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Abstract

In Chinese Named Entity Recognition, character substitution is a complicated linguistic phe-
nomenon. Some Chinese characters are quite similar as they share the same components or have
similar pronunciations. People replace characters in a named entity with similar characters to
generate a new collocation but refer to the same object. As a result, it always leads to unrecog-
nizable or mislabeling errors in the NER task. In this paper, we propose a lightweight method,
MFE-NER, which fuses glyph and phonetic features to help pre-trained language models handle
the character substitution problem in the NER task with limited extra cost. Basically, in the glyph
domain, we disassemble Chinese characters into Five-Stroke components to represent structure
features. In the phonetic domain, an improved phonetic system is proposed in our work, making
it reasonable to describe phonetic similarity among Chinese characters. Experiments demon-
strate that our method performs especially well in detecting character substitutions while slightly
improving the overall performance of Chinese NER.

1 Introduction

Recently, pre-trained language models have been widely used in Natural Language Processing (NLP)
(Zhang et al., 2021), constantly refreshing the benchmarks of various NLP tasks (Li et al., 2024b; Li et
al., 2024a). By applying the transformer structure, semantic features can be extracted more accurately.
However, in the Named Entity Recognition (NER) area, tricky problems still exist. Most significantly, the
character substitution problem severely affects the performance of NER models. To make things worse,
this problem has become even more common these years, especially in social media, which leads to the
dissemination of fake news (Frermann et al., 2023). Due to the particularity of Chinese characters, there
are multiple ways to replace original Chinese characters in a word. Characters with similar meanings,
shapes, or pronunciations can be selected for character substitution. A simple example shown in Figure
1 is a Chinese word, which represents a famous place in Shanghai. Here, all three characters in the word
are substituted by other characters with similar glyphs or pronunciations. After substitution, this word
looks more like the name of a person rather than a place.

In practice, it is extremely hard for those pre-trained language models to tackle this problem (Mao
et al., 2022). Currently, the tasks for pre-training Chinese language models are mainly focused on the
semantic domain, neglecting glyph and phonetic features (Li et al., 2020). However, most character
substitution cases exist in glyph and phonetic domains. At the same time, hot topics on social media
are changing rapidly, creating new expressions or substitutions for original words every day, while it is
technically impossible for pre-trained models to include all possible collocations. Models that only saw
the original collocations before will naturally suffer from Out-of-Vocabulary (OOV) problems.

In this paper, we propose a lightweight method, Multi-feature Fusion Embedding for Chinese Named
Entity Recognition (MFE-NER), which fuses extra glyph and phonetic features to detect possible substi-
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打 浦 桥 达 甫 乔
da3 da2pu3 qiao2 qiao2fu3

Similar glyph

Similar glyph & similar pronunciation

Similar pronunciation

Figure 1: The substitution example of a Chinese word. On the left is a famous place in Shanghai. On the
right is a new word after character substitution, which is more like a person or a brand.

tution forms of named entities in Chinese. On top of using pre-trained models to represent the semantic
feature, we choose a structure-based encoding method, known as ’Five-Strokes’, to introduce glyph fea-
tures. In the phonetic domain, we propose ‘Trans-pinyin’, which combines ’Pinyin’, a unique phonetic
system, with international standard phonetic symbols. Experiments on three general datasets and our
special-designed dataset with character substitutions have illustrated that with limited extra cost, MFE-
NER can not only help NER models handle the character substitution problem but also enhance the
overall performance of NER models, which makes it especially suitable to be used in current language
environments.

To summarize, our major contributions are:

• We emphasize the influence of character substitution in the NER task and propose to introduce extra
information from Chinese characters to handle this problem.

• For glyph features of Chinese characters, we apply the Five-Stroke encoding method, denoting
structure patterns of Chinese characters.

• To represent phonetic features of Chinese characters, we propose a new method named ‘Trans-
pinyin’, to make it possible to evaluate phonetic similarity among Chinese characters.

• Experiments show that within limited extra cost, our method is more reliable in recognizing sub-
stituted Chinese Named Entities while also slightly improving the overall performance of NER
models.

2 Related Work

After the stage of statistical machine learning algorithms, Named Entity Recognition has stepped into the
era of deep neural networks. Researchers started to use Recurrent Neural Network (RNN) (Hammerton,
2003) to recognize named entities in sentences based on character embedding and word embedding like
word2vec (Church, 2017), solving the feature engineering problems that traditional statistical methods
have. However, traditional RNNs may have the problem of gradient explosion and can not capture the
long dependency well. In this case, the Bidirectional Long Short Term Memory (Bi-LSTM) network
(Huang et al., 2015) was then applied in Chinese Named Entity Recognition, which became one of the
baseline models in the Chinese NER task.

These years, large-scale pre-trained language models based on Transformer (Vaswani et al., 2017)
have shown their superiority in Natural Language Processing tasks. The self-attention mechanism can
better capture the long-distance dependency in sentences, and the parallel design is suitable for mass
computing. Bidirectional Encoder Representations from Transformers (BERT) (Kenton and Toutanova,
2019) has achieved great success in many branches of NLP. In the Chinese Named Entity Recognition
field, these pre-trained models have greatly improved the recognition performance (Cai, 2019).
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Figure 2: The structure of MFE-NER.

However, the situation is more complicated in real-language environments. Pre-trained language mod-
els do not guarantee the robustness of NER models. Researchers have started to introduce prior knowl-
edge to improve the generalization of NER models. SMedBERT (Zhang et al., 2021) introduces knowl-
edge graphs to help the model acquire the medical vocabulary explicitly. Meanwhile, in order to relieve
character substitution problems and enhance the robustness of NER models, researchers have also paid
attention to utilizing glyph and phonetic features of Chinese characters. Jiang Yang and Hongman Wang
suggested using the ‘Four-corner’ code, a radical-based encoding method for Chinese characters, to rep-
resent glyph features of Chinese characters (Yang et al., 2021), showing the advantage of introducing
glyph features in Named Entity Recognition. However, the ‘Four-corner’ code is not that expressive
because it only works when Chinese characters have the same radicals. Tzu-Ray Su and Hung-Yi Lee
suggested using Convolution Auto Encoder to build a bidirectional injection between images of Chinese
characters and pattern vectors (Su and Lee, 2017). This method is brilliant but lacks certain supervision,
which means that it’s hard to explain the concrete meanings of the pattern vectors. Fan Yang, Jianhu
Zhang et al introduced ‘Five-Stroke’ in NER models, which clearly improves the performance (Yang et
al., 2018). Recently, Zijun Sun, Xiaoya Li, et al. proposed ChineseBERT (Sun et al., 2021), fusing glyph
and phonetic features to the pre-trained models. Their work is impressive in fusing glyph and phonetic
features as input for pre-trained models, but problems still exist. For example, using flattening character
images is inefficient for adding huge costs to feature dimensions and enlarging possible negative influ-
ence on the model. As Chinese characters have a limited number of components in structures, it will be
more convenient and efficient to extract and denote their glyph patterns by certain component encoding
methods.

3 Method

Our MFE-NER is a lightweight Named Entity Recognition method fusing the glyph and phonetic feature
embeddings for Chinese character substitution, which is complementary to pre-trained language models
in the representation of Chinese characters. As shown in Figure 2, MFE-NER introduces an extra module,
fusing glyph embedding with ‘Five-Strokes’ and phonetic embedding by ‘Tran-Pinyin’.

Basically, for a Chinese sentence S with length n, the sentence S is divided naturally to different
Chinese characters S = c1, c2, c3, ..., cn. Each character ci will be mapped to an embedding vector ei,
which can be divided into the above three parts, esi , egi and epi . Plus semantic embedding from pre-trained
language models, all three embedding parts are designed based on a simple principle: similarity. In this
paper, the character similarity between two Chinese characters ci and cj is defined by computing their
L2 distance in the three aspects. Here, we use ssij to denote semantic similarity, sgij for glyph similarity
and spij for phonetic similarity. So, we have:

ssij = ∥esi − esj∥ (1)
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Figure 3: The ‘Five-Strokes’ representation of the Chinese characters, ‘pu3’ (somewhere close to a
river). ‘Five-Strokes’ divides the character into four character roots ordered by writing custom so that
the structure similarity can be denoted.

sgij = ∥egi − egj∥ (2)

spij = ∥epi − epj∥ (3)

In this case, MFE-NER can better represent the inner distribution of Chinese characters in embedding
space.

3.1 Semantic Embedding using Pre-trained Models
Semantic embedding is vital to Named Entity Recognition. In Chinese sentences, a single character does
not mean a word because there is no natural segmentation in Chinese grammar. So, technically, we have
two choices in acquiring Chinese embedding. The first way is word embedding, which tries to separate
Chinese sentences into words and get the vector representation of words. This makes sense but is limited
by the accuracy of word segmentation tools. The other is character embedding, which maps Chinese
characters to different embedding vectors in semantic space. In practice, it performs better in Named
Entity Recognition. Our work also requires the use of Chinese character embeddings because glyph and
phonetic embeddings are targeted at single Chinese characters.

So far, pre-trained models have been widely used in the semantic domain. One typical method is
Word2Vec (Mikolov et al., 2013), which starts to use static embedding vectors to represent Chinese
characters in the semantic domain. Now, we have more options. BERT (Kenton and Toutanova, 2019)
has its Chinese version and can express semantic features of Chinese characters more accurately, hence
having better performance in NER tasks.

3.2 Glyph Embedding with Five-Strokes
Chinese characters, different from Latin Characters, are pictographs, which show their meanings in
shapes. However, it is extremely hard for people to encode these Chinese characters in computers.
A common strategy is to give every Chinese character a unique hexadecimal string, such as ‘UTF-8’
and ‘GBK’. However, this kind of strategy processes Chinese characters as independent symbols, to-
tally ignoring the structural similarity among Chinese characters. In other words, the closeness in the
hexadecimal string value can not represent the similarity in their shapes. Some work has tried to use
images of Chinese characters as glyph embedding, which is also unacceptable and ineffective due to the
complexity and the large space it will take.

In this paper, we propose to use ‘Five-strokes’, a famous structure-based encoding method for Chinese
characters, to get our glyph embedding. ‘Five-Strokes’ was put forward by Yongmin Wang in 1983. This
special encoding method for Chinese characters is based on their structures. ‘Five-Strokes’ holds the
opinion that Chinese characters are made of five basic strokes: horizontal stroke, vertical stroke, left-
falling stroke, right-falling stroke and turning stroke. Based on that, it gradually forms a set of character
roots, which can be combined to make up the structure of any Chinese character. After simplification
for typing, ’Five-Strokes’ maps these character roots into 25 English characters (‘z’ is left out) and
each Chinese character is made of at most four corresponding English characters, which makes it easy to
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c ao 3

ts’  au 3

z ao 3

ts au 3

Chinese 
Characters

Pinyin Forms
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Figure 4: The ‘Pinyin’ form and standard form of two Chinese characters, ‘cao3’ (grass) on the left and
‘zao3’ (early) on the right.

acquire and type in computers. It is really expressive that four English characters can have 254 = 390625
arrangements, while we only have about 20 thousand Chinese characters. In other words, ‘Five-Strokes’
has a rather low coincident code rate for Chinese characters.

For example, in Figure 3, the Chinese character ‘pu3’ (somewhere close to a river) is divided into four
different character roots by Chinese character writing custom, which will later be mapped to English
characters so that we can further encode them by introducing one-hot encoding. For each character root,
we can get a 25-dimension vector. In this paper, in order to reduce space complexity, we sum up these 25-
dimension vectors as the glyph embedding vector. We also list two different characters, ‘fu3’ (an official
position) and ’qiao2’ (bridge), and calculate the similarity between them. The two characters ‘pu3’ and
‘fu3’ with similar components are close in embedding space, while ‘qiao2’ and ‘pu3’ are much more
distant, which gives NER models extra patterns.

3.3 Phonetic Embedding with Trans-pinyin
Chinese use ‘Pinyin’, a special phonetic system, to represent the pronunciation of Chinese characters.
In the phonetic system of ‘Pinyin’, we have four tunes, six single vowels, several plural vowels, and
auxiliaries. Every Chinese character has its expression, also known as a syllable, in the ‘Pinyin’ system.
A complete syllable is usually made of an auxiliary, a vowel, and a tune. Typically, vowels appear on
the right side of a syllable and can exist without auxiliaries, while auxiliaries appear on the left side and
must exist with vowels.

However, the ‘Pinyin’ system has an important defect. Some similar pronunciations are denoted by
totally different phonetic symbols. For the example in Figure 4, the pronunciations of ‘cao3’ (grass)
and ‘zao3’ (early) are quite similar because the two auxiliaries ‘c’ and ‘z’ sound almost the same that
many native speakers may confuse them. This kind of similarity can not be represented by phonetic
symbols in the ‘Pinyin’ system, where ‘c’, and ‘z’ are independent auxiliaries. In this situation, we
have to develop a method to combine ‘Pinyin’ with another standard phonetic system, which can better
describe characters’ phonetic similarities. Here, the international phonetic system seems the best choice,
where different symbols have relatively different pronunciations so that people will not confuse them.

We propose the ’Trans-pinyin’ system to represent character pronunciation, in which auxiliaries and
vowels are transformed to standard forms and keep the tune in the ‘Pinyin’ system. After transformation,
‘c’ becomes ‘ts’ and ‘z’ becomes ‘ts′’, which only differ in phonetic weight. We also made some
adjustments to the existing mapping rules so that similar phonetic symbols in ‘Pinyin’ could have similar
pronunciations. By combining ‘Pinyin’ and the international standard phonetic system, the similarity
among Chinese characters’ pronunciations can be well described and evaluated.

In practice, we use the ‘pypinyin’ 1 library to acquire the ‘Pinyin’ form of a Chinese character. Here,
we will process the auxiliary, vowel, and tune separately and normally concatenate them together after
being processed.

• For auxiliaries, they will be mapped to standard forms, which have at most two English characters
1https://github.com/mozillazg/python-pinyin
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and a phonetic weight. We apply one-hot encoding to them so that we get two one-hot vectors and
a one-dimension phonetic weight. Then we add up the two English characters’ one-hot vectors, and
the phonetic weight here will be concatenated to the tail.

• For vowels, they are also mapped to standard forms. However, it is a little different here. We have
two different kinds of plural vowels. One is purely made up of single vowels, such as ‘au’, ‘eu’
and ‘ai’. The other kind is like ‘an’, ‘aη’ and ‘iη’, which are combinations of a single vowel and
a nasal voice. Here, single vowels are encoded to 6-dimension one-hot vectors and nasal voices to
2-dimension one-hot vectors, respectively. Finally, We concatenate them together, and if the vowel
does not have a nasal voice, the last two dimensions will all be zero.

• For tunes, they can be simply mapped to four-dimension one-hot vectors.

4 Experiments

We conduct experiments on our substitution dataset and three general datasets to verify our method from
different perspectives. Standard precision, recall and F1 scores are calculated as evaluation metrics to
show the performance of different model settings. In this paper, we set up experiments on Pytorch and
FastNLP 2 structure. All experiments are run on Nvidia RTX 3090 and 3080.

4.1 Dataset

Dataset
Sentences

Train Test Dev

Resume 3821 463 477
Ontonote 15724 4346 4301
Weibo 1350 270 270
Substitution 14079 824 877

Table 1: Dataset Composition.

In order to verify whether our method has the ability to cope with the character substitution problem,
we also built our own dataset. This specially designed dataset is collected from informal news reports
and blogs. Specifically, We construct the Substitution dataset by manually labelling and replacing en-
tities with known substitutions. Then, we randomly change the characters in the entities with similar
characters. Meanwhile, the substitution dataset itself contains some sensitive materials that might vio-
late media censorship. Generally, we ensure that every entity in this dataset is processed and replaced
by similar characters. In this case, the dataset is made of pairs of original entities and their character
substitution forms. This dataset consists of 15780 sentences in total and is going to test our method in an
extreme language environment.

We also conduct experiments on three general NER datasets, Chinese Resume (Zhang and Yang,
2018), Ontonote (Weischedel et al., 2011), and Weibo (Peng and Dredze, 2015; He and Sun, 2017).
When introducing new features, it is important to make sure that the overall performance is not negatively
affected.

Among three general datasets, Chinese Resume is mainly collected from resume materials. The named
entities in it are mostly people’s names, positions, and company names, which all have strong logic
patterns. Ontonote mainly selects corpus from official news reports, whose grammar is formal and
vocabulary is quite common. Different from the above three datasets, Weibo is from social media, which
includes many informal expressions. Details of the above four datasets are described in Table 1.
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Items Range

batch size 64
epochs 60
lr 2e-3
optimizer Adam
dropout 0.4
Early Stop 5
lstm layer 1

Table 2: Hyper-parameters

4.2 Experiment Settings
The backbone of the NER model used in our work is mainly BiLSTM + CRF. The BiLSTM+CRF
model is stable and has been verified in many research projects. Meanwhile, as our method is focused
on providing a complementary lightweight module for current named entity recognition models, we
select two pre-trained language models, static embedding trained by Word2Vec(Mikolov et al., 2013)
and BERT(Kenton and Toutanova, 2019). To be more specific, BERT-base is used in our work, which
has 12 transformer layers in total. Our MFE-NER with glyph and phonetic embedding is attached to
them by simple concatenation.

Table 2 lists some of the hyper-parameters in our training stage. Adam is used as the optimizer, and the
learning rate is set at 0.002. In order to reduce over-fitting, we set a rather high dropout (Srivastava et al.,
2014) rate of 0.4. Meanwhile, the Early Stop is also deployed, allowing 5 epochs of loss not decreasing.

5 Results and Discussions

In this section, we first show why our method is lightweight and explain the improvement that MFE-NER
achieved in recognizing substitution forms of named entities. Then, we will analyse the overall perfor-
mance enhancement by applying MFE-NER. Here, the embeddings without glyph and phonetic features
are named ‘pure’ embeddings. Basically, we compare pure embeddings from pre-trained language mod-
els with those using MFE-NER to enhance the performance of the NER task. To control variables, we
also introduce the ablation study to verify the separate contribution from glyph and phonetic features.
Table 3 and 4 show all the results of different model settings in different datasets.

5.1 A Lightweight Method
As a lightweight method, MFE-NER provides a convenient solution for all pre-trained models within
limited extra cost. Different from other models utilizing complex techniques for data fusion, we simply
alter the input layer, enlarging the dimension of character embedding by concatenation. Compared to
pure semantic embeddings, MFE-NER only increases less than 5 % of the training time and 0.4 % of the
model parameters. It is remarkable that with less than 50 dimensions added to the character embedding
in the input layer, MFE-NER can cope with substitution forms while slightly improving the performance
of pre-trained language models in all four datasets, showing competitive F1 scores.

5.2 Character Substitution Detection
Considering our substitution dataset, MFE-NER brings remarkable advances. For different semantic
embeddings, MFE-NER achieves much better performance than pure embedding, improving at least 1.0
F1 score.

For the case study, there is an interesting example shown in Figure 5. The two sentences are drawn
from our dataset with the same meaning, ‘he wants to go to Dapuqiao’. Here, ‘Dapuqiao’ is a famous
place in Shanghai. However, the sentence below is different because the characters in the original entity
have been changed, but the word still refers to the same. Considering the model using pure semantic

2https://github.com/fastnlp/fastNLP
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OO O B-LOC I-LOC I-LOC

想他 去 打 浦 桥

OO O B-LOC I-LOC O

想他 去 达 甫 乔

OO O B-LOC I-LOC I-LOC

OO O B-LOC I-LOC I-LOC

Pure semantic

MFE-NER

Pure semantic

MFE-NER

Figure 5: An example is drawn from our dataset, ’he wants to go to Dapuqiao’. The sentence at the top
of the figure is the original sentence, while the sentence at the bottom is after character substitution. The
model using MFE-NER gives the correct prediction.

Models
Weibo Substitution

Precision Recall F1 Precision Recall F1

pure Word2Vec 67.19 40.67 50.67 84.60 71.24 77.35
glyph Word2Vec 62.54 43.54 51.34 80.80 74.66 77.61

phonetic Word2Vec 66.06 43.30 52.31 84.09 74.81 79.18
MFE-NER (Word2Vec) 67.51 44.74 53.81 84.36 75.56 79.72

pure BERT 68.48 63.40 65.84 88.67 81.67 85.03
glyph BERT 71.88 64.83 68.18 89.39 82.86 86.01

phonetic BERT 70.30 66.27 68.22 90.48 82.12 86.09
MFE-NER (BERT) 73.54 63.16 67.95 90.08 82.56 86.16

Table 3: Results on two datasets in informal language environments, Weibo and Substitution.

embedding, it fails to give the perfect prediction for the sentence below, while the model using MFE-
NER can exploit the extra information, thus giving the perfect prediction.

MFE-NER also shows its advantages in some informal language environments. The Weibo dataset is
a typical example of social media. On the Weibo dataset, MFE-NER achieves 53.81 and 67.95 in models
with static embedding and BERT, respectively, significantly enhancing the performance of pre-trained
language models.

5.3 Overall NER Performance
Experiments on the other two general datasets from formal language environments also show that MFE-
NER brings slight improvement to the overall NER task. On the Chinese Resume dataset, MFE-NER
with BERT achieves a 95.73 F1 score, and MFE-NER with static embedding gets a 94.23 F1 score,
improving the performance of pure semantic embedding from pre-trained language models by about 0.5
with respect to F1 score. On Ontonote, MFE-NER also increases the F1 score of static embedding from
80.73 to 81.24 and boosts the performance of using BERT as semantic embedding. However, owing to
fewer grammar mistakes and substitution forms in the standard language environment, the performance
of MFE-NER is limited.

Slight improvement still makes sense. Considering that, in Chinese, named entities have their own
glyph and phonetic patterns. For example, in the glyph domain, characters in Chinese names usually
contain a special character root, which denotes ‘people’. What’s more, characters representing places
and objects also include certain character roots, which show materials like water, wood, and soil. These
character roots can be utilized in ‘Five-Strokes’, thus improving the overall NER performance.

Based on the experiment results above, MFE-NER is able to reduce the negative influence of the
character substitution phenomenon in Chinese Named Entity Recognition while slightly improving the
overall performance of NER models. It makes sense that MFE-NER is suitable for solving character
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Models
Chinese Resume Ontonotes

Precision Recall F1 Precision Recall F1

pure Word2Vec 93.97 93.62 93.79 72.92 57.83 64.51
glyph Word2Vec 93.87 93.93 93.90 71.34 59.88 65.11

phonetic Word2Vec 93.58 93.93 93.75 73.39 57.12 64.24
MFE-NER (Word2Vec) 94.29 94.17 94.23 70.92 59.88 64.93

pure BERT 94.60 95.64 95.12 80.53 80.93 80.73
glyph BERT 94.83 95.58 95.20 83.44 79.49 81.42

phonetic BERT 95.47 95.77 95.62 81.30 79.85 80.57
MFE-NER (BERT) 95.76 95.71 95.73 80.61 81.87 81.24

Table 4: Results on the datasets in formal language environments, Chinese Resume and Ontonotes.

substitution problems because glyph and phonetic features are introduced, which provide more prior
knowledge. These extra features are complementary to semantic embedding from pre-trained models
and bring information that offers more concrete proofs to NER models.

5.4 Ablation Study

Ablation study is thus conducted to investigate how glyph and phonetic features bring improvement by
themselves. We separately add glyph embedding or phonetic embedding to pre-trained language models
for comparisons. From the results on all four datasets, it is clear that models with the glyph or phonetic
embedding almost all perform better than models with pure semantic embedding, which means that extra
patterns from glyph and phonetic domains are all helpful in the NER task, strengthening the original
model ability.

However, in some datasets, the models adding glyph or phonetic embedding only to BERT achieve
higher F1 scores than MFE-NER. The reasons are to follow. On one hand, named entities in different
datasets may rely on one of our provided features much more than the other features. So, in the test
stage, this specific feature would contribute more to identifying named entities in the corpus. On the
other hand, when we add extra information to the existing pre-trained language models, considering the
different data distributions of train, dev, and test set, the model we select might give higher weights to the
learned patterns from glyph or phonetic domain, which shows good performance on dev set but possibly
leads to over-fitting.

6 Conclusion

Nowadays, the informal language environment created by social media has deeply changed the way
that people express their thoughts. Using character substitution to generate new named entities to avoid
social media filtering has become a common linguistic phenomenon that is a big challenge for NER. In
this paper, we propose a lightweight method fusing the glyph and phonetic features for Chinese Named
Entity Recognition (MFE-NER) to handle the Chinese character substitution problem, which introduces
’Five-strokes’ to represent glyph features, making it more convenient to differentiate similar characters,
and develops a system named ‘Trans-Pinyin’ to represent phonetic features of Chinese characters, solving
the problem of similar pronunciations in Pinyin. Experiments show that our model, MFE-NER, can assist
pre-trained models and reduce the influence caused by character substitution.
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