represent
backoff, we must encode the input string as a lattice of possible pair symbols. Figure A.2
shows this for our example string, where insertion loops at each state allow output
symbols (illustrated here with the virama symbol) with ε on the input side, and at each
position all possible pair symbols with that character on the input side (including ε,
which results in a deletion) must be included. This can then be intersected with the P
automaton, and “projected” to output labels, etc., as with the transducer approach. For
this paper, we follow this second approach to decoding with the pair n-gram model.

For context-aware transliteration of full sentences, one of the approaches that we
follow is to combine non-contextual transliteration models and language models. The
non-contextual transliteration models are used to extract k-best possible transliterations
for each word in the input string, along with probabilities. These are encoded in an
acyclic weighted finite-state automaton, i.e., a word lattice, where the weights are stored
as negative log probabilities. As mentioned in Section 3.5, our language models are also
encoded as weighted finite-state automata, and we can combine the two models simply
via finite-state composition. This is followed by finite-state shortest path extraction
(Mohri 2002), which efficiently returns the lowest cost (highest probability) paths.

One slight complication is the use of word pieces in the language models, however
words in the lattice produced by the transliteration models deterministically map to a
string of word-piece tokens. An unweighted deterministic finite-state transducer can
be constructed to map from words to word pieces (and back), and this transducer can
be used as part of the composition mentioned above. Specifically, let T be the word
lattice produced by the transliteration models; L be the language model; and W be the
transducer mapping from words to word pieces. The highest probability paths from
the combination of the transliteration and language models would then be obtained by:
ShortestPath(T ◦W ◦ L).40

Appendix B. Fine-tuning Dataset Pruning

During initial attempts to fine-tune the pre-trained ByT5 model for single word Latin-to-
native script transliteration, we noted that the model yielded relatively poor results for
Tamil relative to other modeling methods. For other languages in the set the resulting
ByT5 model was generally quite good—often yielding lower CER% than the other
modeling methods—but for Tamil the models achieved a relatively high mean CER%
and very high variance. An examination of model training patterns led us to suspect
that the model was having difficulty dealing with outliers in the fine-tuning data, e.g.,
stray translations, complex correspondences, or outright errors in the data.

40 Projecting onto the input labels would give the words for each path.

513

Computational Linguistics Volume 50, Number 2

Figure B.1
Tamil Latin-to-native single word transliteration CER% as fine-tuning progresses, evaluated on
small held-out portion of the training set, in two conditions: (a) all training data included;
(b) removal of 10% of the least representative examples from the fine-tuning data, using two
different methods. Each point in the graph is the mean CER% of 25 models with 95% confidence
intervals indicated with shading.

Before presenting the details of our examination, we will foreshadow the results.
Figure B.1 presents a comparison of held-aside CER% as training progresses, with the
original training data on the left, and results using two different methods for identifying
the least representative 10% of the training data and excluding those items from the fine-
tuning data on the right. Note that the y-axis scales are different, so that every point in
the right plot represents a lower CER% than any point in the left plot. Something in that
10% of examples caused the fine-tuning to fail to adequately learn the task.

Prior to determining the cause of this failure of fine-tuning, seeing the plot on the
left led us to inspect the model predictions at some particularly poor operating point.
One point in training that resulted in many regressions was the transition between steps
11,500 and 12,000 of fine-tuning, and Table B.1 presents a subset of salient prediction
errors introduced at this point. Input romanizations are shown with targets and predic-
tions in the native script, the latter presented with colloquial romanizations underneath,
along with the corresponding simplified glosses.41 Interestingly, although all the predic-
tions in Table B.1 are grossly wrong as transliterations, they are still valid Tamil words.
This led us to hypothesize that the model was learning to produce some other kind
of correspondence for these items than the transliteration that we were attempting to
train it to perform. Note that the first five predictions completely mismatch the targets,
while the last two at least share some matching word-final aks.ara syllables. For example,
for the input sequence “paathukaapputan”, the target sequence “ ” and
the corresponding prediction “ ” share the suffix “ ” (“tan”). Only two of the

41 These translations are from Google Translate and were judged by the native speaker as “mostly fine”,
given the highly agglutinative nature of Tamil (Steever 1987; Lehmann 1993; Andronov 2004).

514

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Table B.1
Examples of Tamil ByT5 model prediction errors in Latin-to-native direction on the held-out
portion of the training set during the fine-tuning. The inputs are prefixed with “ta-Latn-Taml-”
string (not shown). Targets and predictions are shown with the colloquial romanizations
underneath along with the simplified translations.

predictions in Table B.1 (“ ” and “ ”) are found in the Dakshina training
data as standalone lexical items; the rest are either not found or are present as con-
stituent morphemes of other words.

These observations led us to speculate that some of the training instances were
providing confusing guidance to the model, so we began to look for items that did
not appear to be transliterations in the training set. To do this, we used a deterministic
colloquial romanization scheme42 to derive what a romanization might look like for
each native-script term in the training set, and then compared those romanizations with
the ones provided in training. To avoid as many spurious mismatches as possible, it was
important to use a romanization scheme that was colloquial versus formal methods
such as the ISO 15919 standard (ISO 2001), which does not represent common usage
of the sort included in the training set, but is rather focused on exact encoding of the
graphemes used and reversibility.

Given the colloquial romanization, for each training instance, we calculated a dis-
tance d between the romanization provided and the one that resulted from the determin-
istic romanization. For this work, we use a sum of normalized Damerau–Levenshtein
(Damerau 1964) and Jaro-Winkler (Winkler 1990) distances between individual roman-
ized strings.43 Table B.2 presents Tamil items that fall in the top 10% of the training set
in terms of this distance, including the very highest scoring entries as well as the lowest
scoring that still fall within the top 10%. For each entry the score d is shown alongside
the informal romanization x, the corresponding Tamil target y, and the output x′ of the
rule-based romanizer T applied to y. The entities with the highest values of d mostly
correspond to annotation noise in Dakshina as evidenced by the third entry, where for
the input “tikket”, the target “ ” (“hal”) is likely an artifact of mislabeling the

42 We use Aksharamukha rule-based colloquial Brahmic script romanizer available at
https://github.com/virtualvinodh/aksharamukha-python.

43 We use the implementation of both algorithms from https://github.com/life4/textdistance/.

515

https://github.com/virtualvinodh/aksharamukha-python
https://github.com/life4/textdistance/

Computational Linguistics Volume 50, Number 2

Table B.2
Examples from the 10% of the training set entries with the highest d; the left side shows the
highest-scoring entries from this set and the right side shows the lowest-scoring entries from
that top 10%.

original Tamil constituent corresponding to “tikket hal”. Lower values of d, such as
found on the right side of the table, often correspond to loanwords, English or other
foreign-origin words, personal or place names, etc. While these are likely not errors, they
do represent quite challenging items in the training which may also be complicating
fine-tuning.

Investigations of the single word training data in other languages found similar
outliers, hence we sought to find a pruning method that could be applied to all of the
languages in the data. Reliance on a third-party package for the secondary romanization
needed to score each instance is problematic in particular for the languages using a
Perso-Arabic script, Sindhi and Urdu. While some romanization conventions, such as
the Hunterian system, are generally followed for Urdu (United Nations 2007), the vari-
ance in the ways different annotators romanize Perso-Arabic in Dakshina is significantly
higher than for the Brahmic-script languages. This is partially explained by the nature
of the writing systems in question, since they do not mark vowels, leaving some degree
of freedom to the annotators. This would lead to even more spurious mismatches with
such a deterministic system. Sindhi, however, presents a more serious problem, in that it
is not supported in the Aksharamukha system and Sindhi romanization is not covered
by any formal recommendations (Motlani 2016). It is also worth noting that the Sindhi
writing system is significantly more complex than Urdu (Section 3.3 in Doctor et al. 2022;
Ahmadi and Anastasopoulos 2023). As an alternative that can cover all languages, we
next outline an approach wherein we build our own romanization systems to provide a
secondary romanization to compare with the training instances.

Let D = {(xi, yi)} be the training set string pairs, where xi are the romanized inputs
and yi are the corresponding native-script outputs. To train each model we perform a
random shuffle and split D into the disjoint training DTrain

k and test DTest
k subsets.44 We

then define a ranking function as

r(xi, yi) =

∑K
k=1
∑

(xi,yi)∈DTest
k

d
(
xi, fk(yi)

)∑K
k=1
∑

(xi,yi)∈DTest
k

1
(B.1)

44 Please note that unlike the classical K-fold cross validation, our K test sets may overlap making the
algorithm somewhat similar to leave-P-out cross-validation (Celisse 2008).

516

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Table B.3
Tamil Latin-to-native script CER% for four types of models when trained on full training sets
versus trained on pruned data sets.

Model All data Pruned data

Pair 6g 9.4 (.04) 9.3 (.03)
LSTM 8.6 (.14) 8.5 (.11)
Transformer 8.2 (.10) 8.2 (.08)
ByT5 12.7 (3.85) 7.9 (.42)

where the set DTrain
k is used for training fk, and the normalization factor in denominator

is a count of all instances of (xi, yi) in K test partitions. More specifically, we set K to
20 and use 50% random split into training and test partitions using a stratified (w.r.t.
native-script types) sampling strategy that ensures that

∀(xj, yj) ∈ DTrain
k and ∀(xl, yl) ∈ DTest

k : yj 6= yl (B.2)

for all k ∈ [1, K], meaning that there is no overlap of native-script strings y between
the training and test partitions of each Dk. We use the same string distance metric d as
defined above for comparing individual romanized strings.

For the romanization mappings we train 20 Pair-LM n-gram FSTs for each language.
The model details are provided in Section 3.3.3 and Appendix A. The parameters of
the models are different from those reported in Section 3.3.3 because each model is
estimated using 50% of the original data. In particular, we train 4-gram instead of 6-
gram transducers for all languages and retain the unigram state in the resulting models.
Single shortest path decoding is used at inference time.

The plot in Figure B.1(b) shows fine-tuning of the Tamil system after pruning the
highest scoring 10% from the fine-tuning data, using either the deterministic romaniza-
tion scoring or the FST-based method. Both yield very similar results.

For final evaluation, we train four types of models using the pruned data—in
addition to ByT5 we also train Pair 6-gram FSTs, LSTMs, and Transformers. The results
for Tamil are summarized in Table B.3, where we contrast them with the models trained
using the full training set. We observe that the significant gains only apply to ByT5 fine-
tuned model, while for other models this filtering has essentially no effect, i.e., they are
much more robust to outliers. For that reason, all other models were trained using the
full training sets.

Appendix C. mT5 SentencePiece Coverage Issues

Table 8 in Section 4.3 presents WER% of context-aware Latin-to-native script translitera-
tion systems for all languages on the development portion of the Dakshina dataset. The
mT5 models on Sinhala performed extremely poorly relative to the ByT5 models—more
than 10% absolute higher. This was the only language with higher WER% for mT5 than
ByT5, leading us to investigate why this particular language was so much worse for that
modeling method.

We first looked to characterize the kinds of errors that were being made relative
to other conditions, and to that end Table C.1 presents the raw total number of substi-
tutions, insertions, and deletions for the ByT5 (Base) and mT5 (Large) models for each

517

Computational Linguistics Volume 50, Number 2

Table C.1
Comparison of substitutions, insertions, and deletions between the hypotheses of ByT5 base and
mT5 large models on the full-sentence Dakshina dev set, total errors summed over all 5 trials.
For each class we also report r defined as the absolute difference for each class divided by the
number for the ByT5 base model. The anomalous values of mT5 insertions and the
corresponding values of rins are highlighted in pink. The highest number of insertions
corresponds to Sinhala.

Language Substitutions Insertions Deletions
ByT5 mT5 rsub ByT5 mT5 rins ByT5 mT5 rdel

bn 40,810 40,486 0.0 4,438 4,641 0.0 8,831 2,920 0.7
gu 45,384 49,727 0.1 1,997 2,052 0.0 13,430 307 1.0
hi 49,523 46,800 0.1 1,406 1,544 0.1 17,399 886 0.9
kn 31,081 31,533 0.0 1,182 1,308 0.1 14,779 5,621 0.6
ml 42,775 42,463 0.0 592 1,320 1.2 5,293 506 0.9
mr 25,092 25,984 0.0 322 718 1.2 4,070 507 0.9
pa 62,006 64,429 0.0 1,198 1,317 0.1 14,226 967 0.9
sd 106,174 101,309 0.0 15,989 16,158 0.0 6,274 1,906 0.7
si 52,602 75,176 0.4 3,959 31,907 7.1 9,922 1,317 0.9
ta 39,685 37,593 0.1 811 891 0.1 5,618 147 1.0
te 30,195 31,384 0.0 1,699 4,266 1.5 6,319 350 0.9
ur 43,233 40,945 0.1 7,001 7,090 0.0 6,136 5,057 0.2

language. In order to detect divergences between the two systems for each class of error,
we also calculate rclass for each class of error defined as

rclass =

∣∣∣NByT5
class −NmT5

class

∣∣∣
NByT5

class

(C.1)

which yields rsub, rins, and rdel for the substitutions, insertions, and deletions, respec-
tively. As can be seen from the table, insertions stand out, with high rins values for
Malayalam, Marathi, Tamil, and especially Sinhala. The number of insertions in the mT5
output for Sinhala is nearly an order of magnitude higher than for ByT5.

Since the key difference between mT5 and ByT5 is the former’s use of a Sentence-
Piece vocabulary,45 we hypothesized that the relatively high number of insertions by
mT5 in some languages may be due to some lack of coverage by mT5 vocabulary. Two
Unicode symbols used in the Dakshina dataset are not found in the mT5 vocabulary:
zero-width non-joiner (ZWNJ, U+200C) and zero-width joiner (ZWJ, U+200D), which are
non-printing characters that are often used in digital representations of Brahmic scripts
(Gupta and Sornlertlamvanich 2007; Unicode Consortium 2022). Out of the 12 Dakshina
languages, the ZWNJ characters were only found in Malayalam and Telugu, while
the ZWJ characters are only present in Marathi and Sinhala. These characters appear
not only in the Dakshina dataset but also in the mC4 dataset, but were apparently
removed during SentencePiece vocabulary selection. It is important to note that these
characters cannot be merely dismissed as text noise, but instead serve an important

45 The mT5 vocabulary is available at
https://console.cloud.google.com/storage/browser/t5-data/vocabs/mc4.250000.100extra. It
consists of 250K entries (with 100 special tokens).

518

https://console.cloud.google.com/storage/browser/t5-data/vocabs/mc4.250000.100extra

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Table C.2
Comparison of types with Unicode zero-width non-joiner (ZWNJ, U+200C) and zero-width joiner
(ZWJ, U+200D) characters between normalized mC4 and Wikipedia corpora. The Malayalam and
Telugu corpora only have ZWNJ characters, while Marathi and Sinhala corpora only have ZWJ
characters. The counts are rounded to the nearest integer. The measures r are defined as a ratio
(expressed in percents) between the count of types or tokens with ZWNJ or ZWJ characters, and
the total number of types or tokens, respectively.

L. Char
mC4 Wikipedia

Types Tokens Types Tokens
N NZW rtyp N NZW rtok N NZW rtyp N NZW rtok

ml ZWNJ 25M 2M 7.6 976M 19M 1.9 1M 42K 3.8 6M 93K 1.4
mr ZWJ 12M 228K 1.9 1,272M 4M 0.3 335K 4K 1.3 3M 11K 0.3
si ZWJ 5M 569K 12.3 428M 22M 5.1 232K 31K 13.4 3M 213K 7.6
te ZWNJ 13M 2M 13.3 630M 30M 4.7 891K 54K 6.1 9M 133K 1.5

graphemic function. In Sinhala, for example, the ZWJ characters are used among other
things to form ligated conjunct consonant clusters (known as bandi akuru,)
that otherwise have no atomic Unicode representation as a single Sinhala code-point
(Samaranayake et al. 2003; Wijayawardhana et al. 2008).

In addition to the Wikipedia-based Dakshina development set, we also investigate
the prevalence of ZWNJ and ZWJ characters in the mC4 corpus that is used for pre-
training mT5 model (Xue et al. 2021). For these counts, we preprocess each of the 12
language’s corpora in mC4 using an approach similar to Daskhina whitespace normal-
ization described in Section 3.2.4: We treat any character outside of the language’s native
script Unicode code block as a whitespace but retain the characters from the Unicode
general punctuation code block (U+2000 – U+206F). The comparison of counts for types
and tokens corresponding to ZWNJ and ZWJ between whitespace-normalized mC4 and
Wikipedia data is shown in Table C.2. For both corpora, ZWNJ characters are only found
in Malayalam and Telugu, while the ZWJ characters are only present in Marathi and
Sinhala. For each corpus (mC4 or Wikipedia) and each word (token or type) three values
are shown in Table C.2: the total number of types or tokens in the corpus (N), the number
of types or tokens with ZWNJ or ZWJ characters (NZW), and the measure r (for types or
tokens) defined as r = 100 NZW

N .
As can be seen from Table C.2, Sinhala mC4 and Wikipedia normalized corpora

have the highest percentage of tokens with zero-width non-printing characters (accord-
ing to rtok) among all the languages in question, and the Wikipedia types and tokens are
particularly high, which explains why this issue causes such a noticeable spike in error
rate for Sinhala in particular.

The ZWNJ and ZWJ characters are treated as OOVs by mT5, which explains the ab-
normally high number of insertions: mT5’s SentencePiece tokenization produces extra
whitespace tokens (“ ”, or U+2581, in the mT5 vocabulary) in positions corresponding
to ZWJ characters, thus over-segmenting and causing evaluation errors.46

Three examples of such segmentation errors are shown in Table C.3. Each input
Sinhala string is accompanied by: (1) the number of ZWJ characters it contains; (2) the

46 The degradation in performance of large multilingual neural models on downstream tasks due to
insufficient vocabulary coverage has been noted before for models other than mT5 (Wang et al. 2019;
Liang et al. 2023).

519

Computational Linguistics Volume 50, Number 2

Table C.3
Examples of bad Sinhala ZWJ tokenization using mT5 SentencePiece tokenizer. The OOV ZWJ is
represented by “ ” (U+2581, Lower One Eighth Block).

resulting mT5 SentencePiece segmentation; and (3) the bad detokenized output string,
with the problematic tokens and the corresponding bad outputs shown in dark red.
As can be seen from the table, each OOV token is converted to whitespace by the
detokenizer. In the first two examples from the table, the corruption results in ungram-
matical, but orthographically valid output. For example, the first word in “Sri Lanka”
represented by Sinhala aks.ara “ ” (“shri”) is emitted as two independent aks.ara to-
kens “ ” (“sh”) and “ ” (“ri”). In the third example, the two ZWJ characters in the
input string cause the tokenizer to over-segment twice, resulting in three whitespace-
separated outputs, the second of which is orthographically illegal because it violates
the rules of representing the aks.ara in Brahmic scripts—the modifier character, such
as Sinhala virama “ ” in this example (U+0DCA, Sinhala Sign Al-Lakuna), cannot start a
syllable (Salomon 1996; Bright 1999).

While these problems are most noticeable in our Sinhala data, they also occur in the
other languages with ZWJ or ZWNJ (ml, mr, te), just to a lesser degree given the lower
percentage of Wikipedia tokens in those languages using those characters. As can be
seen from the mC4 statistics in Table C.2, a different sample of text could very well have
had as many such tokens in Telugu as in Sinhala, leading to similar WER% increases in
that language.

Appendix D. Experimental Results for All Languages

Here we present full tables across all languages in the collection for results that are
otherwise reported in the main body of the paper just as micro-averaged and/or macro-
averaged error rates.

• Single-word Latin-to-native transliteration: Table D.1 presents the
reductions in single word Latin-to-native transliteration CER% achieved
by ensembling five different runs of the same modeling method, versus
unensembled runs of the method, using ensembling methods outlined in
Section 3.6. Table D.2 presents CER% for ensembles of two distinct
methods, and Table D.3 presents ensembles of 3 or more systems.

• Single-word native-to-Latin transliteration: Table D.4 presents the
reductions in minCER% achieved by ensembling five different runs of the
same modeling method, versus unensembled runs of the method.
Table D.5 presents minCER% for ensembles of two distinct methods, and
Table D.6 presents ensembles of 3 or more systems. Table D.7 presents the
reductions in EMDCER% achieved by ensembling five different runs of

520

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Table D.1
Per-language single method ensembling CER% results for all four modeling methods for
Latin-to-native script single word transliteration, along with reduction in CER (∆) versus
unensembled systems.

Lang Pair 6g Transformer LSTM ByT5
CER% ∆ CER% ∆ CER% ∆ CER% ∆

bn 14.2 (.04) 0.1 12.6 (.05) 0.4 12.8 (.07) 0.9 11.9 (.31) 0.5
gu 12.8 (.02) 0.2 11.6 (.08) 0.3 11.7 (.09) 0.7 9.7 (.17) 0.3
hi 14.8 (.05) 0.0 13.2 (.13) 0.2 13.1 (.09) 0.7 10.6 (.20) 0.4
kn 7.2 (.10) 0.1 6.4 (.04) 0.2 6.3 (.06) 0.4 5.3 (.16) 0.3
ml 9.9 (.05) 0.1 8.7 (.09) 0.2 8.6 (.07) 0.5 8.2 (.21) 0.3
mr 12.5 (.13) 0.1 11.3 (.11) 0.3 11.6 (.12) 0.8 9.6 (.31) 0.4
pa 18.0 (.03) 0.0 16.7 (.07) 0.3 16.7 (.08) 0.8 15.2 (.35) 0.4
sd 20.6 (.12) 0.1 19.5 (.16) 0.5 19.4 (.13) 1.0 18.5 (.22) 1.1
si 9.3 (.02) 0.0 8.7 (.03) 0.3 8.7 (.06) 0.5 8.9 (.12) 0.3
ta 9.3 (.02) 0.1 8.0 (.02) 0.2 8.1 (.07) 0.5 7.6 (.08) 0.3
te 6.9 (.04) 0.1 6.0 (.07) 0.2 6.3 (.06) 0.4 5.6 (.15) 0.3
ur 20.0 (.01) 0.0 19.0 (.14) 0.4 18.5 (.08) 1.1 19.8 (.34) 0.7
µ 13.0 (.02) 0.0 11.8 (.02) 0.3 11.8 (.02) 0.7 10.9 (.04) 0.5
all 12.8 (.02) 0.1 11.7 (.03) 0.3 11.7 (.02) 0.7 10.8 (.05) 0.5

Table D.2
Per-language two-model ensembling CER% results for Latin-to-native script single word
transliteration.

Lang Pair 6g + LSTM + Transformer +
LSTM transformer ByT5 ByT5 LSTM ByT5

bn 12.2 (.05) 12.0 (.10) 11.3 (.14) 11.2 (.15) 12.2 (.05) 11.2 (.14)
gu 11.3 (.07) 11.2 (.06) 9.5 (.16) 9.6 (.18) 11.1 (.05) 9.4 (.08)
hi 12.9 (.06) 12.8 (.11) 11.0 (.20) 10.9 (.16) 12.7 (.07) 10.8 (.15)
kn 6.1 (.07) 6.2 (.03) 5.2 (.12) 5.0 (.08) 6.0 (.05) 5.3 (.12)
ml 8.4 (.04) 8.5 (.03) 8.0 (.07) 7.8 (.13) 8.4 (.07) 7.8 (.12)
mr 11.3 (.08) 11.0 (.07) 9.5 (.23) 9.6 (.21) 11.0 (.03) 9.4 (.19)
pa 16.5 (.09) 16.4 (.06) 15.2 (.17) 15.2 (.16) 16.3 (.07) 15.1 (.13)
sd 18.8 (.11) 19.0 (.07) 17.9 (.18) 17.7 (.20) 19.0 (.11) 17.9 (.24)
si 8.2 (.06) 8.2 (.05) 8.2 (.07) 8.2 (.11) 8.4 (.04) 8.2 (.04)
ta 8.0 (.05) 7.9 (.04) 7.5 (.04) 7.4 (.08) 7.9 (.03) 7.3 (.08)
te 6.0 (.03) 5.9 (.07) 5.4 (.06) 5.4 (.01) 5.9 (.09) 5.3 (.09)
ur 18.0 (.04) 18.4 (.06) 18.3 (.18) 17.8 (.18) 18.1 (.10) 18.6 (.28)
µ 11.5 (.02) 11.5 (.01) 10.6 (.02) 10.5 (.02) 11.4 (.03) 10.5 (.03)
all 11.4 (.02) 11.3 (.01) 10.5 (.03) 10.4 (.03) 11.3 (.02) 10.4 (.03)

the same modeling method, versus unensembled runs of the method.
Table D.8 presents EMDCER% for ensembles of two distinct methods,
and Table D.9 presents ensembles of 3 or more systems.

• Full sentence native-to-Latin transliteration: Table D.10 presents single
method ensembled transliteration model WER% on the dev set.

521

Computational Linguistics Volume 50, Number 2

Table D.3
Per-language multi-model ensembling CER% results for Latin-to-native script single word
transliteration.

Lang All models in ensemble except All
Pair 6g Transformer ByT5 LSTM models

bn 11.3 (.10) 11.1 (.06) 11.8 (.03) 11.0 (.08) 11.1 (.06)
gu 9.8 (.09) 9.6 (.13) 10.9 (.07) 9.6 (.08) 9.8 (.07)
hi 11.4 (.08) 11.1 (.09) 12.4 (.07) 11.1 (.07) 11.4 (.06)
kn 5.3 (.07) 5.1 (.08) 5.8 (.06) 5.2 (.09) 5.3 (.05)
ml 7.9 (.07) 7.8 (.09) 8.2 (.04) 7.9 (.06) 7.8 (.03)
mr 9.9 (.12) 9.7 (.17) 10.8 (.04) 9.6 (.10) 9.9 (.12)
pa 15.4 (.14) 15.2 (.10) 16.1 (.06) 15.1 (.11) 15.3 (.11)
sd 17.8 (.09) 17.7 (.10) 18.6 (.08) 17.8 (.12) 17.7 (.04)
si 8.1 (.10) 7.9 (.07) 8.0 (.06) 7.8 (.06) 7.9 (.05)
ta 7.4 (.08) 7.4 (.03) 7.8 (.03) 7.3 (.02) 7.4 (.04)
te 5.4 (.06) 5.3 (.03) 5.8 (.04) 5.3 (.08) 5.3 (.06)
ur 17.7 (.10) 17.4 (.06) 17.6 (.03) 17.7 (.17) 17.3 (.11)
µ 10.61 (.03) 10.43 (.03) 11.13 (.01) 10.44 (.02) 10.51 (.02)
all 10.47 (.03) 10.30 (.03) 11.00 (.01) 10.31 (.02) 10.37 (.02)

Table D.4
Per-language single method ensembling minCER% results for all four modeling methods for
native-to-Latin script single word transliteration, along with reduction in minCER (∆) versus
unensembled systems.

Lang Pair 6g Transformer LSTM ByT5
minCER% ∆ minCER% ∆ minCER% ∆ minCER% ∆

bn 4.1 (.04) 0.1 2.8 (.05) 0.3 2.8 (.03) 0.4 2.4 (.03) 0.1
gu 2.5 (.03) 0.0 1.2 (.04) 0.1 1.1 (.02) 0.2 1.0 (.03) 0.1
hi 4.6 (.03) 0.0 3.2 (.08) 0.2 3.3 (.10) 0.4 2.8 (.08) 0.1
kn 1.4 (.03) 0.0 0.9 (.09) 0.4 0.8 (.06) 0.1 0.8 (.05) 0.1
ml 1.6 (.01) 0.0 2.3 (.53) 0.5 0.9 (.03) 0.3 0.9 (.02) 0.1
mr 2.4 (.03) 0.0 1.6 (.03) 0.1 1.6 (.04) 0.2 1.5 (.12) 0.1
pa 4.3 (.03) 0.0 3.0 (.08) 0.1 3.2 (.07) 0.3 2.9 (.06) 0.1
sd 8.6 (.09) 0.1 6.8 (.08) 0.3 7.0 (.09) 0.5 6.3 (.18) 0.2
si 1.1 (.01) 0.0 0.4 (.03) 0.1 0.5 (.03) 0.1 0.7 (.04) 0.0
ta 3.2 (.02) 0.1 2.6 (.09) 0.5 2.5 (.02) 0.3 2.4 (.05) 0.1
te 2.8 (.02) 0.0 2.2 (.05) 0.3 2.0 (.05) 0.3 2.4 (.07) 0.1
ur 7.7 (.02) 0.0 5.9 (.03) 0.2 6.1 (.07) 0.5 5.8 (.25) 0.1
µ 3.7 (.01) 0.0 2.7 (.04) 0.3 2.7 (.02) 0.3 2.5 (.02) 0.1
all 3.4 (.01) 0.1 2.5 (.05) 0.3 2.4 (.01) 0.3 2.3 (.02) 0.1

522

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Table D.5
Per-language two model ensembling minCER% results for native-to-Latin script single word
transliteration.

Lang Pair 6g + LSTM + Transformer +
LSTM Transformer ByT5 ByT5 LSTM ByT5

bn 2.7 (.02) 2.8 (.03) 2.3 (.02) 2.2 (.04) 2.5 (.06) 2.1 (.05)
gu 1.3 (.04) 1.7 (.06) 1.2 (.03) 1.0 (.03) 1.0 (.02) 1.0 (.03)
hi 3.2 (.02) 3.3 (.04) 2.7 (.08) 2.7 (.05) 3.0 (.06) 2.6 (.04)
kn 0.7 (.01) 0.9 (.08) 0.8 (.03) 0.6 (.02) 0.7 (.03) 0.7 (.11)
ml 1.0 (.00) 1.1 (.03) 0.9 (.01) 0.8 (.03) 0.9 (.02) 0.9 (.01)
mr 1.7 (.03) 1.9 (.03) 1.6 (.07) 1.3 (.07) 1.6 (.02) 1.4 (.05)
pa 3.1 (.05) 3.2 (.03) 2.9 (.05) 2.7 (.02) 3.0 (.03) 2.8 (.04)
sd 6.8 (.03) 6.8 (.05) 6.3 (.15) 6.1 (.08) 6.6 (.04) 5.9 (.11)
si 0.5 (.01) 0.5 (.01) 0.5 (.03) 0.5 (.01) 0.4 (.01) 0.4 (.01)
ta 2.4 (.03) 2.5 (.04) 2.3 (.04) 2.2 (.01) 2.3 (.02) 2.3 (.03)
te 2.1 (.04) 2.2 (.02) 2.1 (.02) 1.9 (.02) 1.9 (.05) 2.0 (.06)
ur 5.9 (.06) 6.1 (.02) 5.7 (.08) 5.2 (.05) 5.7 (.09) 5.1 (.08)
µ 2.6 (.01) 2.7 (.01) 2.4 (.02) 2.3 (.01) 2.5 (.01) 2.3 (.02)
all 2.4 (.01) 2.5 (.01) 2.2 (.02) 2.1 (.01) 2.2 (.01) 2.1 (.02)

Table D.6
Per-language multi-model ensembling minCER% results for native-to-Latin script single word
transliteration.

Lang All models in ensemble except All
Pair 6g Transformer ByT5 LSTM models

bn 2.2 (.03) 2.2 (.06) 2.5 (.03) 2.1 (.04) 2.2 (.03)
gu 1.0 (.02) 1.0 (.01) 1.1 (.02) 1.0 (.04) 1.0 (.02)
hi 2.7 (.07) 2.6 (.04) 3.0 (.03) 2.6 (.06) 2.6 (.05)
kn 0.6 (.03) 0.6 (.03) 0.7 (.02) 0.7 (.04) 0.6 (.03)
ml 0.8 (.03) 0.8 (.01) 0.9 (.02) 0.8 (.02) 0.8 (.03)
mr 1.4 (.02) 1.4 (.01) 1.6 (.03) 1.5 (.05) 1.4 (.02)
pa 2.7 (.05) 2.7 (.03) 2.9 (.04) 2.8 (.04) 2.7 (.03)
sd 6.1 (.11) 6.1 (.06) 6.4 (.02) 6.1 (.07) 6.1 (.03)
si 0.4 (.02) 0.4 (.01) 0.4 (.01) 0.4 (.02) 0.4 (.02)
ta 2.2 (.02) 2.2 (.03) 2.3 (.03) 2.3 (.03) 2.2 (.02)
te 1.9 (.03) 1.9 (.05) 2.0 (.02) 2.0 (.04) 1.9 (.03)
ur 5.1 (.05) 5.1 (.08) 5.5 (.04) 5.1 (.06) 5.0 (.07)
µ 2.2 (.01) 2.3 (.01) 2.4 (.01) 2.3 (.02) 2.2 (.01)
all 2.0 (.01) 2.1 (.01) 2.2 (.01) 2.1 (.02) 2.0 (.01)

523

Computational Linguistics Volume 50, Number 2

Table D.7
Per-language single method ensembling EMDCER% results for all four modeling methods for
native-to-Latin script single word transliteration, along with reduction in EMDCER (∆) versus
unensembled systems.

Lang Pair 6g Transformer LSTM ByT5
EMDCER% ∆ EMDCER% ∆ EMDCER% ∆ EMDCER% ∆

bn 12.6 (.02) 0.1 11.5 (.10) 0.5 11.1 (.03) 0.5 11.2 (.05) 0.2
gu 10.0 (.10) 0.1 8.9 (.07) 0.2 8.4 (.07) 0.5 8.4 (.08) 0.1
hi 10.2 (.02) 0.0 9.4 (.18) 0.2 8.4 (.05) 0.4 8.2 (.10) 0.1
kn 4.7 (.06) 0.0 5.4 (.23) 0.4 4.0 (.01) 0.2 3.8 (.03) 0.1
ml 5.8 (.01) 0.1 7.1 (.28) 0.4 5.0 (.11) 0.4 5.4 (.08) 0.1
mr 7.8 (.05) 0.0 8.1 (.14) 0.3 6.7 (.03) 0.3 6.9 (.13) 0.1
pa 12.5 (.04) 0.0 11.8 (.05) 0.4 11.0 (.02) 0.5 11.2 (.10) 0.1
sd 17.1 (.07) 0.0 15.2 (.06) 0.4 15.2 (.04) 0.6 15.2 (.29) 0.3
si 4.1 (.00) 0.0 3.7 (.07) 0.4 3.4 (.02) 0.2 3.7 (.09) 0.1
ta 8.3 (.01) 0.1 9.1 (.11) 0.5 7.3 (.01) 0.4 7.6 (.10) 0.1
te 7.0 (.01) 0.0 7.0 (.14) 0.3 6.4 (.01) 0.4 6.5 (.09) 0.1
ur 17.8 (.00) 0.0 16.0 (.04) 0.3 16.4 (.03) 0.7 16.5 (.22) 0.2
µ 9.8 (.02) 0.1 9.4 (.03) 0.4 8.6 (.01) 0.4 8.7 (.02) 0.1
all 9.2 (.02) 0.1 9.0 (.03) 0.4 8.1 (.01) 0.4 8.2 (.02) 0.1

Table D.8
Per-language two model ensembling EMDCER% results for native-to-Latin script single word
transliteration.

Lang Pair 6g + LSTM + Transformer +
LSTM transformer ByT5 ByT5 LSTM ByT5

bn 11.2 (.02) 11.4 (.06) 11.2 (.02) 10.7 (.02) 10.9 (.06) 11.0 (.06)
gu 8.6 (.05) 8.9 (.04) 8.6 (.05) 8.0 (.05) 8.3 (.06) 8.3 (.04)
hi 8.9 (.02) 9.3 (.08) 8.8 (.04) 8.0 (.06) 8.6 (.11) 8.5 (.13)
kn 4.0 (.03) 4.7 (.12) 4.0 (.02) 3.7 (.01) 4.4 (.10) 4.4 (.11)
ml 5.1 (.04) 6.0 (.11) 5.3 (.03) 4.9 (.07) 5.7 (.15) 5.8 (.12)
mr 6.9 (.01) 7.6 (.08) 7.0 (.06) 6.5 (.05) 7.2 (.07) 7.2 (.08)
pa 11.2 (.02) 11.6 (.03) 11.3 (.06) 10.6 (.04) 11.0 (.03) 11.1 (.06)
sd 15.5 (.05) 15.5 (.04) 15.5 (.14) 14.7 (.13) 14.8 (.04) 14.7 (.10)
si 3.5 (.01) 3.6 (.03) 3.7 (.04) 3.4 (.04) 3.3 (.03) 3.5 (.05)
ta 7.4 (.01) 8.1 (.05) 7.6 (.04) 7.2 (.03) 7.8 (.06) 8.0 (.04)
te 6.3 (.01) 6.6 (.05) 6.4 (.03) 6.2 (.03) 6.4 (.05) 6.5 (.08)
ur 16.3 (.02) 16.1 (.03) 16.3 (.09) 15.9 (.09) 15.8 (.03) 15.7 (.07)
µ 8.7 (.01) 9.1 (.02) 8.8 (.02) 8.3 (.01) 8.7 (.02) 8.7 (.02)
all 8.2 (.01) 8.6 (.02) 8.3 (.02) 7.8 (.01) 8.2 (.02) 8.3 (.02)

524

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Table D.9
Per language multi-model ensembling EMDCER% results for native-to-Latin script single word
transliteration.

Lang All models in ensemble except All
Pair 6g Transformer ByT5 LSTM models

bn 10.7 (.04) 10.7 (.02) 10.9 (.04) 10.9 (.05) 10.7 (.04)
gu 8.1 (.04) 8.2 (.04) 8.4 (.04) 8.4 (.03) 8.1 (.03)
hi 8.2 (.09) 8.3 (.03) 8.7 (.07) 8.7 (.08) 8.4 (.06)
kn 4.1 (.06) 3.8 (.02) 4.2 (.07) 4.2 (.08) 4.0 (.05)
ml 5.3 (.10) 5.0 (.04) 5.4 (.09) 5.5 (.07) 5.2 (.07)
mr 6.8 (.05) 6.6 (.03) 7.0 (.05) 7.1 (.06) 6.8 (.04)
pa 10.8 (.03) 10.8 (.03) 11.1 (.02) 11.1 (.05) 10.8 (.03)
sd 14.5 (.07) 14.9 (.09) 15.0 (.03) 14.9 (.07) 14.7 (.06)
si 3.3 (.04) 3.5 (.03) 3.4 (.02) 3.5 (.04) 3.4 (.03)
ta 7.5 (.02) 7.2 (.02) 7.6 (.04) 7.7 (.03) 7.4 (.02)
te 6.3 (.04) 6.2 (.02) 6.3 (.03) 6.4 (.04) 6.2 (.03)
ur 15.6 (.04) 15.8 (.05) 15.8 (.02) 15.7 (.05) 15.5 (.03)
µ 8.4 (.02) 8.4 (.01) 8.6 (.01) 8.7 (.02) 8.4 (.01)
all 8.0 (.01) 7.9 (.01) 8.1 (.01) 8.2 (.02) 7.9 (.01)

Table D.10
Per-language full string Latin-to-native script transliteration WER% achieved with single-word
(non-contextual) single-system ensembles.

Language Single-word Single-system Ensembles
Pair 6g LSTM ByT5

bn 34.7 (.05) 32.9 (1.17) 36.8 (.38)
gu 33.6 (.71) 29.6 (1.19) 29.7 (1.04)
hi 25.2 (.06) 27.4 (1.11) 25.7 (1.00)
kn 23.7 (.13) 21.4 (.10) 24.7 (.76)
ml 38.7 (.13) 39.5 (.51) 37.2 (1.28)
mr 29.8 (.52) 29.0 (.25) 28.1 (.84)
pa 38.1 (.10) 35.0 (1.60) 37.2 (1.19)
sd 55.5 (.03) 53.5 (.55) 54.5 (1.57)
si 37.7 (.01) 34.9 (.40) 39.2 (.45)
ta 30.1 (.10) 29.0 (.02) 30.2 (.62)
te 27.6 (.02) 26.3 (.18) 26.2 (.82)
ur 34.3 (.03) 31.4 (2.47) 33.6 (2.21)
µ 34.1 (.09) 32.5 (.19) 33.6 (.37)
all 34.9 (.09) 33.2 (.24) 34.4 (.37)

Appendix E. Transliteration Cache Coverage

Here we provide two plots of cache coverage in each of the Dakshina languages: type
coverage and token coverage in Figure E.1. Type coverage measures the fraction of
unique words found in the dev set that were also found in the cache. Token coverage is
the fraction of all tokens in the dev set that were found in the cache. Token coverage rises
above 75% for all languages, meaning that frequent words are relatively well covered
even for the highly inflected Dravidian languages.

525

Computational Linguistics Volume 50, Number 2

Figure E.1
Cache coverage plots for tokens (top) and types (bottom) displaying the coverage estimate
(percentage) vs. cache size.

Half of the languages achieve greater than 90% token coverage, with Hindi and
Urdu topping 95% coverage. Type coverage is, of course, lower, indicating that we are
doing a better job covering frequent words than infrequent words, as was our intent.

Acknowledgments
The authors thank Işın Demirşahin,
Raiomond Doctor, and Shankar Kumar for

useful discussions, and anonymous
reviewers for helpful comments and
suggestions.

526

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

References
Ahmadi, Sina and Antonios Anastasopoulos.

2023. Script normalization for
unconventional writing of
under-resourced languages in bilingual
communities. In Proceedings of the 61st
Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 14466–14487.
https://doi.org/10.18653/v1
/2023.acl-long.809

Al-Badrashiny, Mohamed, Ramy Eskander,
Nizar Habash, and Owen Rambow. 2014.
Automatic transliteration of romanized
dialectal Arabic. In Proceedings of the
Eighteenth Conference on Computational
Natural Language Learning, pages 30–38.
https://doi.org/10.3115/v1/W14-1604

Allauzen, Cyril, Mehryar Mohri, and Brian
Roark. 2003. Generalized algorithms for
constructing statistical language models.
In Proceedings of the 41st Annual Meeting of
the Association for Computational Linguistics,
pages 40–47. https://doi.org/10.3115
/1075096.1075102

Allauzen, Cyril, Michael Riley, Johan
Schalkwyk, Wojciech Skut, and Mehryar
Mohri. 2007. OpenFst: A general and
efficient weighted finite-state transducer
library. In Proceedings of 12th International
Conference on Implementation and Application
of Automata (CIAA), pages 11–23. https://
doi.org/10.1007/978-3-540-76336-9_3

Amrhein, Chantal and Rico Sennrich. 2020.
On Romanization for model transfer
between scripts in neural machine
translation. In Findings of the Association for
Computational Linguistics: EMNLP 2020,
pages 2461–2469. https://doi.org
/10.18653/v1/2020.findings-emnlp.223

Andronov, Mikhail Sergeevich. 2004. A
Reference Grammar of the Tamil Language,
LINCOM Language Research. LINCOM
Academic Publishers, Munich, Germany.

Bahdanau, Dzmitry, Kyunghyun Cho, and
Yoshua Bengio. 2014. Neural machine
translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473.

Baum, Leonard E. and Ted Petrie. 1966.
Statistical inference for probabilistic
functions of finite state Markov chains.
The Annals of Mathematical Statistics,
37(6):1554–1563. https://doi.org
/10.1214/aoms/1177699147

Bisani, Maximilian and Hermann Ney. 2002.
Investigations on joint-multigram models
for grapheme-to-phoneme conversion. In
Proceedings of the 7th International
Conference on Spoken Language Processing

(ICSLP 2002), pages 105–108. https://doi
.org/10.21437/ICSLP.2002-78

Bisani, Maximilian and Hermann Ney. 2008.
Joint-sequence models for
grapheme-to-phoneme conversion. Speech
Communication, 50(5):434–451. https://
doi.org/10.1016/j.specom.2008
.01.002

Bright, William. 1999. A matter of typology:
Alphasyllabaries and abugidas. Written
Language & Literacy, 2(1):45–55. https://
doi.org/10.1075/wll.2.1.03bri

Celisse, Alain. 2008. Model Selection via
Cross-validation in Density Estimation,
Regression, and Change-points Detection.
Ph.D. thesis, Faculté des Sciences d’Orsay,
Université Paris Sud XI, Paris, France.

Chae, Moon-Jung, Kyubyong Park, Jinhyun
Bang, Soobin Suh, Jonghyuk Park, Namju
Kim, and Longhun Park. 2018.
Convolutional sequence to sequence
model with non-sequential greedy
decoding for grapheme to phoneme
conversion. In Proceedings of 2018 IEEE
International Conference on Acoustics, Speech
and Signal Processing (ICASSP),
pages 2486–2490. https://doi.org
/10.1109/ICASSP.2018.8462678

Chen, Hsin-Hsi, Sheng-Jie Huang, Yung-Wei
Ding, and Shih-Chung Tsai. 1998. Proper
name translation in cross-language
information retrieval. In COLING 1998
Volume 1: The 17th International Conference
on Computational Linguistics,
pages 232–236. https://doi.org
/10.3115/980451.980883

Chen, Mia Xu, Orhan Firat, Ankur Bapna,
Melvin Johnson, Wolfgang Macherey,
George Foster, Llion Jones, Mike Schuster,
Noam Shazeer, Niki Parmar, Ashish
Vaswani, Jakob Uszkoreit, Lukasz Kaiser,
Zhifeng Chen, Yonghui Wu, and Macduff
Hughes. 2018. The best of both worlds:
Combining recent advances in neural
machine translation. arXiv preprint
arXiv:1804.09849. https://doi.org
/10.18653/v1/P18-1008

Chen, Stanley F. 2003. Conditional and joint
models for grapheme-to-phoneme
conversion. In Proceedings of the 8th
European Conference on Speech
Communication and Technology (Eurospeech
2003), pages 2033–2036. https://doi
.org/10.21437/Eurospeech.2003-584

Choksi, Nishaant. 2020. From transcript to
“trans-script”: Romanized Santali across
semiotic media. Signs and Society,
8(1):62–92. https://doi.org/10
.1086/706549

527

https://doi.org/10.18653/v1/2023.acl-long.809
https://doi.org/10.18653/v1/2023.acl-long.809
https://doi.org/10.3115/v1/W14-1604
https://doi.org/10.3115/1075096.1075102
https://doi.org/10.3115/1075096.1075102
https://doi.org/10.1007/978-3-540-76336-9_3
https://doi.org/10.1007/978-3-540-76336-9_3
https://doi.org/10.18653/v1/2020.findings-emnlp.223
https://doi.org/10.18653/v1/2020.findings-emnlp.223
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.21437/ICSLP.2002-78
https://doi.org/10.21437/ICSLP.2002-78
https://doi.org/10.1016/j.specom.2008.01.002
https://doi.org/10.1016/j.specom.2008.01.002
https://doi.org/10.1016/j.specom.2008.01.002
https://doi.org/10.1075/wll.2.1.03bri
https://doi.org/10.1075/wll.2.1.03bri
https://doi.org/10.1109/ICASSP.2018.8462678
https://doi.org/10.1109/ICASSP.2018.8462678
https://doi.org/10.3115/980451.980883
https://doi.org/10.3115/980451.980883
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.21437/Eurospeech.2003-584
https://doi.org/10.21437/Eurospeech.2003-584
https://doi.org/10.1086/706549
https://doi.org/10.1086/706549

Computational Linguistics Volume 50, Number 2

Choudhury, Monojit, Anupam Basu, and
Sudeshna Sarkar. 2004. A diachronic
approach for schwa deletion in Indo
Aryan languages. In Proceedings of the 7th
Meeting of the ACL Special Interest Group in
Computational Phonology: Current Themes in
Computational Phonology and Morphology,
pages 20–26. https://doi.org/10.3115
/1622153.1622156

Conneau, Alexis, Kartikay Khandelwal,
Naman Goyal, Vishrav Chaudhary,
Guillaume Wenzek, Francisco Guzmán,
Edouard Grave, Myle Ott, Luke
Zettlemoyer, and Veselin Stoyanov. 2020.
Unsupervised cross-lingual representation
learning at scale. In Proceedings of the 58th
Annual Meeting of the Association for
Computational Linguistics, pages 8440–8451.
https://doi.org/10.18653/v1
/2020.acl-main.747

Damerau, Fred J. 1964. A technique for
computer detection and correction of
spelling errors. Communications of the
ACM, 7(3):171–176. https://doi.org
/10.1145/363958.363994

Datta, Arindrima, Bhuvana Ramabhadran,
Jesse Emond, Anjuli Kannan, and Brian
Roark. 2020. Language-agnostic
multilingual modeling. In ICASSP
2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing
(ICASSP), pages 8239–8243.
https://doi.org/10.1109
/ICASSP40776.2020.9053443

Demirsahin, Isin, Cibu Johny, Alexander
Gutkin, and Brian Roark. 2022. Criteria for
useful automatic Romanization in South
Asian languages. In Proceedings of the
Thirteenth Language Resources and
Evaluation Conference,
pages 6662–6673.

Deri, Aliya and Kevin Knight. 2016.
Grapheme-to-phoneme models for
(almost) any language. In Proceedings of the
54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 399–408. https://
doi.org/10.18653/v1/P16-1038

Dhamecha, Tejas, Rudra Murthy, Samarth
Bharadwaj, Karthik Sankaranarayanan,
and Pushpak Bhattacharyya. 2021. Role of
language relatedness in multilingual
fine-tuning of language models: A case
study in Indo-Aryan languages. In
Proceedings of the 2021 Conference on
Empirical Methods in Natural Language
Processing, pages 8584–8595.
https://doi.org/10.18653/v1
/2021.emnlp-main.675

Doctor, Raiomond, Alexander Gutkin, Cibu
Johny, Brian Roark, and Richard Sproat.
2022. Graphemic normalization of the
Perso-Arabic script. arXiv preprint
arXiv:2210.12273. https://doi.org
/10.48550/arXiv.2210.12273

Doddapaneni, Sumanth, Rahul Aralikatte,
Gowtham Ramesh, Shreya Goyal,
Mitesh M. Khapra, Anoop Kunchukuttan,
and Pratyush Kumar. 2023. Towards
leaving no Indic language behind:
Building monolingual corpora, benchmark
and models for Indic languages. In
Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 12402–12426.
https://doi.org/10.18653/v1/2023
.acl-long.693

Edunov, Sergey, Myle Ott, Michael Auli, and
David Grangier. 2018. Understanding
back-translation at scale. In Proceedings of
the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 489–500.
https://doi.org/10.18653/v1/D18-1045

Eskander, Ramy, Mohamed Al-Badrashiny,
Nizar Habash, and Owen Rambow. 2014.
Foreign words and the automatic
processing of Arabic social media text
written in Roman script. In Proceedings of
the First Workshop on Computational
Approaches to Code Switching, pages 1–12.
https://doi.org/10.3115/v1
/W14-3901

Finch, Andrew and Eiichiro Sumita. 2010.
Transliteration using a phrase-based
statistical machine translation system to
re-score the output of a joint multigram
model. In Proceedings of the 2010 Named
Entities Workshop, pages 48–52.

Galescu, Lucian and James F. Allen. 2001.
Bi-directional conversion between
graphemes and phonemes using a joint
n-gram model. In Proceedings of the 4th
ISCA Tutorial and Research Workshop (ITRW)
on Speech Synthesis, 6 pages.

Gella, Spandana, Kalika Bali, and Monojit
Choudhury. 2014. “ye word kis lang ka hai
bhai?” Testing the limits of word level
language identification. In Proceedings of
the 11th International Conference on Natural
Language Processing, pages 368–377.

Gow-Smith, Edward, Mark McConville,
William Gillies, Jade Scott, and Roibeard
Ó Maolalaigh. 2022. Use of transformer-
based models for word-level transliteration
of the Book of the Dean of Lismore. In
Proceedings of the 4th Celtic Language
Technology Workshop within LREC2022,
pages 94–98.

528

https://doi.org/10.3115/1622153.1622156
https://doi.org/10.3115/1622153.1622156
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.1145/363958.363994
https://doi.org/10.1145/363958.363994
https://doi.org/10.1109/ICASSP40776.2020.9053443
https://doi.org/10.1109/ICASSP40776.2020.9053443
https://doi.org/10.18653/v1/P16-1038
https://doi.org/10.18653/v1/P16-1038
https://doi.org/10.18653/v1/2021.emnlp-main.675
https://doi.org/10.18653/v1/2021.emnlp-main.675
https://doi.org/10.48550/arXiv.2210.12273
https://doi.org/10.48550/arXiv.2210.12273
https://doi.org/10.18653/v1/2023.acl-long.693
https://doi.org/10.18653/v1/2023.acl-long.693
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.3115/v1/W14-3901
https://doi.org/10.3115/v1/W14-3901

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Gupta, Renu and Virach Sornlertlamvanich.
2007. Text entry in South and Southeast
Asian scripts. In I. Scott MacKenzie and
Kumiko Tanaka-Ishii, editors, Text Entry
Systems: Mobility, Accessibility, Universality.
Morgan Kaufmann, chapter 12,
pages 227–250. https://doi.org
/10.1016/B978-012373591-1/50012-7

Gutkin, Alexander, Cibu Johny, Raiomond
Doctor, Brian Roark, and Richard Sproat.
2022a. Beyond Arabic: Software for
Perso-Arabic script manipulation. In
Proceedings of the Seventh Arabic Natural
Language Processing Workshop (WANLP),
pages 381–387. https://doi.org/10
.18653/v1/2022.wanlp-1.36

Gutkin, Alexander, Cibu Johny, Raiomond
Doctor, Lawrence Wolf-Sonkin, and Brian
Roark. 2022b. Extensions to Brahmic script
processing within the Nisaba library: New
scripts, languages and utilities. In
Proceedings of the Thirteenth Language
Resources and Evaluation Conference,
pages 6450–6460.

Hellsten, Lars, Brian Roark, Prasoon Goyal,
Cyril Allauzen, Françoise Beaufays, Tom
Ouyang, Michael Riley, and David Rybach.
2017. Transliterated mobile keyboard input
via weighted finite-state transducers. In
Proceedings of the 13th International
Conference on Finite State Methods and
Natural Language Processing (FSMNLP
2017), pages 10–19. https://doi.org
/10.18653/v1/W17-4002

Hochreiter, Sepp and Jürgen Schmidhuber.
1997. Long short-term memory. Neural
Computation, 9(8):1735–1780. https://
doi.org/10.1162/neco.1997.9.8.1735,
PubMed: 9377276

Irvine, Ann, Jonathan Weese, and Chris
Callison-Burch. 2012. Processing informal,
romanized Pakistani text messages. In
Proceedings of the Second Workshop on
Language in Social Media, pages 75–78.

ISO. 2001. ISO 15919: Transliteration of
Devanagari and related Indic scripts into
Latin characters. https://www.iso.org
/standard/28333.html. International
Organization for Standardization.

ISO. 2002. ISO 639-1: Codes for the
representation of names of
languages—part 1: Alpha-2 code.
International Organization for
Standardization, Geneva, Switzerland.

Izacard, Gautier and Edouard Grave. 2021.
Leveraging passage retrieval with
generative models for open domain
question answering. In Proceedings of the
16th Conference of the European Chapter of the

Association for Computational Linguistics:
Main Volume, pages 874–880.
https://doi.org/10.18653/v1
/2021.eacl-main.74

Jelinek, Frederick. 1998. Statistical Methods for
Speech Recognition. MIT Press.

Jelinek, Frederick, Lalit Bahl, and Robert
Mercer. 1975. Design of a linguistic
statistical decoder for the recognition of
continuous speech. IEEE Transactions on
Information Theory, 21(3):250–256.
https://doi.org/10.1109/TIT.1975
.1055384

Jia, Ye, Ron J. Weiss, Fadi Biadsy, Wolfgang
Macherey, Melvin Johnson, Zhifeng Chen,
and Yonghui Wu. 2019. Direct
speech-to-speech translation with a
sequence-to-sequence model. In
Proceedings of Interspeech 2019,
pages 1123–1127. https://doi.org
/10.21437/Interspeech.2019-1951

Jiampojamarn, Sittichai, Colin Cherry, and
Grzegorz Kondrak. 2010. Integrating joint
n-gram features into a discriminative
training framework. In Human Language
Technologies: The 2010 Annual Conference of
the North American Chapter of the Association
for Computational Linguistics,
pages 697–700.

Johny, Cibu and Martin Jansche. 2018.
Brahmic schwa-deletion with neural
classifiers: Experiments with Bengali. In
Proceedings of the 6th International Workshop
on Spoken Language Technologies for
Under-Resourced Languages (SLTU),
pages 264–268. https://doi.org
/10.21437/SLTU.2018-55

Johny, Cibu, Lawrence Wolf-Sonkin,
Alexander Gutkin, and Brian Roark. 2021.
Finite-state script normalization and
processing utilities: The Nisaba Brahmic
library. In Proceedings of the 16th Conference
of the European Chapter of the Association for
Computational Linguistics: System
Demonstrations, pages 14–23.
https://doi.org/10.18653/v1
/2021.eacl-demos.3

Karimi, Sarvnaz, Falk Scholer, and Andrew
Turpin. 2011. Machine transliteration
survey. ACM Computing Surveys,
43(3):1–46. https://doi.org/10.1145
/1922649.1922654

Khakhmovich, Aleksandr, Svetlana Pavlova,
Kira Kirillova, Nikolay Arefyev, and
Ekaterina Savilova. 2020. Cross-lingual
named entity list search via transliteration.
In Proceedings of the Twelfth Language
Resources and Evaluation Conference,
pages 4247–4255.

529

https://doi.org/10.1016/B978-012373591-1/50012-7
https://doi.org/10.1016/B978-012373591-1/50012-7
https://doi.org/10.18653/v1/2022.wanlp-1.36
https://doi.org/10.18653/v1/2022.wanlp-1.36
https://doi.org/10.18653/v1/W17-4002
https://doi.org/10.18653/v1/W17-4002
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://pubmed.ncbi.nlm.nih.gov/9377276
https://www.iso.org/standard/28333.html
https://www.iso.org/standard/28333.html
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.1109/TIT.1975.1055384
https://doi.org/10.1109/TIT.1975.1055384
https://doi.org/10.21437/Interspeech.2019-1951
https://doi.org/10.21437/Interspeech.2019-1951
https://doi.org/10.21437/SLTU.2018-55
https://doi.org/10.21437/SLTU.2018-55
https://doi.org/10.18653/v1/2021.eacl-demos.3
https://doi.org/10.18653/v1/2021.eacl-demos.3
https://doi.org/10.1145/1922649.1922654
https://doi.org/10.1145/1922649.1922654

Computational Linguistics Volume 50, Number 2

Khare, Shreya, Ashish Mittal, Anuj Diwan,
Sunita Sarawagi, Preethi Jyothi, and
Samarth Bharadwaj. 2021. Low resource
ASR: The surprising effectiveness of high
resource transliteration. In Proceedings of
Interspeech 2021, pages 1529–1533.
https://doi.org/10.21437
/Interspeech.2021-2062

Khayrallah, Huda and Philipp Koehn. 2018.
On the impact of various types of noise on
neural machine translation. In Proceedings
of the 2nd Workshop on Neural Machine
Translation and Generation, pages 74–83.
https://doi.org/10.18653/v1/W18-2709

Kingma, Diederik P. and Jimmy Ba. 2014.
Adam: A method for stochastic
optimization. arXiv preprint
arXiv:1412.6980.

Kneser, Reinhard and Hermann Ney. 1995.
Improved backing-off for m-gram
language modeling. In Proceedings of 1995
International Conference on Acoustics, Speech,
and Signal Processing (ICASSP ’95),
volume 1, pages 181–184. https://
doi.org/10.1109/ICASSP.1995
.479394

Knight, Kevin and Jonathan Graehl. 1998.
Machine transliteration. Computational
Linguistics, 24(4):599–612.

Kreutzer, Julia, Isaac Caswell, Lisa Wang,
Ahsan Wahab, Daan van Esch,
Nasanbayar Ulzii-Orshikh, Allahsera
Tapo, Nishant Subramani, Artem Sokolov,
Claytone Sikasote, Monang Setyawan,
Supheakmungkol Sarin, Sokhar Samb,
Benoı̂t Sagot, Clara Rivera, Annette Rios,
Isabel Papadimitriou, Salomey Osei,
Pedro Ortiz Suarez, Iroro Orife, Kelechi
Ogueji, Andre Niyongabo Rubungo, Toan
Q. Nguyen, Mathias Müller, André Müller,
Shamsuddeen Hassan Muhammad,
Nanda Muhammad, Ayanda Mnyakeni,
Jamshidbek Mirzakhalov, Tapiwanashe
Matangira, Colin Leong, Nze Lawson,
Sneha Kudugunta, Yacine Jernite, Mathias
Jenny, Orhan Firat, Bonaventure F. P.
Dossou, Sakhile Dlamini, Nisansa de Silva,
Sakine Çabuk Ballı, Stella Biderman,
Alessia Battisti, Ahmed Baruwa, Ankur
Bapna, Pallavi Baljekar, Israel Abebe
Azime, Ayodele Awokoya, Duygu
Ataman, Orevaoghene Ahia, Oghenefego
Ahia, Sweta Agrawal, and Mofetoluwa
Adeyemi. 2022. Quality at a glance: An
audit of web-crawled multilingual
datasets. Transactions of the Association for
Computational Linguistics, 10:50–72.
https://doi.org/10.1162
/tacl a 00447

Kudo, Taku and John Richardson. 2018.
SentencePiece: A simple and language
independent subword tokenizer and
detokenizer for neural text processing. In
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing: System Demonstrations,
pages 66–71. https://doi.org/10.18653
/v1/D18-2012

Kumar, Ankit, Piyush Makhija, and Anuj
Gupta. 2020. Noisy text data: Achilles’ heel
of BERT. In Proceedings of the Sixth
Workshop on Noisy User-generated Text
(W-NUT 2020), pages 16–21. https://
doi.org/10.18653/v1/2020.wnut-1.3

Kumar, Arun, Ryan Cotterell, Lluı́s Padró,
and Antoni Oliver. 2017. Morphological
analysis of the Dravidian language family.
In Proceedings of the 15th Conference of the
European Chapter of the Association for
Computational Linguistics: Volume 2, Short
Papers, pages 217–222. https://doi.org
/10.18653/v1/E17-2035

Kunchukuttan, Anoop, Siddharth Jain, and
Rahul Kejriwal. 2021. A large-scale
evaluation of neural machine
transliteration for Indic languages. In
Proceedings of the 16th Conference of the
European Chapter of the Association for
Computational Linguistics: Main Volume,
pages 3469–3475. https://doi.org
/10.18653/v1/2021.eacl-main.303

Kunchukuttan, Anoop, Mitesh Khapra,
Gurneet Singh, and Pushpak
Bhattacharyya. 2018. Leveraging
orthographic similarity for multilingual
neural transliteration. Transactions of the
Association for Computational Linguistics,
6:303–316. https://doi.org/10.1162
/tacl a 00022

Kunchukuttan, Anoop, Ratish Puduppully,
and Pushpak Bhattacharyya. 2015.
Brahmi-net: A transliteration and script
conversion system for languages of the
Indian subcontinent. In Proceedings of the
2015 Conference of the North American
Chapter of the Association for Computational
Linguistics: Demonstrations, pages 81–85.
https://doi.org/10.3115/v1/N15-3017

Kundu, Soumyadeep, Sayantan Paul, and
Santanu Pal. 2018. A deep learning based
approach to transliteration. In Proceedings
of the Seventh Named Entities Workshop,
pages 79–83. https://doi.org/10
.18653/v1/W18-2411

Lafferty, John, Andrew McCallum, and
Fernando Pereira. 2001. Conditional
random fields: Probabilistic models for
segmenting and labeling sequence data. In

530

https://doi.org/10.21437/Interspeech.2021-2062
https://doi.org/10.21437/Interspeech.2021-2062
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2020.wnut-1.3
https://doi.org/10.18653/v1/2020.wnut-1.3
https://doi.org/10.18653/v1/E17-2035
https://doi.org/10.18653/v1/E17-2035
https://doi.org/10.18653/v1/2021.eacl-main.303
https://doi.org/10.18653/v1/2021.eacl-main.303
https://doi.org/10.1162/tacl_a_00022
https://doi.org/10.1162/tacl_a_00022
https://doi.org/10.3115/v1/N15-3017
https://doi.org/10.18653/v1/W18-2411
https://doi.org/10.18653/v1/W18-2411

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Proceedings of the 18th International
Conference on Machine Learning (ICML),
pages 282–289.

Lee, En-Shiun, Sarubi Thillainathan, Shravan
Nayak, Surangika Ranathunga, David
Adelani, Ruisi Su, and Arya McCarthy.
2022. Pre-trained multilingual
sequence-to-sequence models: A hope for
low-resource language translation? In
Findings of the Association for Computational
Linguistics: ACL 2022, pages 58–67.
https://doi.org/10.18653/v1
/2022.findings-acl.6

Lehal, Gurpreet Singh and Tejinder Singh
Saini. 2012. Conversion between scripts of
Punjabi: Beyond simple transliteration. In
Proceedings of COLING 2012: Posters,
pages 633–642.

Lehal, Gurpreet Singh and Tejinder Singh
Saini. 2014. Sangam: A Perso-Arabic to
Indic script machine transliteration model.
In Proceedings of the 11th International
Conference on Natural Language Processing,
pages 232–239.

Lehmann, Thomas. 1993. A Grammar of
Modern Tamil. Pondicherry Institute of
Linguistics and Culture, Pondicherry,
India.

Levenshtein, Vladimir I. 1966. Binary codes
capable of correcting deletions, insertions,
and reversals. Soviet Physics—Doklady,
10(8):707–710.

Li, Haizhou, Min Zhang, and Jian Su. 2004. A
joint source-channel model for machine
transliteration. In Proceedings of the 42nd
Annual Meeting of the Association for
Computational Linguistics (ACL-04),
pages 159–166. https://doi.org
/10.3115/1218955.1218976

Liang, Davis, Hila Gonen, Yuning Mao, Rui
Hou, Naman Goyal, Marjan
Ghazvininejad, Luke Zettlemoyer, and
Madian Khabsa. 2023. XLM-V:
Overcoming the vocabulary bottleneck in
multilingual masked language models.
arXiv preprint arXiv:2301.10472. https://
doi.org/10.48550/arXiv.2301.10472,
https://doi.org/10.18653/v1
/2023.emnlp-main.813

Luong, Thang, Hieu Pham, and
Christopher D. Manning. 2015. Effective
approaches to attention-based neural
machine translation. In Proceedings of the
2015 Conference on Empirical Methods in
Natural Language Processing,
pages 1412–1421. https://doi.org
/10.18653/v1/D15-1166

Madhani, Yash, Mitesh M. Khapra, and
Anoop Kunchukuttan. 2023.

Bhasa-abhijnaanam: Native-script and
romanized language identification for 22
Indic languages. In Proceedings of the 61st
Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short
Papers), pages 816–826. https://doi.org
/10.18653/v1/2023.acl-short.71

Madhani, Yash, Sushane Parthan, Priyanka
Bedekar, Ruchi Khapra, Vivek Seshadri,
Anoop Kunchukuttan, Pratyush Kumar,
and Mitesh M. Khapra. 2022. Aksharantar:
Towards building open transliteration
tools for the next billion users. arXiv
preprint arXiv:2205.03018.
https://doi.org/10.18653/v1
/2023.findings-emnlp.4

Maleki, Jalal and Lars Ahrenberg. 2008.
Converting romanized Persian to the
Arabic writing systems. In Proceedings of
the Sixth International Conference on
Language Resources and Evaluation
(LREC’08).

Markewich, Logan, Yubin Xing, Roy Ka-Wei
Lee, Zhi Li, and Seokbum Ko. 2022.
DReD—A descriptive relation dataset for
expanding relation extraction. In IEEE
Transactions on Artificial Intelligence,
pages 1–10. https://doi.org/10.1109
/TAI.2022.3205567

Merhav, Yuval and Stephen Ash. 2018.
Design challenges in named entity
transliteration. In Proceedings of the 27th
International Conference on Computational
Linguistics, pages 630–640.

Mhaiskar, Rahul. 2015. Romanagari an
alternative for modern media writings.
Bulletin of the Deccan College Post-Graduate
and Research Institute, 75:195–202.

Moezzi, Seyed Ali Reza, Abdolrahman
Ghaedi, Mojdeh Rahmanian,
Seyedeh Zahra Mousavi, and Ashkan
Sami. 2023. Application of deep learning in
generating structured radiology reports: A
transformer-based technique. Journal of
Digital Imaging, 36:80–90. https://
doi.org/10.1007/s10278-022-00692-x
PubMed: 36002778

Mohri, Mehryar. 2002. Semiring frameworks
and algorithms for shortest-distance
problems. Journal of Automata, Languages
and Combinatorics, 7(3):321–350.

Moosa, Ibraheem Muhammad,
Mahmud Elahi Akhter, and Ashfia Binte
Habib. 2023. Does transliteration help
multilingual language modeling? In
Findings of the Association for Computational
Linguistics: EACL 2023, pages 670–685.
https://doi.org/10.18653/v1
/2023.findings-eacl.50

531

https://doi.org/10.18653/v1/2022.findings-acl.6
https://doi.org/10.18653/v1/2022.findings-acl.6
https://doi.org/10.3115/1218955.1218976
https://doi.org/10.3115/1218955.1218976
https://doi.org/10.48550/arXiv.2301.10472
https://doi.org/10.48550/arXiv.2301.10472
https://doi.org/10.18653/v1/2023.emnlp-main.813
https://doi.org/10.18653/v1/2023.emnlp-main.813
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/2023.acl-short.71
https://doi.org/10.18653/v1/2023.acl-short.71
https://doi.org/10.18653/v1/2023.findings-emnlp.4
https://doi.org/10.18653/v1/2023.findings-emnlp.4
https://doi.org/10.1109/TAI.2022.3205567
https://doi.org/10.1109/TAI.2022.3205567
https://doi.org/10.1007/s10278-022-00692-x
https://doi.org/10.1007/s10278-022-00692-x
https://pubmed.ncbi.nlm.nih.gov/36002778
https://doi.org/10.18653/v1/2023.findings-eacl.50
https://doi.org/10.18653/v1/2023.findings-eacl.50

Computational Linguistics Volume 50, Number 2

Moradi, Milad and Matthias Samwald. 2021.
Evaluating the robustness of neural
language models to input perturbations. In
Proceedings of the 2021 Conference on
Empirical Methods in Natural Language
Processing, pages 1558–1570. https://doi
.org/10.18653/v1/2021.emnlp-main.117

Moran, Molly and Constantine Lignos. 2020.
Effective architectures for low resource
multilingual named entity transliteration.
In Proceedings of the 3rd Workshop on
Technologies for MT of Low Resource
Languages, pages 79–86.

Motlani, Raveesh. 2016. Developing
language technology tools and resources
for a resource-poor language: Sindhi. In
Proceedings of the NAACL Student Research
Workshop, pages 51–58. https://doi.org
/10.18653/v1/N16-2008

Muller, Benjamin, Antonios Anastasopoulos,
Benoı̂t Sagot, and Djamé Seddah. 2021.
When being unseen from mBERT is just
the beginning: Handling new languages
with multilingual language models. In
Proceedings of the 2021 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 448–462.
https://doi.org/10.18653/v1
/2021.naacl-main.38

Murikinati, Nikitha, Antonios
Anastasopoulos, and Graham Neubig.
2020. Transliteration for cross-lingual
morphological inflection. In Proceedings of
the 17th SIGMORPHON Workshop on
Computational Research in Phonetics,
Phonology, and Morphology, pages 189–197.
https://doi.org/10.18653/v1
/2020.sigmorphon-1.22

Murphy, Anne. 2018. Writing Punjabi across
borders. South Asian History and Culture,
9(1):68–91. https://doi.org/10.1080
/19472498.2017.1411049

Nagoudi, El Moatez Billah, AbdelRahim
Elmadany, and Muhammad
Abdul-Mageed. 2022. AraT5: Text-to-text
transformers for Arabic language
generation. In Proceedings of the 60th
Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 628–647. https://doi.org
/10.18653/v1/2022.acl-long.47

Najafi, Saeed, Bradley Hauer, Rashed Rubby
Riyadh, Leyuan Yu, and Grzegorz
Kondrak. 2018. Comparison of assorted
models for transliteration. In Proceedings of
the Seventh Named Entities Workshop,
pages 84–88. https://doi.org/10
.18653/v1/W18-2412

Ney, Hermann, Dieter Mergel, Andreas Noll,
and Annedore Paeseler. 1987. A
data-driven organization of the dynamic
programming beam search for continuous
speech recognition. In Proceedings of the
IEEE 1987 International Conference on
Acoustics, Speech, and Signal Processing
(ICASSP), volume 12, pages 833–836.
https://doi.org/10.1109
/ICASSP.1987.1169844

Nicolai, Garrett, Bradley Hauer, Mohammad
Salameh, Adam St Arnaud, Ying Xu, Lei
Yao, and Grzegorz Kondrak. 2015.
Multiple system combination for
transliteration. In Proceedings of the Fifth
Named Entity Workshop, pages 72–77.
https://doi.org/10.18653/v1/W15-3911

Nielsen, Elizabeth, Christo Kirov, and Brian
Roark. 2023. Distinguishing romanized
Hindi from romanized Urdu. In
Proceedings of the Workshop on Computation
and Written Language (CAWL 2023),
pages 33–42. https://doi.org/10.18653
/v1/2023.cawl-1.5

Pele, Ofir and Michael Werman. 2008. A
linear time histogram metric for improved
SIFT matching. In Computer Vision–ECCV
2008, pages 495–508. https://doi.org
/10.1007/978-3-540-88690-7 37

Pele, Ofir and Michael Werman. 2009. Fast
and robust earth mover’s distances. In
2009 IEEE 12th International Conference on
Computer Vision, pages 460–467. https://
doi.org/10.1109/ICCV.2009.5459199

Rabiner, Lawrence R. 1989. A tutorial on
hidden markov models and selected
applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286.
https://doi.org/10.1109/5.18626

Raffel, Colin, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J.
Liu. 2020. Exploring the limits of transfer
learning with a unified text-to-text
transformer. Journal of Machine Learning
Research, 21(1):5485–5551.

Riyadh, Rashed Rubby and Grzegorz
Kondrak. 2019. Joint approach to
deromanization of code-mixed texts. In
Proceedings of the Sixth Workshop on NLP for
Similar Languages, Varieties and Dialects,
pages 26–34. https://doi.org/10
.18653/v1/W19-1403

Roark, Brian, Richard Sproat, Cyril Allauzen,
Michael Riley, Jeffrey Sorensen, and Terry
Tai. 2012. The OpenGrm open-source
finite-state grammar software libraries. In
Proceedings of the ACL 2012 System
Demonstrations, pages 61–66.

532

https://doi.org/10.18653/v1/2021.emnlp-main.117
https://doi.org/10.18653/v1/2021.emnlp-main.117
https://doi.org/10.18653/v1/N16-2008
https://doi.org/10.18653/v1/N16-2008
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2020.sigmorphon-1.22
https://doi.org/10.18653/v1/2020.sigmorphon-1.22
https://doi.org/10.1080/19472498.2017.1411049
https://doi.org/10.1080/19472498.2017.1411049
https://doi.org/10.18653/v1/2022.acl-long.47
https://doi.org/10.18653/v1/2022.acl-long.47
https://doi.org/10.18653/v1/W18-2412
https://doi.org/10.18653/v1/W18-2412
https://doi.org/10.1109/ICASSP.1987.1169844
https://doi.org/10.1109/ICASSP.1987.1169844
https://doi.org/10.18653/v1/W15-3911
https://doi.org/10.18653/v1/2023.cawl-1.5
https://doi.org/10.18653/v1/2023.cawl-1.5
https://doi.org/10.1007/978-3-540-88690-7_37
https://doi.org/10.1007/978-3-540-88690-7_37
https://doi.org/10.1109/ICCV.2009.5459199
https://doi.org/10.1109/ICCV.2009.5459199
https://doi.org/10.1109/5.18626
https://doi.org/10.18653/v1/W19-1403
https://doi.org/10.18653/v1/W19-1403

Kirov et al. Context-aware Transliteration of Romanized South Asian Languages

Roark, Brian, Lawrence Wolf-Sonkin, Christo
Kirov, Sabrina J. Mielke, Cibu Johny, Isin
Demirsahin, and Keith Hall. 2020.
Processing South Asian languages written
in the Latin script: The Dakshina dataset.
In Proceedings of the Twelfth Language
Resources and Evaluation Conference,
pages 2413–2423.

Roberts, Adam, Hyung Won Chung, Anselm
Levskaya, Gaurav Mishra, James
Bradbury, Daniel Andor, Sharan Narang,
Brian Lester, Colin Gaffney, Afroz
Mohiuddin, Curtis Hawthorne, Aitor
Lewkowycz, Alex Salcianu, Marc van Zee,
Jacob Austin, Sebastian Goodman,
Livio Baldini Soares, Haitang Hu, Sasha
Tsvyashchenko, Aakanksha Chowdhery,
Jasmijn Bastings, Jannis Bulian, Xavier
Garcia, Jianmo Ni, Andrew Chen,
Kathleen Kenealy, Jonathan H. Clark,
Stephan Lee, Dan Garrette, James
Lee-Thorp, Colin Raffel, Noam Shazeer,
Marvin Ritter, Maarten Bosma, Alexandre
Passos, Jeremy Maitin-Shepard, Noah
Fiedel, Mark Omernick, Brennan Saeta,
Ryan Sepassi, Alexander Spiridonov,
Joshua Newlan, and Andrea Gesmundo.
2022. Scaling up models and data with t5x
and seqio. arXiv preprint arXiv:2203.17189.
https://doi.org/10.48550
/arXiv.2203.17189

Ruder, Sebastian, Noah Constant, Jan Botha,
Aditya Siddhant, Orhan Firat, Jinlan Fu,
Pengfei Liu, Junjie Hu, Dan Garrette,
Graham Neubig, and Melvin Johnson.
2021. XTREME-R: Towards more
challenging and nuanced multilingual
evaluation. In Proceedings of the 2021
Conference on Empirical Methods in Natural
Language Processing, pages 10215–10245.
https://doi.org/10.18653/v1
/2021.emnlp-main.802

Russell, David James. 2014. Multiple Sequence
Alignment Methods, volume 1079 of
Methods in Molecular Biology. Springer.
https://doi.org/10.1007/978-1
-62703-646-7

Salomon, Richard G. 1996. Brahmi and
Kharoshthi, Peter T. Daniels and William
Bright, editors, The World’s Writing
Systems, Oxford University Press,
pages 373–383.

Samaranayake, V. K., S. T. Nandasara, J. B.
Disanayaka, A. R. Weerasinghe, and H.
Wijayawardhana. 2003. An introduction to
UNICODE for Sinhala characters.
Technical Report UCSC 03/01, University
Of Colombo, School of Computing,
Colombo, Sri Lanka.

Schiffman, Harold F. 2008. The Ausbau issue
in the Dravidian languages: The case of
Tamil and the problem of purism.
International Journal of the Sociology of
Language, 2008(191):45–63. https://
doi.org/10.1515/IJSL.2008.024

Schoch, Stephanie, Ritwick Mishra, and
Yangfeng Ji. 2023. Data selection for
fine-tuning large language models using
transferred Shapley values. In Proceedings
of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 4:
Student Research Workshop), pages 266–275.
https://doi.org/10.18653/v1
/2023.acl-srw.37

Schuster, Mike and Kaisuke Nakajima. 2012.
Japanese and Korean voice search. In 2012
IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP),
pages 5149–5152. https://doi.org
/10.1109/ICASSP.2012.6289079

Sennrich, Rico, Barry Haddow, and
Alexandra Birch. 2016. Improving neural
machine translation models with
monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 86–96. https://doi.org
/10.18653/v1/P16-1009

Sodhar, Irum Naz, Akhtar Hussain Jalbani,
Muhammad Ibrahim Channa, and
Dil Nawaz Hakro. 2019. Identification of
issues and challenges in romanized Sindhi
text. International Journal of Advanced
Computer Science and Applications (IJACSA),
10(9):229–233. https://doi.org
/10.14569/IJACSA.2019.0100929

Spohrer, James C., Peter F. Brown, P. H.
Hochschild, and James K. Baker. 1980.
Partial traceback in continuous speech
recognition. In Proceedings of the IEEE 1980
International Conference on Cybernetics and
Society (ICCS), pages 36–42.

Steever, Sanford B. 1987. Tamil and the
Dravidian languages. In Bernard Comrie,
editor, The World’s Major Languages, Oxford
University Press, pages 725–746.
https://doi.org/10.4324
/9780203214961-36

Steever, Sanford B. 2019. The Dravidian
Languages, 2nd edition. Routledge
Language Family Series. Routledge.
https://doi.org/10.4324
/9781315722580, PubMed: 31431302

Taylor, Paul. 2009. Text-to-Speech Synthesis.
Cambridge University Press. https://
doi.org/10.1017/CBO9780511816338

Unicode Consortium. 2022. South and
Central Asia - I. In The Unicode Standard

533

https://doi.org/10.48550/arXiv.2203.17189
https://doi.org/10.48550/arXiv.2203.17189
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://doi.org/10.1007/978-1-62703-646-7
https://doi.org/10.1007/978-1-62703-646-7
https://doi.org/10.1515/IJSL.2008.024
https://doi.org/10.1515/IJSL.2008.024
https://doi.org/10.18653/v1/2023.acl-srw.37
https://doi.org/10.18653/v1/2023.acl-srw.37
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.14569/IJACSA.2019.0100929
https://doi.org/10.14569/IJACSA.2019.0100929
https://doi.org/10.4324/9780203214961-36
https://doi.org/10.4324/9780203214961-36
https://doi.org/10.4324/9781315722580
https://doi.org/10.4324/9781315722580
https://pubmed.ncbi.nlm.nih.gov/31431302
https://doi.org/10.1017/CBO9780511816338
https://doi.org/10.1017/CBO9780511816338

Computational Linguistics Volume 50, Number 2

(Version 15.0.0). Unicode Consortium,
chapter 12, pages 461–532.

United Nations. 2007. Technical reference
manual for the standardization of
geographical names. Technical Report
ST/ESA/STAT/SER.M/87, United
Nations, Department of Economic and
Social Affairs, Statistics Division,
New York. United Nations Group of
Experts on Geographical Names. URL
https://unstats.un.org/unsd/geoinfo
/ungegn/docs/pubs/UNGEGN%20tech%
20ref%20manual m87 combined.pdf.

Vaswani, Ashish, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information
Processing Systems, pages 5998–6008.

Virga, Paola and Sanjeev Khudanpur. 2003.
Transliteration of proper names in
cross-lingual information retrieval. In
Proceedings of the ACL 2003 Workshop on
Multilingual and Mixed-language Named
Entity Recognition, pages 57–64. https://
doi.org/10.3115/1119384.1119392

Voutilainen, Atro. 2003. Part-of-speech
tagging. In Ruslan Mitkov, editor, The
Oxford Handbook of Computational
Linguistics. Oxford University Press,
chapter 11, pages 219–232.

Wang, Hai, Dian Yu, Kai Sun, Jianshu Chen,
and Dong Yu. 2019. Improving pre-trained
multilingual model with vocabulary
expansion. In Proceedings of the 23rd
Conference on Computational Natural
Language Learning (CoNLL), pages 316–327.
https://doi.org/10.18653/v1/K19-1030

Wellisch, Hans H. 1978. The Conversion of
Scripts: Its Nature, History, and Utilization.
Information Sciences Series. John Wiley &
Sons.

Wijayawardhana, Harsha, Asanka Wasala,
Ruvan Weerasinghe, and Chamila
Liyanage. 2008. Implementation of Internet
domain names in Sinhala. In Proceedings of
International Symposium on Country Domain
Governance (CDG), pages 20–23.

Winkler, William E. 1990. String comparator
metrics and enhanced decision rules in the
Fellegi-Sunter model of record linkage. In
Proceedings of the Section on Survey Research
of American Statistical Association (ASA),
pages 354–359.

Witten, Ian H. and Timothy C. Bell. 1991. The
zero-frequency problem: Estimating the
probabilities of novel events in adaptive
text compression. IEEE Transactions on
Information Theory, 37(4):1085–1094.
https://doi.org/10.1109/18.87000

Wolf-Sonkin, Lawrence, Vlad Schogol, Brian
Roark, and Michael Riley. 2019. Latin
script keyboards for South Asian
languages with finite-state normalization.
In Proceedings of the 14th International
Conference on Finite-State Methods and
Natural Language Processing, pages 108–117.
https://doi.org/10.18653/v1/W19-3114

Wu, Chun Kai, Chao-Chuang Shih, Yu-Chun
Wang, and Richard Tzong-Han Tsai. 2022.
Improving low-resource machine
transliteration by using 3-way transfer
learning. Computer Speech & Language,
72:Article 101283. https://doi.org
/10.1016/j.csl.2021.101283

Xue, Linting, Aditya Barua, Noah Constant,
Rami Al-Rfou, Sharan Narang, Mihir Kale,
Adam Roberts, and Colin Raffel. 2022.
ByT5: Towards a token-free future with
pre-trained byte-to-byte models.
Transactions of the Association for
Computational Linguistics, 10:291–306.
https://doi.org/10.1162
/tacl a 00461

Xue, Linting, Noah Constant, Adam Roberts,
Mihir Kale, Rami Al-Rfou, Aditya
Siddhant, Aditya Barua, and Colin Raffel.
2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 483–498.
https://doi.org/10.18653/v1
/2021.naacl-main.41

Yu, Dong and Li Deng. 2015. Automatic
Speech Recognition: A Deep Learning
Approach, volume 1 of Signals and
Communication Technology. Springer.
https://doi.org/10.1007/978
-1-4471-5779-3

Zhang, Hao, Richard Sproat, Axel H. Ng,
Felix Stahlberg, Xiaochang Peng, Kyle
Gorman, and Brian Roark. 2019. Neural
models of text normalization for speech
applications. Computational Linguistics,
45(2):293–337. https://doi.org/10
.1162/coli a 00349

534

https://unstats.un.org/unsd/geoinfo/ungegn/docs/pubs/UNGEGN%20tech%20ref%20manual_m87_combined.pdf
https://unstats.un.org/unsd/geoinfo/ungegn/docs/pubs/UNGEGN%20tech%20ref%20manual_m87_combined.pdf
https://unstats.un.org/unsd/geoinfo/ungegn/docs/pubs/UNGEGN%20tech%20ref%20manual_m87_combined.pdf
https://doi.org/10.3115/1119384.1119392
https://doi.org/10.3115/1119384.1119392
https://doi.org/10.18653/v1/K19-1030
https://doi.org/10.1109/18.87000
https://doi.org/10.18653/v1/W19-3114
https://doi.org/10.1016/j.csl.2021.101283
https://doi.org/10.1016/j.csl.2021.101283
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.1007/978-1-4471-5779-3
https://doi.org/10.1007/978-1-4471-5779-3
https://doi.org/10.1162/coli_a_00349
https://doi.org/10.1162/coli_a_00349

	Introduction
	Background and Related Work*5pt
	Monotonic Sequence-to-sequence Modeling
	Transliteration and Romanization Models and Corpora

	Methods
	Data
	Evaluation
	Sequence-to-sequence Modeling
	Training Data Preparation
	Language Modeling
	Ensembling

	Experiments
	Non-contextual Latin-to-native Transliteration
	Non-contextual Native-to-Latin Transliteration
	Context-aware Latin-to-native Transliteration
	Experiments with Caching
	Analysis
	Test Partition Results

	Conclusion
	Fine-tuning Dataset Pruning
	mT5 SentencePiece Coverage Issues
	Experimental Results for All Languages
	Transliteration Cache Coverage

