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Abstract

Natural language processing technology has been widely applied in the field of education. Essay
writing serves as a crucial method for evaluating students’ language skills and logical thinking
abilities. Rhetoric, an essential component of essay, is also a key reference for assessing writing
quality. In the era of large language models (LLMs), applying LLMs to the tasks of automatic
classification and extraction of rhetorical devices is of significant importance. In this paper, we
fine-tune LLMs with specific instructions to adapt them for the tasks of recognizing and extract-
ing rhetorical devices in essays. To further enhance the performance of LLMs, we experimented
with multi-task fine-tuning and expanded the training dataset through synthetic data. Addition-
ally, we explored a model ensemble approach based on label re-inference. Our method achieved
a score of 66.29 in Task 6 of the CCL 2024 Eval, Chinese Essay Rhetoric Recognition and Un-
derstanding(CERRU), securing the first position.

Keywords: Rhetoric Recognition, Large Language Models, Model Ensemble, Synthetic Data

1 Introduction

Essay writing is a crucial means of assessing students’ language proficiency and logical thinking skills.
The development and application of natural language processing (NLP) technologies have significantly
advanced the field of education. Typically, grading essays demands substantial time and effort from
teachers. By applying automation technologies to this process, we can alleviate the workload on teachers,
allowing them to focus more on instruction and student guidance. Rhetorical devices are an essential
component of essays, making it necessary to automate the extraction and classification of these devices
as a key dimension in the automated assessment of writing quality.

Previous work in the fields of machine learning and deep learning has extensively explored the iden-
tification and classification of rhetorical devices in writing. For instance, (Xiaoxi et al., 2018) used
convolutional neural networks and support vector machines to identify metaphors in both Chinese and
English datasets. (Hu et al., 2017) employed sequential models to recognize metaphors in text, while
(Liu et al., 2018) adopted a multi-task learning approach to classify rhetorical sentences and extract
their rhetorical components. Additionally, (Li and Li, 2022; Igbal et al., 2023) utilized BERT models to
identify metaphors in compositions by overseas Chinese students.

The recognition and extraction of rhetorical devices can be fundamentally categorized as tasks of text
classification and entity recognition, both of which have been extensively studied. The introduction of
the GPT series (Radford et al., ; Radford et al., 2019; Brown et al., 2020) has sparked significant interest
in LLMs within the NLP community, marking the advent of the era of large language models (Zhao et al.,
2023). Following the release of the LLaMA series (Touvron et al., 2023), the open-source community for
LLMs has flourished. In this new era, some studies have utilized the in-context learning capabilities of
large models for text classification (Sun et al., 2023). Furthermore, (Wang et al., 2023) demonstrated the
effectiveness of supervised instruction fine-tuning of large language models for information extraction
tasks.
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Against this backdrop, we explored the use of generative large language models for rhetorical recog-
nition and extraction in the CCL24-Eval Task 6 Chinese Essay Rhetoric Recognition and Understand-
ing(CERRU). For this task, we processed the dataset into fine-tuning instructions and applied parameter-
efficient fine-tuning methods to the Yi(Young et al., 2024) and Qwenl1.5(Bai et al., 2024) models with
supervised instruction fine-tuning. To further enhance model performance, we incorporated multi-task
learning methods and augmented the training set with synthetic data generated by LLMs. Finally, we
developed a model ensemble approach involving re-inference for Hierarchical rhetorical classification
tasks. Our method achieved a final score of 66.29 in CCL 2024 Eval Task 6 CERRU, ranking 1st.

2 Chinese Essay Rhetoric Recognition and Understanding

CCL 2024 Eval Task 6: Chinese Essay Rhetoric Recognition and Understanding includes three tracks:

Track 1: This track classifies rhetorical devices in each sentence at a coarse-grained level into five cat-
egories: metaphor, simile, hyperbole, parallelism, and no rhetoric. Additionally, each rhetorical category
is further classified into subcategories based on form, resulting in a total of 4 coarse-grained categories
and 12 fine-grained subcategories.

Track 2: Similar to Track 1, this track classifies rhetorical devices in each sentence at a coarse-grained
level into the same five categories. However, the fine-grained classification is based on content, resulting
in 4 coarse-grained categories and 11 fine-grained subcategories.

Track 3: This track focuses on identifying rhetorical components within sentences, specifically con-
junction, tenor, and vehicle.

Overall, Tracks 1 and 2 fall under hierarchical text classification tasks, while Track 3 is an entity
extraction task.

3 Methodology
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Figure 1: The process of generating synthetic data

3.1 Parameter-Efficient Instruction Fine-Tuning

Despite the evaluation task encompassing both classification and entity recognition, these tasks can be
unified under an instruction-based format within the generative fine-tuning framework for LLMs. To
fine-tune LLLMs with limited hardware resources, we employed the LoRA (Hu et al., 2021) method for
instruction fine-tuning of the base LLM.
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3.2 Multi-Task Learning

We believe that in the rhetorical classification task, not only should the LLM be informed of the rhetorical
category to which a sentence belongs, but it should also identify the specific entities within the sentence
that determine this category. This approach aids the LLM in better understanding and analyzing rhetori-
cal categories within sentences. The same principle applies to the task of rhetorical entity extraction.

It is important to note that the datasets for the three tracks in the evaluation task contain identical
text, differing only in their respective annotations. Therefore, implementing multi-task learning in our
experiments was straightforward: we simply combined the instruction datasets from the three tracks and
performed fine-tuning on this mixed dataset.

3.3 Synthetic Data

The limited number of annotated training samples provided for the evaluation task constrained further
improvements in model performance. Inspired by the LLM2LLM method (Lee et al., 2024), we recorded
error-prone samples in track 1&2 from the validation set during the fine-tuning process. As shown in
Figure 1, we then used a more powerful LLM as a teacher model to generate synthetic data based on
these error-prone samples.

3.4 Model Ensemble Based on Label Re-Inference
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Figure 2: Model ensemble based on label re-inference

To further enhance model performance on track 1&2, we explored a model ensemble approach for
the task of classifying coarse-grained and fine-grained labels using LLLMs. This process is shown in
Figure 2. Assume there are K fine-tuned LLMs, with the parameters of the k-th LLM denoted as 0.
For a given sentence x, we add instructions to form Instruction(x), which is then input into 6 for
inference, yielding a coarse-grained label y,ih) (High-level label) and a fine-grained label y,(j)(Low—level
label), along with their respective possible label sets C (") and c®):

(y,gh), y,(j)) = arg max P (y,ih) =M, y,(cl) = W | Instruction(z) Hk) (1)
(M) cD)ecth) x b

Next, we perform majority voting on these coarse-grained label results:

K
y"), = arg max (Z Sy = c§-h>>> 2)
k=1
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where j = {1,2,...,|C"|}, and § is the indicator function, which equals 1 when y,gh) = cg»h) and 0
otherwise. Given that generative LLMs predict the next token based on the given sequence, and that the
LLM has learned the constraints between coarse-grained and fine-grained labels during the fine-tuning
phase, there is no need for additional fine-tuning. Provided yéz)s is not null, we append yéz)s to the

instruction and re-input it into the LLM for re-inference under the constraint of the coarse-grained label:

argmax P (y,gl’re) = D | Instruction(z) + y{, , Gk) 3)

cWec® (y)

l_re
o -

We then conduct majority voting on the re-inferred fine-grained labels:

K
), = arg max (Z Sy = cg”)) 4)

k=1

where j = {1,2,..., |C(l)|}. The resulting (yéﬁ)s, yéQs) constitutes the final classification result for the
sentence .

4 [Experiments

4.1 Dataset

The experimental dataset is derived from CCL 2024 Task 6 and includes three tracks. Each track consists
of 634 samples in the training set, 225 samples in the validation set, and 5000 samples in the test set.

We processed the datasets into instruction formats, examples of the fine-tuning data can be found in
the appendix. For training samples with multiple answers, we separated them using ’\n”.

4.2 Models

In our experiments, we used several LLMs for instruction fine-tuning: Yi-6B-Base, Qwen1.5-7B-Base,
Qwenl.5-14B-Base, and Qwenl.5-32B-Base. We observed that, in most cases, larger LLMs tend to
achieve better performance.

For generating synthetic data, we employed Qwen-max-0403 and Qwen-max-0428 as teacher models,
accessed via API. The prompt used for calling the teacher models can be found in the appendix.

4.3 Settings

We used the AdamW optimizer with 5, and 33 set to (0.9, 0.999) and a weight decay of le-2. The
initial learning rate was 3e-5, with cosine annealing applied to decay the learning rate to 6e-6 after 600
steps. The batch size was 8, and gradient checkpointing was enabled. The gradient norm was clipped to
a maximum of 1.0.

For the LoRA hyperparameters, we used » = 72 and o = 612, which is equivalent to o = 72
with rsSLoRA enabled. As noted in (Kalajdzievski, 2023), the scaling factor < in the original LoRA
implementation (Hu et al., 2021) is too aggressive, leading to gradient collapse issues when using larger
LoRA ranks. Adjusting the scaling factor to % can mitigate this problem. Therefore, we adopted a
larger LORA o while using the original LoRA scaling factor.

During training, evaluation was performed on the validation set every 5 steps. We used the evaluation
script provided by the organizers to compute the F1 score and saved the checkpoint with the highest
score.

For inference, we employed beam search with (temperature=0.5, num_beams=3) to predict the target
sequence.

The experiments were conducted on 1~5 Nvidia A30 GPUs. The frameworks used for the experiments
were Pytorch and HuggingFace Transformers.
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trackl track2 track3
val test val test val test
Yi-6B-Base 49.08 53.72 | 52.12 48.63 | 67.11 68.00
Qwenl.5-7B-Base 49.83 56.29 | 52.59 53.63 | 68.35 -
Qwenl.5-14B-Base 52.06 56.68 | 57.21 60.58 | 69.98 70.97
Qwenl.5-32B-Base 51.66 - 55.18 - 7317 74.20

Model

Table 1: Model comparison

4.4 Model Performance Comparison

We tested several LLMs, fine-tuning them on the training set for each track. The results are presented
in Table 1, where val” indicates the validation set score and “’test” indicates the score obtained after
submitting the test set results.

Overall, larger models generally performed better. However, we observed that Qwen1.5-32B-Base
did not outperform the smaller 14B model on the validation sets for Track 1&2. Ultimately, we selected
Qwenl.5-14B-Base for subsequent experiments in Track 1 and Track 2, and Qwen1.5-32B-Base for the
task in Track 3.

4.5 Evaluation Results

Table 2 shows the test set scores under different methods.

Track Model&Method Test Score
Qwenl.5-14B-Base 56.68
track1 +MultiTaskLearning+ModelEnsemble 59.12
+MultiTaskLearning+ModelEnsemble+SyntheticData+ValData 61.30
Qwenl.5-14B-Base 60.58
track?2 +MultiTaskLearning+ModelEnsemble 61.72
+MultiTaskLearning+ModelEnsemble+SyntheticData+ValData 62.29
Qwenl.5-32B-Base 74.20
track3 +MultiTaskLearning 74.61
+MultiTaskLearning+PostProcessing 75.28

Table 2: Evaluation results

For Tracks 1&2, scores improved after applying multi-task learning and label re-inference model
ensemble methods, with a more significant improvement in Track 1.

Subsequently, we used Qwenmax-0403 and Qwen-max-0428 as teacher models and generated syn-
thetic data using error-prone samples from the original validation set as seeds. During this process, we
found that the teachers provided highly repetitive answers for the same error-prone samples. Therefore,
we manually filtered out the highly repetitive synthetic samples. Additionally, to ensure that the synthetic
data was similar in length to the original samples, we removed synthetic samples that significantly devi-
ated in length from the original samples based on their length ratio. This resulted in nearly 200 synthetic
data samples.

Moreover, it is generally accepted that the validation set, being most similar in distribution to the
original training set, is a crucial resource. We ultimately combined the validation set with 100 synthetic
samples into the training set, leaving the remaining synthetic data as the validation set. This approach
further improved our scores, reaching 61.30 for Track 1 and 62.29 for Track 2.

For Track 3, multi-task learning provided a slight score improvement.

We observed that the task definition for “exaggeration” rhetoric did not include conjunctions. How-
ever, the model often included conjunctions in the prediction results. Therefore, we implemented a
simple post-processing step: if a sentence was identified as exaggeration rhetoric in both Track 1 and
Track 2, we removed the conjunctions from the Track 3 prediction. Similarly, if a sentence was labeled
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as ’no rhetoric” in both Track 1&2, we also set it to ’no rhetoric” in the Track 3 prediction. This final
post-processing step increased the score to 75.28.

5 Conclusion

In this paper, we explored the use of large language models (LLMs) for the tasks of essay rhetoric
recognition and understanding. By employing instruction fine-tuning, multi-task learning, synthetic data
augmentation, and a model ensemble method based on label re-inference, we significantly improved the
model’s performance. Ultimately, our approach achieved a score of 66.29 in Task 6 of the CCL 2024
evaluation, CERRU, securing the first place. This outcome demonstrates the tremendous potential of
LLMs in the automated processing of complex natural language tasks.
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Appendix
A Examples of the fine-tuning data

A.1 trackl:

{

"instruction": "IHIRIRBIM LT AIFHRBERR, XE—PBRESIRZERE, H£F4K
K12/ HRINNEEZNER, EHEABRITHRIT . \nflF: 28T ERN, BREER
FEAe \ni Wi Mol BN, EEME, fEME. HURL AOA, shidl, JEEE, BhA. S5k JiE
Sk, HETESK, BESIK. . BorHE, aFHE . v,

"output": "EHIK-HESIK"

}

A.2 track2:

{

"instruction": "IBRIRFIH AN A FHBEHEAZRE, XE—1TERESIHE RS,
HaKF11/hE MMERKTTERN, RREREREN « \nikl: Wi SSEY, hE, MW
S R HA, B . Bk ¥OKEIK, 48/0F5k, HEiSIK. HEH. 5, KE, @
ion L

"output": "EHiK-F KEIK"
}

A.3 track3:

{

"instruction": "FEUH FAIEEMECRFEMERER S o TG RB XN \EE

W xxx |FEWNHR: xxx | HEHNE: xxx\", HEHEZIMER, HHEABRITHFET - \n (1)

X LLmERE, WTEAMITE, BEREAS BREERE (MiF) - BENSR (KiE) M5 NE
(Wifg) 5 X THEMER, BRESEFEFEENSR (KME) MEERE (W) X TIERE

X, BFEASEFEMENE (MK ; \n (2) X HEER, MpEafl, BEssHe

FHEN R (WX FAHENE (WIANE) ; \n (3) FHXEKER, SeEafr,

EEER D EEFBHE NS (SN SR) MEENE (S5KNE) 5 \n (4) FIXTHELLIERE,

WA, R o BEFEEEE (HEIIEEHE L) - \n3UAR: MZRIT T ER, AR

ABEREEA » \nTHEUER: -,

"output": "THENR: M| EEE. TIEENE: BRTFER"

}

B System prompt for calling the teacher LLMs

system_prompt = /'’ IERE—NEEFEE B CHIRETF -

H—EEZ: DA FIENERBAL, K6 BT IE R R 55 R A - L
P Bk HEARTCERER, R EER BT —2 WL A AR 52

REE IR

> thuﬁﬁ:

MIEZ Il 57
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(1) PRy AR Mgk WimER L, @I GE AR\ R IR\ e\ b S R R A R A
A . a0 IIAZBILNSRENTE, BRE/D, BHEAEYA.

(2) WM. OOARER S BadR B, WA R \F R\ \ O X iR - 0. 5 EAR SR
THALRAS, DA THLZX 37k

(3) f&m: (gL 0. —EETIHER L.

MR Z 57

(1) SEAEY). AMZEF - Alfh ATAEASEZER R . 0. — BT AR E -

(2) BB REZEMNE . TS 0 TREAN—RINE, B T EIE, &

O

(3) MBS, AMEEMEMES, WE . ME . BS%E. . NERESE.

. L

MIE LI 43

(1) & A5 A NMLASY/HE5YRshin S AsiH iy . . REFXWEAT KL, E
(2) #hiF: S ANWIShASY) B 5Yohin 5 As = Y . 0. FESIEE R R, M AA]
BREMERFEL -

(3) JEFA: AEARNEASAEY/ HEYEERES Nt Ay . 0. BKEARSE, L
TV

(3) EhF: AEAMENASY B5YRENa S Asi Y . . SRATE, EEEWRT
INGEES P

(1) WA BIEAMEANT . 0 WIKEEERE, SLZHFE.

(2) . EAEARFEDEIE 25, adi . W REI T BRBES, FRAOEERCE R
T, BEMECHT N\SHEILEIL -

= . ik

MIE K53

(1) BEESIK: HENEYHFITSK. 1. RPOZLITENERLES

(2) LK SERATFERARERFEEY - W —IBFERKEEATEMEF -

(3) @AEIK: EEEMER#HITESRK, B ISLE. . BREGHBRBEATIEAL
T, EEXERMET NER.

UNLESS

(1) A%Ht%—?%:: K. £ KEEESK. 1. KEMVEEERL, HEEAmmE, +
W08 .

(2}@ B hEak: /s A EEKRESTK. W MERSAREMLE, REEELEERYN
—HKR .

<3>ﬁﬁﬁﬁ%—?é‘%z e B ERE e HIIEZ R - U EEEFRREEEEEFERT -

IO . HEHE:

MIE K 57

(1) R HEL: B—DATHRFELESRS, IFEEEERSE, BdEENERHSIE .
W WAL, WRIR, WAERE, EEET .

(2) AIFHELL: HELLTRT BMAA] - a1 BREEMEFILTRED), ©MNARMAHEZHE,
E5fmzaE, Tsh TEROOR -

INBESS IR

(1) 7). HEELTUF AR AR TG SGE T - a0 THb B ARBER, & ABREE, & ARRER,
BARERE, N W B RS . o o

(2) A&#: HELBZEESEEZEIT, witE - BE - ZRRE, Ny - a0:
WRBBACEEENE, WA E =SNG - B T - LS BRI R 4 2

(3) #hift: ZHEHIRERS L BEREZRZ @, NERZNF . W FS5tE—x—
FEHE RS R, FRBMEMRTEE, 1L FELAEREEEE -

f - TAEEE
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REIE —LEF 220 ANE—La T TERRA, FEREZHFT . HAEREIRKITE . Zath
H—"116], FHESEGIG, QG5 AR FEAER 6T

R,

1. UR%E H B R BRI R EAE LT 45 H A0 -

2 TR ZLH ISR -

3. BRI T RIRB S 66 —E . BB HENEREEZ, REFERIERATRER D
—E, BPEFRESHRIT -

4 EBIAAFIRE FHENEERE, IRFHES W — e HEE M B R FIEm AT -

5. 0& 501 f) B SURRLIRA) 7, (EANZESHIFE ST

6. RE MRS B0 A) FEIL 22 A B LB (R KA -

7. 5GIE RO RG], FRRERIES WA T R eSS0 aMRMERETIE, RERE
RNBSNERETI% -

8. B AT RERESFI AL -

9. KIERHIBIE ] «

— B ZLRUER A IS
<H]F>: [AIF]

<HHZEH>: HEH]

JEFH>: B

<> A

rrr
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