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Abstract

This paper presents our approaches for the Bio-
LaySumm 2024 Shared Task. We evaluate two
methods for generating lay summaries based
on biomedical articles: (1) fine-tuning the
Longformer-Encoder-Decoder (LED) model,
and (2) zero-shot and few-shot prompting on
GPT-4. In the fine-tuning approach, we indi-
vidually fine-tune the LED model using two
datasets: PLOS and eLife. This process is con-
ducted under two different settings: one utiliz-
ing 50% of the training dataset, and the other
utilizing the entire 100% of the training dataset.
We compare the results of both methods with
GPT-4 in zero-shot and few-shot prompting.
The experiment results demonstrate that fine-
tuning with 100% of the training data achieves
better performance than prompting with GPT-
4. However, under data scarcity circumstances,
prompting GPT-4 seems to be a better solution.

1 Introduction

The task of summarization has witnessed the de-
velopment based on pre-trained language models.
More recently, the superiority of large language
models (LLMs) has been demonstrated on a wide
range of natural language processing (NLP) tasks
(Minaee et al., 2024; Zhao et al., 2023). In the
BioLaySumm 2024 shared task (Goldsack et al.,
2024), the competition focuses on generating sum-
maries for biomedical research articles that are eas-
ily understandable by the general public. These
summaries are usually known as "lay summaries".

Recently, the study of the summarization task
using generative models has increased for both gen-
eral domains (Koh et al., 2022b; Zhao et al., 2020)
and biomedical text (Liu et al., 2023a). Addition-
ally, according to Goldsack et al. (2022), each arti-
cle generally has more than 10,000 words. Many
pre-trained language models have been developed
to handle such long text (Koh et al., 2022a). In
this paper, we implement the Longformer-Encoder-

Decoder (LED) (Beltagy et al., 2020) as an ap-
proach for Biolaysumm shared task, as its perfor-
mance has been demonstrated in (Liu et al., 2023b;
Wu et al., 2023).

In this paper, we present a comparison between
the performance of the fine-tuned LED model on
50% and 100% of the training set. Additionally,
we evaluate GPT-4 (OpenAl et al., 2024) on zero-
shot and few-shot prompting for this Shared Task.
Our aim is to investigate how a fine-tuned model
and a large language model such as GPT-4 perform
in lay summarization biomedical text. This study
focuses on three aspects: performance, training
time, and computational cost. Our contributions
are as follows.

* We fine-tune LED model on different amount
of data to evaluate how it affects the perfor-
mance of the LED model in biomedical lay
summarization task.

* Secondly, we evaluate GPT-4 on zero-shot and
few-shot prompting to investigate how the in-
context learning capability of this model. Our
results show that, in the eLife dataset, the GPT-
4 few-shot prompting method outperforms the
fine-tuned LED model.

In the following sections, we briefly analyze the
datasets, describe our methods in detail, showcase
the experiment settings, and present our results,
findings, and conclusion.

2 Datasets

The task is evaluated on two datasets: PLOS and
eLife (Goldsack et al., 2022). Both datasets contain
biomedical articles and a lay summary manually
written for each article. To first understand the eval-
uation datasets, we proceed tokenizing the input
and the output text on two datasets using tokenizer
from LED model (Beltagy et al., 2020). We sum-
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marize the statistics of the PLOS and eLife dataset
in Table 1.

Dataset Article(#Tokens) Summ.(#Tokens)
Train Val Test  Train Val

PLOS 9,851 9,924 9,978 263 279

eLife 12,321 12,753 11,967 435 445

Table 1: The mean number of tokens of input and out-
put text in PLOS and eLife datasets. Summ. is the
abbreviation for lay summary.

According to (Goldsack et al., 2024) and Table
1, while PLOS has more instances of biomedical
papers than the eLife dataset, and the length of both
input and output text in eLife is longer than PLOS.
We also notice that the maximum number of tokens
for input text is 28,561 for PLOS and 34,612 tokens
in eLife.

3 Evaluation Metrics

In this shared task, the generated summaries are
evaluated on three aspects and ten metrics accord-

ingly:

¢ Relevance: ROUGE-1 (R-1), ROUGE-2 (R-
2) and ROUGE-L (R-L) (Lin, 2004) and
BERTScore (Zhang et al., 2020).

* Readability: Flesch-Kincaid Grade Level
(FKGL) (Kincaid et al., 1975) and Dale-Chall
Readability Score (DCRS) (Chall and Dale,
1995), Coleman-Liau Index (CLI), and LENS
(Maddela et al., 2023).

* Factuality - AlignScore (Zha et al., 2023),
and SummaC (Laban et al., 2022).

The objective of the evaluation is to maximize
the Relevance, Factuality and LENS in Readabil-
ity scores and minimize FKGL, DCRS, and CLI
scores.

4 Preliminary Study

Due to the fact that each instance in both datasets
is lengthy and may contain a large amount of irrel-
evant information to generate lay summaries, we
perform a heuristic evaluation on the validation
sets. We are aware that each article has at least an
abstract and a conclusion paragraph. We evaluated
the abstract, the conclusion part and other parts of
each article with the lay summaries on the Rele-
vance aspect. Table 2 shows that in both cases,

Datasets Section R-1 R-2 R-L  BertScore
Abs.  0.502 0.199 0.466 0.871

PLOS Con. 0.154 0.039 0.146 0.803
Others 0.084 0.041 0.081 0.832
Abs. 0319 0.071 0.293 0.839

eLife Con. 0.162 0.026 0.156 0.782
Others  0.097 0.033 0.095 0.820

Table 2: Analysis on Relevance aspect of the abstract,
conclusion and the rest of the content with the lay sum-
maries.

the abstracts written by the author of each article
contain the most similar information. These ab-
stracts are likely to be used as the base knowledge
when creating the lay summaries. Additionally, the
conclusion parts also achieve competitive scores,
which indicates that they have potential to be used
as sources to generate lay summaries.

S Experiments

Based on the results of our preliminary study, we
first extract the abstract and conclusion paragraph
from the original articles. We then perform the
fine-tuning process and prompting GPT-4 using the
combination of abstract and conclusion from the
original articles.

5.1 Fine-tuning LED model

We fine-tune LED model on each dataset indi-
vidually using 50% and 100% of the training set.
We randomly select 50% of the training instances.
Fine-tuning processes are performed on Colab Pro
! using the L4 GPU (22GB VRam). We employ the
base version (41M parameters) of the LED model
via Huggingface?, which can process up to 16,384
tokens. In the experiment, the batch size is set to
2 due to the limitation of the GPU VRam, and we
train for 2 epochs and set the learning rate to le-5.
For the PLOS dataset, we set the maximum token
at 10,000 for input, and the maximum output se-
quence length is 400 tokens. Since the eLife dataset
has longer input and output sequence lengths, we
set the maximum input token to 14,000 tokens, and
the output is 600 tokens. These adjustments are
made to accommodate the length of the lay sum-
mary in each dataset.

1https ://colab.research.google.com/
2https: //huggingface.co/docs/transformers/en/
model_doc/longformer
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Model R-1 R-2 R-L  BertScore FKGL DCRS CLI LENS AlignScore SummaC
PLOS

LED (50%) 0472 0.157 0426 0.864 14459 11431 15781 56.053 0.818 0.741

LED (100%) 0.472 0.163 0.431 0.865 14.299 11.367 15.520 57.090 0.819 0.739

GPT-4 zs 0420 0.114 0.385 0.857 14.648 10.556 15.456 70.621 0.646 0.485

GPT-4 fs 0431 0.123  0.402 0.860 14.210 10.530 15.380 70.781 0.711 0.589
eLife

LED (50%) 0.456 0.121 0435 0.843 9.456 7.760  10.351 67.392 0.631 0.601

LED (100%) 0.461 0.121 0.441 0.848 9.448 7.752 10.345 68.453 0.653 0.617

GPT-4 zs 0465 0.101 0.431 0.847 15320 10.707 16.641 68.769 0.656 0.477

GPT-4fs 0493 0.121 0457 0.851 14.626  10.145 15.435 70.732 0.672 0.497

Table 3: The performance of the evaluated models on the PLOS and eLife private test sets. The best score for each
metric is highlighted in bold, and the second-best score is underlined. ZS is short for zero-shot and FS is short for

few-shot.
Model R-1 R-2 R-LL BertScore FKLG DCRS CLI LENS AlignScore SummaC
BART (Baseline) 0.470 0.140 0.436 0.862 12.035 10.147 13.485 48.096 0.779 0.703
Final Submission 0.482 0.142 0.444 0.858 14462 10.755 15477 63.912 0.745 0.618

Table 4: Our final submission is the combination of fine-tuned 100% training set LED model on PLOS dataset and

GPT-4 few-shot prompting on eLife dataset.

5.2 Prompting GPT-4

GPT-4 demonstrates strong performance on few-
shot settings in multiple NLP tasks (Liu et al.,
2023c). In our experiments, we access GPT-4
through OpenAlI APIs?. To save cost, we choose
gpt-4-turbo-preview version to generate lay sum-
maries. We evaluated GPT-4 in two settings: zero-
shot and few-shot prompting. In zero-shot prompt-
ing, we directly pass the extracted input to GPT-4
and generate the lay summaries. When creating
prompts in few-shot settings, we randomly pick the
source-target pairs from the validation set and use
them as examples for GPT-4. Since the maximum
tokens that GPT-4 can take are 128,000 token, we
incorporate as many as possible within the token
constraints of the API calls. As the results, PLOS
and eLife few-shot prompts contain 4 and 3 exam-
ple pairs, respectively. The maximum lay summary
length is set to 400 tokens and 600 tokens, respec-
tively, for PLOS and eLife. We present an example
of a zero-shot prompt and a few-shot prompt in
Appendix A.

6 Results

In this section, we list our results on the private
test set. The scores are retrieved through the Cod-
abench page of the shared task and reported in

3https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4

Table 3.

PLOS The results clearly demonstrate that fine-
tuning the LED model achieves the best perfor-
mance on relevance and factual aspects. To our
surprise, GPT-4 outperforms LED in readability.
The FKGL score of the fine-tuned LED model
with 100% train set achieves the second best re-
sults. However, for other readability metrics, the
performance of LED models is worse than GPT-4
prompting. In particular, the gap in the LENS score
is noticeably high. The gap is around 13.6 percent-
age points when comparing the fine-tuned version
of LED (100%) with GPT-4 few-shot prompting.
Meanwhile, compared to the results of the GPT-
4 few-shot prompting, the fine-tuned LED model
with full training data outperforms by 0.041, 0.039,
0.029, 0.005, 0.108, and 0.150 on R-1, R-2, R-
L, BERTScore, AlignScore, and SummacC, respec-
tively. It seems that the improvement of the best
fine-tuned LED on those scores can be considered
marginal.

eLife On the eLife dataset, it is surprising that
GPT-4 outperforms fine-tuned LED model in gen-
erating more accurate summaries. However, the
difference in readability is significant, as GPT-4
achieves lower scores on FKGL, DCRS, and CLI
compared to LED models. The gaps between GPT-
4 and LED model on these three metrics, respec-
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tively, are 5.178, 2.393, 5.090. Whereas, the dif-
ferences that GPT-4 few-shot prompting creates
compared to LED (100%) fine-tuned version on
R-1, R-2, R-L, BertScore, LENS, and AlignScore,
respectively, are 0.032, 0, 0.016, 0.003, 2.279, and
0.019. It is no doubt that on eLife dataset, prompt-
ing GPT-4 generates better lay summaries in terms
of Relevance and Factuality.

Based on the above results, we made our final
submission to the shared task by combining the re-
sults of the fine-tuned LED model with 100% train-
ing data from PLOS and GPT-4 few-shot prompts
in the eLife dataset. We compare our submission
with the BART baseline (Goldsack et al., 2024)
in Table 4. It shows that our results surpass the
baseline on the R-1, R-2, R-L, and LENS scores.
Remarkably, our LENS score is higher than BART
baseline by 15.816%. Although in the other met-
rics, our results are a bit lower than baseline, we
argue that the scores are still competitive and the
gap is marginal.

7 Discussion

The results demonstrate that traditional fine-tuning
can produce summaries with accurate keywords
and context rather than prompting. LED model
also creates less hallucination than LLLMs, because
it achieves better Factuality scores. However, fine-
tuning is less effective in making the summaries
simpler and easier to understand.

Furthermore, we believe that fine-tuning LED
model on eLife is less efficient than on PLOS
dataset because of the size of eLife dataset. Further-
more, the text in eLife dataset is also longer than
PLOS. Therefore, it is likely that LED model is
not able to capture the keywords and learn enough
context on eLife. Hence, GPT-4’s performance is
slightly better in this case.

8 Performance Versus Cost

In this section, we discuss the trade-off between
model performance and costs. In our analysis, the
costs include training time, computational cost, and
prompting cost. We summarize our comparison in
Table 5. We first rank the performance of each
method based on the results in Table 3. Next,
we evaluate four methods based on the number
of training hours, the costs of training, inference,
and prompting. Since the PLOS dataset has more
instances in the training set than eLife, it undoubt-
edly takes more time and more costly to train LED
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models on PLOS. In Colab Pro*, it costs around 5
computational units per hour. Hence, to calculate
the total computational cost, we simply multiply 5
by the training time.

Model #Rank Training Cost
PLOS

LED (50%) ond 8 hrs 40 units

LED (100%) 1" 20 hrs 100 units

GPT-4 zs 4" 0 hr 10$

GPT-4 fs 31 0 hr 20$
eLife

LED (50%) 4" 4 hrs 20 units

LED (100%) ond 8.5hrs  42.5 units

GPT-4 zs 3 0 hr 20$

GPT-4 fs & 0 hr 30$

Table 5: The comparision between four approaches
on two datasets. The cost for fine-tuning is referred
to computation units and cost for GPT-4 is referred to
prompting cost using OpenAl APIs.

On the other hand, we directly prompt GPT-4
without further fine-tuning the model. Therefore,
we only report the prompting cost in two data sets.
As mentioned in Table 1, the length of each in-
stance in the eLife test set is longer than PLOS,
and it costs more to generate the lay summaries. In
the few-shot prompting setting, it also costs more
because we include more tokens in the queries for
example.

Through our result analysis and cost-effective
study, it demonstrates that GPT-4 prompting cost
us more on querying, however it takes less time
then fine-tuning and still achieves competitive re-
sults. Especially, in the situation where we have
less training data (such as in eLife case), GPT-4
can outperform fine-tuned LED model.

9 Conclusion

This paper details our approach to the BioLay-
Summ 2024 shared task, comparing traditional fine-
tuning of the Longformer-Encoder-Decoder (LED)
model and few-shot prompting with GPT-4 for gen-
erating lay summaries of biomedical articles. Our
results indicate that the fine-tuned LED excels on
the PLOS dataset, while GPT-4’s few-shot prompt-
ing outperforms LED on the eLife dataset, high-
lighting GPT-4’s advantage in data scarcity scenar-
ios. Future work may explore self-evaluation meth-

“In 2024, 100 computational units cost around 15$ on
Colab Pro.



ods and cost-reduction strategies for fine-tuning
using parameter-efficient techniques.

10 Limitations

Our methodology relies exclusively on OpenAl
APIs for generating summaries using GPT-4, which
presents minimal technical challenges. However,
the costs associated with API requests can quickly
escalate to prohibitive levels, limiting our ability
to conduct extensive experimental work with the
model. Implementing proprietary LLMs such as
GPT-4 also has the limitations of reproducing the
results. In addition, due to computational cost and
time constraints, we were unable to fine-tune the
LED model for more epochs, potentially impacting
the overall performance.
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A Example prompts on GPT-4

Zero-shot prompt

role system

content "Write a lay summary using the following re-
search abstract and conclusion.”

role user

content "Lung-resident (LR ) mesenchymal stem and stro-
mal cells ( MSCs ) are key elements of the alve-
olar niche and fundamental regulators of home-
ostasis and regeneration..."

Few-shot prompt

role system

content "Write a lay summary using the following re-
search abstract and conclusion."

role user

content "Gene expression varies widely between individ-
uals of a population , and regulatory change can
underlie phenotypes of evolutionary and biomedi-
cal relevance..."

role assistant

content "Messenger RNAs carry the instructions neces-
sary to synthesize proteins that do work for the
cell..."

role user

content "The live attenuated simian immunodeficiency
virus ( LASIV ) vaccine SIVnef is one of the most
effective vaccines..."

role assisstant

content "Annually, more than two million people are in-
fected with HIV , the virus that causes AIDS..."

role user

content "Mucosal infections with Candida albicans be-
long to the most frequent forms of fungal dis-
eases..."

role assisstant

content "The opportunistic pathogen Candida albicans is
a major risk factor for immunosuppressed individ-
uvals..."

role user

content "Lung-resident (LR ) mesenchymal stem and stro-
mal cells ( MSCs ) are key elements of the alve-
olar niche and fundamental regulators of home-
ostasis and regeneration..."

Table 6: Example of zero-shot prompt and few-shot
prompt for GPT-4.
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